
A Maximum entropy calculation

Under the constraint on the borders, τu and τv can be expressed in a real Fourier basis as in Eq.2. By
injecting this form into ‖∇τ‖2 we obtain:

‖∇τ‖2 =
π2

4

∑

i,j∈N+

(C2
ij +D2

ij)(i
2 + j2) (7)

where Dij are the Fourier coefficients of τv. We aim at computing the probability distributions that
maximize their entropy while keeping the expectation value of ‖∇τ‖2 fixed. Since we have a sum
of quadratic random variables, the equipartition theorem Beale (1996) applies: the distributions are
normal and every quadratic term contributes in average equally to ‖∇τ‖2. Thus, the variance of the
coefficients follows T

i2+j2 where the parameter T determines the magnitude of the diffeomorphism.

B Boundaries of studied diffeomorphisms

Average pixel displacement magnitude δ We derive here the large-c asymptotic behavior of δ
(Eq.3). This is defined as the average square norm of the displacement field, in pixel units:

δ2 = n2
∫

[0,1]2
‖τ(u, v)‖2dudv

= 2Tn2
∑

i2+j2≤c2

1

i2 + j2

∫
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sin2(iπu) sin2(jπv)dudv

=
Tn2

2

∑
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1

i2 + j2

≈ Tn2

2

∫
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1

x2 + y2
dxdy

=
πTn2

4

∫ c

1

1

r
dr

=
π

4
n2T log c,

where we approximated the sum with an integral, in the third step. The asymptotic relations for ‖∇τ‖
that are reported in the main text are computed in a similar fashion. In Fig.8, we check the agreement
between asymptotic prediction and empirical measurements. If δ � 1, our results strongly depend
on the choice of interpolation method. To avoid it, we only consider conditions for which δ ≥ 1/2,
leading to

T >
1

πn2 log c
. (8)
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(a) (b) (c) (d)

Figure 9: (a) Idealized image at T = 0. (b) Diffeomorphism of the image. (c) Deformation of the
image at large T : colors get mixed-up together, shapes are not preserved anymore. (d) Allowed
region for vector transformations under τ . For any point in the image s and any direction u, only
displacement fields for which all the deformed direction u′ is non-zero generate diffeomorphisms.
The bound in Eq.12 (u′ · u > 0) correspond to the green region. The gray disc corresponds to the
bound ‖∇τ‖∞ < 1.

Condition for diffeomorphism in the (T, c) plane For a given value of c, there exists a tempera-
ture scale beyond which the transformation is not injective anymore, affecting the topology of the
image and creating spurious boundaries, see Fig.9a-c for an illustration. Specifically, consider a curve
passing by the point s in the deformed image. Its tangent direction is u at the point s. When going
back to the original image (s′ = s− τ(s)) the curve gets deformed and its tangent becomes

u′ = u− (u · ∇)τ(s). (9)
A smooth deformation is bijective iff all deformed curves remain curves which is equivalent to have
non-zero tangents everywhere

∀ s, u 6= 0 ‖u′‖ 6= 0. (10)
Imposing ‖u′‖ 6= 0 does not give us any constraint on τ . Therefore, we constraint τ a bit more and
allow only displacement fields such that u · u′ > 0, which is a sufficient condition for Eq.10 to be
satisfied – cf. Fig. 9d. By extremizing over u, this condition translates into

1
2

(√
(∂xτx − ∂yτy)2 + (∂xτy + ∂yτx)2 − ∂xτx − ∂yτy

)
< 1 (11)

or, equivalently,
Ξ = 1

2

(√
||∇τ ||2 − 2 det(∇τ)− Tr(∇τ)

)
< 1, (12)

were we identified by Ξ the l.h.s. of the inequality. We find that the median of the maximum of Ξ
over all the image (‖Ξ(s)‖∞) can be approximated by (see Fig.8b):

max
s

Ξ ' c

2

√
π3T log c. (13)

The resulting constraint on T reads

T <
4

π3c2 log c
. (14)

C Interpolation methods

When a deformation is applied to an image x, each of its pixels gets mapped, from the original pixels
grid, to new positions generally outside of the grid itself – cf. Fig. 9a-b. A procedure (interpolation
method) needs to be defined to project the deformed image back into the original grid.

