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Abstract
Robust training methods typically defend against
specific attack types, such as ℓp attacks with fixed
budgets, and rarely account for the fact that de-
fenders may encounter new attacks over time. A
natural solution is to adapt the defended model
to new adversaries as they arise via fine-tuning,
a method which we call continual robust train-
ing (CRT). However, when implemented naively,
fine-tuning on new attacks degrades robustness
on previous attacks. This raises the question: how
can we improve the initial training and fine-tuning
of the model to simultaneously achieve robustness
against previous and new attacks? We present
theoretical results which show that the gap in
a model’s robustness against different attacks is
bounded by how far each attack perturbs a sample
in the model’s logit space, suggesting that regular-
izing with respect to this logit space distance can
help maintain robustness against previous attacks.
Extensive experiments on 3 datasets (CIFAR-10,
CIFAR-100, and ImageNette) and over 100 at-
tack combinations demonstrate that the proposed
regularization improves robust accuracy with lit-
tle overhead in training time. Our findings and
open-source code1 lay the groundwork for the
deployment of models robust to evolving attacks.

1. Introduction
For safety critical applications, it is important to defend ma-
chine learning (ML) models against test-time attacks. How-
ever, many existing defenses (Madry et al., 2018; Zhang
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Figure 1: Impact of our proposed regularization term
(ALR) in both training and fine-tuning on CIFAR-10.
Adversarial ℓ2 regularization (ALR) significantly improves
generalization to the unforeseen StAdv attack when per-
forming adversarial training for ℓ2 robustness. Using ALR
when subsequently fine-tuning with only StAdv attack also
decreases the drop in ℓ2 robustness.

et al., 2019; Croce et al., 2020) assume that the adversary is
restricted to a narrow threat model such as an ℓp ball of fixed
radius around the input. When this assumption is violated,
the robustness of adversarially trained models can signif-
icantly degrade (Dai et al., 2023; Kaufmann et al., 2019).
Additionally, due to rapid development of new types of at-
tacks (Xiao et al., 2018; Laidlaw & Feizi, 2019; Laidlaw
et al., 2021; Kaufmann et al., 2019), it is difficult to antici-
pate all types of attacks in advance. This raises the question:
how can we defend models as new attacks emerge?

For long-term robustness, models must quickly adapt to new
attacks without sacrificing robustness to previous ones, a
goal known as continual adaptive robustness (CAR) (Dai
et al., 2024b) (§2). A natural approach is to apply adversarial
training on known attacks and fine-tune when new ones
emerge, a process we call continual robust training (CRT).
However, adversarial training provides poor generalization
to unseen attacks, leading to suboptimal starting points for
fine-tuning, and fine-tuning itself can degrade robustness
against past attacks (Figure 1).

We theoretically show that the robustness gap between at-
tacks is linked to logit-space distances between perturbed
and clean inputs and that regularizing these distances can
improve generalization to new attacks and reduce drops
in robustness on previous attacks. Extensive experiments
confirm these findings. Our key contributions are as follows:
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Figure 2: An overview of the problem of adapting to new adversaries (continual adaptive robustness) and our solution
framework (Regularized Continual Robust Training). The defender learns about the existence of new attacks sequentially,
and at time t aims to achieve robustness against K(t), the set of attacks known at times ≤ t. A model h0 is deployed at time
0 to be robust against an initial set of known attacks, and new attacks are introduced at times t1, t2, and t3. We propose
performing regularized initial robust training on the initially known attack(s) and then using regularized fine-tuning to adapt
the model against future attacks within time ∆t, leading to a sequence of models h0, ht1+∆t, ht3+∆t, ht3+∆t.

Regularized Continual Robust Training for Adapting
to New Adversaries (§3) . To enhance CRT, we ana-
lyze the difference in robust losses between attacks and
show it is upper bounded by the sum of the maximal ℓ2
distance between clean and perturbed logits for both attacks.
Training techniques which minimize this bound can thus
improve generalization to new attacks and preserve robust-
ness against previous ones. This motivates our proposed
adversarial ℓ2 regularization (ALR), which penalizes the ℓ2
distance between adversarial and benign logits.

Empirical Validation on Sequentially Introduced At-
tacks (§4.2). We conduct experiments on 2 sequences of 4
attacks across 3 datasets (CIFAR-10, CIFAR-100, and Ima-
genette). Our results show that ALR improves robustness
in CRT with a 5.48% gain in Union accuracy (worst-case
across all attacks) across ℓ2, StAdv (Xiao et al., 2018), and
Recolor attacks (Laidlaw & Feizi, 2019) over its unregular-
ized counterpart. Figure 1 visualizes improvements brought
through ALR for a sequence of 2 attacks.

Impact of ALR and Efficient Approximations in Train-
ing and Fine-Tuning (§4.3,§4.4). We conduct ablations
using over 100 attack combinations (12 attack types, 9 of
which are non-ℓp) to study ALR’s role in different stages of
CRT. We also explore random noise-based regularization as
a more efficient alternative. We find that while noise-based
regularization improves generalization in initial training,
ALR is essential for maintaining robust performance during
fine-tuning and improves Union accuracy by up to 7.85%.

Looking ahead (§5): We hope our methods inspire the
deployment of multi-robust models against changing real-
world threats. We believe our techniques could be adapted
to ensure other desirable properties, such as compliance
with changing standards for fairness or privacy.

2. Setup: Continual Adaptive Robustness
In this section, we introduce the problem of continual adap-
tive robustness (CAR) (Dai et al., 2024b), which aims
to achieve robustness against new attacks as they are se-
quentially discovered. We survey existing approaches to
this problem, with additional related work included in Ap-
pendix A. CAR is visualized in Figure 2.

2.1. A Motivating Example

Consider an entity that wants to deploy a robust ML system.
The entity uses recent techniques (e.g. adversarial training)
to defend their model against existing attack types (such
as ℓp perturbations) and deploys their model at time t =
0. At a later time t1, a research group publishes a paper
about a new attack type (e.g. spatial perturbations (Xiao
et al., 2018)) against which the entity’s model is not robust.
Since the ML system has been deployed, the entity would
want to quickly modify the model to be robust against the
new attack while maintaining robustness against previous
attacks. Having a quick update procedure would minimize
the time that an attacker can exploit this vulnerability. Quick
adaptation to new attacks is the foundation of continual
adaptive robustness (CAR), a problem setting introduced in
a recent position paper (Dai et al., 2024b). In this work, we
propose and analyze the first dedicated defense for CAR.

2.2. Problem Formulation

Notation: D = X ×Y denotes a data distribution where X
and Y are the support of inputs and labels, respectively. H
denotes the hypothesis class. We use C : X → X̃ to define
an adversarial constraint where X̃ is the space of adversarial
examples. ℓ : Y × Y → R denotes the loss function.

Attack sequences: In CAR (Dai et al., 2024b), different test-
time attacks are introduced sequentially (Figure 2). Each
attack PC is associated with a constraint C and can be
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formulated as a maximizer of the loss (i.e. PC(x, y, h) =
argmaxx′∈C(x) ℓ(h(x), y)). We refer to the time at which
PC is discovered by the defender as T (PC), and the set
of attacks known by the defender at a given time t as the
knowledge set at time t: K(t) = {P |T (P ) ≤ t}. The
expansion of K over time can be viewed as modeling the
setting of research groups or security teams sequentially
discovering new attack types.

Goals in CAR: A defender in CAR uses a defense algo-
rithm ACAR to deploy a model ht = ACAR(D,K(t),H)
at each time step t. Performance at time t is measured
by Union robust loss across the knowledge set: L(h, t) =
E(x,y)∼D maxP∈K(t)[ℓ(P (x, y, h), y)].

Definition 2.1 (Continual Adaptive Robustness (Dai et al.,
2024b)). Given loss tolerances δknown and δunknown with 0 <
δknown < δunknown and grace period ∆t for recovering from
a new attack, a defense algorithm ACAR achieves CAR if
for all t > 0:

• When t − T (P ) < ∆t for any attack P and T (P ) < t,
ht satisfies L(ht, t) ≤ δunknown

• Otherwise, L(ht, t) ≤ δknown.

These criteria capture 3 distinct goals for the defender: (1)
The model at time t must achieve good robustness if no
attacks have been introduced recently (within ∆t time). This
is due to the δknown threshold on the robust loss in the second
criterion; (2) If a new attack has occurred within ∆t period
before the current time t, the model at time t must achieve
some robustness against the new attack. This is modeled
by the δunknown threshold in the first criterion. Since 0 <
δknown < δunknown, CAR tolerates a degradation in robustness
between the 2 cases; (3) The defense is expected to recover
robustness quickly after new attacks. This is modeled by the
∆t time window; ∆t time after the introduction of a new
attack, the loss threshold changes from δunknown to δknown.

2.3. Baseline Approaches to CAR

CAR through multiattack robustness (MAR). Prior works
for multiattack robustness often involve training with multi-
ple attacks simultaneously (Tramèr & Boneh, 2019; Maini
et al., 2020), which can be computationally expensive. A
trivial (but expensive) defense algorithm for CAR is to use
these training-based techniques and retrain a model from
scratch on K(t) every time it changes. However, this would
require us to tolerate larger values of ∆t.

CAR through unforeseen attack robustness (UAR). De-
fenses for unforeseen attack robustness (UAR) aim to en-
sure robustness to attacks that were not seen during training
(Laidlaw et al., 2021; Dai et al., 2022). This suggests another
trivial defense for CAR: use a UAR defense to get a model
h and use h for all time steps. This approach is efficient
since no time is spent updating the model, but would require

much higher values of δknown as these methods do not obtain
high robustness across all attacks (Dai et al., 2023).

3. Theoretical Motivation and Methods
In this section, we introduce continual robust training (CRT)
and provide theoretical results to demonstrate that adding a
regularization term bounding adversarial logit distances can
help balance performance across a set of adversaries.

3.1. Continual Robust Training (CRT)

Continual robust training consists of 2 parts, initial training
and iterative fine-tuning (Figure 2). The output of initial
training is deployed at t = 0 while fine-tuning is used as
new attacks are introduced.

At time t = 0, the goal of the defender is to
minimize the initial training objective: L(h, 0) =
1
m

∑m
i=1 ℓ(h(PCinit(xi, yi, h)), yi) where {(xi, yi)}mi=1 is

the training dataset and PCinit is the initial attack. Notably,
using standard training in this stage yields a high δunknown.

At t > 0, as new attacks are introduced, we use a fine-
tuning strategy F to select the attack from K(t) to use
for each example. Specifically, we formulate this as:
L(h, t) = 1

m

∑m
i=1 ℓ(h(PC(xi, yi, h)), yi) where PC =

F (K(t), (xi, yi)). Fine-tuning strategies include picking
the attack that maximizes ℓ(xi, yi), randomly sampling from
K(t), and using the newest attack. A good fine-tuning strat-
egy would be able to quickly adapt the model to new attacks,
allowing it to satisfy a small ∆t threshold. However, naive
fine-tuning does not guarantee good performance across all
attacks and may require large values of δknown. As illustrated
in Figure 1, a model may lose robustness to the initial at-
tack after the fine-tuning stage. We now discuss how such
degradation can be addressed through regularization.

3.2. Bounding the Difference in Adversarial Losses

A successful implementation of CAR would both enhance
the robustness of a model to new attacks encountered at
a given time step and maintain robustness to attacks seen
at previous time steps. We will show how the gap in ro-
bustness between attacks relates to distances between ad-
versarially perturbed representations in the logit space of a
model, which suggests the use of regularization as a tool for
bounding the impact of any given attack.

Let h : Rd → Rk be a k class neural network classi-
fication model. To simplify the problem setting, we fo-
cus on the state of the model when attacks PC1

and PC2

(with corresponding adversarial constraints C1 and C2) are
known to the defender. Consider the following two adversar-
ial loss functions: L1(h) := ED [ℓ(h(PC1(x, y)), y)] and
L2(h) := ED [ℓ(h(PC2

(x, y)), y)] . Without loss of gener-
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ality, assume that L1(h) ≥ L2(h). We can then bound
the difference between L1(h) and L2(h), adapting a result
from Nern et al. (2023), as follows2:
Theorem 3.1. Assume that loss ℓ(ŷ, y) is M1-Lipschitz in
∥ · ∥2, for ŷ ∈ h(X) with M1 > 0 and bounded by M2 > 0
3, i.e. 0 ≤ ℓ(ŷ, y) ≤ M2 ∀ŷ ∈ h(X). Then, for a subset
X = {xi}ni=1 independently drawn from D, the following
holds with probability at least 1− ρ:

L1(h)− L2(h) ≤ M1
1

n

n∑
i=1

(
max

x′∈C1(xi)
∥h(x′)− h(xi)∥2

+ max
x′∈C2(xi)

∥h(x′)− h(xi)∥2
)
+D,

where D = M2

√
log(ρ/2)
−2n .

This result suggests that regularization with respect to a sin-
gle attack (say, in pre-training) will give the model greater
resiliency against unforeseen attacks and help meet the
δunknown threshold. Using regularization when fine-tuning on
a new attack could also prevent degradations in robustness
against previously seen attacks, helping to meet the δknown
threshold. Using similar reasoning, we can also bound the
gap between Union and clean loss:

Corollary 3.2. Let L1,2(h) :=
ED [max (ℓ(h(PC1(x, y, h)), y), ℓ(h(PC2(x, y, h)), y))].
Then, with probability at least 1− ρ,

L1,2(h)− L(h) ≤ M1
1

n

n∑
i=1

(
max

x′∈C1(xi)
∥h(x′)− h(xi)∥2

+ max
x′∈C2(xi)

∥h(x′)− h(xi)∥2
)
+D.

This corollary helps characterize the trade-off between clean
and robust loss in our setting. Although our results are stated
in terms of pairs of attacks, Theorem 3.1 and Corollary 3.2
straightforwardly lead to meaningful bounds for larger sets
of attacks. Theorem 3.1 upper bounds the maximum gap
in robust loss between any pair of attacks in the set, and
Corollary 3.2 upper bounds the gap between the clean loss
and the Union loss on all attacks. Proofs of Theorem 3.1
and Corollary 3.2 are present in Appendix D.

Comparison to Dai et al. (2022): We note that Dai et al.
(2022, Theorem 4.2) derive a related bound on the adver-
sarial loss gap between two attacks in the context of UAR.

2As stated, these results hold for loss functions that are Lips-
chitz with respect to the ℓ2 norm. We note that similar bounds can
be derived for other norms by applying a constant scaling factor to
the first term of the bound (i.e. for losses Lipschitz with respect to
the ℓ1 norm, the scaling factor would be

√
c).

3We note that surrogate losses such as the cross-entropy used
during training are not bounded, but the 0− 1 loss which is often
the key quantity of interest is bounded.

However, their formulation assumes that the constraint set
of the target attack is a strict superset of that of the source
attack, whereas we make no assumptions about the relation-
ship between the two constraint sets.

3.3. Regularization Methods

Theorem 3.1 suggests that reducing the sensitivity of log-
its to either attack has the potential to reduce the perfor-
mance gap between attacks (see Figure 4 in the Appendix
for an empirical validation of this effect). To this end,
we propose incorporating regularization into both training
stages. Specifically, we adopt modified training objective
Lreg(h, t) = L(h, t) + λR(h,K(t)), where λ is the regular-
ization strength and R(h) is the regularization term used.
We will now discuss several forms of regularization.

Adversarial ℓ2 regularization. (ALR) Driven by our the-
oretical results, we first introduce adversarial ℓ2 regular-
ization: RALR(h,K(t)) = 1

m

∑m
i=1 maxx′∈C(xi) ∥h(x′)−

h(xi)∥2 where C = Cinit in initial training and corresponds
to attack PC = F (K(t), (xi, yi)) chosen by the fine-tuning
strategy. ℓ2 regularization penalizes the maximum distance
between a sample’s logits and the furthest adversarially per-
turbed logits within that sample’s neighborhood. Using
this regularization term would directly minimize the up-
per bounds in Theorem 3.1 and Corollary 3.2. We note
that while ALR is similar in form to TRADES (Zhang
et al., 2019), it uses a Euclidean distance instead of the
KL-divergence. Our paper is the first to show that this form
of regularization is beneficial for CAR.

Efficiently approximating ALR. Computing ALR uses
multi-step optimization which can be costly to compute in
practice. To improve efficiency in experiments, we consider
(1) using single step optimization for ALR and (2) using
randomly sampled, unoptimized perturbations can help with
CAR. For (2), we consider Gaussian noise regularization
(GR) and Uniform noise regularization (UR), specifically:
RGR(h,K(t)) = 1

m

∑m
i=1 ∥h(x′) − h(xi)∥2 where x′ ∼

N (0, σ2) and RUR(h,K(t)) = 1
m

∑m
i=1 ∥h(x′)− h(xi)∥2

where x′ ∼ U(−σ, σ).

Other Regularizers. We compare to variation regulariza-
tion (VR), which has been shown to improve generalization
to unforeseen attacks (Dai et al., 2022). VR is defined
as: RVR(h,K(t)) = 1

m

∑m
i=1 maxx′,x′′∈C(xi) ∥h(x′) −

h(x′′)∥2 where C = Cinit in initial training. We also
consider VR in finetuning with C corresponding to attack
PC = F (K(t), (xi, yi)). The link between VR and ALR is
discussed in Appendix E.

We compare to the TRADES regularizer (Zhang et al.,
2019) during initial training of the model. This reg-
ularizer can be formulated as RTRADES(h,K(t)) =
1
m

∑m
i=1 maxx′∈C(xi) KL(h(x′), h(xi)) and measures the
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worst case KL-distance between the logit distributions after
a perturbation is applied.

For fine-tuning, we consider elastic weight consolidation
(EWC) (Kirkpatrick et al., 2017), a technique for reducing
catastrophic forgetting in continual learning. EWC ensures
that the model parameters do not deviate too much from the
previous task (or in our case, attack) learned. Mathemati-
cally, REWC(h,K(t)) =

∑
i
1
2Fi(θi − θ∗prev,i)

2 where F is
the diagonal of the Fisher information matrix, θ is the model
parameters that we are optimizing, θ∗prev are the parameters
of the model that we are fine-tuning from.

4. Experimental Results
In this section, we empirically demonstrate that using reg-
ularization in CRT helps improve robustness when attacks
are introduced sequentially. This section is organized as
follows: (i) experimental setup §(4.1), (ii) overall results for
using regularization in CRT (§4.2), (iii) ablations in initial
training (§4.3) and (iv) ablations in fine-tuning (§4.4).

4.1. Experimental Setup

Datasets. We experiment with CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and ImageNette (Howard), a 10-
class subset of ImageNet (Deng et al., 2009).

Architectures. For CIFAR-10 and CIFAR-100, we use
WideResnet-28-10 (WRN-28-10) architecture (Zagoruyko
& Komodakis, 2016) and ResNet-18 for ImageNette.

Attacks. We include results for ℓ2, ℓ∞, StAdv (Xiao
et al., 2018), ReColor attacks (Laidlaw & Feizi, 2019),
and the 8 core attacks of Imagenet-UA (Kaufmann et al.,
2019). For ℓ2 attacks, we use a bound ϵ = 0.5 for CIFAR
datasets and ϵ = 1 for ImageNette. For ℓ∞ attacks, we
use ϵ = 8

255 , and for StAdv and ReColor attacks, we use
the same bounds as used in their original papers Xiao et al.
(2018) (ϵ = 0.05) and Laidlaw & Feizi (2019) (ϵ = 0.06)
respectively. For ImageNet-UA attacks, we use the medium
distortion strength bounds used by Kaufmann et al. (2019).
For experiments investigating the impact of regularization
in the fine-tuning step of CRT (§4.4), we include results
for fine-tuning to the same attack type but with larger at-
tack bounds. For these experiments, the larger bounds are
given by ϵ = 1 for ℓ2, ϵ = 12

255 for ℓ∞, ϵ = 0.07 for StAdv,
ϵ = 0.08 for ReColor, and high distortion strength bounds
for ImageNet-UA attacks.

Training from scratch baselines. We consider the follow-
ing baselines for training from scratch:

• Training with AVG and MAX objectives (Tramèr &
Boneh, 2019): Tramèr & Boneh (2019) propose two
different training objectives, AVG (LAVG(h, t) =

1
m|K(t)|

∑m
i=1

∑
PC∈K(t) ℓ(h(PC(xi, yi)), yi))

and MAX (LMAX(h, t) =
1
m

∑m
i=1 maxPC∈K(t) ℓ(h(PC(xi, yi)), yi)), for ro-

bustness against multiple known attacks.
• Randomly sampling attacks (Madaan et al., 2020): AVG

and MAX require generating adversarial examples with
all attacks for each image. For a more efficient baseline,
we consider randomly sampling an attack for each batch
for use in adversarial training.

CRT Baselines. For CRT, we use PGD adversarial training
(AT) (Madry et al., 2018) for initial training and then fine-
tune the model using several different fine-tuning strategies:

• MAX objective fine-tuning (FT-MAX) (Tramèr & Boneh,
2019): We use the MAX objective for fine-tuning when a
new attack is introduced.

