
A Appendix: Oracles

Proposition 1. Let ê(x, d) := `(x, d)� �(x) be a (⌫̂(x), b̂(x))-subexponential random variable
and Vard⇠D [`(x, d)]  ✏̂(x)2, for some ⌫̂(x), b̂(x), ✏̂(x). Let e(x,S) = |f(x,S)� �(x)| and
N = |S|, then

ES [e(x,S)] 
1

p
N

✏̂(x) and e(x,S) is (⌫(x), b(x))-subexponential,

with ⌫(x) = b(x) = 8e2 max
n
⌫̂(x)p

N
, b̂(x)

o
.

Proof of the Proposition 1

Proof. We will first show that ESe(x,S) 
1p
N
✏̂(x). Since |S| = N , we have

ES e(x,S)2 = ES

�����
1

N

X

d2S
`(x, d)� �(x)

�����

2

=
1

N2
· ES

�����
X

d2S
(`(x, d)� �(x))

�����

2

=
1

N
· Ed⇠D |`(x, d)� �(x)|2


1

N
· ✏̂(x)2.

Combining this with the inequality [E e(x, S)]2  E
⇥
e(x, S)2

⇤
gives E(e(x, S))  1p

N
✏̂(x).

Next, we will show that e(x,S) is sub-exponential. We have

e(x,S) =

�����
1

N

X

d2S
`(x, d)� �(x)

����� =
����
1

N

X

d2S
(`(x, d)� �(x))

| {z }
Y

����.

Note that Y := 1
N

P
d2S(`(x, d) � �(x)) is sub-exponential with parameters ( ⌫̂(x)p

N
, b̂(x)), be-

cause it is the average of N independent sub-exponential random variables each with parameters

(⌫̂(x), b̂(x)). For any random variable Y , let kY k 1
:= supk�1

1
k

⇣
E |Y |

k
⌘ 1

k
denote the sub-

exponential norm of Y . Then

ke(x,S)� E e(x,S)k 1
 ke(x,S)k 1

+ kEe(x,S)k 1
(triangle inequality)

= ke(x,S)k 1
+ |Ee(x,S)| (kak 1

= |a| for any a 2 R)

 ke(x,S)k 1
+ E |e(x,S)| (Jensen’s inequality)

 2 ke(x,S)k 1
(definition of k · k 1

)

= 2 k|Y |k 1
(definition of Y )

= 2 kY k 1
(definition of k · k 1

)

 4max

⇢
⌫̂(x)
p
N

, b̂(x)

�
(Proposition 2.7.1 (e) ! (b) in [Ver18])

Applying Proposition 2.7.1 (b) ! (e) in [Ver18], we get that e(x,S) is (m̂(x), m̂(x))-
subexponential, where m̂(x) = 8e2 max

n
⌫̂(x)p

N
, b̂(x)

o
.
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Proposition 2. Let g = g(x,S). Assuming Ed⇠Dr`(x, d) = r�(x), then

|S| �
Mc +Mv kr�(x)k2

�
min

(
1

✏2g
,

(1 + ↵)2

2↵2 kr�(x)k2

)

implies
P (kg �r�(x)k  max{✏g,↵kgk}) � 1� �.

This bound implies a looser bound of:

|S| � max

(
2Mc

�✏2g
,
2Mv(1 + ↵)2

�2↵2

)
.

Proof of Proposition 2

Proof. For any fixed M > 0, by Markov inequality, we have

P
 �����

1

|S|

X

d2S
r`(x, d)� Ed⇠Dr`(x, d)

����� > M

!


E
��� 1
|S|
P

d2S r`(x, d)� Ed⇠Dr`(x, d)
���
2

M2


Mc +Mv kr�(x)k2

|S|M2

Let M = max{✏g, ⌘ kr�(x)k}, with ⌘ = ↵
1+↵ 2 (0, 1). Since g = 1

|S|
P

d2S r`(x, d), we have

P (kg �r�(x)k  max{✏g, ⌘ kr�(x)k}) � 1�
Mc +Mv kr�(x)k2

|S|·max{✏g, ⌘ kr�(x)k}2
.

