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Abstract

We study the online multi-class selection problem with group fairness guarantees,
where limited resources must be allocated to sequentially arriving agents. Our
work addresses two key limitations in the existing literature. First, we introduce
a novel lossless rounding scheme that ensures the integral algorithm achieves
the same expected performance as any fractional solution. Second, we explicitly
address the challenges introduced by agents who belong to multiple classes. To this
end, we develop a randomized algorithm based on a relax-and-round framework.
The algorithm first computes a fractional solution using a resource reservation
approach—referred to as the set-aside mechanism—to enforce fairness across
classes. The subsequent rounding step preserves these fairness guarantees without
degrading performance. Additionally, we propose a learning-augmented variant
that incorporates untrusted machine-learned predictions to better balance fairness
and efficiency in practical settings.

1 Introduction

Online fair allocation has attracted increasing attention in recent years, as addressing algorithmic
bias in decision-making has become a major concern in artificial intelligence [BMM24) IMX24,
CCDNF21al, ISIB"23, [HIS 24, [GNPS24, [HHIS23, BGH 23, HLSW23|, BGGI22]. Most existing
work considers settings where agents are offline and resources arrive sequentially, requiring allocation
strategies that maintain fairness across agents.

In contrast, this paper focuses on algorithmic fairness in the online selection problem, where the
roles are reversed: agents arrive sequentially, and the decision-maker must allocate limited, offline
resources by either accepting or rejecting each request immediately and irrevocably. This setting
introduces unique algorithmic challenges for fairness, as the decision-maker must strategically reserve
resources despite uncertainty about future arrivals. Despite its practical relevance, fairness in online
selection with sequential agent arrivals has received comparatively little attention in the literature.

Recognizing the algorithmic challenges of ensuring fairness among online agents, a recent
study [ZJST25] introduces a weaker fairness notion known as group fairness. In this model, each
agent belongs to a single group (or class), and the algorithm aims to ensure fairness across groups
rather than individual agents, thereby expanding the space of feasible fairness guarantees. However,
the model in [ZJST235] has two key limitations. First, it focuses on fractional allocation (i.e., resources
are divisible), whereas many real-world online allocation problems are inherently integral (e.g., allo-
cation of public houses in social housing programs). Second, it assumes that each agent belongs to
exactly one group, while in practice agents are often multi-labeled—i.e., simultaneously associated
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with multiple groups (e.g., by region, gender, etc.). Ensuring fairness across such overlapping groups
introduces additional complexity and interdependence.

Motivated by these limitations, this paper introduces and studies the Online Multi-class Selection
(OMcS) problem with group fairness guarantees. In OMcS, online agents may belong to one or
more of a fixed number of classes (or groups), and the goal is to maintain certain fairness notions
across these groups without prior knowledge of the number of agents in each group. Many real-
world applications fall under this setting and raise fairness concerns. For example, in cloud job
scheduling [ZLW17, [ZHW™ 15|, the system must allocate limited CPU (or GPU) resources fairly
across jobs (i.e., agents), which may be multi-labeled based on user type, geographic region, and
other attributes. Ensuring fairness across such overlapping groups is critical for mitigating unequal
access to public computing power. In this work, we aim to design algorithms that achieve optimal
group fairness guarantees in OMcS. This objective is particularly challenging in the multi-labeled
setting, where accepting a single agent can simultaneously enhance the utility of multiple classes,
thereby complicating the task of maintaining the desired fairness guarantees.

1.1 Our Contributions

We examine OMcS under two fairness criteria: Group Fairness by Quantity (GFQ) and 3-Proportional
Fairness (8-PF). Under GFQ, we require that each group receive a fixed quota of resources. For
any GFQ specification, we present two algorithms: an optimal deterministic algorithm (Theorem
[3.1), and a randomized algorithm that applies a lossless rounding scheme to any optimal solution in
the fractional setting (Theorem [3.2)). Our randomized approach operates within a relax-and-round
framework and introduces a novel lossless online rounding scheme. For the 3-PF objective, we first
develop an optimal fractional solution specifically designed for the multi-labeled setting (Theorem
M.1), and then convert it into an integral allocation via a lossless rounding procedure that preserves
the fractional performance guarantee exactly (Theorem §.3).

Although our proposed algorithm achieves the optimal fairness guarantee, the design based on worst-
case analysis is often too pessimistic for practical applications. To mitigate this, we leverage the
learning-augmented algorithm framework by incorporating black-box machine-learned advice from a
fair online allocation. This algorithm can significantly improve fairness when the advice is fair (i.e.,
consistency) while still ensuring a worst-case fairness guarantee even if the advice is entirely unfair
(Theorems [5.1). Technically, our main contribution is a lossless online rounding scheme inspired by
the lossless online correlated k-rental scheme introduced in [NSBT25], which converts any fractional
solution into an integral one without any expected performance loss. Beyond OMCcS, this scheme
is of independent interest and can be applied broadly to online selection and revenue-management
problems, closing the integrality gap and yielding tight bounds under fairness constraints.

1.2 Related Work

Online selection problem has been extensively studied under various assumptions about arrival se-
quences, including the random order model in the secretary problem [Gar70, AMWO1,|ICCDNF21b],
the 1ID arrivals in the prophet inequality [CFH™ 19, [SC84]], and adversarial arrivals in online search
problems [LPS09, JLTZ21]). In this paper, the OMcS framework builds upon the adversarial model.
Below, we briefly review the most relevant works to our study.

Online selection. Adversarial online selection problem assumes the valuations of online arrivals are
bounded within a finite support. Under this assumption, the classic k-search problem introduced in
[LPSOOL [EYFKTO1] and the online knapsack problem in [ZCLO8|/CZLOS]| developed threshold-based
algorithms that can achieve optimal worst-case performance under competitive analysis. [TYBLG235]]
applied similar approaches in the setting of online selection with convex costs, demonstrating the
optimality of their approach for large-inventory scenarios and asymptotic optimality for small-
inventory cases. Despite these advancements, most existing works heavily rely on the large inventory
assumption in their analysis, and it is inherently challenging to design algorithms for online selection
problems in small inventory settings with tight performance bounds.

Online rounding. The online rounding framework has recently attracted significant attention from
both computer science [FHTZ22| and operations research [Ma24al]. These rounding schemes primar-
ily rely on the relax-and-round approach. Specifically, in the first step, the problem is relaxed and
formulated as a linear program. In the second step, the solution is rounded to construct a computa-
tionally efficient online decision-making policy [BNO9, BBMN15/ICPW19|]. Huang et al. [HZZ20]



introduced the Online Correlated Selection (OCS) algorithm for the online matching problem. This al-
gorithm belongs to the class of randomized rounding approaches and establishes negative correlations
between sequential decisions. Subsequently, Fahrbach et al. [FHTZ22]| introduced an OCS-based
algorithm for edge-weighted online bipartite matching, and Huang et al. [HZZ24]] adapted similar
techniques for the Adwords problem. Furthermore, a recent work [NSBT25] develops a new online
rounding scheme, called the online correlated k-rental scheme, for online selection problems with
reusable resources. This scheme losslessly rounds fractional solutions into integral decisions using a
single random seed sampled at the beginning of the algorithm.

Online fair allocation. Fairness in resource allocation has been a key area of research in computer
science, operations research, and economics, resulting in a wide range of studies on the equitable
distribution of divisible and indivisible resources (e.g., [Ste48, [DS61]). [HHIS23] investigated class
fairness in online bipartite matching using the concept of envy-freeness up to one item, and Banerjee
et al. [BGHT™23| focused on proportional fairness in fractional online matching. Other works,
such as [HLSW23|IBGGJ22], explored the maximization of Nash social welfare in similar settings.
However, these studies assume offline agents with online resource arrivals, neglecting scenarios
with sequential agent arrivals. Our work addresses this gap by examining settings where resources
are offline and agents arrive sequentially. This scenario poses unique challenges, as irrevocable
allocations can disadvantage future agents given fixed resources. Closest to our setting, [JZST24]
explores quantity-based fairness in fractional online allocation. Quantity-based fairness, relying on
predefined criteria, complicates analyzing fairness-efficiency trade-offs. Recently, [ZJST25] extended
this to utility-based fairness in the fractional setting; however, extending these fractional results to
integral allocations with multi-labeled arrivals remains significantly challenging.

2 Problem Formulation and Preliminaries

In this section, we introduce and formulate the online multi-class selection problem, and formalize
the notation of efficiency and group fairness in this paper.