• Croce & Hein (2022) fine-tuning (FT Croce): Croce &
Hein (2022) introduce a fine-tuning technique for use with
ℓ∞ and ℓ1 attacks which we generalize to training with
arbitrary attacks. This approach samples a single attack
per batch. The probability that an attack PC is sampled is
given by err(PC)∑

P∈K(t) err(P ) where err(P ) denotes the running
average of robust loss with respect to attack P computed
across batches of each attack.

• Single attack fine-tuning (FT Single): We also consider
fine-tuning with only the newly introduced attack, allow-
ing us to determine the extent to which previous attacks
are forgotten. The previous two fine-tuning techniques
involve replaying previous attacks.

We then investigate incorporating regularization into the
initial training and fine-tuning phases of CRT.

Training and Fine-tuning Procedures. During training,
we use 10-step Projected Gradient Descent (Madry et al.,
2018) to generate adversarial examples. For the regulariza-
tion terms (§3.3), VR and ALR use single step optimization
to reduce time overhead, while UR and GR use σ = 2 and
σ = 0.2, respectively. Results for additional values of σ
are in Appendix I.1. We train models for 100 epochs for
initial training and 10 epochs for fine-tuning (results with
25 epochs in Appendix H). We include additional details
about the training procedure in Appendix G.

Evaluation Attacks and Metrics. Our main results in
Table 1 and additional ones in Appendix H use full AutoAt-
tack (Croce & Hein, 2020b) for evaluating ℓp robustness.
For ablations, we restrict to APGD-T and FAB-T from Au-
toAttack to reduce evaluation time. We use 20-step opti-
mization when evaluating StAdv and ReColor attacks and
the default evaluation hyperparameters for ImageNet-UA
attacks in Kaufmann et al. (2019). We report accuracy on
each attack, Union accuracy (overall accuracy when the
worst case attack is chosen for each test example), Aver-
age accuracy (average over accuracy on each attack), and
training time (in hours). Metrics are reported for the epoch
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Time
Step Procedure Threat Models Clean ℓ2 StAdv ℓ∞ Recolor

Avg
(known)

Union
(known)

Avg
(all)

Union
(all)

Time
(hrs)

0 In
it AT ℓ2 91.17 69.7 2.08 28.41 44.94 69.7 69.7 36.28 1.24 8.68

AT + ALR (λ = 1) ℓ2 89.43 69.84 48.23 34.00 65.46 69.84 69.84 54.38 31.27 17.17

1

Fi
ne

tu
ne

FT MAX ℓ2, StAdv 83.73 57.07 58.67 12.51 49.03 57.87 51.32 44.32 12.36 4.00
FT Single ℓ2, StAdv 80.89 45.45 54.5 6.09 41.98 49.98 41.05 37.0 5.87 2.78
FT Croce ℓ2, StAdv 84.7 57.88 54.27 14.38 51.08 56.07 48.13 44.4 13.8 2.40
FT Single + ALR ℓ2, StAdv 87.24 62.22 61.5 21.4 70.87 61.86 55.04 54.0 21.14 4.24
FT Croce + ALR ℓ2, StAdv 86.03 59.18 65.14 15.36 63.31 62.16 55.83 50.75 15.29 3.47

2

Fi
ne

tu
ne

FT MAX ℓ2, StAdv, ℓ∞ 83.16 65.63 56.68 36.9 65.69 53.07 35.18 56.23 34.83 5.62
FT Single ℓ2, StAdv, ℓ∞ 87.99 70.53 11.17 41.63 63.46 41.11 7.95 46.7 7.74 1.57
FT Croce ℓ2, StAdv, ℓ∞ 85.05 67.3 48.07 33.38 62.52 49.58 28.96 52.82 28.63 2.27
FT Single + ALR ℓ2, StAdv, ℓ∞ 88.74 69.15 47.33 42.08 68.62 52.85 36.66 56.8 36.62 2.26
FT Croce + ALR ℓ2, StAdv, ℓ∞ 86.57 67.99 61.55 36.59 72.16 55.38 35.68 59.57 35.52 2.87

3

Fi
ne

tu
ne

FT MAX ℓ2, StAdv, ℓ∞, Recolor 83.64 66.21 57.53 37.77 69.32 57.71 36.02 57.71 36.02 8.45
FT Single ℓ2, StAdv, ℓ∞, Recolor 90.41 66.47 3.93 29.6 69.03 42.26 2.49 42.26 2.49 3.11
FT Croce ℓ2, StAdv, ℓ∞, Recolor 86.64 68.76 44.81 36.02 68.05 54.41 29.44 54.41 29.44 2.34
FT Single + ALR ℓ2, StAdv, ℓ∞, Recolor 90.45 61.58 25.77 27.43 69.26 46.01 19.2 46.01 19.2 4.24
FT Croce + ALR ℓ2, StAdv, ℓ∞, Recolor 87.62 68.14 58.5 36.39 72.35 58.85 34.92 58.85 34.92 3.35

Table 1: Continual Robust Training on CIFAR-10. Best performance for each time step are bolded. The defender initially
knows about ℓ2 attacks and over time, is sequentially introduced to StAdv, ℓ∞, and ReColor attacks. We report clean
accuracy, accuracy on individual attacks, and average and union accuracies. The “Threat Models” column specifies known
attacks at the current time step, and accuracies on these attacks are in green cells. Initial adversarial training occurs at time
step 0, and the model is updated through fine-tuning the model from the previous time step. “Avg (known)” and “Union
(known)” columns represent average and union accuracies on known attacks while “Avg (all)” and “Union (all)” columns
report performance across all four attacks. We report training time for each time step in the “Time” column.

E∗ with best performance on the set of known attacks. For
training from scratch, the reported training time is scaled
by fraction of training for the best epoch (i.e. we report
E∗

100 × training time for 100 epochs). For fine-tuning we re-
port training time for the full 10 epochs. This allows us to
see how much faster fine-tuning is to optimal early stopping
when re-training from scratch.

Procedure Clean Avg Union Time
MAX 84.3 54.18 37.44 61.09
AVG 87.77 54.5 30.39 51.55
Random 86.32 54.27 30.76 13.15
CRT + ALR 87.62 58.85 34.92 26.86

Table 2: Regularized CRT (using Croce & Hein (2020b)
fine-tuning strategy) compared to training from scratch on
ℓ2, StAdv, ℓ∞, and Recolor attacks on CIFAR-10.

4.2. Improving CRT with Regularization

We now analyze the robustness of models trained using CRT
with and without regularization. For simplicity, we focus on
ALR with other methods analyzed in §4.3. To model a CAR
setting, we consider a sequence of 4 attacks: ℓ2 → StAdv
→ ℓ∞ → Recolor. The first attack is the initially known
attack while other attacks are introduced at later time steps.
We present results for CIFAR-10 in Table 1. We include
results in Appendix H for Imagenette and CIFAR-100 as
well as additional results for longer duration of fine-tuning
(25 epochs) and a separate sequence of attacks: ℓ∞ →
StAdv → Recolor → ℓ2. For these experiments, we use
λ = 0.5 unless specified otherwise.

Regularization reduces degradation on previous attacks.
From Table 1, we observe that fine-tuning with only the
new attack (FT Single) can lead to degradation of robust-
ness against previous attacks. The incorporation of ALR
significantly decreases this drop in robustness. For exam-
ple, when fine-tuning from an ℓ2 robust model with StAdv
attacks (time step 1 in Table 1), FT Single incurs a 24.25%
drop (from 69.7% to 45.45%) in ℓ2 accuracy from the ini-
tial checkpoint (AT at time step 0). Meanwhile FT Single
+ ALR only experiences a 7.62% drop (from 69.84% to
62.22%) in ℓ2 accuracy from the initial checkpoint (AT +
ALR at time step 0). Similarly, after the introduction of ℓ∞
attack at time step 2, the accuracy of FT Single on StAdv
attacks drops 43.42% (from 54.5% to 11.17%) while FT
Single + ALR only experiences a 14.17% drop (from 61.5%
to 47.33%). These results align with Theorem 3.1: when
incorporating ALR into training, the gap in loss on the two
attacks is lessened.

Regularization improves performance on held out (un-
foreseen) attacks. We observe that regularized CRT leads
to higher robustness on attacks held out from training. For
example, at time step 1 in Table 1, which trains with ℓ2 and
StAdv attacks, the best accuracy on Recolor attacks out of
unregularized CRT methods is 51.08%, while FT Single +
ALR achieves 70.87% accuracy on Recolor attacks and FT
Croce + ALR achieves 63.31% accuracy on Recolor attacks.
The improvement in robustness on unforeseen attacks aligns
with Corollary 3.2 as regularization helps decrease the drop
in accuracy between clean inputs and perturbed inputs. This
also aligns with CAR’s goal of having a small δunknown.
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Initial
Attack

Reg
Type

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 None 0 91.08 70.02 29.38 0.79 33.69 66.93 24.59 14.99 64.22 45.13 70.85 80.30 30.08 44.25 0.10
ℓ2 VR 0.2 89.99 70.38 34.56 13.41 48.99 67.64 29.09 22.57 66.64 48.38 73.31 80.07 32.33 48.94 5.40
ℓ2 ALR 0.5 89.57 70.29 34.16 17.44 51.04 65.63 28.71 22.50 66.76 48.80 73.24 79.66 28.83 48.92 5.94
ℓ2 UR 5 88.34 66.66 27.41 26.22 60.22 69.16 26.67 22.57 64.08 46.83 71.14 77.60 31.36 49.16 6.23
ℓ2 GR 0.5 86.89 68.19 32.02 16.54 58.32 74.85 25.69 21.26 65.32 46.82 74.08 76.99 31.93 49.33 4.18
ℓ∞ None 0 85.53 59.36 50.98 6.34 56.27 68.94 36.79 20.57 54.02 51.00 64.24 75.94 39.44 48.66 1.31
ℓ∞ VR 0.2 82.58 58.36 51.53 18.98 62.12 67.18 39.22 23.62 54.73 52 63.35 71.72 43.18 50.50 5.08
ℓ∞ ALR 0.5 83.18 58.21 51.47 19.50 61.02 68.75 37.94 22.78 53.89 49.82 63.47 73.57 39.88 50.02 5.52
ℓ∞ UR 5 78.04 60.28 40.59 42.25 70.00 67.06 33.40 26.57 60.07 49.21 64.61 67.08 38.43 51.63 8.36
ℓ∞ GR 0.5 80.65 59.74 46.12 34.57 70.49 68.33 35.80 26.04 57.28 51.98 65.46 70.73 38.21 52.06 6.28

Table 3: Impact of Regularization on Unforeseen Robustness. We consider the setting where the defender is only
aware of a single attack and performs training with and without different types of regularization: variation regularization
(VR), adversarial ℓ2 regularization (ALR), uniform regularization (UR), and Gaussian regularization (GR) at regularization
strength λ. We report clean accuracy and robust accuracies on a range of attacks. Green cells represent an improvement of
at least 1% while red cells represent a drop of at least 1% in comparison to no regularization.

L2 Lin
f

StA
dv

Re
Colo

r
Gab

or
Sn

ow Pix
el

JPE
G

Ela
stic Woo

d
Glitc

h

Ka
leid

osc
op

e

L2

Linf

StAdv

ReColor

Gabor

Snow

Pixel

JPEG

Elastic

Wood

Glitch

Kaleidoscope

-0.31 -2.65 5.58 2.58 -0.61 7.85 1.02 2.22 0.46 0.46 -0.08 4.73

-0.31 0.69 1.3 0.36 1.25 -0.41 1.07 -0.66 -1.53 -2.27 -0.05 3.93

-0.66 -4.71 1.45 3.1 5.35 3.51 4.0 2.19 1.55 3.74 2.01 8.66

0.86 6.9 8.05 3.21 4.46 0.43 1.91 1.47 2.68 0.72 1.66 7.16

-0.94 -1.86 6.14 3.93 -2.68 -1.57 -0.23 1.43 -0.28 0.85 1.83 0.92

-0.41 -0.79 3.44 1.53 -1.1 2.04 1.35 1.96 3.06 2.78 1.27 5.75

0.79 -5.02 -0.56 2.86 6.3 2.5 2.06 1.38 2.12 2.27 2.06 3.65

-0.41 1.55 -0.79 2.37 1.53 -0.77 -1.32 -0.28 -0.13 1.68 -0.79 4.18

0.43 -3.93 2.78 5.61 5.17 5.91 0.21 4.41 2.42 0.33 -0.76 1.8

2.48 2.6 1.91 2.39 0.02 1.07 -2.06 0.33 0.91 1.6 0.82 4.46

0.25 0.86 4.59 6.73 0.66 5.07 -0.87 0.97 1.69 0.43 2.52 1.86

4.38 2.73 -1.4 7.87 -0.51 7.55 1.35 8.46 2.68 2.24 2.5 -0.69

(a) Adversarial ℓ2 regularization (λ = 0.5)
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(b) Uniform Regularization (σ = 2, λ = 1)

Figure 3: Ablation 2: Change in union robust accuracy after fine-tuning with regularization (initial model does not
use regularization). We fine-tune models on Imagenette across 144 pairs of initial attack and new attack. The initial attack
corresponds to the row of each grid and new attack corresponds to each column. Values represent differences between the
accuracy measured on a model fine-tuned with and without regularization. Gains in accuracy of at least 1% are highlighted
in green, while drops in accuracy of at least 1% in red. Further results are in Appendix J.

Regularization balances performance and efficiency.
Our proposed regularization term adds a small computa-
tional overhead over other FT approaches but generally im-
proves union performance on the set of known attacks. For
example, when considering the sequence of ℓ2 and StAdv
attacks (time step 1 in Table 1), FT Croce + ALR improves
union accuracy over FT Croce by 7.7% while adding a time
overhead of 1.07 hours. Additionally, when considering the
sequence of 3 attacks (ℓ2, StAdv, and ℓ∞ attacks), FT Croce
+ ALR improves union accuracy over FT Croce by 6.72%
while adding a time overhead of 0.6 hours. This increase in
time complexity is much smaller than FT MAX which takes
1.6 hours longer than FT Croce for ℓ2 and StAdv and 3.35
hours longer for ℓ2, StAdv, and ℓ∞. With respect to goals
in CAR, regularization balances δknown and ∆t.

Comparison to training from scratch. In Table 2, we
report clean, average, and union accuracies along with total
training times for using training from scratch on all 4 attacks
compared to training sequentially with regularized CRT on
CIFAR-10. We observe that regularized CRT is significantly
more efficient than MAX and AVG training (taking a total
of 26.86 hours while AVG and MAX take over 50 hours of
training time). Surprisingly, we find that on CIFAR-10, reg-
ularized CRT can outperform training from scratch methods,
achieving 4.35% higher average accuracy compared to the
best achieved by training from scratch. This suggests that
transferable robustness between carefully chosen attacks can
improve MAR as a whole. However, we note that the ability
to outperform training from scratch seems to be specific to
CIFAR-10; for ImageNette and CIFAR-100 (Appendix H)
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training from scratch outperforms using fine-tuning in CAR.

Impact of dataset and attack sequence. In Appendix H,
we provide results on ImageNette and CIFAR-100 as well as
for attack sequence ℓ∞ → StAdv → Recolor → ℓ2. Over-
all, we observe that trends such as improved robustness to
unforeseen and the union of attacks are generally consistent.
However, but the extent to which regularization improves
performance over FT Croce varies. The choice of the initial
attack seems to play a role in subsequent robustness, and if
defenders are aware of multiple attacks, choosing the right
one to start with is an interesting open question.

TAKEAWAY 1. CRT+ALR improves robustness on
both known and unforeseen attacks, and reduces drop in
robustness on previous attacks with only a small overhead
in fine-tuning time compared to unregularized CRT.

4.3. Ablation 1: Regularization in Initial Training

We now study the impact of regularization only in the initial
training phase of CRT. In Table 3, we present results for
robust accuracies of models initially trained on ℓ2 and ℓ∞
attacks with different forms of regularization. We present
results for different regularization strengths and initial attack
choices in Appendix I.3.

Regularization improves robustness on unforeseen at-
tacks. Interestingly, we find that all regularization types
including random noise-based regularization can improve
unforeseen robustness. For example, at λ = 5, UR improves
union accuracy across all attacks by 6.13% for ℓ2 initial at-
tack and by 7.05% for ℓ∞ initial attack compared to the
model trained without regularization. Improved unforeseen
robustness provides a better starting point for fine-tuning,
which we demonstrate experimentally in Appendix I.4.

Trade-offs for clean and different attack accuracies. We
observe that all regularization types generally exhibit a trade-
off with clean accuracy and trade-offs with a few attack
types such as Glitch. This trade-off aligns with Corollary 3.2
which states that the gap between clean loss and loss over
the union of attacks is decreased via regularization. We also
find that random noise based regularization (UR and GR)
generally exhibits trade-off with the robust accuracy on the
initial attack. This is generally not the case for adversarial
regularization (ALR and VR) which maintains performance
on the initial attack.

Regularized initial models are better starting points for
fine-tuning. In Appendix I.4, we present results for fine-
tuning with a new attack from models using regularization
in only initial training. We observe that for all regulariza-
tion types, regularization in initial training can improve the
robustness on the union of attacks after fine-tuning, but
this trend is more consistent with adversarial regularization

types (ALR and VR) compared to random regularization
types (UR and GR).

Comparison to TRADES. In Table 4, we compare ALR at
λ = 1 for ℓ2 and λ = 0.5 for ℓ∞ to TRADES regularizer at
λ = 6. Results for other strengths of TRADES regularizer
in Appendix I. We observe that TRADES regularizer can
also help improve unforeseen robustness but ALR is gener-
ally more effective. We also find that for ℓ∞ initial attack,
TRADES heavily trades off robustness on ℓ∞ and ℓ2 attacks
in order to obtain higher ReColor attack accuracy.

Initial
Attack Reg Type Clean ℓ2 ℓ∞ StAdv ReColor Union

ℓ2 None 91.17 69.7 28.41 2.08 44.94 1.24
ℓ2 TRADES 88.76 69.69 33.00 7.04 56.82 5.51
ℓ2 ALR 89.43 69.84 34.00 48.23 65.46 31.27
ℓ∞ None 85.93 59.48 51.44 14.87 62.48 11.9
ℓ∞ TRADES 85.72 56.44 41.70 23.17 70.23 17.83
ℓ∞ ALR 83.18 58.15 51.49 34.78 58.15 29.87

Table 4: Comparison to TRADES. We compare robustness
measured across different threat models when initial training
on ℓ2 and ℓ∞ with either TRADES at λ = 6 and or ALR at
λ = 1 for ℓ2 and λ = 0.5 for ℓ∞ regularizer.

TAKEAWAY 2. Adversarial and random noise reg-
ularization in initial training improves performance on
unforeseen attacks. Fine-tuning on a new attack from a
regularized model boosts resulting Union accuracy.

4.4. Ablation 2: Regularization during Fine-tuning

We now investigate whether regularization within just the
the fine-tuning phase can improve CAR. We initially train
models on a single initial attack using adversarial training
(without regularization) and then fine-tune with Croce &
Hein (2022)’s fine-tuning approach both with and without
regularization on a new attack. In Figure 3, we present
grids representing differences in Union accuracy between
regularized and unregularized fine-tuning. Rows represent
the initial attack used to adversarially train the model (with-
out regularization), columns represent the new attack. We
provide corresponding plots detailing differences in average
accuracy, initial attack accuracy, new attack accuracy, and
clean accuracy in Appendix J.1.

Adversarial regularization can improve union accuracy
in fine-tuning. We find that across different initial and new
attack pairs, using ALR in fine-tuning generally improves
union accuracy as most cells in Figure 3(a) are green. These
increases in robustness can be quite large; for example,
when the initial attack is StAdv (Xiao et al., 2018) and the
new attack is Kaleidoscope (Kaufmann et al., 2019), ALR
improves robustness on the union by 8.66%. Additionally,
when the initial attack is ℓ2 and the new attack is Snow
(Kaufmann et al., 2019), ALR improves robustness on the
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Procedure Clean ℓ2 StAdv ℓ∞ Recolor
Avg

(known)
Union

(known)
Avg
(all)

Union
(all)

FT Single 80.89 45.45 54.5 6.09 41.98 49.98 41.05 37.0 5.87
FT Single + EWC (0.5) 83.98 58.85 51.15 15.44 51.55 55.00 46.25 44.25 14.54
FT Single + EWC (1) 85.20 57.69 56.18 13.07 50.99 56.93 49.42 44.48 12.69
FT Single + EWC (2) 85.10 57.96 55.14 13.54 51.23 56.55 48.9 44.47 12.99
FT Single + ALR 87.24 62.22 61.5 21.4 70.87 61.86 55.04 54.0 21.14

Table 5: FT Single with EWC compared to FT Single with ALR for the sequence ℓ2 →StAdv attack (analogous to time step
1 in Table 1). Regularization strength for EWC is shown in parentheses. Accuracy on known attacks are in green cells.