Notice if ✏g � ⌘ kr�(x)k, the above inequality implies that for |S| � Mc+Mvkr�(x)k2

�✏2g
, the desired

result is obtained. On the other hand, if kg �r�(x)k  ⌘ kr�(x)k, by triangle inequality:

kr�(x)k � kgk  ⌘ kr�(x)k =) ⌘ kr�(x)k 
⌘

1� ⌘
kgk

=) kg �r�(x)k 
⌘

1� ⌘
kgk = ↵ kgk .

Hence, by picking |S|�
Mc+Mvkr�(x)k2

�
(1+↵)2

2↵2kr�(x)k2 , we obtain the desired result for the case
kg �r�(x)k  ⌘ kr�(x)k. Putting these two cases together, we get that as long as

|S| �
Mc +Mv kr�(x)k2

�
min

(
1

✏2g
,

(1 + ↵)2

2↵2 kr�(x)k2

)
,

P (kg �r�(x)k  max{✏g,↵kgk}) � 1� � will hold.

For simplicity in presentation, this also implies the result holds with

|S| � max

(
2Mc

�✏2g
,
2Mv(1 + ↵)2

�2↵2

)
.

Proposition 3. Let g = g(x,U), and fix ✏g = 2
⇣
p
nL� +

p
n✏f
�

⌘
where n is the dimension of x.

Then

|U| �

3
4L

2�2n(n+ 2)(n+ 4) +
12✏2f
�2 n+ 18n kr�(x)k2

�
min

8
><

>:
4

✏2g
,

1
⇣

↵
1+↵ kr�(x)k � ✏g

2

⌘2

9
>=

>;

implies
P (kg �r�(x)k  max{✏g,↵kgk}) � 1� �.

Note that in the setting, ✏g is a fixed bias dependent on �, and cannot be made arbitrarily small.
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Proof of Proposition 3

Proof. Let F (x) = Eu⇠N(0,I)[�(x+�u)] be the Gaussian smoothing of �, and N = |U|. In Section
2.3 of [BCCS21], it is shown that

krF (x)�r�(x)k 
p
nL� +

p
n✏f
�

=
✏g
2
, (7)

and g(x,U) is an unbiased estimator of rF (x) with Var{g(x,U)} �
1
N (x)I where

(x) = 3

 
3 kr�(x)k2 +

L2�2

4
(n+ 2)(n+ 4) +

4✏2f
�2

!
.

Note that since E[g(x,U)] = rF (x), we have

E[kg(x,U)�rF (x)k2] = tr(Var{g(x,U)})  tr

✓
1

N
(x)I

◆
=

n

N
(x).

We use these facts to show that Gaussian smoothed gradients gives a valid first order oracle. First,
by the triangle inequality, we have

kg(x,U)�r�(x)k  kg(x,U)�rF (x)k+ krF (x)�r�(x)k .

Let M = max{✏g, ⌘ kr�(x)k}, where ⌘ = ↵
1+↵ . Then we have

P (kg(x,U)�r�(x)k > M)  P (kg(x,U)�rF (x)k+ krF (x)�r�(x)k > M)

 P
⇣
kg(x,U)�rF (x)k+

✏g
2

> M
⌘

= P
⇣
kg(x,U)�rF (x)k > M �

✏g
2

⌘

= P
✓
kg(x,U)�rF (x)k2 >

⇣
M �

✏g
2

⌘2◆


E[kg(x,U)�rF (x)k2]

�
M �

✏g
2

�2 (Markov’s inequality)


n(x)

N
�
M �

✏g
2

�2 .

