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1. Introduction
Thebasis set is oneof themost important building

block for the quantum chemistry calculation. Two
most important features to construct the basis set
is the effectiveness of evaluating the integral asso-
ciated with these basis functions and the expressiv-
ity of them. Classically, people have been using con-
tractedGaussian orbitalswith polynomial factors ac-
counting for the angular-momentum.
In this paper, we introduced the adaptive Gaus-

sian basis, which has both the mean and covari-
ance trainable. The flexibility of anisotropic covari-
ance substitutes the role of the polynomial factor
and enjoy more efficient evaluation of the integral
due to the analytic formula of Gaussian integrals.
We demonstrate this theoretically by counting the
FLOPs and numerically by performingHartree-Fock
calculation over simple molecule systems.

2. Methodology
LetN, I be the number of orbitals (electrons) and

the index set for the Gaussian orbital basis. Moti-
vated by [1], each basis of this set is parametrized
by a mean vector µi ∈ R3 and a covariance matrix
Σi ∈ S3+. Given this basis set, the k-th orbital is given
by

ϕk =
∑
i∈I

ckiN(r;µi,Σi). (1)

The total orbital information is encoded by two sets
of parameters: the coefficientmatrixC ∈ C|I|×N and
the Gaussian basis sets {µi,Σi}i∈I .
We emphasize three differences between our ba-

sis set and classical basis sets such as contracted
Gaussian basis functions.

1. Our basis functions do not have the angular-
momentum part of the classical basis set in [2]
while its covariance can be anisotropic. We use
the expressivity of the covariancematrix to sub-
stitute that of the polynomial factors.

2. All the orbitals share the same set of the basis
function, while classical basis set have specific
basis function developed for both core and va-
lence electrons.

3. Both the basis set function and their linear co-
efficients are optimizable during the problem
solving, thus we call it the adaptive Gaussian ba-
sis set which can adaptively change according to
the system for calculation.

Overlap matrix and energy calculation: for
most calculations such as the overlap matrix and ki-
netic energy, the procedure is similar to classical ap-
proach as the analytic formula can be extended to
Gaussian basis with anisotropic covariance.
ERI computation: to calculate the electron repul-

sion integrals, we consider the following decompo-
sition of the Coulomb’s kernel 1

r =
∑

i cie
−αir

2

and
solve the following optimization problem

min
ci,αi

∫
BM

(
1

|r|
−
∑
i

cie
−αi|r|2

)2

dr

= min
ci,αi

4π

∫ M

0

(
1−

∑
i

cire
−αir

2

)2

dr.

(2)

After solving this optimization offline, one can eval-
uate the ERI as follows:

⟨N (r1|µ1,Σ1)|
1

|r1 − r2|
|N (r2|µ2,Σ2)⟩

=

∫ ∫
dr

1√
(2π)6 det(Σ1) det(Σ2)

∑
i

cis(i)

exp

[
−1

2
(r− µ(i))T

(
Σ−1

1 + 2αi I −2αi I
−2αi I Σ−1

2 + 2αi I

)
(r− µ(i))

]
=
∑
i

cis(i)√
det(Σ1) det(Σ2)/ det(Σ(i))

(3)
Comparing to the classical algorithm for comput-

ing the ERI, e.g. MD, HPG, Rys, our framework pro-
vide a unique formula for any four-center integral
with arbitrary covariance matrices, while classical
methods have increasing computational cost for the
integral associated with higher angular momentum.

2.1 Theoretical analysis
We optimize the computational cost of the elec-

tron repulsion integral, e.g eq. (3) which is the most
expensive operations in most of the quantum chem-
istry calculation. Naive implementation requires
solving a 6 × 6 linear system for each ERI, while
we use the special structure of the matrix and Schur
complement to reduce the computation to solve two
3×3 linear systems and calculate a 3×3determinant,
corresponding to the second, third, and fifth line of
the code below. Furthermore, one of the linear sys-
tem can be further reduces to a matrix vector prod-
uct of size 3. The FLOPs count for a single ERI evalu-
ation with one α is around 60, comparing to classical
method: (ss|ss), (ps|ps), (pp|pp) requires 33, 58, 1326
FLOPs for a single evaluation. This demonstrate the
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potential effectiveness of our framework.

3. Numerical experiments
We implement our algorithm for Hartree-Fock

method and compare with pyscf package [3] using
different basis sets. over several simple systems. It
can be conclude that our method is able to achieve
similar accuracy with comparable number of basis

functions.

e_tot

OUR (H2), 10 -1.1334

HF (STO-3G, 2) -1.1167

HF (6-31G, 4) -1.1267

HF (6-311G, 6) -1.1280

OUR (CH4), 22 -40.1225

HF (STO-3G, 9) -39.7267

HF (6-31G, 17) -40.1804

HF (6-311G, 25) -40.1880

OUR (H2O), 22 -76.0036

HF (STO-3G, 7) -74.9630

HF (6-31G, 13) -75.9839

HF (6-311G, 19) -76.0094
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