Union of both attacks by 7.85%. We find same trend holds
for VR (Appendix J.1).

Random noise based regularization is harmful when
used in fine-tuning. Although random noise based regu-
larization can improve robustness when used in the initial
training phase of CRT, Figure 3(b) demonstrates that UR in
fine-tuning hurts union accuracy for many initial and new
attack pairs (corresponding results for GR are present in
Appendix J.1). This suggests that while random noise based
regularization can be used to perform initial training more
efficiently, they should not be used during fine-tuning. Since
we found that UR and GR trade off accuracy on the initial
attack when used in initial training in §4.3, this suggests
that UR and GR generally trade off performance on attacks
that are used in training or fine-tuning.

Comparison to EWC. In Table 5, we compare FT Single
using EWC (Kirkpatrick et al., 2017) to FT Single with
ALR. In these experiments, the model is initially trained
on CIFAR-10 to be robust against ℓ2 attacks, and now we
want to finetune to achieve robustness against StAdv attacks
(analogous to time step 1 in Table 1). Overall, we find that
ALR’s improvement in robustness on known and unforeseen
attacks is significant compared to EWC. We believe that
this is because ALR can also be applied in initial training
to boost the initial state of the model prior to finetuning.
EWC’s improvement over FT Single is similar to using FT
Croce results in Table 1 (Time step 1) which uses replay of
previous attacks in finetuning.

TAKEAWAY 3. In fine-tuning, adversarial regularization
(ALR and VR) can improve Union accuracy significantly
(up to ∼ 7%) while random noise-based regularization
hurts Union accuracy.

5. Discussion and Related Work
This work makes early progress towards deployable de-
fenses that mitigate model obsolescence in the face of evolv-
ing adversaries. Such approaches could promote the adop-
tion of robust models, as they allow model trainers to ‘patch’
against vulnerabilities without training from scratch.

Related Work: Prior works investigate multiattack robust-
ness (MAR) (Maini et al., 2020; Tramèr & Boneh, 2019;
Madaan et al., 2020; Croce & Hein, 2020a; Jiang & Singh,

2024) and unforeseen attack robustness (Laidlaw et al.,
2021; Zhang et al., 2018; Dai et al., 2022; Jin & Rinard,
2020; Dai et al., 2023). Unlike these methods, we assume
that the defender may not know all attacks a priori but can
adjust their model as new attacks emerge. Croce & Hein
(2022) propose a fine-tuning method for MAR on unions of
ℓp attacks. Our work differs by exploring additional attack
types (e.g. spatial attacks (Xiao et al., 2018) and color shifts
(Laidlaw & Feizi, 2019)) and improvements to the initial
training stage prior to fine-tuning. We provide detailed dis-
cussion of related work in adversarial ML in Appendix A.

Our problem setting is also related to continual learning
(CL). In CL, a set of tasks is learned sequentially with the
goal of performing as well as if they were learned simul-
taneously (Wang et al., 2023a). Few works have studied
the intersection of CL and adversarial ML with most works
focusing on evaluating or improving the robustness of mod-
els trained in the CL framework (Bai et al., 2023; Khan
et al., 2022a;b). The most similar to our work is Wang
et al. (2023b) which treats different attacks as tasks and
uses approaches in CL to sequentially adapt a model against
attacks using a different optimization procedure (ie. FGSM
or PGD) rather than a different attack type as in our work.

Gradual domain adaptation (Kumar et al., 2020; He et al.,
2024; Wang et al., 2022; Zhuang et al., 2024) is another
related field which looks adapting a model to distribution
shifts with access to intermediate domains with pseudola-
bels. These intermediate domains can be thought of as
gradual shifts in data distribution over time and are not
designed adversarially. In comparison, our work looks at
changes in the space of attacks over time, and we assume
that the defender is able to generate these attacks on their
own data, thus ensuring that they have access to labels.

Limitations: More work is needed to improve the perfor-
mance of regularized CRT, as our approach does not out-
perform existing baselines in all settings. It also remains
unclear whether training from scratch with all attacks or
fine-tuning on new attacks is optimal from both a theoretical
and empirical perspective. Future work could also compare
the convergence rates of training from scratch and CRT. De-
riving tighter bounds and potentially better continual robust
training methods by bounding the change in loss between
the models at each stage remains open. Further limitations
and future directions are discussed in Appendix C.
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Schaffner et al., 2024), and face authentication (Komkov &
Petiushko, 2021; Wei et al., 2022) and provides first steps
towards training and updating models in order to maintain
robustness over time. However, there are cases in which ad-
versarial examples are used for good (e.g. defending against
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This appendix is organized as follows:

1. Additional related work (Appendix A)

2. Applications of CAR (Appendix B)

3. Future directions (Appendix C)

4. Proofs (Appendix D)

5. Connection to variation regularization (Appendix E)

6. Experimental verification of theoretical results (Appendix F)

7. Additional experimental setup details (training and attack parameters, model selection, regularization setup) (Ap-
pendix G)

8. Additional experiments

• Longer attack sequences and different datasets (CIFAR-100 and ImageNette) (Appendix H)
• Ablations on initial training (comparison to TRADES, attack choice, regularization parameters) (Appendix I)
• Ablations on fine-tuning (attack choice, regularization parameters) (Appendix J)

A. Additional Related Work
Adversarial Attacks and Defenses: ML models are vulnerable to input-space perturbations known as adversarial examples
(Szegedy et al., 2014). These attacks come in different formulations including ℓp-norm bounded attacks (Madry et al.,
2018; Carlini & Wagner, 2017), spatial transformations (Xiao et al., 2018), color shifts (Laidlaw & Feizi, 2019), JPEG
compression and weather changes (Kaufmann et al., 2019), bounded Wasserstein distance (Wong et al., 2019; Wu et al.,
2020) as well as attacks based on distances that are more aligned with human perception such as SSIM (Gragnaniello et al.,
2021) and LPIPS distances (Laidlaw et al., 2021; Ghazanfari et al., 2023).

Despite the wide variety of attacks that have been introduced, defenses against adversarial examples focus mainly on ℓ∞
or ℓ2-norm bounded perturbations (Cohen et al., 2019; Zhang et al., 2020; Madry et al., 2018; Zhang et al., 2019; Croce
et al., 2020). Of existing defenses, adversarial training (Madry et al., 2018), an approach that uses adversarial examples
generated by the attack of interest during training, can most easily be adjusted to different attacks. In our work, we build off
of adversarial training in order to adapt to new adversaries.

Training Techniques for Multi-Robustness:A few prior works have studied the problem of achieving robustness against
multiple attacks, under the assumption that all attacks are known a priori. These include training based approaches (Maini
et al., 2020; Tramèr & Boneh, 2019; Madaan et al., 2020; Jiang & Singh, 2024) which incorporate adversarial examples from
the threat models of interest (usually the combination of ℓ1, ℓ2, and ℓ∞ norm bounded attacks) during training. Croce &
Hein (2020a) provides a robustness certificate of all ℓp norms given certified robustness against ℓ∞ and ℓ1 attacks. Of these
approaches (Jiang & Singh, 2024) is similar to ours. Jiang & Singh (2024) looks at the problem of achieving robustness
against multiple ℓp norms and proposes a logit pairing loss which aims to minimize the KL divergence between the logits of
predicting on 2 different ℓp attacks. Additionally, they use gradient projection to integrate model updates between natural
training and adversarial training for better clean accuracy-robustness tradeoff. In comparison, our work looks at robustness
against sequences of attacks including non-ℓp attacks. Our regularization term uses ℓ2 distance between clean and adversarial
logits.

Another line of works has looked at defending against attacks that are not known by the defender, which is a problem known
as unforeseen robustness. These techniques are all training-based and include Laidlaw et al. (2021) which proposes training
based on LPIPS (Zhang et al., 2018), a metric more aligned with human perception than ℓp distances, and Dai et al. (2022);
Jin & Rinard (2020) which use regularization during training in order to obtain better generalization to unforeseen attacks.
Dai et al. (2023) provides a comprehensive leaderboard for the performance of existing defenses against a large variety of
attacks at different attack strengths.

Our work differs from these lines of works since we assume that while the defender may not know all attacks a priori,
they are allowed to adjust their defense when they become aware of new attacks. The work most similar to ours is Croce
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& Hein (2022), which proposes fine-tuning a model robust against one ℓp attack to be robust against the union of ℓp
attacks. Specifically, they demonstrate that we can achieve simultaneous multiattack robustness for the union of ℓp attacks
by obtaining robustness against ℓ1 and ℓ∞ attacks, and thus propose fine-tuning with ℓ1 and ℓ∞ attacks to achieve this
efficiently. Our work differs from this work since we explore adapting to attacks outside of ℓp attacks, investigate ways of
improving the initial state of the model prior to fine-tuning, and consider adapting to sequences of attacks.

B. Applications of CAR
Solving CAR is of interest in any safety-critical domain where an attacker is motivated to evade a ML model. A good
example is automated content moderation, where malicious actors try to post content that violates policies by uploading
obfuscated images . Strategies naturally evolve over time for motivated attackers who can also use numerous open-source
methods proposed in the literature, which also evolve over time. Given that ML models will continue to be used in sensitive
domains such as finance, cyber-physical systems and medicine, model deployers need methods to update their models to
evolving threats.

C. Future Directions
We now discuss a few directions for future work in depth.

Choice of initial attacks and attack similarities. In this work, we looked at ℓ2 and ℓ∞ attacks as the initial attack in the
CAR problem. However, in practice, we would like to choose an initial attack that is the most representative of the attacks
we want to be robust against, in order to generalize to downstream new attacks. Further research on understanding and
improving the initial attack can improve the accuracies achieved through training with CRT. Additionally, having ways of
measuring attack similarity between the known attacks and new attacks can help allow us to decide whether using CRT is
sufficient for achieving good robustness or whether we need to train from scratch or combine the model with other defenses
tailored towards the new attack.

Attack Monitoring. One assumption of CAR is that the defender is able to discover when a new attack exists. While this
is clear in cases such as a research group publishing a paper with a new attack or a company’s security team finding a
vulnerabilities, in practice, we would also be interested in recovering after an adversary discovers a new, unknown attack
and successfully attacks the model. In this case, we would need a good monitoring system for detecting and synthesizing
these new attacks for use with CRT.

Towards real world robustness. In our work, we focus on changes in the defender’s knowledge of attacks over time which
is useful in cases such as a research or security team discovering a new attack type. A real-time attack setting poses new
challenges:

• No access to threat model- the defender does not know the threat model and cannot generate adversarial examples. They
only have access to the perturbed data generated by the adversary.

• Missing true labels and no access to the original unperturbed input - the defender also does not have the corresponding
true labels or the original clean input for use in training.

• Few shot updates - it becomes critical that the model can be made robust with only a few examples of successful attacks,
otherwise it means that the adversary has been exploiting the vulnerabilities of the model for a long time

Defending in this setting is outside of the scope of this paper, but potentially using generative models in order to model the
perturbation (Wong & Kolter, 2020) used by the adversary can help to bridge the gap from points (1) and (2) and allow for
the defender to apply the attack on their own dataset and finetune with our proposed CRT + ALR. If the generative model is
able to learn to model perturbations with only a few adversarial examples, then this can also address (3).

Reducing catastrophic forgetting. In CAR, since attacks are introduced sequentially, catastrophic forgetting is an
important problem. In our work, we utilized replay via Croce & Hein (2022)’s fine-tuning approach and also found that
ALR reduces catastrophic forgetting to some extent. Future work on reducing catastrophic forgetting can help improve the
effectiveness of updating the model with CRT.

Training and fine-tuning efficiency. In our experiments, we combine regularization with Croce & Hein (2022)’s fine-tuning
approach due to the effectiveness and efficiency of that approach. Further research on developing better and more efficient
fine-tuning techniques for achieving robustness to new attacks (while maintaining robustness against previous attacks) can
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improve our CRT framework.

Model capacity. Current works in adversarial robustness literature show that adversarially robust models need higher
model capacity (Madry et al., 2018; Gowal et al., 2020; Cianfarani et al., 2022). As we increase the space of attacks to
defend against, we may need to increase the capacity of the model in order to achieve multi-robustness (Dai et al., 2024a).
An interesting future direction is looking at the connection between model capacity and CAR and seeing if adding more
parameters to the network during fine-tuning (such as using adapters (Rebuffi et al.)) can be used to address the issue of
model capacity.

Theory. We believe further work is necessary to extend the theory of CAR. Our results focus on the relationship between
robust loss and logit distance between attacks for a single model. However, we do not extend them to comparisons between
loss under different attacks for different models, such as the initial robust model and the one at the end of fine-tuning.
Additionally, the CAR framework could be extended to the multi-task setting, as is the case in multi-task representation
learning (Watkins et al., 2024; Tripuraneni et al., 2020). These prior works connect the ability of a class of models to learn a
set of tasks to the complexity of that class (measured using Gaussian or Rademacher complexity, for example). Similar
methods may also be useful for proving a model’s ability to defend against multiple adversaries.

D. Proofs

D.1. Proof of Theorem 3.1

The proof of Theorem 3.1 adapts that of Theorem I from Nern et al. (2023) by considering multiple attacks compared to the
single one considered there.

Proof. Define independent random variables D1, . . . , Dn as

Di = max
x′
i∈C1(xi)

ℓ(h(x′
i), yi)− max

x′′
i ∈C2(xi)

ℓ(h(x′′
i ), yi),

based on independently drawn data points with probability distribution P(X). Using Hoeffding’s inequality, we get

P

(∣∣∣∣∣
n∑

i=1

Di − nE[D]

∣∣∣∣∣ ≥ t

)
≤ 2 · exp

(
−2t2

nM2
2

)

=⇒ P

(∣∣∣∣∣ 1n
n∑

i=1

Di − E[D]

∣∣∣∣∣ ≤ M2

√
log(ρ/2)

−2n

)
≥ 1− ρ.

Thus, with probability at least 1− ρ it holds that

E[D] = |L1(h)− L2(h)|

=

∣∣∣∣E(x,y)

[
max

x′∈C1(x)
ℓ(h(x′), y)− max

x′′∈C2(x)
ℓ(h(x′′), y)

]∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

max
x′∈C1(x)

ℓ(h(x′), yi)− max
x′′∈C2(x)

ℓ(h(x′′), yi)

∣∣∣∣∣+M2

√
log(ρ/2)

−2n
. (1)

We can further bound the first term on the right hand side, since the loss function ℓ(r, y) is M1-Lipschitz in ∥ · ∥2 for
r ∈ h(X): ∣∣∣∣∣ 1n

n∑
i=1

max
x′∈C1(x)

ℓ(h(x′), yi)− max
x′′∈C2(x)

ℓ(h(x′′), yi)

∣∣∣∣∣
≤
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1

n
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∥h(x′
i)− h(x′′

i )∥2, (2)
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where x′
1, . . . , x

′
n with x′

i ∈ C1(xi) and x′′
1 , . . . , x

′′
n with x′′

i ∈ C2(xi) are chosen to maximize ℓ(h(·), yi) for each i. The
perturbed samples represented in this inequality might not maximize the distance between the logits, but that distance can be
bounded by the maximally distant perturbations within each neighborhood. Making use of the triangle inequality, we obtain:

n∑
i=1

∥h(x′
i)− h(x′′

i )∥2

=

n∑
i=1

∥(h(x′
i)− h(xi))− (h(x′′

i )− h(xi))∥2

≤
n∑

i=1

∥h(x′
i)− h(xi)∥2 + ∥h(x′′

i )− h(xi)∥2

≤
n∑

i=1

max
x′∈C1(xi)

∥h(x′)− h(xi)∥2 + max
x′′∈C2(xi)

∥h(x′′)− h(xi)∥2. (3)

We then achieve our final result, recalling the assumption that L1(h) ≥ L2(h):

L1(h)− L2(h) = |L1(h)− L2(h)|

≤ M1
1

n

n∑
i=1

(
max

x′∈C1(xi)
∥h(x′)− h(xi)∥2 + max

x′′∈C2(xi)
∥h(x′′)− h(xi)∥2

)
+D, (4)

where D = M2

√
log(ρ/2)
−2n .

D.2. Proof of Corollary 3.2

Proof. Define independent random variables D1, . . . , Dn as

Di = max
x′
i∈C1(xi)∪C2(xi)

ℓ(h(x′
i), yi)− ℓ(h(xi), yi),

based on independently drawn data points with probability distribution P(X ). Using Hoeffding’s inequality, we get

P

(∣∣∣∣∣
n∑

i=1

Di − nE[D]

∣∣∣∣∣ ≥ t

)
≤ 2 · exp

(
−2t2

nM2
2

)

=⇒ P

(∣∣∣∣∣ 1n
n∑

i=1

Di − E[D]

∣∣∣∣∣ ≤ M2

√
log(ρ/2)

−2n

)
≥ 1− ρ.

Thus, with probability at least 1− ρ it holds that

E[D] = |L1,2(h)− L(h)|

=

∣∣∣∣E(x,y)

[
max

x′∈C1(x)∪C2(x)
ℓ(h(x′), y)− ℓ(h(x), y)

]∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

max
x′∈C1(xi)∪C2(xi)

ℓ(h(x′), yi)− ℓ(h(xi), yi)

∣∣∣∣∣+M2

√
log(ρ/2)

−2n
. (5)
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We can further bound the first term on the right hand side, since the loss function ℓ(r, y) is M1-Lipschitz in ∥ · ∥2 for
r ∈ h(X ): ∣∣∣∣∣ 1n

n∑
i=1

max
x′∈C1(xi)∪C2(xi)

ℓ(h(x′), yi)− ℓ(h(xi), yi)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

|ℓ(h(x′
i), yi)− ℓ(h(xi), yi)|

∣∣∣∣∣
≤ M1

1

n

n∑
i=1

∥h(x′
i)− h(xi)∥2, (6)

where x′
1, . . . , x

′
n with x′

i ∈ C1(xi) ∪ C2(xi) are chosen to maximize ℓ(h(·), yi) for each i. The perturbed samples
represented in this inequality might not maximize the distance between the logits, but that distance can be bounded by the
maximally distant perturbations within each neighborhood.

n∑
i=1

∥h(x′
i)− h(xi)∥2

≤
n∑

i=1

max
x′∈C1(xi)∪C2(xi)

∥h(x′)− h(xi)∥2

=

n∑
i=1

max
C∈{C1,C2}

max
x′∈C(xi)

∥h(x′)− h(xi)∥2

(7)

We then achieve our final result :

L1,2(h)− L(h) = |L1,2(h)− L(h)|

≤ M1
1

n

n∑
i=1

(
max

x′∈C1(xi)
∥h(x′)− h(xi)∥2 + max

x′′∈C2(xi)
∥h(x′′)− h(xi)∥2

)
+D, (8)

where D = M2

√
log(ρ/2)
−2n .

D.3. Relating the Loss Gap to Internal Representations

While our results bound the robust loss gap in terms of the distance between logits of samples perturbed with different
attacks, similar results hold for the distance between internal activations. To show how our results can apply to common
transfer learning settings (such as that of Nern et al. (2023)), we prove the following corollary:

Corollary D.1. Let h : Rd → Rc be a c class neural network classification model with a final linear layer (i.e. h(c) =
Wg(x), where g : Rd → Rr, and W ∈ Rc×r). Assume that loss ℓ(ŷ, y) is M1-Lipschitz in ∥ · ∥α for α ∈ {1, 2,∞}, for
ŷ ∈ h(X) with M1 > 0 and bounded by M2 > 0, i.e. 0 ≤ ℓ(ŷ, y) ≤ M2 ∀ŷ ∈ h(X). Then, for a subset X = {xi}ni=1

independently drawn from D, the following holds with probability at least 1− ρ:

L1(h)− L2(h) ≤ Lα(W )M1
1

n

n∑
i=1

(
max

x′∈C1(xi)
∥g(x′)− g(xi)∥2 + max

x′∈C2(xi)
∥g(x′)− g(xi)∥2

)
+D,

where D = M2

√
log(ρ/2)
−2n and

Lα(W ) :=


∥W∥2 , if ∥ · ∥α = ∥ · ∥2,∑

i ∥Wi∥2 , if ∥ · ∥α = ∥ · ∥1,
maxi ∥Wi∥2 , if ∥ · ∥α = ∥ · ∥∞.
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Proof. From (5), (6), and the definition of h, we have that

|L1 − L2| ≤ M1
1

n

n∑
i=1

∥Wg(x′
i)− h(x′′

i )∥2 +M2

√
log ρ/2

−2n
.

We then apply Lemma 2 from Nern et al. (2023) and the definition of Lα:

M1
1

n

n∑
i=1

∥Wg(x′
i)−Wg(x′′

i )∥α

≤ Lα(W )M1
1

n

n∑
i=1

∥g(x′
i)− g(x′′

i )∥2.