2.1 OMCcS: Problem Statement and Assumptions

We consider an online multi-class selection problem (OMcS) defined as follows: A seller has an
initial inventory of B units of indivisible resources to allocate to a sequence of agents arriving one at
a time. Upon the arrival of agent ¢ € [T, the agent submits a request for one unit of the resource
along with a valuation v; (i.e., their willingness to pay). The seller must make an immediate and
irrevocable binary decision z; € {0, 1}: setting x; = 1 indicates accepting the offer and allocating
one unit of the resource; x; = 0 indicates rejection. In OMcS, each agent ¢ is associated with a label
set J; C [K], representing the classes to which the agent belongs. If | 7;| = 1, we refer to agent ¢ as
a single-labeled agent; if | J;| > 1, the agent is multi-labeled.

In the OMcS problem, we assume that the valuations of agents in each class j € [K] are bounded
within the interval [1,6;], where 0; is referred to as the fluctuation ratio of class j. For agents
belonging to multiple classes, their valuations are bounded by [1, min;c 7, 6,]. A larger 6; indicates
greater variability in valuations within the class, while a smaller ¢; implies more uniformity. Without
loss of generality, we assume 6; < 0y < --- < 0.

A commonly studied special case in the online selection literature [EYEKTO1, [LPS09, JLTZ21}
SLHT21| TYBLG25] assumes a universal fluctuation ratio, i.e., §; = 6 for all j € [K]. Such
interval bounds may be adopted as standard modeling assumptions or derived from trusted predic-
tions [JLTZ21, [HS25]]. We assume that the initial inventory B, the number of classes K, and the
fluctuation ratios {; } jex) are known a priori, while all other information—including the valuations
{vt }se[r), the total number of arrivals 7', and the label sets {7; };c[rj—remains unknown.

2.2 Efficiency and Fairness Metrics

We consider the following performance metrics to evaluate the efficiency and fairness of online
algorithms for OMcS.

Efficiency metrics: competitive ratio in ufility maximization. A seller’s primary goal is to
maximize the total utility of all agents regardless of their groups, i.e., > ., v;2, subject to the resource
constraint ), x; < B. For a given arrival instance I = {(v1, 1), (v2, J2),..., (vr,J7)}, let
OPT(I) represent the optimal achievable total utility in the offline setting, where the sequence [ is



known in advance. OPT(I) can be determined by solving the following integer program:

OPT(l) = max Ve, St x < B. 1
(D)= max, Do vewe, sty @ < (1
In the online setting, we use the competitive ratio as our efficiency metric. Let ALG([) be the revenue
of an online algorithm ALG. The goal is to minimize the worst-case competitive ratio, defined as

CR* = minp g maxseq %, where () is the set of all possible arrival sequences within the
intervals characterized by {0;};c|x}, and OPT([) is the offline optimal revenue.

Fairness metrics: group proportionality by quantity and utility. We focus on two fairness metrics.
The first one is quantity-based fairness, which requires that a minimum amount of resources be
allocated to agents from each class. This notion, referred to as Group Fairness by Quantity, is
formally defined as follows:

Definition 1 (Group Fairness by Quantity (GFQ)). An allocation x := [z1, ..., 2] satisfies group
fairness by quantity if 3, 7y @4 - 1{jez,} = m; holds for all j € [K], where m := {m;} ;e (k) is a
pre-determined fairness requirement.

Under the multi-label setting, an agent with multiple labels can simultaneously help satisfy the GFQ
constraints for several groups. However, once these quantity-based constraints are fulfilled, the
seller’s decision depends solely on valuations, and labeling information is ignored. This approach
overlooks fairness during the allocation process and may not suit real-world applications where
fairness must be maintained throughout. To address this, we introduce a utility-based fairness metric
that evaluates fairness based on agents’ utilities. This encourages the seller to favor multi-labeled
agents, enhancing both overall utility while promoting a more balanced allocation across groups.

Definition 2 (3-Proportional Fairness (3-PF)). Let utility of class j with allocation x := [z1, ..., Z7]
be Uj(x) = > ;e vt - Tt - Ljeg,}, where 1yc 7} is an indicator function. For 8 > 1, an
allocation x is S-proportionally fair if, for every other allocation w, the following inequality holds:
L 3. Uilw) ﬁﬂ

K 24j€lK] T;(x) =

An online algorithm is said to be 3-proportionally fair if it consistently produces allocations that satisfy
(B-PF under all possible arrival instances. When 5 = 1, the allocation is referred to as proportional
fair and has been widely used in network resource allocation (e.g., [CFLM19, [ KMT98| [ KDRU16)|
Kel97]) and fair clustering algorithms (e.g., [CMS24), [LLS™21| MS20, [CFLM19])). However, in
online settings, due to future uncertainties, exact 1-PF is generally unattainable. Thus, we focus
on its 3-approximation, called 3-PF [BGH™23,[MS20]. This fairness notion is widely used in the
literature and it is closely related to the Nash Social Welfare (NSW). Specifically, if an algorithm is
B-PF, it always produces 5-NSW.

3 OMCcS with Group Fairness by Quantity

In this section, we investigate OMcS under the GFQ constraints. Based on DeﬁnitionE], areserved
allocation m is provided in advance. Therefore we can reformulate the problem in (T]) by adding a new
set of GFQ constraints as } ;. 7y @¢ - 1(j,=;3 = m; forall j € [K]. We aim to design an algorithm
to maximize the efficiency (i.e., minimizing the competitive ratio) for a given GFQ requirement m.

3.1 Warm Up: An Optimal Deterministic Set-Aside Algorithm

We begin by presenting a simple deterministic algorithm, termed D-SETASIDE-GFQ, for OMcS under
GFQ constraints and show that it is optimal among all deterministic algorithms. D-SETASIDE-GFQ
is a threshold-based algorithm and works as follows: upon receiving the first m; agents from
each class j € [K], D-SETASIDE-GFQ ensures the corresponding fairness guarantee for that class,
by automatically accepting these agents regardless of their requested valuation, until the fairness
guarantee for the class is met. As aresult, M = je[k] My units out of B resource items are reserved,
or set-aside, to meet the fairness requirements (hence the term ‘set-aside’ in D-SETASIDE-GFQ).
The remaining B — M items are then allocated to the arriving agents based on a threshold, denoted
by A = {\i}ic|B—nm)> Where \; denotes the threshold when 7 units have been allocated. More

'We assume the fraction z /y for non-negative x and y is equal to O when x = y = 0, while z/y = +o0
when y = O butz > 0.



specifically, upon the arrival of an agent at time ¢, the algorithm first verifies whether the GFQ
constraints for all associated classes are satisfied. If any of these constraints remain unmet, the
agent is accepted unconditionally, regardless of its valuation. Otherwise, the agent is accepted
only if its value exceeds the threshold for allocation at time t; if not, the agent is rejected. Let
C; = B —max;ep;_q{m;} and D; = 3171 [m; — maxjep; 1) {my}]* - 0;, where [-]* = max{-,0}.
In the following theorem, we formally present our design of the optimal threshold A* and the
competitive ratio associated with it.

Theorem 3.1 (OMcS with GFQ: Optimal Deterministic Algorithm). D-SETASIDE-GFQ achieves

the optimal competitive ratio of among all deterministic algorithms, denoted by o, if and only if the
threshold X* = {\§, N, ..., A5, ..., N} is designed as follows:

(i) If B > M: the thresholds are split into two parts

o~

* A=A =... =X =1and Ny_,; = Ok, where T is the minimum integer in {0,1,..., B —
M — 1} such that 7+ 1 > f* — M.

o {a*, X,  Ng_ar_1 ) is the unique set of B — M — 7 + 1 positive real numbers that satisfy

the system of equations:
AT+1 Ai+1 _ Ai
T T+l X

Vie[r+1,B—M —1],

where for some N} € [0;_1,0;], A" = C; - \f + D.

(ii) If B < M: Inthis case, Ny, = 0 and {a*, NS, ..., Nig_as_1 } i the unique set of B— M +1

a*

positive real numbers that satisfy the system of equations:
AO Ai+1 _ Ai
M X

*

o Vie[0,B— M —1],

where for some X! € [0;_1,0;], A" = C; - X} + D;.

The proof of this theorem, as well as the complete pseudocode of the algorithm D-SETASIDE-GFQ, is
provided in Appendix [B.I] Additionally, in the special case of K = 1, OMcS with GFQ guarantee is
closely related to the problem introduced [ZZZ15! JLTZ21] and with an extra assumption of m; = 0
it recovers the existing optimal result of [TYBLG25]]. However, having multiple classes and GFQ
constraints significantly increases the complexity of the problem.