For simplicity of notation, we describe interpolation methods considering the square [0, 1]2 as the
region in between four pixels – see an illustration in Fig. 10a. We propose here two different ways
to interpolate between pixels and then check that our measurements do not depend on the specific
method considered.

Bi-linear Interpolation The bi-linear interpolation consists, as the name suggests, of two steps of
linear interpolation, one on the horizontal, and one on the vertical direction – Fig. 10b. If we look at
the square [0, 1]2 and we apply a deformation τ such that (0, 0) 7→ (u, v), we have

x(u, v) = x(0, 0)(1− u)(1− v) + x(1, 0)u(1− v) + x(0, 1)(1− u)v + x(1, 1)uv. (15)
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Figure 10: (a) We consider the region between four pixels as the square [0, 1]2 where, after the
application of a deformation τ , the pixel (0, 0) is mapped into (u, v). (b) Bi-linear interpolation:
the value of x in (u, v) is computed by two steps of linear interpolation. First, we compute x in the
red crosses, by averaging values on the vertical axis. Then, a line interpolates horizontally the values
in the red crosses to give the result. (c) Gaussian interpolation: we denote by si the pixel positions
in the original grid. The interpolated value of s in any point of the image is given by a weighted sum
of n× n Gaussian centered in each si – in red.

Gaussian Interpolation In this case, a Gaussian function4 is placed on top of each point in the
grid – cf. Fig.10. The pixel intensity x can be evaluated at any point outside the grid by computing

x(s) =

∑
i x(si)G(s− si)∑

iG(s− si)
. (16)

In order to fix the standard deviation σ of G, we introduce the participation ratio n. Given Ψi =
G(s, si)|s=(0.5,0.5), we define

n =

(∑
i Ψ2

i

)2
∑
i Ψ4

i

. (17)

The participation ratio is a measure of how many pixels contribute to the value of a new pixel,
which results from interpolation. We fix σ in such a way that the participation ratio for the Gaussian
interpolation matches the one for the bi-linear (n = 4), when the new pixel is equidistant from the
four pixels around. This gives σ = 0.4715.

Notice that this interpolation method is such that it applies a Gaussian smoothing of the image even if
τ is the identity. Consequently, when computing observables for f with the Gaussian interpolation,
we always compare f(τx) to f(x̃), where x̃ is the smoothed version of x, in such a way that
f(τ [T=0]x) = f(x̃).

Empirical results dependence on interpolation Finally, we checked to which extent our results
are affected by the specific choice of interpolation method. In particular, blue and red colors in Figs3,
13 correspond to bi-linear and Gaussian interpolation, respectively. The interpolation method only
affects the results in the small displacement limit (δ → 0).

Note: throughout the paper, if not specified otherwise, bi-linear interpolation is employed.

4G(s) = (2πσ2)−1/2e−s
2/2σ2

.
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D Stability to additive noise vs. noise magnitude
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Figure 11: Stability to isotropic noise Gf as a function of the noise magnitude ‖η‖ for CIFAR10
(left) and ImageNet (right). The color corresponds to two different classes of SOTA architecture:
ResNet and EfficientNet. The slope 2 at small ‖η‖ identifies the linear regime. For larger noise
magnitudes, non-linearities appear.

We introduced in Section 5 the stability toward additive noise:

Gf =
〈‖f(x+ η)− f(x)‖2〉x,η
〈‖f(x)− f(z)‖2〉x,z

. (18)

We study here the dependence of Gf on the noise magnitude ‖η‖. In the η → 0 limit, we expect the
network function to behave as its first-order Taylor expansion, leading to Gf ∝ ‖η‖2. Hence, for
small noise, Gf gives an estimate of the average magnitude of the gradient of f in a random direction
η.