As in the proof for Theorem 3.1, the perturbed samples represented in this inequality might not maximize the distance between
the representations, but that distance can be bounded by the maximally distant perturbations within each neighborhood.
Making use of the triangle inequality, we obtain:

n∑
i=1

∥g(x′
i)− g(x′′

i )∥2

=

n∑
i=1

∥(g(x′
i)− g(xi))− (g(x′′

i )− g(xi))∥2

≤
n∑

i=1

∥g(x′
i)− g(xi)∥2 + ∥g(x′′

i )− g(xi)∥2

≤
n∑

i=1

max
x′∈C1(xi)

∥g(x′)− g(xi)∥2 + max
x′′∈C2(xi)

∥g(x′′)− g(xi)∥2.

We then achieve our final result:

L1(h)− L2(h) = |L1(h)− L2(h)|

≤ Lα(W )M1
1

n

n∑
i=1

(
max

x′∈C1(xi)
∥g(x′)− g(xi)∥2 + max

x′′∈C2(xi)
∥g(x′′)− g(xi)∥2

)
+D,

where D = M2

√
log(ρ/2)
−2n .

E. Connection Between Adversarial ℓ2 Regularization and Variation Regularization
In this section, we will show the relationship between adversarial ℓ2 regularization (ALR) and variation regularization (VR)
(Dai et al., 2022). To begin, we first revisit the definitions of ALR and VR:

RALR(h,K(t)) =
1

m

m∑
i=1

max
x′∈C(xi)

∥h(x′)− h(xi)∥2

RVR(h,K(t)) =
1

m

m∑
i=1

max
x′,x′′∈C(xi)

∥h(x′)− h(x′′)∥2

Since VR optimizes over 2 perturbations x′ and x′′ for each example while ALR optimizes only for x′, it is clear that
RALR ≤ RVR. Additionally, we note that:

RVR(h,K(t)) =
1

m

m∑
i=1

max
x′,x′′∈C(xi)

∥h(x′)− h(x) + h(x)− h(x′′)∥2

≤ 1

m

m∑
i=1

max
x′,x′′∈C(xi)

∥h(x′)− h(x)∥2 + ∥h(x)− h(x′′)∥2
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Figure 4: Adversarial loss gap (L1,2(h)− L(h)) and average ℓ2 distance between logits of ℓ2 (ϵ = 0.5, representing PC1
)

and StAdv (ϵ = 0.05, representing PC2) attacked samples over 25 epochs of fine-tuning using (Croce & Hein, 2022)’s
fine-tuning method, both with and without regularization. Each model is fine-tuned starting from a model that is adversarially
trained against an ℓ2 adversary, as described in Section 4.1. In all training scenarios, there is a visible correlation between
the loss gap and the logit distance, aligning with the theoretical result in Corollary 3.2.

=
2

m

m∑
i=1

max
x′∈C(xi)

∥h(x′)− h(x)∥2

= 2RALR

Thus, ALR and VR are related in the sense that RALR ≤ RVR ≤ 2RALR.

F. Experimental Verification of Theoretical Results
We now briefly demonstrate that our chosen regularization terms align with our theoretical results. In Figure 4, we start with
WRN-28-10 models that were adversarially trained to be robust against ℓ2-bounded attacks, and fine-tune them to increase
their robustness against StAdv attacks using either no regularization, uniform regularization, or adversarial ℓ2 regularization.
We observe a number of trends:

Sensitivity correlates with loss gap. Whether or not regularization is used, there is a clear correlation between total
adversarial sensitivity across both attacks (i.e. maxx′∈C1(x) ∥h(x′)− h(x)∥+maxx′∈C2(x) ∥h(x′)− h(x)∥) and the loss
gap between the union robust loss and the benign loss (i.e. L1,2(h)− L(h)).

Regularization reduces sensitivity and loss gap. Both metrics are significantly lower throughout fine-tuning when
regularization is used, indicating that regularization is successfully targeting our theoretical bounds.

Loss gap increases over time. Across all three models there is an increase in both loss gap and adversarial sensitivity over
the course of fine-tuning. While this may seem like a failure of regularization, the benefit is more apparent when further
analyzing what is causing the loss gap to increase. In the regularized fine-tuning runs, both benign and robust losses are
decreasing, with benign loss decreasing more quickly. This is likely influenced by an initial increase in benign loss at the
very beginning of fine-tuning which is not captured in Figure 4. However, without regularization, benign loss decreases
while union robust loss increases. This shows us that despite theoretically targeting the gap between union robust loss and
benign loss, the use of regularization still aids in individually reducing both losses in absolute terms.

G. Additional Experimental Setup Details
Additional training details. For initial training, we start with a learning rate of 0.1 and then use the multistep learning rate
scheduling proposed by Gowal et al. (2020); specifically, we scale the learning rate down by a factor of 10 halfway and 3/4
of the way through initial training or fine-tuning. For fine-tuning, we maintain a learning rate of 0.001. We train with SGD
with momentum of 0.9 and weight decay of 0.0005.

Additional Attack parameters in training. Following other works on adversarial robustness, we use a step size of 0.075
for ℓ2 attacks on CIFAR-10, 0.15 for ℓ2 attacks on ImageNette, and 2

255 for ℓ∞ attacks. For other attacks, we use ϵ
8 where ϵ

is the attack strength as the step size during training. We provide visualizations of each perturbation type in Figure 5.
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Original

(a) Clean image

L2 Linf StAdv

ReColor Gabor Snow

Pixel JPEG Elastic

Wood Glitch Kaleidoscope

(b) Most commonly used perturbation size

L2 Linf StAdv

ReColor Gabor Snow

Pixel JPEG Elastic

Wood Glitch Kaleidoscope

(c) Largest perturbations used

Figure 5: Attack visualizations for CIFAR-10. The original image is portrayed in (a), the perturbed images at perturbation
budgets used for most evaluations is shown in (b), and the largest perturbation sizes used in evaluations (diagonal entries in
Figure 3) are shown in (c).

Model selection. In the main paper, we stated that we perform evaluation using the epoch at which the model has the best
performance measured across known attack types. Specifically, after each epoch of training, we evaluate the performance
of each model against the attacks used during training (with the same attack parameters as used during training). For
training with AVG, we use the best performing model with respect to the AVG objective (which is the model with the best
performance measured as an average over individual attack accuracies). Meanwhile for MAX and FT MAX, we use the best
performing model with respect to the MAX objective (which is the best performing model across the union of all attacks).
For procedures that only use a single attack per batch during training (Random, FT Single, FT Croce, and our procedure),
we use the best performing model measured by sampling attacks per batch randomly.

Regularization setup. We note that all attacks used in this paper use a gradient based optimization scheme for finding
the attack. In order to compute regularization for non-ℓp threat models, we follow the same optimization scheme used
by the attack (Xiao et al., 2018; Laidlaw & Feizi, 2019; Kaufmann et al., 2019) but replace the classification loss portion
of the optimization objective to be the ℓ2 distance between features/logits between the perturbed and unperturbed input.
For fine-tuning with regularization, since Croce & Hein (2022)’s fine-tuning approach only uses a single attack per batch,
we structure the regularization to mimic Croce & Hein (2022)’s fine-tuning procedure. Specifically, for each batch, the
regularization is for a single attack type (the same one which is selected to use with adversarial training by Croce & Hein
(2022)’s fine-tuning approach). This helps to reduce the overhead from regularization.

H. Additional Experimental Results for CAR
H.1. Addition Datasets and Attack Sequences

We present additional results for CAR on CIFAR-10 in Tables 6 and 7, results for CAR on Imagenette in Table 8 and
9 and results for CIFAR-100 in Tables 10 and 11. We also compare different fine-tuning approaches in the absense of
regularization.
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Training time and robust performance. We find that fine-tuning with MAX objective (FT MAX) or Croce & Hein (2022)
(FT Croce) can generally achieve robustness across previous attacks and the new attack in the sequence comparable to
training from scratch. For example, in Table 7, when fine-tuning to gain robustness against StAdv attack starting from a
model initially trained with adversarial training on ℓ∞ attacks on CIFAR-10, we find that FT MAX achieves 50.75% average
robustness across the two attacks and 41.57% union robustness across the two attacks, and FT Croce achieves 49.48%
average robustness and 29.69% union robustness. These values lie within (or even above) the range obtained through training
from scratch (42.23%-49.61% average robustness and 28.03%-40.8% union robustness). We find that this trend generally
holds as well across time steps when new attacks are introduced, when using a different sequence ordering (Table 6).

Of these two techniques, we find that FT MAX generally achieves higher average and union accuracies across the set of
known attacks, but is less efficient when used in fine-tuning. For example, In Table 7, FT MAX takes 3.99 hours for 10
epochs of fine-tuning from an ℓ∞ robust model while FT Croce takes 2.31 hours. The time complexity of FT MAX also
scales as the number of attacks increases, leading to 7.9 hours of fine-tuning for 10 epochs when there are 4 known attacks
while FT Croce maintains approximately the same training time.

In comparison to naively training from scratch, we also find that these fine-tuning techniques can be much more efficient.
For example, a model robust to a sequence of 4 attacks in Table 6 can be found in roughly 17 hours using CRT, but training
from scratch each time would require 44 hours cumulatively.

Importance of replay. We find that replay of previous attacks is important for achieving good robustness across the set of
known attacks when training with CRT. Fine-tuning with only the new attack (FT Single) usually leads to rapid forgetting of
the previous attack. For example, in Table 7 we observe that the accuracy of robustness on the initial attack (ℓ∞) drops to
31.14% robust accuracy at time step 1 (from the initial accuracy of 51.49% at time step 0) and then further drops to 25.27%
at time step 2 when the third attack (Recolor) is introduced. This forgetting is independent from tradeoffs between attacks
as we find that training from scratch and FT MAX and FT Croce techniques can all achieve at least 40% ℓ∞ accuracy at
time step 1 and at least 35% ℓ∞ accuracy at time step 2. The forgetting of previous attacks is also analogous to catastrophic
forgetting of previous tasks in continual learning (Wang et al., 2023b; McCloskey & Cohen, 1989). We note however that
forgetting is less of a limitation in CAR than in continual learning since the defender’s knowledge set only grows over time;
they do not forget the formulation of previous attacks and can thus can always use methods such as replay.

ALR applied on logits vs features. In Table 6, we also provide results for using regularization based on distances in
the feature space (before the final linear layer), which are labelled with “+ ALR feature”. Overall we observe that using
regularization in the feature space can also help improve performance on average and union robustness across known attacks
as well as improve unforeseen robustness over baselines. However, we observe that feature space regularization leads to
larger tradeoffs in clean accuracy than regularization on the logits (“+ ALR” rows) while robust performance is comparable
to regularization applied on the logits.

Training durations. Across all tables we also provide experiments for fine-tuning with 25 epochs (as opposed to 10 epochs
reported in the main body). We find that increasing the number of fine-tuning epochs can help methods such as FT Croce
achieve robustness closer to that of training from scratch, but at the cost of increased time for updating the model.

Performance on other datasets. We find that the gain in performance through using ALR varies across datasets. For
Imagenette the gain in performance is generally much smaller than on CIFAR-10 (ALR closes the gap between fine-tuning
based updates and training from scratch rather than surpassing training from scratch as in CIFAR-10. On CIFAR-100 ALR
generally does not improve performance over fine-tuning. We believe that this is because achieving robustness on multiple
attacks is quite hard on CIFAR-10; clean accuracy is between 60-70% and robust accuracies are even lower with StAdv and
ℓ∞ robustness only achieving up to 32% robust accuracy and 25% robust accuracy respectively.

I. Initial Training Ablations
In this section, we present some ablations across regularization strength of each regularization method on the initial training
portion of our approach pipeline. We present ablation results for CIFAR-10 and ImageNette.

I.1. Impact of random noise parameter σ

To investigate the impact of the noise parameter σ, we perform initial training on CIFAR-10 with uniform and gaussian
regularization at different values of σ. We maintain a value of regularization strength λ = 5 to isolate the impact of the
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Time
Step Procedure Threat Models Clean ℓ2 StAdv ℓ∞ Recolor

Avg
(known)

Union
(known)

Avg
(all)

Union
(all)

Time
(hrs)

0
AT ℓ2 91.17 69.7 2.08 28.41 44.94 69.7 69.7 36.28 1.24 8.35
AT + ALR (λ = 1) ℓ2 89.43 69.84 48.23 34.00 65.46 69.84 69.84 54.38 31.27 11.15
AT + ALR feature (λ = 5) ℓ2 83.7 63.1 26.57 31.6 62.53 63.1 63.1 45.95 20.16 11.13

1

AVG ℓ2, StAdv 87.74 62.17 50.92 17.17 45.47 56.55 47.55 43.93 15.92 23.72
MAX ℓ2, StAdv 86.18 58.65 57.21 11.21 43.07 57.93 51.72 42.54 11.03 23.69
Random ℓ2, StAdv 84.91 57.77 59.74 14.05 44.88 58.76 52.15 44.11 13.68 10.92
FT MAX (10 ep) ℓ2, StAdv 83.73 57.07 58.67 12.51 49.03 57.87 51.32 44.32 12.36 4
FT MAX (25 ep) ℓ2, StAdv 84.85 56.44 61.34 10.35 48.08 58.89 52.52 44.05 10.24 10
FT Croce (10 ep) ℓ2, StAdv 84.7 57.88 54.27 14.38 51.08 56.07 48.13 44.4 13.8 2.4
FT Croce (25 ep) ℓ2, StAdv 86.24 58.94 57.37 13.26 50.36 58.16 50.89 44.98 13 5.98
FT Single (10 ep) ℓ2, StAdv 80.89 45.45 54.5 6.09 41.98 49.98 41.05 37 5.87 2.78
FT Single (25 ep) ℓ2, StAdv 81.21 44.17 54.6 5.56 40.95 49.38 39.76 36.32 5.36 6.92
FT Single + ALR (10 ep) ℓ2, StAdv 87.24 62.22 61.5 21.4 70.87 61.86 55.04 54 21.14 4.24
FT Single + ALR (25 ep) ℓ2, StAdv 87.54 61.21 60.38 20.81 69.49 60.8 54.22 52.97 20.48 8.77
FT Single + ALR feature (λ = 2, 10 ep) ℓ2, StAdv 81.79 56.98 60.28 20.59 63.64 58.63 51.65 50.37 20.21 3.52
FT Single + ALR feature (λ = 5, 10 ep) ℓ2, StAdv 81.26 60.43 57.61 28.17 67.95 59.02 51.99 53.54 27.24 3.53
FT Croce + ALR (10 ep) ℓ2, StAdv 86.03 59.18 65.14 15.36 63.31 62.16 55.83 50.75 15.29 3.47
FT Croce + ALR (25 ep) ℓ2, StAdv 88.5 64.88 58.98 23.9 70.79 61.93 55.03 54.64 23.33 7.96
FT Croce + ALR feature (λ = 2, 10 ep) ℓ2, StAdv 83.19 61.28 59.04 23.98 62.69 60.16 53.25 51.75 23.2 2.97
FT Croce + ALR feature (λ = 5, 10 ep) ℓ2, StAdv 83.51 61.69 61.76 23.33 62.48 61.73 55.25 52.31 22.77 3.13

2

AVG ℓ2, StAdv, ℓ∞ 85.98 67.60 45.81 42.39 62.43 51.93 34.05 54.56 33.39 33.12
MAX ℓ2, StAdv, ℓ∞ 84.54 54.87 52.33 38.23 55.90 48.48 35.25 50.33 34.08 79.04
Random ℓ2, StAdv, ℓ∞ 39.52 67.46 47.35 42.12 63.61 52.31 35.46 55.13 34.79 10.92
FT MAX (10 ep) ℓ2, StAdv, ℓ∞ 83.16 65.63 56.68 36.9 65.69 53.07 35.18 56.23 34.83 5.62
FT MAX (25 ep) ℓ2, StAdv, ℓ∞ 83.99 65.69 58.16 37.21 65.52 53.69 35.76 56.65 35.31 12.88
FT Croce (10 ep) ℓ2, StAdv, ℓ∞ 85.05 67.3 48.07 33.38 62.52 49.58 28.96 52.82 28.63 2.27
FT Croce (25 ep) ℓ2, StAdv, ℓ∞ 86.14 67.3 52.47 35.86 63.43 51.88 32.54 54.77 32.08 5.01
FT Single (10 ep) ℓ2, StAdv, ℓ∞ 87.99 70.53 11.17 41.63 63.46 41.11 7.95 46.7 7.74 1.57
FT Single (25 ep) ℓ2, StAdv, ℓ∞ 88.67 70.23 8.79 43.4 63.03 40.81 6.19 46.36 6.05 3.91
FT Single + ALR (10 ep) ℓ2, StAdv, ℓ∞ 88.74 69.15 47.33 42.08 68.62 52.85 36.66 56.8 36.62 2.26
FT Single + ALR (25 ep) ℓ2, StAdv, ℓ∞ 88.14 68.26 49.1 41.48 66.73 52.95 37.55 56.39 37.5 5.4
FT Single + ALR feature (λ = 2, 10 ep) ℓ2, StAdv, ℓ∞ 85.69 67.62 29.42 43.68 68.75 46.91 24.44 52.37 24.38 2.16
FT Single + ALR feature (λ = 5, 10 ep) ℓ2, StAdv, ℓ∞ 84.03 67.64 42.03 44.36 71.36 51.34 32.54 56.35 32.48 2.29
FT Croce + ALR (10 ep) ℓ2, StAdv, ℓ∞ 86.57 67.99 61.55 36.59 72.16 55.38 35.68 59.57 35.52 2.87
FT Croce + ALR (25 ep) ℓ2, StAdv, ℓ∞ 86.96 68.91 57.21 39.65 72.22 55.26 37.25 59.5 37.14 6.87
FT Croce + ALR feature (λ = 2, 10 ep) ℓ2, StAdv, ℓ∞ 83.13 66.91 56.76 38.66 68.57 54.11 35.95 57.73 35.76 2.82
FT Croce + ALR feature (λ = 5, 10 ep) ℓ2, StAdv, ℓ∞ 84.25 68.14 57.7 39.8 70.29 55.21 37.4 58.98 37.21 2.79

3

AVG ℓ2, StAdv, ℓ∞, Recolor 87.77 68.55 39.55 41.97 67.93 54.5 30.39 54.5 30.39 50.54
MAX ℓ2, StAdv, ℓ∞, Recolor 84.3 57.62 52.3 41.69 65.1 54.18 37.44 54.18 37.44 55.54
Random ℓ2, StAdv, ℓ∞, Recolor 86.32 65.87 47.82 35.04 68.35 54.27 30.76 54.27 30.76 12.41
FT MAX (10 ep) ℓ2, StAdv, ℓ∞, Recolor 83.64 66.21 57.53 37.77 69.32 57.71 36.02 57.71 36.02 8.45
FT MAX (25 ep) ℓ2, StAdv, ℓ∞, Recolor 83.9 65.72 57.84 38.37 68.84 57.69 36.87 57.69 36.87 21.44
FT Croce (10 ep) ℓ2, StAdv, ℓ∞, Recolor 86.64 68.76 44.81 36.02 68.05 54.41 29.44 54.41 29.44 2.34
FT Croce (25 ep) ℓ2, StAdv, ℓ∞, Recolor 87.11 67.89 49.57 35.58 67.05 55.02 31.21 55.02 31.21 5.9
FT Single (10 ep) ℓ2, StAdv, ℓ∞, Recolor 90.41 66.47 3.93 29.6 69.03 42.26 2.49 42.26 2.49 3.11
FT Single (25 ep) ℓ2, StAdv, ℓ∞, Recolor 90.89 65.14 3.02 30.32 68.54 41.75 1.92 41.75 1.92 7.41
FT Single + ALR (10 ep) ℓ2, StAdv, ℓ∞, Recolor 90.45 61.58 25.77 27.43 69.26 46.01 19.2 46.01 19.2 4.24
FT Single + ALR (25 ep) ℓ2, StAdv, ℓ∞, Recolor 90.4 57.07 24.91 22.91 67.39 43.07 17.21 43.07 17.21 9.79
FT Single + ALR feature (λ = 2, 10 ep) ℓ2, StAdv, ℓ∞, Recolor 90.15 57.89 8.75 22.86 72.27 40.44 6.61 40.44 6.61 3.94
FT Single + ALR feature (λ = 5, 10 ep) ℓ2, StAdv, ℓ∞, Recolor 88.44 66.03 18.88 34.17 69.35 47.11 16.1 47.11 16.1 3.76
FT Croce + ALR (10 ep) ℓ2, StAdv, ℓ∞, Recolor 87.62 68.14 58.5 36.39 72.35 58.85 34.92 58.85 34.92 3.35
FT Croce + ALR (25 ep) ℓ2, StAdv, ℓ∞, Recolor 87.05 68.05 59.26 38.38 73.42 59.78 36.83 59.78 36.83 7.78
FT Croce + ALR feature (λ = 2, 10 ep) ℓ2, StAdv, ℓ∞, Recolor 84.78 67.67 53.13 40.25 69.99 57.76 36.3 57.76 36.3 3.04
FT Croce + ALR feature (λ = 5, 10 ep) ℓ2, StAdv, ℓ∞, Recolor 83.94 67.28 59.21 39.38 71.67 59.38 37.15 59.38 37.15 2.91