3.2 Optimal Randomized Algorithm: R-SETASIDE-GFQ for OMcS with GFQ

We propose a randomized algorithm, termed Randomized Set-Aside with GFQ guarantee
(R-SETASIDE-GFQ), and prove that it attains the optimal competitive ratio among all algorithms.
R-SETASIDE-GFQ operates in two phases: in the first phase, the integral problem is relaxed to a
fractional setting, and the optimal online decisions are computed in this relaxed space. In the second
phase, these optimal fractional decisions are rounded to obtain a feasible integral solution. This
approach is inspired by online correlated selection techniques originally developed in the online
matching literature (e.g.,[HZZ20, IFHTZ22]). Recently, [NSBT25]] introduced a lossless online cor-
related k-rental rounding scheme that employs a single random seed to round fractional solutions
in online selection problems with reusable resources, where items become available again after
their rental periods expire. In contrast, for non-reusable settings, the rounding procedure follows
Algorithm [2] in which a new random seed is independently sampled in each round to preserve
the desired correlation structure across decisions. This random variable is drawn from a carefully
designed Bernoulli distribution to ensure that each item’s allocation remains synchronized across
rounds, such that an item becomes available with the desired probability for allocation to an agent in
each round. Building on this concept, our rounding scheme is designed to allocate items such that the
expected performance of the integral solution mirrors that of the optimal fractional solution at every
step. This ensures the algorithm maintains competitiveness and optimality at every step.

As previously mentioned, the optimal fractional decision at time ¢, denoted by Z; € [0, 1], is computed
during the first relaxation phase and can be obtained using any optimal online fractional algorithm,
denoted as FRAC-GFQ (line[8). An example of such an algorithm is provided in Algorithm [5]in
Appendix [B.3] In the subsequent stage, an integral solution x; is obtained using the lossless online
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Algorithm 1: Randomized Set-Aside with
GFQ guarantee (R-SETASIDE-GFQ)

Algorithm 2: Lossless Online Rounding
(ROUNDING)

Input: B; {m;,0;}vic(x]
Initialize: Unit index x; = 1 and

Input: k, 2, 2, T
1 if [z,] = [2,] = & then

{Kk] = 1}vje[k)» utilization level zp = 0 R v — {1 w.p. Z/([zp] — 2p)
while agent t arrives do 0 otherwise
Obtain agent ¢’s information (v¢, ;) 3 elseif [2,] # [z,] then
if K] < m, for any j € 7, then 4 if K = [z,] then
=1 5 ‘ r=1 wp.1
Update ki, = K} + 21,V j € T; 6 | elseif s = [z,] then
else 7 T =
Ty = FRAC—GFQ(B, {mj, ej}Vj> 1w z2n—[2p]
Update 2t = Zt—1 + i’t P (I=Tzp+2p)-([zn1—T2p1)
2y = ROUNDING (K¢, 2¢, 2¢—1, T¢) {0 otherwise
Update k1411 = k¢ + x4 L
L Output: z

rounding scheme of ROUNDING, given in Algorithm [2] This scheme ensures that the expected utility
of the integral allocation aligns with the utility achieved in the fractional setting. Let z; = Z:,:l Ty
denote the fractional utilization level at time ¢. Specifically, if the fractional solution continues
allocating item [z;_1], the rounding procedure allocates that item to the agent ¢ with probability
Z¢/([2t—1] — zt—1), provided it is still available. On the other hand, if the fractional setting initiates
the allocation of a new item, and the item [z;_;] in the integral solution remains available, it is
allocated with probability 1. Otherwise, item [z;] is allocated probabilistically, maintaining the
expectation of utility equivalence with the fractional solution. The following theorem states the main
result regarding this multi-stage algorithm.

Theorem 3.2 (OMcS with GFQ: Optimal Randomized Algorithm). Given a GFQ requirement m,
Algorithm[I|achieves the same competitive ratio as FRAC-GFQ for OMcS under the GFQ constraints,
namely, the rounding scheme of Algorithm[2]is lossless.

The proof of this theorem is presented in Appendix

Note that when there is only 1 class and m; = 0, .
OMGS is reduced to the conventional online selec-
tion problem [LPS09], and Algorithm [I] achieves
a tight competitive ratio 1 + In #;, which matches
the lower bound [ZCLO8, ICZIL.08]]. To the best of
our knowledge, Algorithm [I] is the first random-
ized algorithm that can attain this result. Figure [I]
shows the comparative ratio of R-SETASIDE-GFQ
and D-SETASIDE-GFQ based on the number of avail- 1 e er ot items?‘zB) 2 28
able items (i.e., B). It illustrates that while these

two ratios essentially converge for large values
of B, R-SETASIDE-GFQ significantly outperforms
D-SETASIDE-GFQ in cases with smaller inventory
sizes. Furthermore, we believe that this rounding
scheme can be adaptable to a wider range of related online selection problems, such as the single-leg
revenue problem [BKK2?2], to achieve a tight guarantee. In the subsequent sections, we explore how
this rounding scheme can be extended to address these additional problem settings, demonstrating its
flexibility and effectiveness.

—=— R-SetAside-GFQ:m; =5

\ —e D-SetAside-GFQ:m; =5
—s— R-SetAside-GFQ:m; =7

"\ —e-- D-SetAside-GFQ:m; =7

55

Competitive ratio

Figure 1: Comparison of D-SETASIDE-GFQ
and R-SETASIDE-GFQ.

4 OMcS with S-Proportional Fairness

Despite its simplicity and intuitive appeal, the OMcS problem with GFQ guarantees exhibits several
notable limitations. The reservation vector m is enforced as a hard constraint, yet determining
appropriate values for m is often non-trivial and may be contentious in practice—e.g., whether
to reserve an equal 1/K fraction of the total budget for each class or to allocate reservations
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Algorithm 3: Randomized Set-Aside with 8-PF guarantee (R-SETASIDE-PF)

Input: B,{Hj}vje[;q. B

Initialize: Sale unit index x; = 1, utilization levels {25 = 0}v; je(x], 25 = 0 and 29 = 0.

while agent t arrives do

Obtain the value and class information of agent ¢: v; and 7; ;

foralli,j € J; do > Relaxation phase.
if v, > ¢ ;(217,) then

2y
2,2 +a

2y = arg maxae[o’l]{avt - fztifl ®i,5(n)dn}.

7 = min{[h — z7|]*, &7} and h is the maximum number such that dijed: il <.

if Vt Z ¢G(Ut_1) then

G
e ) L [ARTte @
Tf = argMaX,ep 1 s, - i) {a v = Jo ¢ (n)dn}.

Update {7 = 2/ + z} forall i,5 € J,.
Update 2% = 2& | + 28,
SetZ; = Zi,jejt T+ a?tG and z; = 241 + T¢ > Rounding phase.

Ty = ROUNDING(K/t, Zty Rt—1, fit),
Update k11 = K¢ + 4.

proportionally based on class sizes. Furthermore, as the algorithm must maintain feasibility without
knowledge of future arrivals, early agents may receive disproportionately favorable allocations despite
having low valuations, resulting in individual-level unfairness. To mitigate these challenges, we
introduce a utility-based fairness notion that relaxes the rigidity of GFQ. Specifically, we propose
Algorithm [3] which employs a relax-and-round framework [Ma24b]. In the following section, we
first describe the relaxation phase (lines BHIO), which ensures -proportional fairness under the
multi-labeled setting. We then present a lossless rounding procedure (lines [[THT3) that converts the
fractional solution into a feasible integral allocation while preserving the fairness guarantees.

4.1 Relaxation Phase (lines[3[I0): A Novel Fractional Set-Aside Algorithm

Here we first focus on the relaxation phase of Algorithm [3] where the allocation decisions can take

fractional values. At a high level, this phase works as follows. Upon arrival of each agent, based on

its class set and valuation information, | 7| + (l‘?l) + 1 allocation decisions are made. The first | 7|

allocations are based on the agent’s group-specific threshold function and the next (l‘?l) are based
on the threshold functions designed for each pair of groups which can successfully ensures group
fairness in the multi-labeled setting. The last one is based on a global threshold function, aimed
at optimizing individual welfare. Specifically, we design K + 1 + (I; ) threshold functions, one
local threshold function for each class j € [K]| denoted by ¢; ;(u) : [0,b;] — [1,0;], one for each
pair 4, j € [K] denoted by ¢, ;(u) : [0,b;;] — [1,min{6;, #;}], and one global threshold function,
denoted by ¢ (u) : [0, B - b] — [1,0k], where b € [0, 1] is a parameter indicating the importance of
efficiency over fairness. In the following theorem we show that with a well-designed set of threshold
functions, Algorithm 3|can smoothly balance efficiency and fairness.

Theorem 4.1. For any given b € [0, 1], the relaxation phase ofAlgorithmis a(b)-competitive (in
utility maximization) and [3(b)-PF, where

Oé(b): 1751 b ﬁ(b):L Z (1_%)'067 (2)

ek (K—=j+1)-ay tox 1=t JEIK]

provided that for all i > j € [K], the threshold functions are designed as follows:

. B-b
6 i) 1 u € 07%}7 ¢g() 1 uE[O,EL
j,il\t) = 3 B ’ u)= aK-U .
Js eXp(%—l) = Z—?,bj}, exp(&—l) ue[f—:,B.b],



where b; = E;?;(K—% with a; = 1+ 1n6;.