Therefore, if

N �
n(x)

�
�
M �

✏g
2

�2 =
n(x)

�
·min

8
<

:
4

✏2g
,

 
1

�
⌘ kr�(x)k � ✏g

2

�+

!2
9
=

; (8)

=
n(x)

�
·min

(
4

✏2g
,

1
�
⌘ kr�(x)k � ✏g

2

�2

)
, (9)

then
P (kg(x,U)�r�(x)k > max{✏g, ⌘ kr�(x)k})  �.

(To go from (8) to (9), note that when ⌘ kr�(x)k � ✏g
2 is negative, it is greater than �

✏g
2 .)

Now, using the same argument as in the proof of Proposition 2, we get that

kg(x,U)�r�(x)k > max{✏g,↵ kg(x,U)k} implies kg(x,U)�r�(x)k > max{✏g, ⌘ kr�(x)k}.

Therefore, if N is greater than or equal to the bound in (9), then

P (kg(x,U)�r�(x)k > max{✏g,↵ kg(x,U)k})  �.
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B Appendix: Proof of Lemma 2

Lemma 2. For any positive integer t and any p̂ 2 ( 12 , 1], we have

P
 
T" > t and

t�1X

k=0

Ik � p̂t and
t�1X

k=0

Uk⇥kIk <

✓
p̂�

1

2

◆
t�

d

2

!
= 0,

where d = max
n
�

ln↵0�ln ↵̄
ln � , 0

o
.

To prove Lemma 2, we will first prove two additional lemmas. The first lemma shows that the
number of large and successful iterations is bounded below by the number of large and unsuccessful
ones up to a constant.

Lemma 3. Let d = max
n
�

ln↵0�ln ↵̄
ln � , 0

o
. For any positive integer t, we have

t�1X

k=0

Uk⇥k �

t�1X

k=0

Uk(1�⇥k)� d.

Proof. The proof follows simply from the fact that any unsuccessful step decreases the step size by
a factor of �, while any large successful step increases the step by a factor of ��1. Since a large step
at iteration k has both ↵k and ↵k+1 bounded from below by ↵̄, every time ↵k gets decreased has to
correspond to a large step where it gets increased, except for at most max{�(ln↵0 � ln ↵̄)/ln �, 0}
iterations, which is the number of unsuccessful steps it takes to decrease step size from ↵0 to ↵̄.

(Without loss of generality, one may assume ↵0 � ↵̄, as ↵0 can chosen to be large.)
Corollary 1. From Lemma 3 we have

t�1X

k=0

Uk⇥k �
1

2

 
t�1X

k=0

Uk � d

!
.

The next Lemma is an analogue of Lemma 3 for the small steps, it states that the number of small
true steps is upper-bounded by the number of small false steps.
Lemma 4. For any positive integer t < T", we have:

t�1X

k=0

(1� Uk)Ik 

t�1X

k=0

(1� Uk)(1� Ik).

Proof. We have

t�1X

k=0

(1� Uk)Ik 

t�1X

k=0

(1� Uk)⇥k 

t�1X

k=0

(1� Uk)(1�⇥k) 
t�1X

k=0

(1� Uk)(1� Ik).

The first inequality follows from Assumption 3(iv), which implies that the number of small suc-
cessful iterations is at least the number of small true iterations. The second inequality follows from
the fact that the number of small steps where ↵k is increased is bounded by the number of small
steps where ↵k is decreased. The third inequality again uses Assumption 3 (iv), since any small
unsuccessful has to be false.

We are now ready to prove Lemma 2.

For any positive integer t and any p̂ 2 ( 12 , 1], we have

P
 
T" > t and

t�1X

k=0

Ik � p̂t and
t�1X

k=0

Uk⇥kIk <

✓
p̂�

1

2

◆
t�

d

2

!
= 0.
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Proof. It suffices to show that the two events T" > t and
Pt�1

k=0 Ik � p̂t together implyPt�1
k=0 Uk⇥kIk �

�
p̂� 1

2

�
t � d

2 . In the remainder of the proof, assume that T" > t andPt�1
k=0 Ik � p̂t.