Table 6: Continual Robust Training on CIFAR-10 (Sequence of 4 attacks starting with ℓ2). The learner initially has
knowledge of ℓ2 attacks and over time, we are sequentially introduced to StAdv, ℓ∞, and ReColor attacks. We report clean
accuracy, accuracy on different attack types, and average and union accuracies. The threat models column represents the set
of attacks known to the defender and accuracies on known attacks are highlighted with in green cells. “FT” procedures
are fine-tuning approaches starting from adversarially trained to ℓ2 model (AT) and then sequentially fine-tuning with new
attacks for 25 epochs. AVG, MAX, and Random strategies train models from scratch with all attacks for 100 epochs. The
“Avg (known)” and “Union (known)” columns represent average and union accuracies on attacks known to the defender
while “Avg (all)” and “Union (all)” columns represent average and union accuracies on all four attacks. Additionally, we
report training times for the procedure (non-cumulative) in the “Time” column. Best performance out of both training from
scratch and fine-tuning are bolded, while best performance when only comparing fine-tuning approaches is underlined.
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

Time
Step Procedure Threat Models Clean ℓ∞ StAdv Recolor ℓ2

Avg
(known)

Union
(known)

Avg
(all)

Union
(all) Time

0 AT ℓ∞ 85.93 51.44 14.87 62.48 59.48 51.44 51.44 47.07 11.9 7.52
AT + ALR ℓ∞ 83.18 51.49 34.78 58.15 58.15 51.49 51.49 53.27 29.87 11.12

1

AVG ℓ∞, StAdv 86.44 30.05 54.4 46.71 52.1 42.23 28.03 45.81 26.75 23.68
MAX ℓ∞, StAdv 82.62 44.96 53.68 64.24 60.85 49.32 40.8 55.93 39.81 23.68
Random ℓ∞, StAdv 83.15 40.86 58.37 60.53 58.17 49.61 38.95 54.48 37.64 11.70
FT MAX (10 ep) ℓ∞, StAdv 81.63 44.13 57.38 66.66 60.27 50.75 41.57 57.11 40.96 3.99
FT MAX (25 ep) ℓ∞, StAdv 81.99 44.32 57.8 66.25 60.29 51.06 41.98 57.16 41.25 9.93
FT Croce (10 ep) ℓ∞, StAdv 82.66 44.75 54.2 65.99 60.27 49.48 39.69 56.3 39.01 2.31
FT Croce (25 ep) ℓ∞, StAdv 83.55 45.12 53.25 66.44 60.65 49.19 39.43 56.36 38.74 5.44
FT Single (10 ep) ℓ∞, StAdv 80.39 31.14 55.88 59.13 51.58 43.51 29.01 49.43 28.67 2.77
FT Single (25 ep) ℓ∞, StAdv 79.85 31.34 54.86 58.69 51.43 43.1 29.01 49.08 28.66 6.6
FT Single + ALR (10 ep) ℓ∞, StAdv 82.77 35.67 57.92 68.38 54.91 46.8 33.69 54.22 33.65 3.51
FT Single + ALR (25 ep) ℓ∞, StAdv 81.81 35.4 59.47 68.63 54.34 47.44 33.72 54.46 33.66 8.73
FT Croce + ALR (10 ep) ℓ∞, StAdv 82.94 46.39 64.13 73.58 59.41 55.26 44.47 60.88 44.03 2.99
FT Croce + ALR (25 ep) ℓ∞, StAdv 82.3 45.89 63.76 72.8 59.56 54.82 44 60.5 43.54 7.5

2

AVG ℓ∞, StAdv, Recolor 88.67 39.46 47.1 66.87 57.16 51.14 32.61 52.65 32.55 39.72
MAX ℓ∞, StAdv, Recolor 83.42 44.54 53.06 67.56 60.71 55.05 40.23 56.47 40.17 47.21
Random ℓ∞, StAdv, Recolor 83.23 35.01 54.7 68.68 62.92 52.8 32.83 55.33 32.83 13.81
FT MAX (10 ep) ℓ∞, StAdv, Recolor 81.97 44.1 57.36 68.68 60.37 56.71 41.21 57.63 41.2 6.72
FT MAX (25 ep) ℓ∞, StAdv, Recolor 82.24 44.36 58.52 68.87 60.23 57.25 41.73 57.99 41.67 16.69
FT Croce (10 ep) ℓ∞, StAdv, Recolor 84.98 43.32 52.45 69.46 61.04 55.08 37.05 56.57 37.01 2.53
FT Croce (25 ep) ℓ∞, StAdv, Recolor 84.89 44.66 51.6 68.86 61.59 55.04 38.02 56.68 37.96 6.3
FT Single (10 ep) ℓ∞, StAdv, Recolor 90.55 25.27 12.77 74.01 48.99 37.35 10.85 40.26 10.85 4.35
FT Single (25 ep) ℓ∞, StAdv, Recolor 90.24 33.94 13.43 73.23 53.51 40.2 10.67 43.53 10.64 7.83
FT Single + ALR (10 ep) ℓ∞, StAdv, Recolor 88.38 38.62 24.87 72.69 56.66 45.39 19.2 48.21 19.19 3.41
FT Single + ALR (25 ep) ℓ∞, StAdv, Recolor 89.38 33.64 20.91 73.52 53.36 42.69 17.39 45.36 17.38 9.87
FT Croce + ALR (10 ep) ℓ∞, StAdv, Recolor 84.3 44.39 58.86 71.67 60.42 58.31 40.82 58.84 40.69 3.52
FT Croce + ALR (25 ep) ℓ∞, StAdv, Recolor 84.69 44.96 59.53 73.54 61.73 59.34 41.39 59.94 41.22 8.21

3

AVG ℓ∞, StAdv, Recolor, ℓ2 87.77 41.97 39.55 67.93 68.55 54.5 30.39 54.5 30.39 50.54
MAX ℓ∞, StAdv, Recolor, ℓ2 84.3 41.69 52.3 65.1 57.62 54.18 37.44 54.18 37.44 55.54
Random ℓ∞, StAdv, Recolor, ℓ2 86.32 35.04 47.82 68.35 65.87 54.27 30.76 54.27 30.76 12.41
FT MAX (10 ep) ℓ∞, StAdv, Recolor, ℓ2 82.27 44.21 58.13 69.08 60.7 58.03 41.48 58.03 41.48 7.9
FT MAX (25 ep) ℓ∞, StAdv, Recolor, ℓ2 82.6 43.84 57.75 68.84 60.23 57.66 41.19 57.66 41.19 19.74
FT Croce (10 ep) ℓ∞, StAdv, Recolor, ℓ2 85.11 44.71 50.32 68.39 63.29 56.68 37.23 56.68 37.23 2.37
FT Croce (25 ep) ℓ∞, StAdv, Recolor, ℓ2 85.33 43.8 50.28 68.77 63.17 56.51 36.77 56.51 36.77 5.95
FT Single (10 ep) ℓ∞, StAdv, Recolor, ℓ2 88.49 44.93 18.06 65.96 67.56 49.13 15.78 49.13 15.78 1.63
FT Single (25 ep) ℓ∞, StAdv, Recolor, ℓ2 89.3 42.72 11.85 60.27 69.12 45.99 10.71 45.99 10.71 4.07
FT Single + ALR (10 ep) ℓ∞, StAdv, Recolor, ℓ2 88.14 41.52 26.06 61.97 68.77 49.58 24.19 49.58 24.19 2.52
FT Single + ALR (25 ep) ℓ∞, StAdv, Recolor, ℓ2 87.8 40.78 28.34 59.47 68.32 49.23 25.92 49.23 25.92 5.89
FT Croce + ALR (10 ep) ℓ∞, StAdv, Recolor, ℓ2 84.56 42.19 55.55 69.95 60.69 57.1 38.24 57.1 38.24 3.4
FT Croce + ALR (25 ep) ℓ∞, StAdv, Recolor, ℓ2 84.1 43.32 58.2 72.09 61.96 58.89 39.97 58.89 39.97 8.28

Table 7: Continual Robust Training on CIFAR-10 (Sequence of 4 attacks starting with ℓ∞). The learner initially has
knowledge of ℓ∞ attacks and over time, we are sequentially introduced to StAdv, ReColor, and ℓ2 attacks. We report clean
accuracy, accuracy on different attack types, and average and union accuracies. The threat models column represents the set
of attacks known to the defender and accuracies on known attacks are highlighted with in green cells. “FT” procedures are
fine-tuning approaches starting from adversarially trained to ℓ∞ model (AT) and then sequentially fine-tuning with new
attacks for 25 epochs. AVG, MAX, and Random strategies train models from scratch with all attacks for 100 epochs. The
“Avg (known)” and “Union (known)” columns represent average and union accuracies on attacks known to the defender
while “Avg (all)” and “Union (all)” columns represent average and union accuracies on all four attacks. Additionally, we
report training times for the procedure (non-cumulative) in the “Time” column. Best performance out of both training from
scratch and fine-tuning are bolded, while best performance when only comparing fine-tuning approaches is underlined.
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

Time
Step Procedure Threat Models Clean ℓ2 StAdv ℓ∞ Recolor

Avg
(known)

Union
(known)

Avg
(all)

Union
(all)

Time
(hrs)

0 AT ℓ2 90.22 83.95 10.65 7.67 49.22 83.95 83.95 37.87 3.16 1.71
AT + ALR ℓ2 89.76 84.41 28.23 25.22 54.70 84.41 84.41 48.14 18.01 2.15

1

AVG ℓ2, StAdv 84.56 77.68 74.32 7.57 31.33 76 73.68 47.73 7.44 3.58
MAX ℓ2, StAdv 85.22 76.87 77.63 4.94 27.61 77.25 75.57 46.76 4.76 3.52
Random ℓ2, StAdv 85.71 77.55 74.32 5.78 29.61 75.94 73.55 46.82 5.53 2.58
FT MAX (10 ep) ℓ2, StAdv 83.92 77.5 69.02 10.78 35.77 73.26 68.89 48.27 10.45 0.61
FT MAX (25 ep) ℓ2, StAdv 84.56 77.73 69.35 9.76 36.15 73.54 69.1 48.25 9.43 1.44
FT Croce (10 ep) ℓ2, StAdv 85.07 78.62 67.52 10.57 38.34 73.07 67.31 48.76 10.29 0.4
FT Croce (25 ep) ℓ2, StAdv 86.37 79.67 69.32 9.81 38.27 74.5 69.17 49.27 9.63 0.98
FT Single (10 ep) ℓ2, StAdv 84.08 77.86 68.31 10.83 36.97 73.08 68.13 48.49 10.45 0.51
FT Single (25 ep) ℓ2, StAdv 85.63 78.39 72.31 7.57 35.31 75.35 72.08 48.39 7.36 1.15
FT Single + ALR (10 ep) ℓ2, StAdv 83.8 77.94 71.62 20.71 43.13 74.78 71.34 53.35 20.13 0.58
FT Single + ALR (25 ep) ℓ2, StAdv 83.9 77.78 71.97 17.35 38.39 74.88 71.59 51.38 16.76 1.44
FT Croce + ALR (10 ep) ℓ2, StAdv 85.04 79.54 69.99 18.68 42.93 74.76 69.89 52.78 18.09 0.51
FT Croce + ALR (25 ep) ℓ2, StAdv 85.07 79.39 68 19.57 43.67 73.69 67.97 52.66 19.16 1.24

2

AVG ℓ2, StAdv, ℓ∞ 86.62 84.92 68.89 50.57 66.98 68.13 49.17 67.84 47.82 10.51
MAX ℓ2, StAdv, ℓ∞ 80.36 78.09 68.38 52.61 67.29 66.36 51.77 66.59 50.37 11.96
Random ℓ2, StAdv, ℓ∞ 84.92 83.06 68.76 49.50 66.11 67.11 48.15 66.86 46.60 4.29
FT MAX (10 ep) ℓ2, StAdv, ℓ∞ 81.76 76.69 71.03 28.31 54.32 58.68 28.31 57.59 27.69 0.67
FT MAX (25 ep) ℓ2, StAdv, ℓ∞ 82.04 77.86 69.02 42.83 66.9 63.24 42.37 64.15 41.86 1.71
FT Croce (10 ep) ℓ2, StAdv, ℓ∞ 83.59 78.8 69.53 34.17 61.5 60.83 34.06 61 33.61 0.3
FT Croce (25 ep) ℓ2, StAdv, ℓ∞ 85.22 81.02 69.58 39.92 64.79 63.51 39.59 63.83 39.03 0.73
FT Single (10 ep) ℓ2, StAdv, ℓ∞ 82.06 77.25 73.1 27.21 57.4 59.18 27.21 58.74 26.9 0.22
FT Single (25 ep) ℓ2, StAdv, ℓ∞ 82.04 77.96 70.42 41.15 66.09 63.18 40.92 63.9 40.46 0.54
FT Single + ALR (10 ep) ℓ2, StAdv, ℓ∞ 81.38 77.89 71.8 46.68 72.13 65.45 46.5 67.12 46.14 0.31
FT Single + ALR (25 ep) ℓ2, StAdv, ℓ∞ 80.92 77.43 70.78 47.16 70.6 65.12 46.96 66.49 46.62 0.79
FT Croce + ALR (10 ep) ℓ2, StAdv, ℓ∞ 83.95 79.57 69.22 37.96 59.77 62.25 37.86 61.63 36.99 0.40
FT Croce + ALR (25 ep) ℓ2, StAdv, ℓ∞ 83.11 79.24 72.38 36.61 60.18 62.74 36.59 62.1 36.15 1.01

3

AVG ℓ2, StAdv, ℓ∞, Recolor 87.67 85.66 66.06 50.42 75.90 69.51 47.90 69.51 47.90 13.79
MAX ℓ2, StAdv, ℓ∞, Recolor 83.26 81.22 70.70 56.94 74.80 70.92 55.31 70.92 55.31 14.60
Random ℓ2, StAdv, ℓ∞, Recolor 86.55 84.64 66.52 47.29 74.93 68.34 45.71 68.34 45.71 9.61
FT MAX (10 ep) ℓ2, StAdv, ℓ∞, Recolor 81.99 77.78 68.28 41.83 69.91 64.45 41.4 64.45 41.4 1.31
FT MAX (25 ep) ℓ2, StAdv, ℓ∞, Recolor 82.78 79.21 70.83 45.15 71.39 66.64 44.76 66.64 44.76 3.6
FT Croce (10 ep) ℓ2, StAdv, ℓ∞, Recolor 84.87 80.38 66.68 36.82 68.61 63.12 36.31 63.12 36.31 0.45
FT Croce (25 ep) ℓ2, StAdv, ℓ∞, Recolor 86.32 82.11 68.79 41.27 72.41 66.15 40.69 66.15 40.69 1.2
FT Single (10 ep) ℓ2, StAdv, ℓ∞, Recolor 86.27 81.35 54.73 23.59 70.17 57.46 22.55 57.46 22.55 0.71
FT Single (25 ep) ℓ2, StAdv, ℓ∞, Recolor 85.1 80.48 58.17 36.38 70.62 61.41 34.45 61.41 34.45 2.03
FT Single + ALR (10 ep) ℓ2, StAdv, ℓ∞, Recolor 85.3 81.04 49.35 40.48 74.8 61.42 35.62 61.42 35.62 0.85
FT Single + ALR (25 ep) ℓ2, StAdv, ℓ∞, Recolor 86.78 82.8 47.82 33.12 77.58 60.33 29.17 60.33 29.17 2.38
FT Croce + ALR (10 ep) ℓ2, StAdv, ℓ∞, Recolor 85.3 81.3 69.35 43.13 70.85 66.16 42.62 66.16 42.62 0.53
FT Croce + ALR (25 ep) ℓ2, StAdv, ℓ∞, Recolor 85.81 81.76 67.13 45.38 73.02 66.82 44.56 66.82 44.56 1.36

Table 8: Continual Robust Training on ImageNette (Sequence of 4 attacks starting with ℓ2).
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

Time
Step Procedure Threat Models Clean ℓ∞ StAdv Recolor ℓ2

Avg
(known)

Union
(known)

Avg
(all)

Union
(all)

Time
(hrs)

AT ℓ∞ 82.52 56.94 61.32 71.62 78.39 56.94 56.94 67.07 50.32 1.700 AT + ALR ℓ∞ 81.52 59.62 60.51 73.50 72.69 59.62 59.62 66.58 52.92 2.67

1

AVG ℓ∞, StAdv 85.78 53.30 75.69 67.69 81.96 64.5 53.02 69.66 51.11 5.87
MAX ℓ∞, StAdv 83.77 58.04 70.04 72.76 80.38 64.04 56.54 70.31 55.26 6.11
Random ℓ∞, StAdv 83.34 52.23 73.76 67.85 79.87 62.99 51.77 68.43 50.39 2.44
FT MAX (10 ep) ℓ∞, StAdv 82.27 55.03 70.52 69.78 78.27 62.78 54.17 68.4 52.66 0.62
FT MAX (25 ep) ℓ∞, StAdv 82.57 55.46 71.75 69.94 78.73 63.61 54.85 68.97 53.22 1.48
FT Croce (10 ep) ℓ∞, StAdv 82.29 54.62 69.2 68.87 78.32 61.91 53.35 67.75 51.9 0.37
FT Croce (25 ep) ℓ∞, StAdv 83.67 54.27 71.57 69.07 79.54 62.92 53.58 68.61 52.2 0.86
FT Single (10 ep) ℓ∞, StAdv 83.06 50.52 71.52 65.43 78.78 61.02 49.96 66.56 48.18 0.51
FT Single (25 ep) ℓ∞, StAdv 84.00 43.59 73.68 58.14 78.85 58.64 43.46 63.57 41.27 1.16
FT Single + ALR (10 ep) ℓ∞, StAdv 82.19 42.7 73.17 60.97 77.55 57.94 42.6 63.6 41.27 0.58
FT Single + ALR (25 ep) ℓ∞, StAdv 81.4 51.8 69.35 66.32 76.54 60.57 51.08 66 50.04 1.47
FT Croce + ALR (10 ep) ℓ∞, StAdv 82.62 57.71 70.11 72.41 77.89 63.91 56.54 69.53 55.62 0.49
FT Croce + ALR (25 ep) ℓ∞, StAdv 82.37 57.55 71.64 70.93 78.14 64.6 56.54 69.57 55.64 1.11

2

AVG ℓ∞, StAdv, Recolor 86.39 51.80 73.81 77.99 83.13 67.86 51.31 71.68 51.31 11.57
MAX ℓ∞, StAdv, Recolor 81.20 54.55 68.64 72.82 78.01 65.33 53.12 68.5 53.12 13.55
Random ℓ∞, StAdv, Recolor 86.29 50.96 72.28 76.59 82.96 66.61 50.27 70.69 50.27 4.90
FT MAX (10 ep) ℓ∞, StAdv, Recolor 82.34 55.34 71.34 72.87 78.22 66.51 54.04 69.44 54.04 1.21
FT MAX (25 ep) ℓ∞, StAdv, Recolor 83.75 55.29 72.56 74.83 79.97 67.56 54.27 70.66 54.27 3.03
FT Croce (10 ep) ℓ∞, StAdv, Recolor 84.28 54.01 69.96 72.56 79.72 65.51 52.13 69.06 52.13 0.5
FT Croce (25 ep) ℓ∞, StAdv, Recolor 84.05 52.99 70.47 73.07 80.33 65.51 51.92 69.22 51.92 1.23
FT Single (10 ep) ℓ∞, StAdv, Recolor 83.77 53.61 65.38 73.35 79.36 64.11 50.7 67.92 50.7 0.75
FT Single (25 ep) ℓ∞, StAdv, Recolor 85.07 48.2 65.86 75.41 80.41 63.16 46.34 67.47 46.34 1.88
FT Single + ALR (10 ep) ℓ∞, StAdv, Recolor 84.94 50.8 65.71 76.33 80.15 64.28 48.31 68.25 48.31 0.88
FT Single + ALR (25 ep) ℓ∞, StAdv, Recolor 82.09 55.46 66.27 73.63 77.76 65.12 52.89 68.28 52.89 2.14
FT Croce + ALR (10 ep) ℓ∞, StAdv, Recolor 82.42 55.75 65.83 73.3 78.06 64.96 52.94 68.24 52.94 0.61
FT Croce + ALR (25 ep) ℓ∞, StAdv, Recolor 83.9 55.52 71.21 75.29 79.82 67.34 54.32 70.46 54.32 1.49