The proof of Theoremis given in Appendix Here, the parameter b € [0, 1] quantifies the
degree of emphasis placed on efficiency. Notably, as b — 1, the allocation is governed solely by the
global threshold function and ignore the set-aside budget to guarantee fairness, causing the algorithm
to converge to the optimal competitive ratio o without fairness constraints. On the other hand, as
b — 0, the algorithm excludes the global threshold function entirely and split the set-aside budget

among class-based threshold function, which achieves (% Zie[ K] (K—i+1)- ai) -PF.

We note that [BGH™ 23] studied a generalized version of this problem, where valuations are not
uniform across groups at each timestep. However, our approach significantly diverges from theirs.
Their algorithm reserves half of the total budget upfront to ensure fairness and greedily allocates the
remainder to minimally satisfy S-proportional fairness at each step. In contrast, our method employs
carefully designed threshold functions that provide a more principled and flexible mechanism for
allocation. Moreover, their design makes it difficult to explore the trade-off between fairness and
efficiency, whereas our approach allows for a more transparent and systematic examination of this
relationship. We further note that in the special case where | ;| = 1 for all ¢ € [T']-that is, when
there are no multi-labeled arrivals—the need for reserving budgets for each class pair disappears. In
this setting, our results recover those of [ZJST25]], which proposed an algorithm that achieves the
Pareto-optimal trade-off between fairness and efficiency. The following corollary formally states this
result.

Corollary 4.2 (Pareto-optimality). For fractional OMcS with single-labeled agents only, Algorithm|[3]
is Pareto-optimal in that for any b € [0,1] and € > 0, no online algorithm can be (a(b) — ¢)-
competitive without deteriorating the fairness guarantee (i.e., increasing the value of 5(b)).

The proof of Corollary .2]is provided in Appendix [C.2] While this result establishes the optimal
fairness-efficiency trade-off in the single-labeled setting, the same does not hold for the algorithm
in [ZJST25] when extended to the multi-labeled case. Specifically, under multi-labeled arrivals, their

method guarantees only a (ﬁ -3 jelK] @ j> -PF solution, which is significantly weaker than the

fairness guarantee achieved by our proposed algorithm. This corollary therefore not only confirms
the Pareto-optimality of our design in the single-labeled regime but also illustrates its superior
performance and generalization to the multi-labeled setting in OMcS.

4.2 Rounding Phase (lines[TTHI3): A Lossless Online Rounding Scheme

In this section, we discuss the rounding phase of Algorithm [3] which builds upon the rounding
scheme described in Algorithm 2] This algorithm leverages the concept of negative correlation among
decisions to achieve the optimal S-proportional fairness guarantee. In particular, at each time ¢,

Algorithm [3|first computes at most | 7;| + (l‘g" ‘) + 1 provisional allocations based on the class-specific
threshold functions to enforce fairness, and using a global threshold function to promote overall
efficiency. The sum of these allocations yields a total fractional allocation at time ¢, which is then
rounded to an integral allocation via the rounding scheme of Algorithm 2] Somewhat surprisingly, the
rounding scheme of Algorithm 2] originally developed for OMcS with GFQ constraints and proven
to be lossless in that setting, also serves as a lossless online rounding scheme for OMcS under the
(B-PF guarantee. Specifically, it preserves the performance guarantee obtained in the relaxation phase
when transitioning to the integral setting. Theorem [.3]below highlights this in detail.

Theorem 4.3 (OMcS with 3-PF). Forany b € [0,1], Algorithm[3]is c(b)-competitive and 3(b)-PF,
where a(b) and 5(b) are defined in Eq. (2).

The proof of this theorem is presented in Appendix [C.3] Since based on Corollary 4.2 Algorithm [3]
recovers the Pareto-optimal design of [ZJST25] in the special case of single-labeled setting where
|J:] = 1forall ¢t € [T, the final integral allocation is also Pareto-optimal because the rounding
phase does not deviate the performance guarantee.

Before concluding this section, we briefly comment on the computational complexity of the proposed
algorithms. All algorithms operate in an online manner and require only O(1) time per buyer arrival.
For instance, Algorithm [3| computes the fractional allocation Z; by solving a convex pseudo-revenue
maximization problem (lines [5 and [§), using predefined threshold functions for each class. The
resulting fractional allocation is then rounded in O(1) time to yield the final decision (line .



S Improving Group Fairness via Learning-Augmented Algorithms

The B-proportional fairness essentially ensures that the desired allocation x is comparable to all other
allocations w in the PF sense, i.e., % Zj c[K] % < . However, this can be overly pessimistic
in practice. To address this, predictions from machine learning tools or advice from experts about a
fair allocation are often available, and can be used to improve fairness guarantees. In this section,
we aim to explore how to leverage (possibly imperfect) advice about a fair allocation based on the
consistency-robustness framework in the literature of learning-augments algorithms [WZ20, [KPS18].
Specifically, an allocation x is called 7-consistent proportional fair if it satisfies n-proportional
.falrness with respect to the ad\flc.e allc.>cat10n X, 1.e., IS > JEIK] % .S 1. Similarly, an alloca.tlon X
is y-robust proportional fair if it satisfies y-proportional fairness with respect to any allocation w,

=2 JElK] % < . These metrics allow us to balance the benefits of good advice with the need
for robustness against advice errors, ensuring a more practical and reliable fairness guarantee.

Definition 3 (Advice Model of OMcS with 5-PF). For the OMcS problem with 5-PF guarantee, we
define ADV = % = {#; € {0,1} : t € [T]} as the untrusted fair advice.

Note that the primary objective of this section is to use this advice to improve the fairness guarantee.
Therefore it can not recover the 1-consistency of the efficiency even when the prediction is completely
correct. Moreover, since the focus of this advice is on improving fairness, we set b = 0 throughout,
thereby placing full emphasis on the fairness objective. We introduce a learning-augmented algorithm,
termed the Linear Combination-based Learning-Augmented Algorithm (LiLA), for the OMcS problem
with a 8-PF guarantee. At each time step ¢, the algorithm generates two candidate decisions: a
robust decision T, computed using Algorithm [3| and a predicted fair decision &, produced by a
black-box machine learning model trained on data from ADV. The algorithm then selects its final
decision z; through a randomized mechanism that depends on the level of trust in the prediction. A
hyperparameter e quantifies the confidence in the prediction and serves as a control variable balancing
consistency and robustness: as e — 0, the algorithm becomes more consistent with the predictions
but less robust to errors. Accordingly, a combination probability p € [0, 1], determined by e, regulates
the decision-maker’s reliance on the black-box advice. Specifically, p denotes the probability of
adopting the predicted decision Z;, while 1 — p denotes the probability of following the robust
decision Z;. Hence, the expected decision of the learning-augmented algorithm at each time step is
Ty = pit + (1 — p)ft

For a hyperparameter € € [0, 8 — 1], where 8 = §(0) represents the proportional fairness guarantee

of Algorithm p is defined as p := (%6 —1) - 513 Itis easy to verify that p € [0,1]. When € = 0,
the algorithm fully trusts the advice decisions, setting p = 1. On the other hand, when ¢ = 3 — 1, the
algorithm reverts entirely to the robust algorithm by setting p = 0. The following theorem presents
our main results regarding the consistency and robustness of LiLA.

Theorem 5.1. For any € € [0, 8 — 1], LiLA for OMcS with 8-PF guarantee is (1 + €)-consistent
(1+e)(B=1)

. -robust proportional fair.

proportional fair and

The proof of the above theorem is provided in Appendix It is observed that as € — 0, the
algorithm becomes 1-consistent, but its robustness is unbounded. This behavior is intuitive: when the
algorithm fully relies on the untrusted advice, there is a risk that the advice is inaccurate, leading to
an unbounded fairness guarantee.

Furthermore, we can see that in the single-labeled arrival setting, Theorem [5.1] implies Pareto
optimality of consistency-robustness trade-off. This is details in Appendix [D.2] From our analysis in

this special case, LiLA reserves b; = % + %r}jj for each class j € [K], where 7 and ~y represent

the consistency and robustness parameters. Notably, when the advice is accurate (i.e., ¢ — 0), each
class receives exactly % of the resource. This matches the optimal reservation achieved by NSW, as
presented in [BGH™ 23|, since 1-PF is equivalent to 1-NSW.

The following corollary summarizes the main results regarding the efficiency of this model:

Corollary 5.2. Forany e € [0, 5 —1], LiLA for OMcS with 3-PF guarantee is (K - (14 €))-consistent

K-(1+6)(8-1)

competitive and -robust competitive.