Among the first t steps, let

• Lt =
Pt�1

k=0 UkIk be the number of true large steps,

• Lf =
Pt�1

k=0 Uk(1� Ik) be the number of false large steps,

• St =
Pt�1

k=0(1� Uk)Ik be the number of true small steps,

• Sf =
Pt�1

k=0(1� Uk)(1� Ik) be the number of false small steps,

• L = Lt + Lf be the number of large steps,

• S = St + Sf be the number of small steps.

Observe that L+S = t, because every step is either large or small. Moreover, since
Pt�1

k=0 Ik � p̂t,
this implies

Lf + Sf =
t�1X

k=0

(1� Ik)  n� p̂t. (10)

Also, from Lemma 4 and the fact that n < T✏, we know that

St =
t�1X

k=0

(1� Uk)Ik 

t�1X

k=0

(1� Uk)(1� Ik) = Sf (11)

Now, recall from Corollary 1 that the number of large, successful steps is
Pt�1

k=0 Uk⇥k �
1
2 (L� d).

Also, note that
t�1X

k=0

Uk⇥k =
t�1X

k=0

Uk⇥kIk +
t�1X

k=0

Uk⇥k(1� Ik).

This implies that the number of large, successful, true steps is at least

t�1X

k=0

Uk⇥kIk �
L

2
�

d

2
�

t�1X

k=0

Uk⇥k(1� Ik)

�
L

2
�

d

2
�

t�1X

k=0

Uk(1� Ik)

=
L

2
�

d

2
� Lf

=
t� St � Sf

2
�

d

2
� Lf

�
t� St � Sf

2
�

d

2
� ((1� p̂)t� Sf ) (by 10)

=
Sf � St

2
+

✓
p̂�

1

2

◆
t�

d

2

�

✓
p̂�

1

2

◆
t�

d

2
(by 11)
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C Appendix: Proof of Theorem 2

Theorem 2 (Iteration complexity in the bounded noise setting). Suppose Assumption 3 holds, and
ek, e

+
k  ✏f at every iteration. Then for any p̂ 2 ( 12 + 4✏f

h(↵̄) , p), and t � R

p̂� 1
2�

4✏f
h(↵̄)

we have

P (T"  t) � 1� exp

✓
�
(p� p̂)2

2p2
t

◆
,

where R = Z0
h(↵̄) +

d
2 and d = max

n
�

ln↵0�ln ↵̄
ln � , 0

o
.

Proof. In the bounded noise case, Assumption 3 tells us that as long as k < T", we have Zk+1 

Zk � h(↵̄) + 4✏f if UkIk⇥k = 1, and Zk+1  Zk + 4✏f if UkIk⇥i = 0.

The event T" > t implies that Zt > 0 (since Zt = 0 can only happen at global optimality, hence
T"  t), this in turn implies the event

Pt�1
k=0 UkIk⇥k < (p̂ �

1
2 )t �

d
2 . To see this, assume thatPt�1

k=0 UkIk⇥k � (p̂� 1
2 )t�

d
2 , then

Zt  Z0�

✓✓
p̂�

1

2

◆
· t�

d

2

◆
h(↵̄)� t · 4✏f

�
= Z0�

✓✓
p̂�

1

2

◆
h(↵̄)� 4✏f

◆
t+

d

2
·h(↵̄)  0.

The last inequality above used the assumptions that p̂ �
1
2 + 4✏f

h(↵̄) and t � R

p̂� 1
2�

4✏f
h(↵̄)

.

Thus, we get

P(T" > t) = P
 
T" > t,

t�1X

i=0

Ui⇥iIi <

✓
p̂�

1

2

◆
t�

d

2

!

= P
 
T" > t,

t�1X

k=0

Uk⇥kIk <

✓
p̂�

1

2

◆
t�

d

2
,

t�1X

k=0

Ik < p̂t

!

+ P
 
T" > t,

t�1X

k=0

Uk⇥kIk <

✓
p̂�

1

2

◆
t�

d

2
,

t�1X

k=0

Ik � p̂t

!