Empirical results Measurements of Gf on SOTA nets trained on benchmark data-sets are shown
in Figure 11. We observe that the effect of non-linearities start to be significant around ‖η‖ = 1. For
large values of the noise – i.e. far away from data-points – the average gradient of f does not change
with training.

E Numerical experiments

In this Appendix, we provide details on the training procedure, on the different architectures employed
and some additional experimental results.

E.1 Image classification training set-up:

◦ Trainings are performed in PyTorch, the code can be found here
github.com/leonardopetrini/diffeo-sota.

◦ Loss function: cross-entropy.

◦ Batch size: 128.

◦ Dynamics:

– Fully connected nets: ADAM with learning rate = 0.1 and no scheduling.
– Transfer learning: SGD with learning rate = 10−2 for the last layer and 10−3 for

the rest of the network, momentum = 0.9 and weight decay = 10−3. Both learning
rates decay exponentially during training with a factor γ = 0.975.

– All the other networks are trained with SGD with learning rate = 0.1, momentum
= 0.9 and weight decay = 5× 10−4. The learning rate follows a cosine annealing
scheduling Loshchilov and Hutter (2016).
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◦ Early-stopping is performed – i.e. results shown are computed with the network obtaining
the best validation accuracy out of 250 training epochs.

◦ For the experiments involving a training on a subset of the training date of size P < Pmax,
the total number of epochs is accordingly re-scaled in order to keep constant the total number
of optimizer steps.

◦ Standard data augmentation is employed: different random translations and horizontal flips
of the input images are generated at each epoch. As a safety check, we verify that the
invariance learnt by the nets is not purely due to such augmentation (Fig.12).

◦ Experiments are run on 16 GPUs NVIDIA V100. Individual trainings run in ∼ 1 hour of
wall time. We estimate a total of a few thousands hours of computing time for running the
preliminary and actual experiments present in this work.

The stripe model is trained with an approximation of gradient flow introduced in Geiger et al. (2020),
see Paccolat et al. (2021a) for details.
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Figure 12: Effect of data augmentation on Rf . Relative stability to diffeomorphisms Rf after
training with different data augmentations: "none" (1st group of bars in each plot) for no data
augmentation, "translation" (2nd bars) corresponds to training on randomly translated (by 4 pixels)
and cropped inputs, and "diffeo" (3rd bars) to training on randomly deformed images with max-
entropy diffeomorphisms (T = 10−2, c = 1). Results are averaged over 5 trainings of ResNet18 on
MNIST (left), FashionMNIST (center), CIFAR10 (right). Colors indicate different cut-off values
when probing the trained networks. Different augmentations have a small quantitative, and no
qualitative effect on the results. As expected, augmenting the input images with smooth deformations
makes the net more invariant to such transformations.

A note on computing stabilities at init. in presence of batch-norm We recall that batch-norm
(BN) can work in either of two modes: training and evaluation. During training, BN computes the
mean and variance on the current batch and uses them to normalize the output of a given layer. At
the same time, it keeps memory of the running statistics on such batches, and this is used for the
normalization steps at inference time (evaluation mode). When probing a network at initialization for
computing stabilities, we put the network in evaluation mode, except for batch-norm (BN), which
operates in train mode. This is because BN running mean and variance are initialized to 0 and 1,
in such a way that its evaluation mode at initialization would correspond to not having BN at all,
compromising the input signal propagation in deep architectures.
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E.2 Networks architectures

All networks implementations can be found at github.com/leonardopetrini/diffeo-
sota/tree/main/models. In Table 1, we report salient features of the network architectures
considered.