The above corollary holds since any $-PF allocation x is guaranteed to be (K 3)-competitive, as

22 Uj(w) Uj(w)
Zﬂ# < Zje[

for any allocation w, we can see that e TG0 = K] Tr(x) < K{. Intuitively, achieving



1-consistency in fairness necessitates reserving % of the resources for each class. This leads to a
reduction in efficiency by a factor of K when all arrivals belong to a single class, as the efficient
algorithm would allocate the entire resource to that class. Consequently, even with perfectly accurate
predictions, the algorithm ensures K -consistent efficiency. This trade-off arises because the algorithm
prioritizes fairness over efficiency in its design. We also demonstrated in Appendix [D.4]that LiLA
can also enhance the performance guarantee of the OMcS problem with GFQ guarantee. The key
distinction lies in the advice model, which is assumed to always satisfy GFQ requirement, while the
prediction focuses on improving efficiency.

6 Conclusion and Future Work

In this paper, we studied group fairness guarantees in the online multi-class selection problem under
a multi-labeled agent setting. We proposed a novel randomized algorithm based on a relax-and-round
framework, where a carefully designed rounding step ensures that the integral solution matches the
performance of the fractional one in expectation—addressing a key limitation of existing methods.
Our algorithm is specifically designed to handle the complexities introduced by multi-labeled agents,
enabling fair and efficient allocation across overlapping classes. To further improve performance
beyond worst-case guarantees, we also developed a learning-augmented variant that incorporates
untrusted predictions to enhance average-case outcomes.

Our work opens several intriguing directions for future research. A key question is how our results
extend to alternative arrival models, such as the random order model or stochastic i.i.d. settings, and
what implications these extensions may have for online fair allocation in broader contexts such as
mechanism design, auctions, and multi-agent systems. Another important direction is to investigate
whether our findings can be generalized to multi-resource settings (e.g., combinatorial auctions), in
both fractional and integral forms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide an accurate summary of the paper’s core
contributions and remain consistent with the overall scope and results presented throughout
the work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly discuss the advantages and disadvantages of our proposed model in
comparison to existing approaches. Additionally, we explicitly highlight the limitations of
our work to provide a balanced and transparent assessment.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result, we provide the full set of assumptions along with a
complete and correct proof. All proofs are included in the appendix with clear references
from the main text.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As a theory-focused paper, our experimental results are primarily intended
to validate and illustrate the theoretical findings. The experiments are straightforward and
designed to align closely with the theoretical setup, making them easy to reproduce based
on the information provided in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: While we did not provide open access to our code, we clearly state in the paper
that the dataset used in our experiments is publicly available and properly cited in the main
body. Moreover, as a theory-oriented paper, our code is limited to direct implementations of
the proposed algorithms without any additional tuning or tweaks, making the experiments
straightforward to reproduce based on the descriptions provided.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the necessary information in the experimental section, including
data splits, parameter settings, and implementation details, to ensure the results are clear
and reproducible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We report the significance of our algorithms and provide appropriate compar-
isons between the examined methods. We highlight their differences clearly and include
relevant statistical information to support the validity of our theoretical findings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: As a theory-focused paper, our experiments are solely intended to validate
the correctness and behavior of the proposed algorithms. They do not require any specific
computational configuration, and therefore details such as compute resources, memory, or
execution time are not necessary for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We fully acknowledge and adhere to the NeurIPS Code of Ethics. The research
conducted in the paper complies with all ethical guidelines and standards set forth by the
conference.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper addresses a critical societal issue: fair allocation of limited public
goods among diverse groups. Our work promotes transparency and equity in resource
distribution, with applications like vaccine allocation. While the focus is on positive impacts,
we also acknowledge the need to avoid reinforcing existing biases.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is not applicable to our paper, as it does not involve the release of data or
models that carry a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We used an algorithm from a prior work and have properly cited the original
source in our paper. All external contributions, including algorithms and any referenced

methods, are credited appropriately, and their use respects the original authors’ rights and
terms.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our paper introduces new algorithms, which are thoroughly documented
within the main text and appendix. We provide detailed descriptions, theoretical analyses,
and, where applicable, pseudocode to ensure clarity and reproducibility.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects, so such information is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper is a theory-based study and does not involve any human participants.
Therefore, there are no associated risks, and IRB approval was not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We used LLMs solely to improve the writing and presentation of the paper.
They were not involved in the development of the core methods, experiments, or theoretical
contributions.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Numerical Experiments

In this section, we evaluate our algorithms to investigate the empirical fairness and efficiency under
different fairness notions and algorithms. We also explore how untrusted black-box advice can help
the improvement of fairness.

A.1 Experimental Setup

We evaluate our theoretical results using the Google Cluster Data [Gool5]], which records CPU usage
over time for three request types and here we consider them as distinct classes. The normalized
CPU allocations are scaled to fit our model, and requests needing more than one CPU units are split
into single-unit requests. We assign valuations randomly with §; = 5, 83 = 10, and 03 = 15, with
B = 100. We analyze OMcS with GFQ under deterministic (D-SETASIDE-GFQ) and randomized
(R-SETASIDE-GFQ) algorithms, denoted as d-GFQ and r-GFQ respectively. For our analysis, we set
m; = b for each class j € [K]. We also study OMcS with 3-proportional fairness denoted as 3-PF
(R-SETASIDE-PF with b = 1) and without fairness consideration denoted as a-CR (R-SETASIDE-PF
with b = 1). To model the advice, we follow approach. Let £ € [0, 1] represents an
adversarial probability. When £ = 0, ADV provides the optimal solution, and when ¢ = 1, ADV
is fully adversarial. Formally, let {z] : ¢ € [T]} denote the optimal decisions and {i; : t € [T]}
the decisions that minimize the objective. Then, in expectation, the advised decisions are given
by ADV = {(1 — &)z} + &&¢ : ¢t € [T]}. Under this advice model, we examine LiLA with GFQ
(GFQ-LA) and j-proportional fairness (3-PF-LA) as well.
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Figure 2: Utilities and resource allocations of each class under different algorithms; 6, = 5, 8, = 10
and 63 = 15.
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A.2 Experimental Results

In our first experiment, we set £ = 0 and € = 1.25. Figure [2]illustrates the utilities achieved by
each class and the corresponding resource allocations. As observed, the 3-PF algorithms allocate
resources more equitably across classes while maintaining a high level of efficiency in terms of
total utility. In contrast, quantity-based approaches prioritize efficiency over fairness, resulting in
higher total utility but less equitable allocation. Furthermore, the superiority of the LiLA algorithms
is evident in this figure when compared to those without predictions. Furthermore, Figure 3| presents
the cumulative distribution function (CDF) of the empirical competitive ratio. This figure demon-
strates how predictions enhance performance by improving the convergence of the competitive ratio.
Additionally, it highlights the superiority of r-GFQ compared to d-GFQ.

In another experiment, we investigate the impact of prediction accuracy and the reliance of algorithms
on these predictions on the empirical 3-PF guarantee. We consider 5-PF-LA with different values of
€, corresponding to varying combination probabilities p, along with the algorithm without predictions
and the algorithm fully relying on predictions (ADV). Figure 4] illustrates that greater reliance on
predictions improves the fairness guarantee when the advice is of high quality but worsens it as the
prediction quality decreases. This highlights the trade-off between consistency and robustness.

B Section 3 Proofs

B.1 Proof of Theorem 3.1]

We introduce a deterministic threshold-based online algorithm, D-SETASIDE-GFQ, that is optimal
among all deterministic algorithms. D-SETASIDE-GFQ relies on a set of thresholds, denoted as
A = {Ai}ic;B—n» Which are used to decide whether to accept or reject an arriving item. The
objective is to design these thresholds in a way that minimizes the competitive ratio of the algorithm.

Algorithm 4: Deterministic Set-Aside with GFQ guarantee (D-SETASIDE-GFQ)
Input: B; {m; }vje(x]: {\] bvieip—m)-

Initialize: Unit index r; = 1, {x] = 1}v c(x]-

while buyer t arrives do

Obtain agent ¢’s information (v, J)

if k] < m, for any j € J; then

Ty = 1

Update 7, = k] + x4,V j € Ty

else
Decide the selection according to:
if x; < B— M and v; > /\;t_1 then

Tt = 1
Update k441 = k¢ + 24

Here, we first prove that Algorithm @] with the thresholds designed in Theorem [3.1] always achieves
a’-competitiveness. We then prove the optimality of this design compared to any other deterministic
algorithm.