 P
 

t�1X

k=0

Ik < p̂t

!
+ 0  exp

✓
�
(p� p̂)2

2p2
t

◆
.

Here, the first equality is due to the fact that the event T" > t implies the event
Pt�1

k=0 Uk⇥kIk <�
p̂� 1

2

�
t� d

2 . The first inequality uses Lemma 2, and the last inequality is by Lemma 1.

D Appendix: Proof of Theorem 3

Theorem 3 (Iteration complexity in the sub-exponential noise setting). Suppose Assumptions 2 and
3 hold. Then for any s � 0, p̂ 2 ( 12 + 4✏f+s

h(↵̄) , p), and t � R

p̂� 1
2�

4✏f+s

h(↵̄)

, we have

P (T"  t) � 1� exp

✓
�
(p� p̂)2

2p2
t

◆
� e

�min
n

s2t
8⌫2 , st4b

o

,

where R = Z0
h(↵̄) +

d
2 and d = max

n
�

ln↵0�ln ↵̄
ln � , 0

o
.

Proof. By Assumption 3, for all k < T", we have Zk+1  Zk�h(↵̄)+2✏f+ek+e+k if UkIk⇥k = 1,
and Zk+1  Zk + 2✏f + ek + e+k if UkIk⇥k = 0. By the definition of the zeroth order oracle (1),
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we know that E[ek] and E[e+k ] are bounded above by ✏f for all k. By the law of total probability,

P (T" > t) =P

0

BBBB@
T" > t,

1

t

t�1X

k=0

(2✏f + ek + e+k )  4✏f + s

| {z }
A

1

CCCCA

+ P

0

BBBB@
T" > t,

1

t

t�1X

k=0

(2✏f + ek + e+k ) > 4✏f + s

| {z }
B

1

CCCCA

First we bound P(B). For each k, since ek and e+k satisfy the one-sided sub-exponential bound
1 with parameters (⌫, b), it is not hard to show that ek + e+k satisfy 1 with parameters (2⌫, 2b).
Moreover, since ek + e+k has mean bounded by 2✏f , applying (one-sided) Bernstein’s inequality,
gives for any s � 0:

P(B)  P
 
1

t

t�1X

k=0

�
ek + e+k

�
> 2✏f + s

!
 e�min{ s2t

8⌫2 , st4b}.

To bound P(A) we apply the law of total probability again,

P(A) = P

0

BBBB@
T" > t,

1

t

t�1X

k=0

(2✏f + ek + e+k )  4✏f + s,
t�1X

k=0

⇥kIkUk <

✓
p̂�

1

2

◆
t�

d

2
| {z }

A1

1

CCCCA

+ P

0

BBBB@
T" > t,

1

t

t�1X

k=0

(2✏f + ek + e+k )  4✏f + s,
t�1X

k=0

⇥kIkUk �

✓
p̂�

1

2

◆
t�

d

2
| {z }

A2

1

CCCCA

Using the same logic as the first parts of the proof of Theorem 2 we show that P (A2) = 0 since
T" > t and 1

t

Pt�1
k=0(2✏f +ek+e+k )  4✏f +s together imply that

Pt�1
k=0 ⇥kIkUk <

�
p̂� 1

2

�
t� d

2 .
Then, by the second part of the proof of Theorem 2 we have

P(A1)  P
 
T" > t,

t�1X

k=0

⇥kIkUk <

✓
p̂�

1

2

◆
t�

d

2

!

 exp

✓
�
(p� p̂)2

2p2
t

◆
.

Combining P(A) and P(B), we conclude the proof.

E Appendix: Assumption 3 holds for Algorithm 1

In this section, we verify that Assumption 3 holds for Algorithm 1 when applied to smooth func-
tions which will allow us to apply the results in Section 4 to derive a high-probability bound on
complexity.