3

AVG ℓ∞, StAdv, Recolor, ℓ2 87.67 50.42 66.06 75.90 85.66 69.51 47.90 69.51 47.90 13.79
MAX ℓ∞, StAdv, Recolor, ℓ2 83.26 56.94 70.70 74.80 81.22 70.92 55.31 70.92 55.31 14.60
Random ℓ∞, StAdv, Recolor, ℓ2 86.55 47.29 66.52 74.93 84.64 68.34 45.71 68.34 45.71 4.58
FT MAX (10 ep) ℓ∞, StAdv, Recolor, ℓ2 82.73 55.08 71.36 73.5 78.98 69.73 54.19 69.73 54.19 1.3
FT MAX (25 ep) ℓ∞, StAdv, Recolor, ℓ2 83.72 54.93 72.18 74.42 79.9 70.36 53.94 70.36 53.94 3.26
FT Croce (10 ep) ℓ∞, StAdv, Recolor, ℓ2 84.33 52.18 69.5 72.74 79.97 68.6 50.55 68.6 50.55 0.44
FT Croce (25 ep) ℓ∞, StAdv, Recolor, ℓ2 84.84 52.59 68.74 73.27 81.45 69.01 50.96 69.01 50.96 1.1
FT Single (10 ep) ℓ∞, StAdv, Recolor, ℓ2 84.79 53.02 65.43 72.82 80.08 67.83 50.29 67.83 50.29 0.26
FT Single (25 ep) ℓ∞, StAdv, Recolor, ℓ2 85.5 49.12 64.79 74.27 80.76 67.24 47.21 67.24 47.21 0.63
FT Single + ALR (10 ep) ℓ∞, StAdv, Recolor, ℓ2 85.1 45.4 63.44 67.06 80.59 64.12 42.96 64.12 42.96 0.35
FT Single + ALR (25 ep) ℓ∞, StAdv, Recolor, ℓ2 83.64 54.37 64.48 72.41 79.69 67.74 50.96 67.74 50.96 0.92
FT Croce + ALR (10 ep) ℓ∞, StAdv, Recolor, ℓ2 83.03 53.96 67.9 72.38 79.08 68.33 51.95 68.33 51.95 0.55
FT Croce + ALR (25 ep) ℓ∞, StAdv, Recolor, ℓ2 84.84 53.94 68.51 75.11 81.32 69.72 52.23 69.72 52.23 1.36

Table 9: Continual Robust Training on ImageNette (Sequence of 4 attacks starting with ℓ∞).
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Time
Step Procedure Threat Models Clean ℓ2 StAdv ℓ∞ Recolor

Avg
(known)

Union
(known)

Avg
(all)

Union
(all)

Time
(hrs)

0 AT ℓ2 67.75 41.65 4.21 14.28 22.46 41.65 41.65 20.65 2.34 14.85
Ours ℓ2 63.53 42.88 6.16 19.8 23.36 42.88 42.88 23.05 4.37 21.98

1

AVG ℓ2, StAdv 64.48 35.72 28.57 9.18 19.51 32.15 25.25 23.24 7.53 47.24
MAX ℓ2, StAdv 61.80 33.82 31.77 7.58 17.76 32.79 27.68 22.73 6.51 47.24
Random ℓ2, StAdv 62.7 31.75 32.25 6.50 17.62 32.00 26.28 22.03 5.79 23.56
FT MAX (10 ep) ℓ2, StAdv 60.3 30.9 29.32 5.96 17.04 30.11 23.97 20.8 5.15 4
FT MAX (25 ep) ℓ2, StAdv 61.14 31.69 29.93 6.21 17.84 30.81 24.84 21.42 5.3 10.71
FT Croce (10 ep) ℓ2, StAdv 62.68 35.2 23.7 8.9 19.93 29.45 21.02 21.93 6.77 2.6
FT Croce (25 ep) ℓ2, StAdv 63.39 31.38 28.95 5.7 17.98 30.16 23.87 21 5.04 5.96
FT Single (10 ep) ℓ2, StAdv 60.48 18.29 30.83 2.24 13.28 24.56 16.19 16.16 1.84 2.77
FT Single (25 ep) ℓ2, StAdv 60.78 18.22 31.79 1.99 13.32 25 16.34 16.33 1.6 6.91
FT Single + ALR (10 ep) ℓ2, StAdv 53 29.23 24 8.45 17.18 26.61 20.12 19.71 6.71 2.77
FT Single + ALR (25 ep) ℓ2, StAdv 54.44 22.03 29.1 4.46 13.6 25.56 19.21 17.3 3.78 8.73
FT Croce + ALR (10 ep) ℓ2, StAdv 59.09 34.09 26.59 9.84 19.2 30.34 23.62 22.43 8.28 3.11
FT Croce + ALR (25 ep) ℓ2, StAdv 58.59 34.65 26.45 10.55 19.65 30.55 23.67 22.82 8.64 7.67

2

AVG ℓ2, StAdv, ℓ∞ 62.09 40.34 25.13 20.88 28.84 28.78 16.18 28.80 14.71 69.49
MAX ℓ2, StAdv, ℓ∞ 56.94 34.74 28.46 22.72 30.35 28.64 19.66 29.04 17.55 69.36
Random ℓ2, StAdv, ℓ∞ 60.98 38.01 25.21 17.25 25.76 26.82 14.26 26.56 12.97 19.58
FT MAX (10 ep) ℓ2, StAdv, ℓ∞ 59.9 38.94 26.55 16.95 25.72 27.48 14.78 27.04 13.07 5.2
FT MAX (25 ep) ℓ2, StAdv, ℓ∞ 61.01 38.56 27.54 17.05 25.91 27.72 15.34 27.27 13.66 12.25
FT Croce (10 ep) ℓ2, StAdv, ℓ∞ 62.78 39.87 20.17 14.59 23.7 24.88 10.46 24.58 9.2 2.29
FT Croce (25 ep) ℓ2, StAdv, ℓ∞ 65.85 42.51 11.05 19.67 26.55 24.41 8.06 24.95 7.3 5.06
FT Single (10 ep) ℓ2, StAdv, ℓ∞ 65.62 42.95 7.55 22.03 28.06 24.18 5.57 25.15 4.98 1.49
FT Single (25 ep) ℓ2, StAdv, ℓ∞ 65.93 42.82 7.62 21.83 28.2 24.09 5.65 25.12 5.12 3.71
FT Single + ALR (10 ep) ℓ2, StAdv, ℓ∞ 62.35 43.56 8.76 23.72 27.77 25.35 6.98 25.95 6.29 2.16
FT Single + ALR (25 ep) ℓ2, StAdv, ℓ∞ 62.56 42.33 7.7 25.06 26.57 25.03 6.67 25.41 6.02 5.39
FT Croce + ALR (10 ep) ℓ2, StAdv, ℓ∞ 60.67 42.06 16.66 21.18 25.89 26.63 12.59 26.45 11.21 3.05
FT Croce + ALR (25 ep) ℓ2, StAdv, ℓ∞ 63.43 42.92 10.14 23.16 26.37 25.41 8.29 25.65 7.64 6.7

3

AVG ℓ2, StAdv, ℓ∞, Recolor 65.61 40.86 22.4 20.45 37.27 30.25 14.09 30.25 14.09 101.43
MAX ℓ2, StAdv, ℓ∞, Recolor 59.12 33.89 28.02 22.20 35.00 29.78 18.74 29.78 18.74 101.43
Random ℓ2, StAdv, ℓ∞, Recolor 63.1 39.47 24.79 19.04 38.15 30.36 14.57 30.36 14.57 22.87
FT MAX (10 ep) ℓ2, StAdv, ℓ∞, Recolor 61.5 39.34 26.97 17.25 33.56 29.28 14.55 29.28 14.55 8.61
FT MAX (25 ep) ℓ2, StAdv, ℓ∞, Recolor 62.14 38.68 27.51 17.13 33.06 29.09 14.84 29.09 14.84 19.67
FT Croce (10 ep) ℓ2, StAdv, ℓ∞, Recolor 64.82 41.09 19.78 16.55 32.26 27.42 10.57 27.42 10.57 2.42
FT Croce (25 ep) ℓ2, StAdv, ℓ∞, Recolor 66.31 41.02 13.42 17.34 31.02 25.7 8.4 25.7 8.4 6.03
FT Single (10 ep) ℓ2, StAdv, ℓ∞, Recolor 69.82 32.63 4.07 9.38 40.07 21.54 1.42 21.54 1.42 3.06
FT Single (25 ep) ℓ2, StAdv, ℓ∞, Recolor 68.63 37.06 5.57 13.28 37.66 23.39 2.76 23.39 2.76 7.78
FT Single + ALR (10 ep) ℓ2, StAdv, ℓ∞, Recolor 66.58 37.98 6.65 16.37 39.23 25.06 3.83 25.06 3.83 3.91
FT Single + ALR (25 ep) ℓ2, StAdv, ℓ∞, Recolor 68.15 32.05 5.08 11.82 41.5 22.61 2.46 22.61 2.46 9.72
FT Croce + ALR (10 ep) ℓ2, StAdv, ℓ∞, Recolor 64.11 42.52 10.89 21.36 34.05 27.21 8.11 27.21 8.11 3.42
FT Croce + ALR (25 ep) ℓ2, StAdv, ℓ∞, Recolor 65.33 39.4 11.41 16.84 34.15 25.45 7.35 25.45 7.35 7.41

Table 10: Continual Robust Training on CIFAR-100 (Sequence of 4 attacks starting with ℓ2).
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Time
Step Procedure Threat Models Clean ℓ∞ StAdv Recolor ℓ2

Avg
(known)

Union
(known)

Avg
(all)

Union
(all)

Time
(hrs)

0 AT ℓ∞ 60.95 27.61 9.92 33.2 35.6 27.61 27.61 26.58 7.45 16.33
AT + ALR ℓ∞ 55.36 28.01 11.25 31.01 33.95 28.01 28.01 26.05 8.62 23.75

1

AVG ℓ∞, StAdv 66.09 8.65 33.19 18.42 21.58 20.92 8.18 20.46 7.47 47.59
MAX ℓ∞, StAdv 57.01 22.8 29.23 30.54 33.58 26.02 20.28 29.04 17.96 46.97
Random ℓ∞, StAdv 47.14 16.62 25.61 25.35 27.25 21.12 14.63 23.71 13.37 23.92
FT MAX (10 ep) ℓ∞, StAdv 58.05 22.48 28.66 30.43 33.15 25.57 18.95 28.68 17.05 4.03
FT MAX (25 ep) ℓ∞, StAdv 58.56 22.36 29.38 30.97 33.16 25.87 19.38 28.97 17.43 10.02
FT Croce (10 ep) ℓ∞, StAdv 60.17 22.75 26.81 31.22 33.68 24.78 17.54 28.62 15.95 2.49
FT Croce (25 ep) ℓ∞, StAdv 60.27 22.18 28.17 30.38 33.25 25.18 17.81 28.5 16.21 5.69
FT Single (10 ep) ℓ∞, StAdv 55.87 15.43 24.29 24.34 27.54 19.86 11.9 22.9 10.95 2.77
FT Single (25 ep) ℓ∞, StAdv 56.11 16.09 24.46 24.84 28.65 20.27 12.5 23.51 11.33 6.95
FT Single + ALR (10 ep) ℓ∞, StAdv 56.03 3.81 35.21 18.52 17.31 19.51 3.77 18.71 3.51 75.49
FT Single + ALR (25 ep) ℓ∞, StAdv 59.65 2.6 37.96 18.51 13.52 20.28 2.58 18.15 2.41 8.34
FT Croce + ALR (10 ep) ℓ∞, StAdv 54.86 23.33 27.19 30.15 31.54 25.26 18.75 28.05 16.86 2.97
FT Croce + ALR (25 ep) ℓ∞, StAdv 54.27 23.27 26.27 29.4 31.79 24.77 18.25 27.68 16.06 7.4

2

AVG ℓ∞, StAdv, Recolor 68.19 16.88 29.53 38.12 30.75 28.18 14.14 28.82 14.11 79.47
MAX ℓ∞, StAdv, Recolor 57.96 22.38 28.92 35.24 33.9 28.85 19.27 30.11 19.17 79.5
Random ℓ∞, StAdv, Recolor 47.14 16.62 25.61 25.35 27.25 21.12 14.63 23.71 13.37 23.92
FT MAX (10 ep) ℓ∞, StAdv, Recolor 58.96 22.04 29 36.35 34.55 29.13 18.37 30.48 18.31 6.75
FT MAX (25 ep) ℓ∞, StAdv, Recolor 59.41 21.7 29.2 35.57 33.24 28.82 18.21 29.93 18.09 16.75
FT Croce (10 ep) ℓ∞, StAdv, Recolor 62.27 22.42 26.16 37.25 34.5 28.61 16.34 30.08 16.24 2.77
FT Croce (25 ep) ℓ∞, StAdv, Recolor 62.09 23.24 25.6 36.91 35.89 28.58 16.63 30.41 16.52 6.46
FT Single (10 ep) ℓ∞, StAdv, Recolor 64.02 20.72 14.72 41.7 32.89 25.71 9.61 27.51 9.57 3.01
FT Single (25 ep) ℓ∞, StAdv, Recolor 67.39 13.25 6.94 45.1 27.71 21.76 3.59 23.25 3.57 7.86
FT Single + ALR (10 ep) ℓ∞, StAdv, Recolor 64.86 8.76 9.34 46.4 25.62 21.5 3.91 22.53 3.91 3.8
FT Single + ALR (25 ep) ℓ∞, StAdv, Recolor 66.87 3.74 8.44 50.81 19.81 21 2.03 20.7 2.03 9.89
FT Croce + ALR (10 ep) ℓ∞, StAdv, Recolor 56.41 24.28 25.62 36.21 34.43 28.7 17.6 30.14 17.41 3.6
FT Croce + ALR (25 ep) ℓ∞, StAdv, Recolor 56.83 22.43 25.9 38.27 33.5 28.87 16.98 30.03 16.76 8.28

3

AVG ℓ∞, StAdv, Recolor, ℓ2 64.8 20.9 22.46 37.27 41.05 30.42 14.56 30.42 14.56 101.39
MAX ℓ∞, StAdv, Recolor, ℓ2 57.9 22.39 28.72 35.96 35.65 30.68 19.15 30.68 19.15 101.25
Random ℓ∞, StAdv, Recolor, ℓ2 63.23 19.52 21.29 39.71 39.95 30.12 13.6 30.12 13.6 24.88
FT MAX (10 ep) ℓ∞, StAdv, Recolor, ℓ2 59.61 22.14 29.13 36.17 34.35 30.45 18.61 30.45 18.61 8.58
FT MAX (25 ep) ℓ∞, StAdv, Recolor, ℓ2 59.42 22.02 29.28 35.96 34.45 30.43 18.64 30.43 18.64 21.36
FT Croce (10 ep) ℓ∞, StAdv, Recolor, ℓ2 62.44 20.96 26.06 35.91 36.77 29.93 15.83 29.93 15.83 2.38
FT Croce (25 ep) ℓ∞, StAdv, Recolor, ℓ2 62.17 21.84 26.14 36.92 36.69 30.4 16.08 30.4 16.08 5.81
FT Single (10 ep) ℓ∞, StAdv, Recolor, ℓ2 63.94 23.86 13.73 37.22 41.47 29.07 9.92 29.07 9.92 1.61
FT Single (25 ep) ℓ∞, StAdv, Recolor, ℓ2 66.44 21.17 7.72 31.83 42.5 25.8 5.67 25.8 5.67 4.07
FT Single + ALR (10 ep) ℓ∞, StAdv, Recolor, ℓ2 60.76 22.36 10.35 31.33 41.91 26.49 7.99 26.49 7.99 2.35
FT Single + ALR (25 ep) ℓ∞, StAdv, Recolor, ℓ2 62.25 20.56 7.92 30.69 41.42 25.15 6.25 25.15 6.25 6.35
FT Croce + ALR (10 ep) ℓ∞, StAdv, Recolor, ℓ2 57.56 24.64 22.52 35.77 37.55 30.12 15.96 30.12 15.96 3.36
FT Croce + ALR (25 ep) ℓ∞, StAdv, Recolor, ℓ2 58.14 24.85 18.69 36.75 39.16 29.86 13.87 29.86 13.87 7.64

Table 11: Continual Robust Training on CIFAR-100 (Sequence of 4 attacks starting with ℓ∞).
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noise variance from regularization strength. We report results in Table 12. Overall, we find that σ has an effect similar to the
effect of increasing λ where higher values of σ leads to higher average and union robust accuracies at the cost of lower clean
accuracy and accuracy on the initial attack.

Noise type σ Clean ℓ2 ℓ∞ StAdv Recolor Avg Union
Uniform 0.5 90.40 70.21 31.91 1.31 39.83 35.81 0.86
Uniform 1 90.76 69.89 32.58 1.49 40.14 36.02 1.15
Uniform 2 85.28 63.65 50.73 10.62 60.10 46.28 8.40
Gaussian 0.05 90.04 69.62 31.61 7.25 43.84 38.08 6.64
Gaussian 0.1 88.53 68.54 32.04 14.5 51.73 41.70 12.63
Gaussian 0.2 87.00 64.88 27.46 31.82 63.59 46.94 18.7

Table 12: Impact of σ on regularization based on random noise in initial training. We maintain regularization strength
λ = 5 and perform initial training on CIFAR-10 with ℓ2 attacks. We report the clean accuracy, accuracy on ℓ2, ℓ∞, StAdv,
and Recolor attacks, and the average and union accuracies on the set.

I.2. Comparison to TRADES

In this section, we compare ALR regularizer to TRADES regularizer (Zhang et al., 2019). TRADES is designed for
improving clean accuracy tradeoff while ALR is designed for improving generalization across (seen and unforeseen) attacks.
Since TRADES regularizer also maximizes a distance (KL instead of L2) in the logit space, we expect it can also improve
generalization across attacks as well and provide results below. Similar to experiments with ALR, we add the regularizer on
top of PGD L2 and Linf adversarial training. We present results in Table 13 with regularization strength in parentheses next
to each regularization method. Notably, increasing TRADES strength in Linf training trades off Linf performance, whereas
ALR does not.

Threat model Regularizer Clean ℓ2 ℓ∞ StAdv ReColor Union
ℓ2 None 91.17 69.7 28.41 2.08 44.94 1.24
ℓ2 Trades (1) 90.43 70.08 31.33 0.89 38.51 0.6
ℓ2 Trades (3) 88.93 70.05 33.81 9.04 58.25 6.74
ℓ2 Trades (6) 88.76 69.69 33.00 7.04 56.82 5.51
ℓ2 ALR (1) 89.43 69.84 34.00 48.23 65.46 31.27
ℓ∞ None 85.93 59.48 51.44 14.87 62.48 11.9
ℓ∞ Trades (1) 85.39 59.33 49.23 14.11 64.45 11.45
ℓ∞ Trades (3) 83.97 58.54 47.00 20.51 69.33 16.34
ℓ∞ Trades (6) 85.72 56.44 41.70 23.17 70.23 17.83
ℓ∞ ALR (0.5) 83.18 58.15 51.49 34.78 58.15 29.87

Table 13: Comparison to TRADES. We compare robustness measured across different threat models when initial training
on ℓ2 and ℓ∞ with either TRADES and or ALR regularizer.

I.3. Performance across different threat models

In this section, we perform initial training with models using different initial attacks including attacks in the UAR benchmark
(Kaufmann et al., 2019) and evaluate the performance across attack types for training with single-step variation regularization,
single-step adversarial ℓ2 regularization, uniform regularization, and gaussian regularization.

We present ablation results for CIFAR-10 (Table 15 for variation regularization, Table 14 for adversarial ℓ2 regularization,
Table 16 for uniform regularization, and Table 17 for Gaussian regularization) and ImageNette (Table 19 for variation
regularization, Table 18 for adversarial ℓ2 regularization, Table 20 for uniform regularization, and Table 21 for Gaussian
regularization). Overall, we find that across different starting attacks and unseen test attacks, regularization generally
improves performance on unseen attacks, leading to increases in average and union accuracy across all attacks with
regularization. We find that in many cases (especially using random noise types) using regularization trades off clean
accuracy. Additionally, some threat models such as Snow are generally more difficult to gain improvement on via
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regularization; for many starting models, using regularization decreases accuracy on Snow attack.

I.4. Impact of starting and new attack pairs

In order to see how much our results depend on attack choice, we experiment with starting with a model initially trained
with a starting attack and then fine-tuned for robustness to a new attack for different starting and new attack pairs on
Imagenette. In this section, we ask the question: does regularization in initial training generally lead to better starting points
for fine-tuning? In the following experiments, we use adversarial training as the base initial training procedure and Croce
& Hein (2022)’s fine-tuning approach as the base fine-tuning procedure. We consider these approaches with and without
regularization.