For a fixed input sequence I, let the algorithm terminate after allocating Z out of B units of resources,
obtaining a value of ALG(I). Let S and S’ be the sets of items selected by Algorithm 4| and the
optimal solution, respectively. We denote the number and value of the common items by W = |SN.S’|
and V' =}, g~ g v Since the admission thresholds are monotonically increasing, we observe that
for any item j not selected by the algorithm, v; < A7%. As aresult,

OPT(I) <V +Ay_y - (B=W).
Let V' = Zte(s /57) Ut be the value of those items that are selected by the algorithm and not selected
by the offline optimum. As a result, we can see that:

OPT(I) < V+Xy,_ - (B=W)

ALG(I) — V+V
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Since each item j picked in S after the satisfying the GFQ constraint and selected as the i-th item
must have valuation at least \}_,, we have:

V> > A+ M, callthis Vi,
tesns’
V> YA+ My, call this Vs,
tS/8’
where M; and M, are the part of GFQ constraints that are satisfied in V' and V’, respectively and
My 4+ My = M. Since OPT(I) > ALG(I), we can see that:
OPT(I) _ VA m (B-W) N +Azu (B-W) N +A7m - (B-W)
ALG(I) — V+V - Vi+ Vv’ - i+ Ve
Additionally, by monotonicity of admission thresholds, we get Vi < A%_ /(W —max;e;—qj{mi}) +
I mi — max;ep;—1]{mu}]t - 0; when A}, isin [0;_1,6;]. Furthermore, V; + Vo = M +
ZZ.Z:BMA AF. As aresult we get

OPT(I) _ Ap—ar (B — maxiej—nj{mi}) + Y124 [mi — maxie_y{mi}]* - 0;
ALG(I) — M+ Y2 My
Az-mCi+Dj
T ML

. . . . Ay ar-Cij+D;
Based on the system of equations presented in Theorem|3.1} it is easy to verify that Mig;f&:f\ =
=0 i
a* and this concludes the a*-competitiveness of Algorithm 4]
Now, we will discuss the optimality of the presented design in Theorem [3.1] Let us first introduce a

hard instance for the OMcS problem with GFQ constraints.

Definition B.1 (GFQ Fairness Guarantee Hard Instance in Integral Setting: Z°~°FQ), Instance I*~CFQ
is defined as a scenario characterized by a continuous, non-decreasing sequence of valuation arrivals.
In this scenario, each valuation is replicated for every class as long as it remains feasible and a copy
of this valuation which has the label of all possible classes. For some value of € such that ¢ — 0,
instance I°~°FQ can be shown as follows:

Ji-GFQ _ { 1, {1}, (1, {2}),...,(1,{K}), (1, {1,...,K}),

K41 number of agents

A+e6{1}),....01+ 6 {K}). (1 +e{1,....,K}),...,
K41 number of agents

(61,{1}),...,(61,{K}),(01,{1,...,K}),

K41 number of agents

01+ €,{2}),..., (01 + €, {K}), (61 + e,{2,...,K}),...,(ek,{K})},

K number of agents 1 agent

where in above (v, J), Vj € [k], corresponds to the B copies of an agent with valuation equal to v
with the label set 7.

Now, under this instance, any deterministic algorithm should reserve M items to ensure that the GFQ
constraint is always satisfied. Additionally, it should select B — M + 1 admission prices, denoted
by A, in a way that minimizes the competitive ratio at any stopping point of the sequence I*~¢FQ,
When the stopping point is 1, the optimal offline solution will allocate the entire capacity at this
price. However, the online algorithm cannot do such things since the adversary might send much
higher prices followed by this stream and penalize the algorithm. Therefore, in order to maintain the
a-competitiveness, the algorithm will allocate only 7 units to the agents with valuation 1 where 7 is
in a way that:
B
M+71+1 ZmaX{M,}.

a*
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In this way, it is always possible to guarantee the a-competitiveness when all the valuations are 1.

Now we consider two cases based on the value of M. By starting the stream of higher prices, the
algorithm will also set the higher admission thresholds in a way the following equation system
satisfies.

Case 1. As the first case, we consider the situation where M < B/«. For any arbitrary small d, the
system of equations is

M—l—(T—l—l)-l:é[cl-()\TJrl—(;)"‘rDl]:é~AT+1,
M+ (T+1)- 14Xy =2[C1-(Arp2—6) + D1] = 2 - A2

M+ (T+1) -1+ X1+ +Ap—m—1 == [Cx - (Ap—m —0) + Dg] = L - AB=M,
which implies that
AT+1 Ai+1 _ Ai
- T+1 - i
where \; € [0;_1,0;] and A" = Cj - \; + D;.
Case 2. In the second case, we consider the situation where M > B/«. In this case there is no need
to set any admission threshold at 1 since by maintaining the GFQ constraint, the c-competitiveness is

guaranteed automatically when all the valuations is at 1. As a result, for any arbitrary small J, the
system of equations is

Mlzi[C]*()\(]—(S)-’—DJ*}:éAO,
M-l—‘r/\ozl[cj'*'(/\1—(S)+Dj*]:

Vie[r+1,B—M—1],

1 Al
a QA’

M-14+ X+ +Ag-y-1==2[Ck-(Ap_y —0)+ Dg] =+ - ABM,
where j* is a class index such that M = 1 (Cj- Ao + D;+) and A € [#;+_1,6;+]. This implies
ATHL AL A
S A
where \; € [0;_1,0;] and A" = C; - \; + D;. We thus conclude the optimality of the design in
Theorem 3.11

FigureE]shows the thresholds in different settings of OMcS with various GFQ constraints, denoted as
d-GFQ. These are compared to the OMcS without fairness consideration, based on the algorithm de-
signed in [TYBLG25]], denoted as d-DYNAMIC. As pointed out by prior studies such as [TYBLG23]],
this algorithm is simple and fails matching the lower-bound specially in low inventory cases.

1
«a

Vier+1,B—M —1],

B.2 Proof of Theorem 3.2]

We use the mathematical induction to prove that the expected performance of Algorithm|[T]is equal
to the fractional performance at every time steps. Let z; be the decision of a fractional algorithm
FRAC-GFQ and Ut = Ei/:o vy - Ty be the cumulative utility of the agents up to time ¢ from the
fractional solution. Now let us consider the base case and let ¢ be the first time step after satisfying
GFQ constraints such that Z; € (0, 1]. This means that, at this time, the optimal fractional algorithm
allocates an item fractionally to the ¢-th buyer. Thus in this case, £; = [27]. As a result, the expected
utility of Algorithm [T}is

Now it is sufficient to show the induction step to complete this proof. Let assume the expected
performance of Algorithmup to time 7 satisfies Zle Elv - 2] = U*. Now we need to prove that
fi} E[v; - ;] = UL, The availability probability of item [z;] at time £ is [2;] — z;, which is
proven based on induction as follows. Let us write the availability probability of this item as:
P(item [ z;| available) =P(item [z;] available|item [z;_, | available) - P(item [z;_, | available)+

P(item [z;] available|item [z;_, | not available) - P(item [z;_, | not available).
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Figure 5: The red and yellow curves (D-SETASIDE-GFQ) show the impact of GFQ constraint compare
to the blue curve which shows the thresholds without any fairness consideration (d-DYNAMIC). This

figure shows that higher total GFQ requirements leads to having lower admission thresholds. Here
we set B = 20, 8; = 5 and 65 = 10.

Now in the case [z;] = [z;_; |, the probability of item [ z;_, | being available is 0. As a result, we
have

Liq

)l ] )40

=[2;_1] — 211 — Ti_1 = [23] — 2

P(item [z;] available) = (1 -

Now when [z;] # [z;_; | we have

P(item [z;] available) =1 - ([2;_;] — 2z5_1) + (1 -1 —ZFZ;E?:LI) (1= Tz + 24

=[zal =zt 1tz — =zl +1-z=[%] -2
This concludes that at each time 7, item [z;] is available with probability [2;] — z;. Additionally,

since the utilities are linear we have Zf_j} Elv; - 2] = Ut + Vi - Elzgq).

Based on the algorithm, there are two possible cases regarding the allocated item at time  + 1:

Case1- [z, | = [2]: In this case the only possibility is to allocate item [z;]. This item is
available with probability [z;] — z;. Therefore, the expected utility in this case is:

i+1 R
Z]E[Ut ] = U +opy g - Blog]
t=1
i Tiiy
=U' + g4 - 1'm‘(hﬂ - z)
=U'+ 041 Tipy
=Utt,

Case2- [z;, ]| # [#;]: Inthis case, if item [ z;] was still available, it will be allocated with proba-
bility 1. If it is not available, item [z, , | will start to be allocated to this buyer. Therefore,
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the expected utility in this case is:

i+1 X
ZE[Ut ] = U +vpyy - Elog]

t=1
= Ut upy (11 -1 £ g -2
=U'+ Vgyr - (Z£+1 - 21)
=U'+ vy - T

_ pitt

In both cases, we can see that the expected performance of Algorithm [T]remains the same as that of the
fractional algorithm. Additionally, we know that Algorithm [5]achieves the optimal competitive ratio
in the fractional setting . As a result, this algorithm can guarantee the same expected performance of
the fractional optimal solution. We highlight that ROUNDING can preserve the performance of any
fractional algorithm. We provide an example of such algorithm in Appendix [B.3]