As noted earlier, when either ✏f or ✏g are not zero, Algorithm 1 does not converge to a stationary
point, but converges to a neighborhood where kr�(x)k ", with " bounded from below in terms of
✏f or ✏g . The specific relationship is as follows.
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Inequality 1 (Lower bound on ").

" > max

(
✏g
⌘
,max

⇢
1 + ↵max,

1

1� ⌘

�
·

s
4✏f

✓(p� 1
2 )

·max

⇢
0.5L+ 

1� ✓
,

L(1� ⌘)

2(1� 2⌘ � ✓(1� ⌘))

�)
,

for some ⌘ 2 (0, 1�✓
2�✓ ).

Notice this bound is slightly more general than the one in the main body. If one assumes the oracle
can be made so that p is arbitrarily close to 1, then we have the following bound as in Assumption 4
in the main body:

" > max

(
✏g
⌘
,max

⇢
1 + ↵max,

1

1� ⌘

�
·

s
8✏f
✓

·max

⇢
0.5L+ 

1� ✓
,

L(1� ⌘)

2(1� 2⌘ � ✓(1� ⌘))

�)
.

We restate Assumption 3 below for convenience.
Assumption 3 (Properties of the stochastic process). There exist a constant ↵̄ > 0 and a non-
decreasing function h : R ! R, which satisfies h(↵) > 0 for any ↵ > 0, such that for any
realization of the algorithm, the following hold for all k < T":

(i) h(↵̄) > 8✏f .

(ii) P(Ik = 1 | Fk�1) � p for all k, with some p 2 ( 12 + 4✏f
h(↵̄) , 1].

(iii) If Ik⇥k = 1 then Zk+1  Zk � h(↵k) + 4✏f . (True, successful iterations make progress.)

(iv) If ↵k  ↵̄ and Ik = 1 then ⇥k = 1.

(v) Zk+1  Zk + 2✏f + ek + e+k for all k.
Proposition 4 (Assumption 3 holds for Algorithm 1). If Inequality 1 and Assumption 1 and 2 hold,
then Assumption 3 holds for Algorithm 1 with the following p, ↵̄ and h(↵):

1. p = 1 � � when the noise is bounded by ✏f , and p = 1 � � � exp
⇣
�min{ u2

2⌫2 ,
u
2b}

⌘

otherwise. Here u = infx{✏f � E[e(x)]}.

2. ↵̄ = min
n

1�✓
0.5L+ ,

2(1�2⌘�✓(1�⌘))
L(1�⌘)

o
.

3. h(↵) = min
n

✓✏2↵
(1+↵max)2

, ✓↵(1� ⌘)2✏2
o

.

Proof. We will show that each item in Assumption 3 holds. Throughout the proof, we use f(x) to
mean f(x, ⇠(x)) for clarity.

(i) We need to show that h(↵̄) > 8✏f . Indeed, using

h(↵̄) = min

⇢
1

(1 + ↵max)2
, (1� ⌘)2

�
✓"2↵̄,

with
↵̄ = min

⇢
1� ✓

0.5L+ 
,
2(1� 2⌘ � ✓(1� ⌘))

L(1� ⌘)

�
,

and the Inequality 1 on ", we conclude that (i) holds.

(ii) We denote Jk := {kgk �r�(xk)k  max{✏g,Ak kgkk}}.

Clearly, we have

P (Ik = 0 | Fk�1) = P
�
Jk = 0 or ek + e+k > 2✏f | Fk�1

�

 P (Jk = 0 | Fk�1) + P
�
ek + e+k > 2✏f | Fk�1

�

The first term is bounded above by �, based on the use of the first order oracle. The sec-
ond term is zero in the case when ✏f is a deterministic bound on the noise. Otherwise,

19



since ek and e+k individually satisfy the one-sided sub-exponential bound in 1 with param-
eters ✏f and (⌫, b), it is not hard to show that ek + e+k satisfy 1 with parameters 2✏f and
(2⌫, 2b). Hence by (one-sided) Bernstein’s inequality, the second term is bounded above

by e�min{ u2

2⌫2 , u
2b}. (Recall that u = infx{✏f � E[e(x)]}.) Thus we have shown that

P(Ik = 1 | Fk�1) � p

for all k, for the p in the statement of this Proposition.