Table 1: Network architectures, main characteristics. We list here (columns) the classes of net
architectures used throughout the paper specifying some salient features (depth, number of parameters,
etc...) for each of them.

features FullConn LeNet AlexNet
LeCun et al. (1989) Krizhevsky et al. (2012)

depth 2, 4, 6 5 8
num. parameters 200k 62k 23 M

FC layers 2, 4, 6 3 3
activation ReLU ReLU ReLU
pooling / max max
dropout / / yes

batch norm / / /
skip connections / / /

features VGG ResNet EfficientNetB0-2
Simonyan and Zisserman (2015) He et al. (2016) Tan and Le (2019)

depth 11, 16, 19 18, 34, 50 18, 25
num. parameters 9-20 M 11-24 M 5, 9 M

FC layers 1 1 1
activation ReLU ReLU swish
pooling max avg. (last layer only) avg. (last layer only)
dropout / / yes + dropconnect

batch norm if ’bn’ in name yes yes
skip connections / yes yes (inv. residuals)
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E.3 Additional figures

We present here:

◦ Fig.13: Rf as a function of P for MNIST and FashionMNIST with the corresponding
predicted slope, omitted in the main text.

◦ Fig.14: Relative diffeomorphisms stability Rf as a function of depth for simple and deep
nets.

◦ Figs15,16: diffeomorphisms and inverse of the Gaussian stability Df and 1/Gf vs. test
error for CIFAR10 and the set of architectures considered in Section 4.

◦ Fig.17: Df , 1/Gf and Rf when using the mean in place of the median for computing
averages 〈·〉.

◦ Fig.18: curves in the (εt, Rf ) plane when varying the training set size P for FullyConnL4,
LeNet, ResNet18 and EfficientNetB0.

◦ Figs19, 22: error estimates for the main quantities of interest – often omitted in the main
text for the sake of figures’ clarity.
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Figure 13: Relative stability to diffeomorphisms Rf (P ) at δ = 1. Analogous to Figure 3-right but
here we have MNIST (a-b) and FashionMNIST (c-d) in place of CIFAR10. Stability monotonically
decreases with P . The triangles give a reference for the predicted slope in the stripe model – i.e.
Rf ∼ P−1 – see Section 6. The slopes in case of ResNets are compatible with the prediction. For
EfficientNets, the second panel of Fig.3 suggests that stability to diffeomorphisms is less important.
Here, we also see that it builds up more slowly when increasing the training set size. Finally, blue
and red colors indicate different interpolation methods used for generating image deformations, as
discussed in Appendix C. Results are not affected by this choice.
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Figure 14: Relative stability to diffeomorphisms as a function of depth. Rf as a function of the
layers relative depth (i.e. current layer depth