B.3 An Example of Optimal Fractional Algorithm for OMcS with GFQ

Here we provide an example of an optimal fractional algorithm with GFQ constraint in the relaxed
fractional setting in Algorithm 5] This algorithm leverages a singe threshold function to achieve the
optimal competitive ratio. In particular, the algorithm reserves M items to ensure the satisfaction
of GFQ requirement where M = 5 e[k M and then allocate the remaining B — M items based

on the threshold function ¢(u). Let C; = B — max;e[;j—1j{m:} and D; = 23;11 0; - [m; —
maxye(;—1]{mx}|T where [-]T = max{-,0}. The design of the threshold function is based on the

value of M. In particular, when M < %, the threshold function ¢ is designed as
0

1 u e [071'\0}’
= * Il —C;y no; j j ;
o(u) exp (%.(u+M)—B—Zi:1(Cz Cit1)l 91) we [[V-1,19], VjelK],

Cj

and is agj-competitive where af = 1 + Infx — Zf:_ll (C"_,%“) 1n(99—f_<) and IV = B — M+
J 0

< Ing;+ ch; 25;11(01 —Ci41) In6;. On the other hand, when M € (oj*’l'cf*+Dj* , ej*'CJ*JrDJ*]

3
(&%) Qj* Qujx

for some j* € [K], the threshold function ¢(u) is designed as

ik ~U— 171* Cifci In ii y ¥
o) = {oroxp (2B GOEN) i) e g ),

and is «;--competitive where o+ is defined as

af*_M+B—MW< o P

o) (7))

with X = YX21C — i) - In (‘;—K) v* = (a0 - M — D;2)/Cje, and T9. = Coln &

Qi

L Eg;jl* (C; = Ciz1)In g—i. This algorithm builds on the fractional approach of [ZIST23]); for a

comprehensive treatment of that method, we direct the reader to that work, since it lies beyond the
primary scope of this paper.
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Algorithm 5: Fractional OMcS with GFQ guarantee (FRAC-GFQ)
Input: (m;,6;),Vj € [K].

Initialization: Initial global utilization, uq = 0; Initial utilization of class j, ug =0,Yj € [K].
1 while agent t arrives do

2 Obtain the valuation and class information of agent ¢: v; and J;

3 ifug”_1 < my, then _ > Satisfying GFQ constraint.

4 ye = min{ry, mj, —ug’,}.

5 Update u]' = ul' | + ys.

6 if v; > ¢(us—1) then > Allocating the remaining resource.
: 1+

7 t Ty = min {arg MaX, (0,7, —y,] {th — f;:ﬁll a ¢(77)d77} ,B—M — ut_l} .

8 Update the cumulative allocation: u; = uz—1 + ;.

9 | Update the allocation amount of agent t: xy = x; + Y.

C Section 4 Proofs
C.1 Proof of Theorem

Let x denote R-SETASIDE-PF’s final allocation. Here we consider the following relaxed LP and its
dual which does not have any allocation limit at each time step:

(Primal) (Dual)
L= Uilw) o P
max —
wer] K Uilx) stg > o > Y vt
T 4= K 4~ U;(x)’
€Tt
S.t. Zwt < B
t=1

Now, show that 5(b)/B is a feasible solution for the above dual LP. We can see that at time ¢,
Ui(x) > 37, ®ij(ve), where @; ;(v) = T ;(1) + f{i;j((lg) ¢i,j(u)du, where Y; ;(v) for each
v € [1, min 6;, ;] as follows: '
T, ;(v) = argmax (a cv— / &i.5(w) du> .

a>0 0

As aresult, it is easy to see that:
Us(x) > ®;4(vs) + Z ;i (ve) + P (vy)
JET,JF1

> @)+ ) Piy(vr)
JET:,jF1
B B
[K-ﬂ(b) VS0 '(”t”] (=Y
B-v - Ty
> - -7
— K -pB(b)

Therefore, we can easily see that:




Additionally, we note that in this case, OPT, the revenue of optimal offline algorithm can be lower
bounded as follows

OPT < B - .
On the other hand, ALG, the objective of the Algorithm [3] is lower bounded by

ALG > > @ ;(v) + ®g(vr)

4,JE€ET+
> [rw t w0 (9 (1) T
- {K g(b) s g(b) A ”] * BTi(b)
:OPT~ﬁ.

This completes the proof of Theorem [4.3] in the relaxed version. We point out that, based on
the results of [ZJST25, ISZL*T20l [LCST23], the performance guarantee is also preserved in the
constrained version with z; < 1 forall ¢ € [T.

C.2 Proof of Corollary[4.2]

When |J;| = 1 for all ¢ € [T}, each arriving agent is said to be single-labeled. In this case, the
reservation budgets associated with pairwise threshold functions become redundant, and we can
safely set b; ; = O for all ¢ # j, ¢, j € [K]. Consequently, the resulting threshold function design
reduces to the one proposed by [ZJST235]], which is known to achieve the Pareto-optimal trade-off
between fairness and efficiency. We refer to this paper for the full discussion about this trade-off.

C.3 Proof of Theorem 4.3

To establish that Algorithm [3] maintains its expected performance after the rounding step at every
time step, we apply mathematical induction. Define the cumulative utility accrued by class ¢ up to
time ¢ under the fractional allocation as U} = Zi/:o vy - Ty - Lige g, 3. We start with the base case.
Let ¢ be the first time index such that Z; € (0, 1], indicating a non-integral allocation by the fractional
algorithm at that step. At this point, the algorithm assigns x;y = [z], triggering a randomized
rounding. As a result, the expected utility after rounding step is

P
Y Elv - 1iegy] = vi EBlog - Legy] = ve (1 Lieg,y - (20— [26-1]))

t=1
=v;- (1 Lieqy - (25— 251)) = v - 35 - Lie g,y = UL

To complete the proof, it remains to verify the induction step. Suppose that up to time t, the expected
performance of Algorithmaligns with the fractional utility, i.e., Zizl Elvs - 24 - 1gieg,y] = Uf .
We aim to show that this equality holds at time 7 + 1 as well (ZZ% By - 2 - Legy] = USTH.
To do so, we analyze the availability of item [z;] at time t. According to the rounding scheme,
the probability that this item is still available is given by [z;| — z;. This expression is derived
inductively by examining the cumulative allocation and rounding behavior. We now proceed by
explicitly computing this probability as follows:

P(item [ z;| available) =P(item [z;] available|item [z;_, | available) - P(item [z;_, | available)+

P(item [z;] available|item [z;_, | not available) - P(item [z;_, | not available).
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Now in the case [z;| = [z;_, ], the probability of item [z;_, ] being available is 0. As a result, we
have

= S D U R
|—Z£71.| — Z£1> (|— t—1-| t—l) +0

=[z;_1] — 211 — Ty = [27] — 2

P(item [z;] available) = (1 -

When [z;] # [z;_, | we have

2 — [23_4]
1=z 4]+ Z£—1) AR

=zl =z 142 — 2= [z |+ 1= 2= [2] — 2

P(item [z;] available) =1- ([2;_;] — 2;_;) + (1 -

This concludes that at each time ¢, item [z;] is available with probability [2;] — z;. Additionally,
since the utilities are linear we have Zii} Elvg - 21 - e, = Ut + Vi B[z - Leg )
Based on the algorithm, there are two possible cases regarding the allocated item at time # + 1:
Case1-[z;,,| = [2;]: In this case the only possibility is to allocate item [2;]. This item is
available with probability [z;] — z;. Therefore, the expected utility in this case is:
i+1 R
> Elve - 1egy) = Ul + viyy - Blzg - 1jeg,y)
t=1
i Tit1 - e,
=Uf + v, 'LW'(%] - %)
=Uj +vip1 Fi1 ey
_ i+t
Case2- [z, ]| # [#;]: Inthis case, if item [2;] was still available, it will be allocated with proba-

bility 1. If it is not available, item [z; ;| will start to be allocated to this buyer. Therefore,
the expected utility in this case is:

i+1
ZE[W T Lt 1{1‘6%}] = Uit + Vi 'E[xf+1 : 1{1‘6%}]
t=1
i i1 — 1]
= Ui +vgyy - (1-1-([5] —Z£)+1'W'(1—(fzﬂ - 2))
=Uj + ity - (241 — %)
=Uj + Vi1 Ty Laeany
= Uit
In both cases, we can see that the expected performance after rounding step is similar to the relaxation
step for each class ¢ € [K]. Additionally, with the same analysis we can proof that the expected

total utility is also equal to the fractional part of the algorithm. As a result, it proofs that the
fairness-efficiency trade-off is also same as the fractional case which is presented in Theorem [4.1]

D Section 5 Proofs

D.1 Proof of Theorem

For a fixed instance I, let U;(x), U;(X) and U;(X) be the expected utility of class 4 in LiLA, ADV and
ALG, respectively. Then it can be seen that U;(x) = p - U;(X) + (1 — p) - U;(X). Let us define the
function f(p) = %. Now let us consider p; = p+ (1 — p) g? gg and based on the Jensen’s inequality
we have