The fact p 2 ( 12 + 4✏f
h(↵̄) , 1] follows from the definitions of h and ↵̄ in the statement of this

Proposition, together with the Inequality 1 on ".

(iii) Since iteration k is true, we know that kgk �r�(xk)k  max{✏g,↵k kgkk}. We consider
two cases:

• Suppose kgk �r�(xk)k  ↵k kgkk. By triangle inequality, we get

kgkk �
1

1 + ↵k
kr�(xk)k �

1

1 + ↵max
kr�(xk)k .

Together with the fact that iteration k is successful, we obtain

f(xk+1)� f(xk)  �↵k✓ kgkk
2 + 2✏f  �

↵k✓ kr�(xk)k
2

(1 + ↵max)2
+ 2✏f .

• Suppose kgk �r�(xk)k  ✏g . Since k < T", we have kr�(xk)k > " �
✏g
⌘ .

This implies that kgk �r�(xk)k  ⌘ kr�(xk)k. Rearranging this using the triangle
inequality, we get that

kgkk � (1� ⌘) kr�(xk)k .

Putting this together with the fact that iteration k is successful, we obtain

f(xk+1)� f(xk)  �↵k✓ kgkk
2 + 2✏f  �↵k✓(1� ⌘)2 kr�(xk)k

2 + 2✏f .

Combining the above two cases, we get that on any true, successful iteration with k < T",
the following inequality holds:

f(xk+1)� f(xk)  �min

⇢
1

(1 + ↵max)2
, (1� ⌘)2

�
↵k✓ kr�(xk)k

2 + 2✏f .

By k < T", we know kr�(xk)k > ", so the above inequality implies f(xk+1)� f(xk) 
�h(↵k)+2✏f . Finally, because ek+e+k  2✏f on true iterations, we get �(xk+1)��(xk) 
�h(↵k) + 4✏f . Recall that Zk = �(xk) � �⇤, so Zk+1 � Zk = �(xk+1) � �(xk). This
proves (iii).

(iv) We first show that if ↵k  ↵̄ and Ik = 1, then

�(xk � ↵kgk)  �(xk)� ↵k✓ kgkk
2 . (12)

Since Ik = 1, kgk �r�(xk)k  max{↵k kgkk , ✏g}. Just like in the proof of (iii), we
consider two cases:

• Suppose kgk �r�(xk)k  ↵k kgkk. Then since ↵k  ↵̄ 
1�✓

0.5L+ , by Assumption
1 and Lemma 3.1 of [CS17], we have 12 hold.

• Suppose kgk �r�(xk)k  ✏g . Since k < T✏, we have kr�(xk)k > " �
✏g
⌘ by

Inequality 1. Therefore, kgk �r�(xk)k  ⌘ kr�(xk)k. Combining this with the
fact that ↵k  ↵̄ 

2(1�2⌘�✓(1�⌘))
L(1�⌘) , by Assumption 1 and Lemma 4.3 of [BCS19]

(applied with ✏f = 0), we have 12 hold.

Now, recalling the definitions of ek and e+k and using the fact that ek + e+k  2✏f (since
Ik = 1), inequality (12) implies

f(xk � ↵kgk)  f(xk)� ↵k✓ kgkk
2 + ek + e+k  f(xk)� ↵k✓ kgkk

2 + 2✏f ,

which proves (iv).
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Figure 4: ALOE is robust to the choice of ✏f .

(v) Note that Zk+1 = Zk on any unsuccessful iteration, so the inequality holds trivially in that case.
On the other hand, if iteration k is successful, then by the modified Armijo condition, we
have

f(xk+1)� f(xk)  �↵k✓ kgkk
2 + 2✏f  2✏f .