We compare models initially trained with regularization (and fine-tuned without regularization) to models initially trained
without regularization (and fine-tuned without regularization). We present the differences in average accuracy across the 2
attacks, union accuracy across the 2 attacks, accuracy on the starting attack, accuracy on the new attack, and clean accuracy
between the 2 settings for adversarial ℓ2 regularization (with λ = 0.5) in Figure 6, for variation regularization in Figure 7
(with λ = 0.2), for uniform regularization (with σ = 2 and λ = 1) in Figure 8, and for gaussian regularization (with σ = 0.2
and λ = 0.5) in Figure 9. In these figures, we highlight gains in accuracy larger than 1% in green and drops in accuracy
larger than 1% in red.

Regularization in initial training generally improves performance. Across all figures, we can see that for most pairs of
attacks, regularization leads to improvements on average accuracy, union accuracy, accuracy on the initial attack, accuracy
on the new attack. We find that this improvement is more consistent across attack types when using adversarial versions
of regularization such as adversarial ℓ2 regularization or variation regularization in comparison to random noise based
regularizations. This improvement in performance may be due to the fact that regularization improves unforeseen robustness,
causing the initial accuracy on the new attack to generally be higher, and thus a better starting point for fine-tuning the
model for robustness against new attacks.

Uniform regularization in initial training can improve clean accuracy for certain starting attack types. From Figure
8e, we observe that using uniform regularization in initial training can lead to increases in clean accuracy after fine-tuning
for several initial attack types: StAdv, ReColor, Pixel, Elastic, Wood, and Kaleidoscope attacks. In comparison, Figure
6e, demonstrates that using adversarial ℓ2 regularization does not improve clean accuracy for as many threat models as
uniform regularization; for adversarial ℓ2 regularization, the most improvements in clean accuracy are when the initial attack
is Elastic attack or when the new attack is ℓ∞ attack. Adversarial ℓ2 regularization generally maintains clean accuracy
for most attacks, but leads a drop in clean accuracy when the starting attack type is StAdv attack. We find that similarly,
variation regularization also maintains clean accuracy. Gaussian regularization on the other hand either maintains or exhibits
a tradeoff with clean accuracy.

J. Fine-tuning Ablations
J.1. Impact of starting and new attack pairs

Similar to Appendix I.4, we ablate over starting and new attack pairs in finetuning. In this section, we address the question:
does regularization in fine-tuning generally lead to more robust models? We follow the same setup as in Appendix I.4 but
we compare models fine-tuned with regularization (with no regularization in pretraining) to models fine-tuned without
regularization (with no regularization in pretraining). We present the differences in average accuracy across the 2 attacks,
union accuracy across the 2 attacks, accuracy on the starting attack, accuracy on the new attack, and clean accuracy between
the 2 settings for adversarial ℓ2 regularization (with λ = 0.5) in Figure 10 and for uniform regularization (with σ = 2 and
λ = 1) in Figure 13. In these figures, we highlight gains in accuracy larger than 1% in green and drops in accuracy larger
than 1% in red.

Adversarial ℓ2 regularization in fine-tuning generally improves performance but trades off clean accuracy. From
Figure 10, we can see that for many pairs of initial and new attack, regularization leads to improvements in union accuracy,
average accuracy, and new attack accuracy. However, this comes at a clear tradeoff with clean accuracy. For accuracy on
the initial attack, it is difficult to see clear trends; depending on threat models there can be gains in robustness or drops in
robustness. For example, when the new attack is ℓ∞, we find that the initial attack accuracy generally drops. We find that
variation regularization can also lead to gains in performance, but these gains are much less consistent than compared to
adversarial ℓ2 regularization.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 91.08 70.02 29.38 0.79 33.69 66.93 24.59 14.99 64.22 45.13 70.85 80.3 30.08 44.25 0.1
ℓ2 0.1 90.4 69.7 31.78 2.27 38.16 62.99 25.77 16.91 65.35 45.94 71.05 79.72 30.17 44.98 0.74
ℓ2 0.2 89.49 70.49 33.43 4.29 42.8 68.03 26.85 18.79 66.04 47.27 72.21 79.65 33.38 46.94 1.78
ℓ2 0.5 89.57 70.29 34.16 17.44 51.04 65.63 28.71 22.5 66.76 48.8 73.24 79.66 28.83 48.92 5.94
ℓ∞ 0 85.53 59.36 50.98 6.34 56.27 68.94 36.79 20.57 54.02 51 64.24 75.94 39.44 48.66 1.31
ℓ∞ 0.1 85.06 58.77 51.44 7.43 55.59 68.33 37.09 20.11 53.89 51.84 64.38 74.96 42.43 48.86 1.95
ℓ∞ 0.2 85.23 58.08 51.49 8.96 56.32 68.3 37.11 21.48 52.86 51.61 63.72 75.49 40.22 48.8 2.44
ℓ∞ 0.5 83.18 58.21 51.47 19.5 61.02 68.75 37.94 22.78 53.89 49.82 63.47 73.57 39.88 50.02 5.52
StAdv 0 87.12 5.48 0.07 56.22 5.69 17.62 57.8 5.93 11.09 76.02 77.47 54.04 43.4 34.24 0.05
StAdv 0.1 86.95 4.63 0.08 56.16 4.44 20.44 57.25 4.93 9.27 75.2 76.66 52.77 40.68 33.54 0.06
StAdv 0.2 81.39 5.99 0.1 54.98 8.16 15.97 48.37 5.81 11.07 68.05 72.03 48.7 45.22 32.04 0.09
StAdv 0.5 85.05 5.35 0.07 56.49 5.09 23.63 58.09 5.51 11.29 73.77 75.86 51.32 42.85 34.11 0.06
ReColor 0 93.61 37.17 7.03 0.01 67.48 55.53 37.14 8.27 45.36 35.55 60.92 77.2 32.28 38.66 0
ReColor 0.1 93.79 35.12 6.7 0 67.12 51.54 37.64 8.69 43.64 36.17 63.33 76 28.53 37.87 0
ReColor 0.2 93.84 37.7 7.87 0.01 68.67 55.97 38.3 9.81 46.85 38.54 60.01 77.73 31.13 39.38 0.01
ReColor 0.5 94.57 32.67 5.83 32.12 73.79 52.74 38.66 20.19 50.07 35.85 61.98 75.72 24.93 42.05 2.27
Gabor 0 94.08 0.3 0.01 0.01 4.43 92.39 16.96 8.96 2.08 2.31 17.99 41.61 11.87 16.58 0
Gabor 0.1 93.33 0.75 0.02 0.28 29.93 91.15 17.97 16.13 11.13 8.11 20.77 46.33 10.78 21.11 0
Gabor 0.2 93.38 1.17 0.01 9.4 54.87 91.15 25.47 33.47 26.37 19.74 21.57 51.05 9.43 28.64 0
Gabor 0.5 93.27 1.57 0.03 10.16 56.04 91.52 24.9 30.66 26.36 15.33 24.18 51.55 11.15 28.62 0.01
Snow 0 95.89 0.05 0 0.01 2.63 30.13 92.02 7.23 0.9 15.17 31.49 47.98 22.39 20.83 0
Snow 0.1 94.68 0.17 0 0.12 5.99 23.92 89.23 3.96 1.17 26.82 45.03 42.74 23.93 21.92 0
Snow 0.2 94.51 0.21 0 6.28 20.53 29.14 89.7 7.12 6.48 40.55 51.42 45.23 25.96 26.89 0
Snow 0.5 88.84 0.53 0 9.13 15.16 19.39 83.83 3.6 6.13 39.54 57.62 33.58 20.73 24.1 0
Pixel 0 94.76 0.07 0 0.01 8.87 57.65 36.6 88.35 1.77 14.52 38.18 67.5 16.21 27.48 0
Pixel 0.1 94.47 0.27 0 1.86 31.03 52.29 41.44 88.01 7.59 26.96 41.24 68.23 19.99 31.58 0
Pixel 0.2 94.01 0.27 0 5.57 34.43 51.54 43.31 88.53 8.9 28.75 43.53 66.73 18.36 32.49 0
Pixel 0.5 92.34 0.06 0 5.38 19.85 44.07 38.11 87.21 4.85 27.22 49.64 58.39 20.92 29.64 0
JPEG 0 90.26 56.48 21.5 0.52 34.74 68.59 21.12 10.57 73.46 40 74.3 78.35 28.02 42.3 0.09
JPEG 0.1 89.41 58.2 24.43 1.24 37.73 73.19 22 12.59 74.05 40.57 75.02 77.88 27.61 43.71 0.41
JPEG 0.2 88.56 58.55 26.21 3.19 41.12 71.49 22.1 14.65 74.23 40.7 75.43 78.17 24.93 44.23 1.08
JPEG 0.5 87.33 60.43 29.14 11.66 46.74 72.68 24.34 17.81 74.37 43.52 75.44 77.08 25.76 46.58 3.39
Elastic 0 94.06 1.32 0.02 7.5 7.92 25.41 53.68 9.16 11.2 79.47 72.94 50.24 33.1 29.33 0.01
Elastic 0.1 93.49 1.68 0.03 51.42 41.84 28.14 56.78 14.2 26.91 80.19 74.93 53.78 29.16 38.25 0.02
Elastic 0.2 93.32 1.87 0.01 17.64 11.84 25.67 55.38 5.61 9.2 80.66 77.2 51.52 36.14 31.06 0.01
Elastic 0.5 92.62 2.64 0.1 40.11 28.38 27.2 51.69 10.24 20.46 80.3 77.69 55.69 34.25 35.73 0.08
Wood 0 93.57 0.03 0 0.4 1.27 18.47 39.44 3.43 0.37 33.68 93.04 28.04 14.11 19.36 0
Wood 0.1 92.79 0.04 0 3.84 4.88 16.77 42.61 3.32 1.21 37.35 92.3 29.72 16.04 20.67 0
Wood 0.2 92.68 0.02 0 10.98 11.85 15.74 44.47 5.55 3.76 38.77 92.25 32.48 14.83 22.56 0
Wood 0.5 92.03 0.04 0 25.21 21.39 17.58 47.09 7.52 6.2 43.25 91.36 36.32 15.18 25.93 0
Glitch 0 93.26 0.02 0 0 11.49 49.03 24.44 12.47 3.14 10.89 31.99 90.77 16.61 20.9 0
Glitch 0.1 92.06 0.07 0 0 8.05 45.58 20.58 5.59 1.16 9.27 32.45 87.47 16.96 18.93 0
Glitch 0.2 90.33 1.09 0.09 0.01 17.43 54.43 20.15 8.3 7.71 21.52 47.55 83.74 19.34 23.45 0
Glitch 0.5 92.03 0.36 0.02 16.62 45.09 54.52 25.11 18.73 21.68 27.67 47.92 87.59 19.87 30.43 0
Kaleid-
oscope

0 96.03 0 0 0 0.8 39.49 40.94 5.75 0.02 2.4 43.08 33.71 91.97 21.51 0

Kaleid-
oscope

0.1 96.22 0.03 0 2.15 33.97 37.41 35.7 16.06 5.21 13.03 50.03 45.1 93.13 27.65 0

Kaleid-
oscope

0.2 96.14 0.07 0 7.48 43.57 39.96 38.95 18.03 8.43 16.61 50.22 48.81 92.94 30.42 0

Kaleid-
oscope

0.5 95.71 0.09 0 27.92 63.33 41.84 43.26 25.65 16.73 23.98 48.61 52.28 92.43 36.34 0

Table 14: Intial Training Ablations- adversarial ℓ2 regularization on CIFAR-10. Accuracy of initially trained models
on CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks. ℓ2
regularization computed using single step optimization is also considered during initial training, with regularization strength
λ. Results where regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 91.08 70.02 29.38 0.79 33.69 66.93 24.59 14.99 64.22 45.13 70.85 80.3 30.08 44.25 0.1
ℓ2 0.05 90.15 69.61 32.39 1.88 40.16 65.99 27.04 19.33 64.8 47.01 72.13 79.82 30.18 45.86 0.72
ℓ2 0.1 89.24 70.36 33.37 4.27 42.96 64.75 29.09 19.85 66.28 49.46 72.01 79.6 32.48 47.04 1.92
ℓ2 0.2 89.99 70.38 34.56 13.41 48.99 67.64 29.09 22.57 66.64 48.38 73.31 80.07 32.33 48.94 5.4
ℓ∞ 0 85.53 59.36 50.98 6.34 56.27 68.94 36.79 20.57 54.02 51 64.24 75.94 39.44 48.66 1.31
ℓ∞ 0.05 84.57 58.68 51.28 7.82 55.74 65.31 38.58 21.17 54.41 52.59 63.87 74.38 39.5 48.61 1.92
ℓ∞ 0.1 84.98 57.76 51.52 11.45 57.69 67.39 39.27 22.22 53.62 51.09 60.19 74.73 41.48 49.03 3.45
ℓ∞ 0.2 82.58 58.36 51.53 18.98 62.12 67.18 39.22 23.62 54.73 52 63.35 71.72 43.18 50.5 5.08
StAdv 0 87.12 5.48 0.07 56.22 5.69 17.62 57.8 5.93 11.09 76.02 77.47 54.04 43.4 34.24 0.05
StAdv 0.05 75.6 3.52 0.02 69.34 23.98 15.36 37.22 3.69 9.73 55.75 66.64 37.79 26.08 29.09 0.02
StAdv 0.1 81.12 8.78 0.24 69.82 15.75 27.34 48.4 5.1 29.68 66.67 77.1 53.77 34.7 36.45 0.17
StAdv 0.2 84.4 10.93 0.19 69.1 28.03 33.19 47.19 6.06 28.29 66.46 76.31 58.5 40.51 38.73 0.14
ReColor 0 93.61 37.17 7.03 0.01 67.48 55.53 37.14 8.27 45.36 35.55 60.92 77.2 32.28 38.66 0
ReColor 0.05 93.68 35.65 7.10 0.07 69.73 51.67 36.85 9.26 44.65 38.42 60.68 77.36 31.85 38.61 0.02
ReColor 0.1 93.63 33.32 7.00 19.46 77.93 57.73 36.18 17.35 47.63 34.61 61.9 76.26 27.3 41.39 2.22
ReColor 0.2 92.67 29.88 5.83 30.85 83.95 55.41 37.24 18.71 48.31 34.9 60.33 74.58 27.93 42.33 2.07
Gabor 0 94.08 0.3 0.01 0.01 4.43 92.39 16.96 8.96 2.08 2.31 17.99 41.61 11.87 16.58 0
Gabor 0.05 93.84 0.41 0.01 0.17 20.82 91.9 17.71 14.23 7.61 6.36 16.61 45.52 10.71 19.34 0
Gabor 0.1 93.69 1.14 0.03 4.47 45.21 91.2 22.26 27.21 22.28 19.2 19.73 47.75 9.99 25.87 0
Gabor 0.2 93.61 1.35 0.02 13.59 57.17 90.85 29.97 33.81 31.63 25.28 22.52 52.4 9.08 30.64 0
Snow 0 95.89 0.05 0 0.01 2.63 30.13 92.02 7.23 0.9 15.17 31.49 47.98 22.39 20.83 0
Snow 0.05 89.84 0.12 0 0.01 0.81 24.79 82.66 0.95 0.14 14.89 28.76 35.46 21.3 17.49 0
Snow 0.1 88.07 0.28 0 0.18 1.39 18.33 83.28 1.12 0.88 29.73 56.23 27.04 19.81 19.86 0
Snow 0.2 94.56 0.21 0 29.86 42.55 23.26 90.96 14.4 15.56 49.51 50.92 50.35 26.23 32.82 0
Pixel 0 94.76 0.07 0 0.01 8.87 57.65 36.6 88.35 1.77 14.52 38.18 67.5 16.21 27.48 0
Pixel 0.05 93.81 0.01 0 0.03 12.65 59.31 36.8 88.88 3.83 14.19 40.33 62.99 16.9 27.99 0
Pixel 0.1 93.54 0.02 0 0.22 15.32 54.00 38.37 89.45 3.9 14.35 38.81 63.48 17.75 27.97 0
Pixel 0.2 93.06 0.06 0.01 3.59 22.18 50.55 40.96 89.39 9.85 16.49 40.79 61.44 18.25 29.46 0
JPEG 0 90.26 56.48 21.5 0.52 34.74 68.59 21.12 10.57 73.46 40 74.3 78.35 28.02 42.3 0.09
JPEG 0.05 89.52 57.89 23.81 1.19 37.2 71.84 21.88 13.16 73.9 38.82 74.05 78.61 27.97 43.36 0.46
JPEG 0.1 89.09 58.18 25.89 4.28 40.45 74.3 20.85 14.35 74.42 40.82 75.08 78.07 25.35 44.34 1.42
JPEG 0.2 87.98 58.94 26.85 10.19 44.26 70.96 22.18 16.37 74.17 41.13 76.03 77.65 24.9 45.3 2.74
Elastic 0 94.06 1.32 0.02 7.5 7.92 25.41 53.68 9.16 11.2 79.47 72.94 50.24 33.1 29.33 0.01
Elastic 0.05 93.88 1.49 0.01 7.27 8.18 23.48 51.12 9.32 11.5 79.77 73.88 50.2 30.32 28.88 0.01
Elastic 0.1 94.13 1.2 0 7.25 7.87 20.68 53.62 8.52 10.93 79.93 74.77 49.44 30.54 28.73 0
Elastic 0.2 93.79 1.23 0.01 6.49 6.77 21.8 53.29 7.64 10.75 79.76 73.77 49.72 32.75 28.67 0
Wood 0 93.57 0.03 0 0.4 1.27 18.47 39.44 3.43 0.37 33.68 93.04 28.04 14.11 19.36 0
Wood 0.05 92.78 0.01 0 0.65 1.65 16.47 41.6 2.41 0.51 35.08 92.36 27.79 17.15 19.64 0
Wood 0.1 92.59 0.02 0 3.3 5.25 18.41 43.33 4.07 1.67 37.47 92.02 29.95 14.92 20.87 0
Wood 0.2 91.92 0.03 0 8.21 8.76 15.98 42.64 5.12 2.58 38.15 91.5 32.01 14.15 21.59 0
Glitch 0 93.26 0.02 0 0 11.49 49.03 24.44 12.47 3.14 10.89 31.99 90.77 16.61 20.9 0
Glitch 0.05 92.38 0.01 0 0.03 16.86 48.73 23.12 9.96 5.16 14.01 31.82 90.8 15.63 21.34 0
Glitch 0.1 92.14 0.02 0 0.23 24.38 48.71 22.89 10.69 5.38 17.19 32.08 91.19 14.59 22.28 0
Glitch 0.2 92.62 0.04 0 5.11 39.62 56.19 26.18 18.76 14.5 26.28 31.86 90.95 16.25 27.15 0
Kaleid-
oscope