1 1 1
— <

KiGr+0-ntw




Additionally, we can see

K 1 U; (%)
D U; (%) = K Z (
JE[K] U %) jelK]

where the first inequality is based on the harmonic mean-arithmetic mean (HM-AM) inequality and
the second one is base on the definition of 3-PF. As a result we can see that
1 1 1 1
— <

o Uy(i) = _

which implies

A

)

|~

JElK] (%) je[K]p. i)+ A =pU;R) ~ p-B+(1—p)
Now let us consider p; = p - gj ((v’?) +(1-p)- gﬂ ((":‘V)), where w is any feasible allocation. Using the
Jensen’s inequality we obtain
1 1 1
Yy < .
U; (%) U; (%) U;®) Ui(®)

K e P rw t=0 oy Pw € 2ielK] T T % e 2 iclK] ] T (w)
Since ADV does not have any constraint, therefore it is only possible to obtain % Z . g? ((i‘,)) > 0.
Additionally, based on the definition of 3-PF and HM-AM inequality, we have - o jelK] T U] (v_’;)) > %
As a result, we have that

'3 1 <5
K 5 (%) U;(X) = (1 —p). L’
K 0= ooy (=03
which implies
K UW KZ U;(% (X) U;(x Slﬁ (1+€)(ﬁ_1)'
L Ui T K 2 o R+ (- a0 1- e

This concludes the consistency and robustness proportional fairness guarantee presented in Theorem

51

D.2 Proof of Pareto-optimality of Consistency-Robustness in Single-labeled Setting

To demonstrate the Pareto-optimality result when | ;| = 1, we first establish that the relaxed LiLA

hard instance and then show that for any «-robust learning augmented algorithm, their consistency 7
is lower bounded under the special instances.

Definition D.1 (3-PF Fairness Guarantee Hard Instance: I°7). Instance I°F is defined as a scenario
characterized by a at most K continuous, non-decreasing sequence of valuation arrivals segments. In
this scenario, first there are a sequence of arrivals from class 1, followed by the second sequence of
arrivals all from class 2 and and this continues until the arrivals of class K. For some value of § such
that & — 0, instance I°F can be shown as follows:

:{agyu+a1y“4mJ;ugyu+azy“4%gym,

First batch of arrivals Second batch of arrivals

(1,K),(1—I—6,K)7...,(19K,K)}7

K -th batch of arrivals

where in above (v, j), Vj € [k], corresponds to the B copies of a buyer with valuation equal to v
from class j.
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Let g;(p) : [1,6,] — [0, b;] denote a non-decreasing utilization function of any learning augmented
algorithm for OMcS problem. A key observation is that for a small 6, executing the instance I°F up
to the v(c;) is equivalent to first executing IFF to the v — §(c;) (excluding the last step) and then
processing v(c;) for some class j € [K]. Additionally, since due to the budget constraint of each
class, we can see that g;(6;) < b,.

Let us first consider the case where the stoping poin is at some v from class 1. Then, for any y-robust
proportionally fair online algorithm the PF condition simplifies to:

Lo 1 B
K U (x) SK g1(1)+f1vudgl(u)§’y

By integral by parts and the Gronwall’s inequality, a necessary condition for the above robustness
constraint to hold is

B
gl(’l]) Z Ki’y . (1 + 11101).

In addition, to ensure n-consistency when the prediction is accurate and v = #;, we must ensure

L. % 11((‘:)) < 7. Combining this constraint with g;(61) < b; gives

1 U1 (W) < 1 B - 01 <
. < = 7 =1,
K Uix) = K gy (1) + [{" wdgi(u) + (b = 91(61)) - 61
where (b; — g1(61) is the portion of b; that is remaining to ensuring the consistency. The above
implies that

B B-In6,
by > — + ———.
K-n K-y
By executing IPF for other classes, we can see that b;, j = % + B;r_’fj . Therefore by summing up

for all class ¢, j € [K] and since B <}, . bi,j, We can see that

B> Y ;> Y (KB.W‘FB.IH(HJ?I.I{W@’%})):B'<I;+n+(ﬁ_1)'i)»

ijelK] ijEIK]
where § = w is the proportional fairness of Algorithm Now by setting n = 1 + ¢,
we obtain that
RN
€

This result states that for any (1 4 €)-consistent proportionally fair algorithm, the robustness is at

least w which concludes the proof of the Pareto optimality. Additionally, using the same
approach as Algorithm [3]to round the decisions, we can have the Pareto optimality result for the
integral LiLA as well.

D.3  Proof of Corollary[5.2]

Based on the proof of Theorem [5.1] we know that any 7-consistent and ~-robust proportionally
. . B B-In 6,
fair algorithm must reserve b; = 7= +

K‘WJ for each class. As a result, under some instance

I that all the valuations are from some class j € [K] with the maximum value v, we can see that
OPT(I) < B - v. On the other hand LiLA can obtain LiLA(I) > g;(1) + [ u dg;(u) for any
v € [1,6;). To ensure the 7, -robustness in terms of competitiveness, it is essential to satisfy

v 1
gj(1)+/ udgi(u) > — - B -v.
1

o
Now based on the design of g;(-) that can achieve y-robustness proportional fairness, we have

B B
==
e Ve

b
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which implies vy, > K -v= K - (%) Now when the prediction is accurate and v = 6,
we have

b3
B+ [ udgy(+ 05 - 5000 = B0,

which based on the reservation b; = K—n + implies that n, > K -n = K - (1 + ¢). This
concludes that any n-consistent and ~y-robust proportlonally fair algorithm is at least 7, -consistent
and ~y,,-robust competitive with n, = K - nand v, = K - 7.

Bln7

D.4 Learning-Augmented Algorithm for OMcS with GFQ.

Here we consider a learning-augmented algorithm that utilizes untrusted machine learning-generated
advice to improve the performance of robust algorithms for OMcS with GFQ guarantee.

Definition D.2 (Advice model of OMcS with GFQ). For the OMcS with GFQ fairness guarantee,
we denote ADV = {@; € {0,1}| > (77 &t - L{jes,y = my,Vj € [K]} as the untrusted black-box
decision advice.

The first observation we can make is that it is assumed ADV always satisfies the GFQ constraint.
Additionally if the advice is completely correct, it basically recovers the optimal offline decisions.
Here we again use LiLA which combines the robust decision (i.e., Z;) that is resulted from Algorithm
at each time step and the predicted optimal solution (i.e., Z;) generated by black-box advice with a
combination probability p that shows the reliance on the advice decision. As a result, the decision of
the learning augmented algorithm at each time in expectation is z; = pd; + (1 — p)Z;.

For an € € [0, — 1], where o 1s the competltlve ratio of Algorlthm' we sets the combination
probability as p == (15 — 1) - —L— which is in [0, 1]. Here we can observe that as the prediction
error € approaches to 0, p approaches to 1, which means that the algorithm fully trusts the prediction.
Theorem [D.T|below shows our main results of the learning augmented algorithm of OMcS with GFQ
constraints.

Theorem D.1 (Learning-augmented algorithm for OMcS with GFQ). For any € € [0, « — 1], LiLA

for OMcS with GFQ constraint is (1 + ¢)-consistent and (te)la-l) -robust.
(a1 ora TP

Proof. We begin by pointing out that the online solution given by LiLA is always feasible in expecta-

tion:
ZtE[T] Tt - 1{j€Jt} =p ZtG[T] T - 1{j€.7t} + (1 - p) : ZtG[T] Tt - 1{j€..7¢}
Zp-mj+ (1= p)-m; =mj,
which is true since ADV always produces a feasible advice.
For any instance I, we can see that

LLA(T) = > vy = Y vr- (pie + (1 - p)Z1)

te[K] te[K]

p > i+ (1—p) Y vy =p-ADV(I) + (1 — p)ALG(I).
te[K]

Based on the definition of competitive ratio we can see that
ADV(I) < OPT(I) <
ALG(I) — ALG(I) —
As aresult, - - ADV(I) < ALG(). Therefore

*

LILA(T) > (p + %(1 — p))ADV(I) = %&1) . ADV(I),
which implies
ADVID ot

LILA(I) = pa* 4+ (1 —p)
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On the other hand, we have ADV(I) > OPT(I) and ALG(I) > - OPT(I). Therefore,

__ M
CrxOx+Dxk

LiLA(I) COPT(I)+ (1—p) - ai -OPT(I)

M
Zp.i
CkOx + Dg

1
= (p'w(+(l—p)-m>~op—r([).

As aresult
OPT(I) < (1+e)(a*=1)
LILA(L) ~ e+ (0" —1—€) - gpip-
By combining these two, the consistency and robustness of Theorem [D.T|follows. O
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