This implies that �(xk+1)��(xk)  2✏f +ek+e+k . Since Zk+1�Zk = �(xk+1)��(xk),
(v) is proved.

Applying it to Theorem 3 gives the explicit complexity bound for Algorithm 1:

Theorem 4. Suppose the Inequality 1 on " is satisfied for some ⌘ 2 (0, 1�✓
2�✓ ), and Assumptions

1 and 2 hold, then we have the following bound on the iteration complexity: For any s � 0, p̂ 2

( 12 + 4✏f+s
C"2 , p), and t � R

p̂� 1
2�

4✏f+s

C"2

,

P (T"  t) � 1� exp

✓
�
(p� p̂)2

2p2
t

◆
� exp

✓
�min

⇢
s2t

8⌫2
,
st

4b

�◆
.

Here, R = �(x0)��⇤

C"2 +max
n
�

ln↵0�ln ↵̄
ln � , 0

o
, C = min

n
1

(1+↵max)2
, (1� ⌘)2

o
↵̄✓, with p and ↵̄

as defined in Proposition 4.

F Appendix: Additional experimental results

We now present additional experimental results with ALOE. The first set of experiments shown in
Figure 4 compares the performance of ALOE using different choices of the error threshold ✏f . We
observe that the algorithm is fairly robust with respect to these choices, but overall selecting ✏f > 0
is justified in practice.

Next we show results of applying ALOE (and SLS) on two different neural network architectures,
using softmax loss function, trained on MNIST Handwritten Digit Classification Dataset. The first
architecture is a multi-layer perceptron (MLP) neural network that has four layers: an input layer
with 784 nodes, two hidden layer with 512 and 256 nodes, and an output layer with 10 nodes. All
activation functions are ReLU. This is the same architecture as in [VML+19]. The results are shown
in Figure 5. The second network is a small convolutional neural network (CNN) that in addition
to the input and output layers, has two convolutional layers and one fully connected layer. Each
convolutional layer uses a 3 ⇥ 3 kernel with a stride length of 1, and is followed by a 2 ⇥ 2 max
pooling. This architecture follows the tutorial at this link. The results are in Figure 6.

Thus we have two non-convex problems, to which we apply two versions of ALOE and one version
of SLS. The algorithms are: 1) ALOE 1 is the ALOE algorithm with � = 0.7, 2) ALOE 2 is the
ALOE algorithm with � = 0.9. 3) SLS algorithm uses the suggested parameters as in the paper
[VML+19]. The reason for using � = 0.9 is because in these experiments this value is closer to the
parameters chosen by SLS, where � is chosen heuristically, depending on the size of the data set and
the mini-batch size.
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In each figure, the leftmost plot shows the progress of the training loss of each algorithm, the central
plot shows the progress of the testing loss, and the rightmost plot shows the progress of the validation
error.

Figure 5 demonstrates that for the MLP, the behavior of ALOE algorithm on the testing and training
loss is somewhat similar - both losses start to increase at about the time when the validation accu-
racies plateau at about 98%. SLS however, like most SGD algorithms, continues to improve the
training loss without improving the validation loss. We find this observation supports our theoretical
results that ALOE optimizes the expected loss, rather than the empirical loss, but only up to certain
accuracy. The average test set error rates for all three algorithms in this case are similar, which are
about 2%. In Figure 6 we observe that ALOE manages to reach much better accuracy than SLS
on the CNN. Specifically, the average test set error rates for ALOE 1, ALOE 2 and SLS are 0.9%,
0.9% and 51% respectively. In Figure 7, we plot the step sizes for each algorithm. We hypothesize
that the reason SLS does not perform well on this problem is because the step size becomes quite
small and the algorithm does not manage to progress. ALOE however, is able to take large steps and
progresses well.

Careful exploration of practical variants of ALOE, such as heuristics for �, ✏f and a minibatch size
are subject for future research.

Figure 5: MNIST with multi-layer perceptron neural network

Figure 6: MNIST with CNN

Figure 7: Step-sizes for MNIST with CNN
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