total depth ) where "0" identifies the output of the 1st layer and "1" the
last. The relative stability is measured for the output of layers (or blocks of layers) inside the nets
for simple architectures (1st column) and deep ones (2nd column) at initialization (dashed) and after
training (full lines). All nets are trained on the full CIFAR10 dataset. Rf0 ≈ 1 independently of
depth at initialization while it decreases monotonically as a function of depth after training. Statistics:
Each point is obtained by training 5 differently initialized networks; each network is then probed
with 500 test samples in order to measure Rf . The results are obtained by log-averaging over single
realizations.
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Figure 15: Test error εt vs. stability to diffeomorphisms Df for common architectures when
trained on the full 10-classes CIFAR10 dataset (P = 50k) with SGD and the cross-entropy loss; the
EfficientNets achieving the best performance are trained by transfer learning from ImageNet (?) –
more details on the training procedures can be found in Appendix E.1. The color scale indicates
depth, and the symbols the presence of batch-norm (�) and skip connections (†). Df correlation
with εt (corr. coeff.: 0.62) is much smaller than the one measured for Rf – see Fig.3. Statistics:
Each point is obtained by training 5 differently initialized networks; each network is then probed
with 500 test samples in order to measure Df . The results are obtained by log-averaging over single
realizations.
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Figure 16: Test error εt vs. inverse of stability to noise 1/Gf for common architectures when
trained on the full 10-classes CIFAR10 dataset (P = 50k) with SGD and the cross-entropy loss; the
EfficientNets achieving the best performance are trained by transfer learning from ImageNet (?) –
more details on the training procedures can be found in Appendix E.1. The color scale indicates
depth, and the symbols the presence of batch-norm (�) and skip connections (†). Gf correlation
with εt (corr. coeff.: 0.85) is less important than the one measured for Rf – see Fig.3. Statistics:
Each point is obtained by training 5 differently initialized networks; each network is then probed
with 500 test samples in order to measure Gf . The results are obtained by log-averaging over single
realizations.
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Figure 17: Test error εt vs. Df , 1/Gf and Rf where 〈·〉 is the mean. Analogous to Figs15-19, we
use here the mean instead of the median to compute averages over samples and transformations.
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Figure 18: Test error εt vs. relative stability to diffeomorphisms Rf for different training set
sizes P . Same data as Fig.5, we report here curves corresponding to training on different set sizes
for 4 architectures. The other architectures considered together with the power-law fit are left in
background. For a small training set, CNNs behave similarly. Statistics: Each point is obtained by
training 5 differently initialized networks; each network is then probed with 500 test samples in order
to measure Rf . The results are obtained by log-averaging over single realizations.
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Figure 19: Test error εt vs. relative stability to diffeomorphisms Rf with error estimates. Same
data as Fig.5, we report error bars here. Statistics: Each point is obtained by training 5 differently
initialized networks; each network is then probed with 500 test samples in order to measure Rf . The
results are obtained by log-averaging over single realizations.
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Figure 20: Test error εt vs. Df , Gf and Rf (on the columns) for different data sets (on the
rows). The corresponding correlation coefficients are shown in Table 2. Lines 1-2: MNIST and
SVHN both contain images of digits and show a similar εt(Rf ). Line 3: FashionMNIST results are
comparable to the CIFAR10 ones shown in the main text. Line 4: Tiny ImageNet32 is a re-scaled
(32x32 pixels) version of ImageNet with 200 classes and 100’000 training points. The task is harder
than the other data sets and is such that we could not train simple networks (FC, LeNet) on it – i.e.
the loss stays O(1) throughout training – so these are not reported here.

Table 2: Test error vs. stability: correlation coefficients for different data sets.

data-set Df Gf Rf

MNIST 0.71 -0.43 0.75
SVHN 0.87 -0.28 0.81

FashionMNIST 0.72 -0.68 0.94
Tiny ImageNet 0.69 -0.66 0.74
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Figure 21: Test error εt vs. Df , Gf and Rf for CIFAR10 and varying δ and cut-off c. Titles
report the values of the varying parameters together with corr. coeffs. Parameters corresponding to
allowed diffeo are indicated by the green background. Red and blue colors correspond to different
interpolation methods. Overall, results are robust when varying these parameters.
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Figure 22: Stability toward Gaussian noise (Gf ) and diffeomorphisms (Df ) alone, and the
relative stability Rf with the relative errors. Analogous to Fig.6 in which error estimates are
omitted to favour clarity. Here we fix the cut-off to c = 3 and show error estimates instead. Columns
correspond to different data-sets (MNIST, FashionMNIST and CIFAR10) and rows to architectures
(ResNet18 and EfficientNetB0). Each panel reports Gf (blue), Df (orange) and Rf (green) as a
function of P and for different cut-off values c, as indicated in the legend. Statistics: Each point
in the graphs is obtained by training 16 differently initialized networks on 16 different subsets of
the data-sets; each network is then probed with 500 test samples in order to measure stability to
diffeomorphisms and Gaussian noise. The resulting Rf is obtained by log-averaging the results from
single realizations. As we are plotting quantities in log scale, we report the relative error (shaded).
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