0 96.03 0 0 0 0.8 39.49 40.94 5.75 0.02 2.4 43.08 33.71 91.97 21.51 0

Kaleid-
oscope

0.05 96.31 0 0 0 1.59 39 35.73 6.29 0.02 1.88 40.31 36.53 93.07 21.2 0

Kaleid-
oscope

0.1 96.22 0 0 0 1.4 39.98 33.78 6.75 0.01 1.9 43.17 35.1 92.83 21.24 0

Kaleid-
oscope

0.2 96.01 0 0 0 1.33 34.92 35.41 6.01 0.1 2.61 38.35 36.8 92.7 20.69 0

Table 15: Intial Training Ablations- variation regularization on CIFAR-10. Accuracy of initially trained models on
CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks. Variation
regularization computed using single step optimization is also considered during initial training, with regularization strength
λ. Results where regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 91.08 70.02 29.38 0.79 33.69 66.93 24.59 14.99 64.22 45.13 70.85 80.3 30.08 44.25 0.1
ℓ2 1 90.4 70.22 32.73 6.17 41.96 69.81 25.46 18.13 65.98 45.71 72.72 79.51 30.13 46.54 2.48
ℓ2 2 89.45 69.44 31.97 12.15 51.04 69.03 25.71 19.54 66.11 47.5 71.44 79.25 30.8 47.83 3.21
ℓ2 5 88.34 66.66 27.41 26.22 60.22 69.16 26.67 22.57 64.08 46.83 71.14 77.6 31.36 49.16 6.23
ℓ∞ 0 85.53 59.36 50.98 6.34 56.27 68.94 36.79 20.57 54.02 51 64.24 75.94 39.44 48.66 1.31
ℓ∞ 1 85.28 63.66 50.72 10.51 60.1 66.63 36.67 21.66 60.69 51.72 65.61 76.04 38.41 50.2 3.01
ℓ∞ 2 81.97 63.5 48.24 17.33 64.72 65.73 38.7 24.49 61.25 51.96 63.63 72.82 39.16 50.96 4.97
ℓ∞ 5 78.04 60.28 40.59 42.25 70 67.06 33.4 26.57 60.07 49.21 64.61 67.08 38.43 51.63 8.36
StAdv 0 87.12 5.48 0.07 56.22 5.69 17.62 57.8 5.93 11.09 76.02 77.47 54.04 43.4 34.24 0.05
StAdv 1 81.36 24.44 1.29 73.69 53.63 40.94 39.39 10.47 39.05 65.18 72.43 62.43 36.21 43.26 0.88
StAdv 2 82.8 38.42 3.9 71.03 55.3 51.03 39.71 12.12 50.4 63.57 74.24 68.98 38.32 47.25 2.11
ReColor 0 93.61 37.17 7.03 0.01 67.48 55.53 37.14 8.27 45.36 35.55 60.92 77.2 32.28 38.66 0
ReColor 1 92.96 51.36 13.58 5.96 73.47 63.31 31.94 8.73 59.67 42.6 65.49 78.37 34.22 44.06 1.43
ReColor 2 92.34 53.34 14.88 17.02 78.21 63.32 34.31 13.28 58.69 44.23 65.48 77.02 37.79 46.46 3.7
ReColor 5 86.49 54.92 16.5 44.41 78.3 68.38 32.22 27.48 56.59 45.33 65.82 73.44 27.4 49.23 6.81
Gabor 0 94.08 0.3 0.01 0.01 4.43 92.39 16.96 8.96 2.08 2.31 17.99 41.61 11.87 16.58 0
Gabor 1 91.84 24.27 0.69 10.02 41.71 87.58 23.11 13.99 32.19 27.95 47.51 62.62 15.27 32.24 0.24
Gabor 2 90.58 9.65 0.06 0.17 17.39 87.02 16.34 5.68 9.84 15.66 42.22 52.81 14.41 22.6 0
Snow 0 95.89 0.05 0 0.01 2.63 30.13 92.02 7.23 0.9 15.17 31.49 47.98 22.39 20.83 0
Snow 0.5 90.18 26.34 0.63 4.74 22.47 70.47 79.6 7.67 25.69 39.56 46.21 69.51 14.55 33.95 0.13
Snow 1 86.82 25.02 0.93 14.74 40.4 65.19 74.04 8.76 31.82 41.78 50.21 67.76 22.3 36.91 0.36
Snow 2 75.97 38.33 8.48 3.21 24.12 57.66 66.64 8.1 34.75 39.83 47.16 60.87 25.36 34.54 0.85
Pixel 0 94.76 0.07 0 0.01 8.87 57.65 36.6 88.35 1.77 14.52 38.18 67.5 16.21 27.48 0
Pixel 1 88.35 11.76 0.16 0.38 23.23 63.75 28.4 71.23 7.2 31.88 47.73 71.87 21.77 31.61 0.02
Pixel 2 79.87 22.8 3.38 1.75 34.1 59 24 60.74 13.63 33.78 52.8 66.58 31.06 33.63 0.22
JPEG 0 90.26 56.48 21.5 0.52 34.74 68.59 21.12 10.57 73.46 40 74.3 78.35 28.02 42.3 0.09
JPEG 1 89.29 60.05 26.16 4.69 42.29 74.59 22.64 13.53 74.29 43.93 74.64 77.74 29.07 45.3 1.33
JPEG 2 88.49 61.79 27.73 12.37 47.32 71.46 25.63 17.62 73.98 45.12 72.8 78.03 27.9 46.81 3.87
Elastic 0 94.06 1.32 0.02 7.5 7.92 25.41 53.68 9.16 11.2 79.47 72.94 50.24 33.1 29.33 0.01
Elastic 1 91.85 17.14 0.54 5.55 14.6 40.8 35.05 5.55 31.41 66.9 75.26 65.89 30.44 32.43 0.17
Elastic 2 67.79 43.66 17.81 23 31.04 56.14 28.89 15.31 47.71 51.31 57.9 59.33 34.56 38.89 4.6
Wood 0 93.57 0.03 0 0.4 1.27 18.47 39.44 3.43 0.37 33.68 93.04 28.04 14.11 19.36 0
Wood 1 89.61 30.94 3.52 17.14 30.98 26.2 4.9 53.36 45.05 56.82 82.92 66.69 25.1 36.97 0.69
Wood 2 85.72 30.94 3.52 17.14 30.98 53.36 26.2 4.9 45.05 56.82 82.92 66.69 25.1 36.97 0.69
Glitch 0 93.26 0.02 0 0 11.49 49.03 24.44 12.47 3.14 10.89 31.99 90.77 16.61 20.9 0
Glitch 1 90.16 34.66 2.61 0.28 22.95 64.19 22.01 12.38 28.75 39.22 60.2 83.26 23.6 32.84 0.01
Glitch 2 79.67 44.33 9.64 1.01 27.31 60.07 17.26 15.28 38.23 42.31 58.64 72.43 30.1 34.72 0.36
Kaleid-
oscope

0 96.03 0 0 0 0.8 39.49 40.94 5.75 0.02 2.4 43.08 33.71 91.97 21.51 0

Kaleid-
oscope

0.1 93.16 5.39 0.02 0.02 4.89 55.54 35.63 5.32 3.25 17.43 52.59 60.06 86.77 27.24 0

Kaleid-
oscope

0.5 88.9 16.02 0.22 0.17 9.98 54.63 29.68 6.35 9.75 29.38 49.24 64.47 78.4 29.02 0

Kaleid-
oscope

1 68.25 14.05 0.51 5.33 42 48.53 14.55 10.46 13.6 21.92 32.66 45.02 62.09 25.89 0.09

Table 16: Intial Training Ablations- Uniform regularization on CIFAR-10. Accuracy of initially trained models
on CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks.
Uniform regularization (with σ = 2) is also considered during initial training, with regularization strength λ. Results where
regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green, while results where
regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to regularization
strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 91.08 70.02 29.38 0.79 33.69 66.93 24.59 14.99 64.22 45.13 70.85 80.3 30.08 44.25 0.1
ℓ2 0.1 90.24 70.25 31.05 3.01 40.33 70.49 24.6 16.78 65.57 44.87 73.93 79.68 29.94 45.86 1.21
ℓ2 0.2 90.07 69.57 31.8 9.58 46.6 72.49 25.22 18.95 65.22 46.79 76.23 79.36 28.74 47.55 3
ℓ2 0.5 86.89 68.19 32.02 16.54 58.32 74.85 25.69 21.26 65.32 46.82 74.08 76.99 31.93 49.33 4.18
ℓ∞ 0 85.53 59.36 50.98 6.34 56.27 68.94 36.79 20.57 54.02 51 64.24 75.94 39.44 48.66 1.31
ℓ∞ 0.1 86.18 60.45 51.52 7.07 57.5 68.54 38.96 21.24 56.43 50.39 64.66 75.78 38.74 49.27 1.8
ℓ∞ 0.2 85.19 61.63 50.12 17.67 67.92 69.6 40.02 23.22 57.72 52.76 66.28 75 40.86 51.9 3.93
ℓ∞ 0.5 80.65 59.74 46.12 34.57 70.49 68.33 35.8 26.04 57.28 51.98 65.46 70.73 38.21 52.06 6.28
StAdv 0 87.12 5.48 0.07 56.22 5.69 17.62 57.8 5.93 11.09 76.02 77.47 54.04 43.4 34.24 0.05
StAdv 0.1 72.19 1.16 0.02 62.36 42.38 44.84 35.9 10.54 16.17 52.73 65.04 50.52 34.58 34.69 0.02
StAdv 0.2 79.63 11.11 0.42 72.58 57.96 43.27 40.28 11.09 25.26 60.64 70.43 57.7 36.15 40.57 0.34
StAdv 0.5 76.35 30.61 4.69 66.84 61.11 50.18 36.59 16.76 39.22 57 67.71 62.31 34.1 43.92 3.13
ReColor 0 93.61 37.17 7.03 0.01 67.48 55.53 37.14 8.27 45.36 35.55 60.92 77.2 32.28 38.66 0
ReColor 0.1 93.51 36.05 8.59 24.25 79.15 65.07 36.75 17.11 49.12 35.86 65.18 76.15 31.97 43.77 3.03
ReColor 0.2 91.49 37.6 9.06 37.99 84.17 69.1 34.02 18.72 51.51 38.12 68.6 73.16 31.63 46.14 3.02
ReColor 0.5 74.12 34.15 8.14 41.98 71.03 58.2 23.92 18.45 43.7 32.07 57.27 55.79 24.93 39.14 3.53
Gabor 0 94.08 0.3 0.01 0.01 4.43 92.39 16.96 8.96 2.08 2.31 17.99 41.61 11.87 16.58 0
Gabor 0.1 91.52 10.06 0.38 12.04 49.59 89.29 26.41 19.27 32.58 23.99 50.29 54.77 16.1 32.06 0.13
Gabor 0.2 88.56 9.45 0.34 0.72 23.46 85.27 20.59 8.44 17.77 19.99 49 54.96 15.62 25.47 0.04
Gabor 0.5 83.09 31.81 4.79 1.81 26.15 79.32 20.61 10.17 30.49 34.34 64.64 64.17 19.19 32.29 0.44
Snow 0 95.89 0.05 0 0.01 2.63 30.13 92.02 7.23 0.9 15.17 31.49 47.98 22.39 20.83 0
Snow 0.1 91.74 9.94 0.1 0.51 19.93 69.04 82.63 7.67 12.96 34.24 44.21 70.07 15.53 30.57 0
Snow 0.2 89.18 19.18 0.57 0.95 18.26 73.07 76.98 9.2 19.02 36.91 44.69 70.51 14.24 31.96 0.04
Snow 0.5 74.52 24.82 1.68 3.67 33.1 57.71 65 10.01 22.39 40 40.36 61.17 21.48 31.78 0.56
Pixel 0 94.76 0.07 0 0.01 8.87 57.65 36.6 88.35 1.77 14.52 38.18 67.5 16.21 27.48 0
Pixel 0.1 86.83 0.9 0 1.1 41.32 67.39 32.7 77.05 6.22 15.43 42.24 51.45 18.18 29.5 0
Pixel 0.2 89.6 4.25 0.01 0.14 20.42 68.55 29.56 76.23 3.57 25.36 46.03 68.2 19.96 30.19 0
Pixel 0.5 61.01 23.09 3.41 6.93 34.6 49.26 19.29 44.75 17.11 30.67 44.62 52.42 28.13 29.52 0.89
JPEG 0 90.26 56.48 21.5 0.52 34.74 68.59 21.12 10.57 73.46 40 74.3 78.35 28.02 42.3 0.09
JPEG 0.1 89.2 58.97 25.22 2.37 38.03 72.82 22.11 12.85 74.03 41.87 76.66 77.74 25.58 44.02 0.76
JPEG 0.2 88.78 61.28 27.5 8.27 43.35 71.66 22.78 14.46 74.65 43.63 75.89 78 26.09 45.63 2.01
JPEG 0.5 87.31 59.83 27.21 15.54 45.36 71.31 23.82 17.46 73.08 42.7 76.09 76.9 23.25 46.05 3.92
Elastic 0 94.06 1.32 0.02 7.5 7.92 25.41 53.68 9.16 11.2 79.47 72.94 50.24 33.1 29.33 0.01
Elastic 0.1 85.66 13.24 0.91 5.6 14.65 46.65 37.92 5.34 18.66 63.35 70.45 58.79 27.89 30.29 0.39
Elastic 0.2 85.22 28.9 2.8 6.43 18.55 53.96 37.91 6.43 35.93 63.82 69.97 65.53 33.61 35.32 0.26
Elastic 0.5 76.85 42.02 10.72 26.19 46.27 58.45 30.94 11.09 48.24 57.25 62.24 65.81 28.98 40.68 2.76
Wood 0 93.57 0.03 0 0.4 1.27 18.47 39.44 3.43 0.37 33.68 93.04 28.04 14.11 19.36 0
Wood 0.1 91.08 1.29 0.12 11.65 19.03 49.39 30.26 7.09 10.12 44.63 89.51 50.35 22.37 27.98 0.01
Wood 0.2 90.9 3.9 0.12 18.97 27.03 50.3 31.63 7.97 18.49 50.87 89.35 58.41 22.88 31.66 0.05
Wood 0.5 77.59 29.6 6.65 9.33 23.37 55.4 19.74 8.3 34.75 49.11 75.26 59.65 24.26 32.95 0.87
Glitch 0 93.26 0.02 0 0 11.49 49.03 24.44 12.47 3.14 10.89 31.99 90.77 16.61 20.9 0
Glitch 0.1 85.96 1.29 0.13 0.08 16.46 56.48 19.95 8.38 6.56 20.67 44.52 78.95 18.31 22.65 0
Glitch 0.2 83.4 18.14 1.94 0.23 24.5 60.76 19.24 11.85 27.46 33.38 57.36 77.04 23.12 29.59 0.01
Glitch 0.5 75.81 36.99 6.88 1.22 27.29 59.99 17.29 14.18 34.71 36.39 60.77 68.21 22.75 32.22 0.21
Kaleid-
oscope

0 96.03 0 0 0 0.8 39.49 40.94 5.75 0.02 2.4 43.08 33.71 91.97 21.51 0

Kaleid-
oscope

0.1 83.96 1.15 0 0.07 19.63 53.87 29.05 7.32 1.72 15.51 47.8 52.33 72.8 25.1 0

Kaleid-
oscope

0.2 82.48 0.8 0 0.07 3.81 59.93 25.75 6.5 0.89 10.87 40.35 50.44 66.42 22.15 0

Kaleid-
oscope

0.5 46.61 28.96 11.27 23.59 23.05 41.04 15.98 15.01 33.14 30.43 42.2 41.4 44.04 29.18 5.31

Table 17: Intial Training Ablations- Gaussian regularization on CIFAR-10. Accuracy of initially trained models on
CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks. Gaussian
regularization (with σ = 0.2) is also considered during initial training, with regularization strength λ. Results where
regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green, while results where
regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to regularization
strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 90.04 83.95 7.57 5.27 33.91 65.17 89.3 28.99 67.52 62.85 49.22 45.78 12.76 46.03 0.51
ℓ2 0.1 88.97 83.13 12.69 8.54 35.64 66.65 88.2 31.39 68.69 61.73 49.22 46.34 17.3 47.46 1.2
ℓ2 0.2 89.68 84.36 16.94 9.96 39.95 66.37 88.89 32.48 72.87 63.67 52.25 48.64 17.1 49.46 1.83
ℓ2 0.5 89.76 84.41 25.32 16.08 44.38 69.25 87.69 35.46 74.42 62.47 57.66 50.37 20.84 52.36 41.27
ℓ∞ 0 84.51 81.71 58.39 43.49 67.82 72.61 83.31 41.83 65.35 63.9 67.18 63.64 30.75 61.67 13.2
ℓ∞ 0.1 82.29 80.25 58.5 47.85 66.8 69.55 81.5 41.4 65.53 61.45 63.13 64.23 33.89 61.17 16.15
ℓ∞ 0.2 83.56 81.04 59.75 46.04 67.69 73.12 82.75 42.27 67.26 63.97 67.01 62.93 34.04 62.32 16.92
ℓ∞ 0.5 81.53 77.91 59.62 48.48 69.3 67.87 80.23 41.86 54.85 61.71 64.18 67.77 38.98 61.06 19.31
StAdv 0 83.31 77.58 1.45 69.81 13.43 36.66 81.5 20.56 49.89 70.32 60.76 36.15 24.84 45.25 1.04
StAdv 0.1 81.89 76.31 2.24 69.17 12.23 32.23 79.92 18.39 52.25 70.42 60.46 39.29 20.59 44.46 1.25
StAdv 0.2 82.09 76.66 1.71 69.04 11.11 45.25 80.13 17.1 44.74 69.61 60.89 40.03 21.32 44.8 1.25
StAdv 0.5 80.66 73.86 1.68 67.67 10.65 60.03 77.58 15.39 44.97 67.8 59.41 41.86 21.78 45.22 1.35
ReColor 0 91.34 81.53 0.03 0.41 79.08 42.55 90.6 22.39 25.2 64.31 54.8 18.65 8.94 40.71 0
ReColor 0.1 91.26 82.5 0.05 0.48 80.74 47.03 91.08 25.3 27.16 63.54 55.39 20.94 11.75 42.16 0
ReColor 0.2 91.87 83.67 0.03 0.89 81.76 49.63 91.44 23.62 34.62 66.37 57.61 23.64 10.93 43.68 0
ReColor 0.5 90.32 81.43 0 0.84 80.69 46.32 89.55 30.09 32.18 65.63 61.17 26.42 13.35 43.97 0
Gabor 0 89.12 85.27 4.41 2.11 37.83 87.31 87.62 20.28 57.66 52.33 38.73 38.88 9.22 43.47 0.1
Gabor 0.1 87.44 83.77 9.45 5.96 40.05 86.01 85.5 21.94 58.47 52.41 41.61 43.57 16.13 45.41 1.25
Gabor 0.2 88.56 85.48 13.4 8.84 44.28 87.36 87.54 27.77 62.98 54.98 47.92 48.05 16.87 48.79 1.4
Gabor 0.5 87.06 84.33 21.04 15.34 50.45 85.38 84.18 32.05 64.84 55.62 53.61 51.44 15.46 51.14 4.05
Snow 0 87.69 71.59 0.08 1.53 11.97 30.68 62.9 7.31 8.59 66.24 70.78 11.82 9.91 29.45 0.05
Snow 0.1 88.18 70.47 0.08 1.32 11.9 29.86 59.97 6.96 7.26 66.57 71.24 11.67 8.61 28.83 0.03
Snow 0.2 87.69 71.85 0.03 1.81 12.71 44.33 62.27 8.31 9.22 66.39 71.08 15.54 13.12 31.39 0.03
Snow 0.5 88 71.39 0.05 2.06 15.77 38.88 62.32 10.22 10.24 66.34 72.25 15.13 10.47 31.26 0
Pixel 0 88.64 67.24 0 0.59 34.96 30.37 87.18 78.6 0.25 61.63 52.08 49.38 23.97 40.52 0
Pixel 0.1 89.73 69.17 0 0.79 39.18 37.81 88.61 81.48 0.51 62.17 49.02 50.11 26.32 42.1 0
Pixel 0.2 90.47 70.55 0 0.61 45.02 32.69 89.07 83.06 1.07 65.99 51.59 53.32 28.23 43.43 0
Pixel 0.5 88.2 64.38 0 1.12 45.68 30.11 87.59 82.37 0.74 64.13 53.35 59.46 30.27 43.27 0
JPEG 0 88.43 85.63 15.29 5.43 41.78 77.35 86.85 23.21 80.87 53.81 43.39 44.79 15.39 47.82 0.74
JPEG 0.1 88.23 85.68 22.98 9.17 45.22 84.03 86.17 24.08 81.76 56.87 46.52 46.47 15.08 50.34 2.04
JPEG 0.2 88.2 85.71 25.68 11.82 44.31 82.85 86.17 24.71 81.86 56.25 47.67 47.29 17.66 51 2.55
JPEG 0.5 87.08 84.89 31.8 15.75 51.36 84.46 84.92 28.82 82.06 54.93 48.18 54.85 18.6 53.38 3.8
Elastic 0 89.66 77.48 0 0.82 12.25 21.81 88.05 16.84 5.71 78.6 62.01 16.79 11.69 32.67 0
Elastic 0.1 90.96 80.36 0 2.57 12.54 28.05 89.71 16.18 14.04 82.62 65.58 16.99 14.47 35.26 0
Elastic 0.2 88.41 79.18 0.05 5.15 13.04 26.42 86.7 17.89 15.24 81.27 66.11 21.02 13.55 35.47 0.03
Elastic 0.5 89.53 80.79 0.03 8.79 16.71 29.66 87.62 19.52 22.29 83.97 66.88 20.31 11.21 37.31 0
Wood 0 85.91 50.09 0 0.82 11.11 35.87 83.31 11.13 1.2 60.94 78.83 14.96 11.13 29.95 0
Wood 0.1 88.28 75.77 0 2.42 14.14 38.9 86.09 12.97 9.94 67.18 84.31 22.09 9.66 35.29 0
Wood 0.2 89.45 72.61 0.03 1.91 11.44 43.69 87.36 8.05 9.86 67.49 86.88 16.79 10.17 34.69 0.03
Wood 0.5 85.99 67.18 0.03 4.1 12.87 38.8 83.01 10.34 9.91 66.37 85.07 20.46 9.32 33.96 0.03
Glitch 0 88.51 36.41 0 0 6.7 18.47 86.96 17.1 0 60 50.93 84.97 6.37 30.66 0
Glitch 0.1 88.33 32.38 0 0.08 7.26 21.86 86.27 15.36 0.03 61.2 50.6 86.68 6.73 30.7 0
Glitch 0.2 87.85 48.89 0.03 0.43 22.78 23.75 85.35 20.08 2.52 63.13 50.34 86.19 10.42 34.49 0
Glitch 0.5 86.98 65.1 0 2.57 23.11 32.18 84.05 30.7 7.11 64.36 58.75 85.35 16.64 39.16 0
Kaleid-
oscope

0 88.1 73.5 0 0.31 7.03 28.66 85.91 18.83 2.22 62.98 29.78 21.07 84.89 34.6 0

Kaleid-
oscope

0.1 88.38 78.98 0.03 2.68 13.96 33.53 85.96 25.12 11.87 67.13 49.12 27.77 85.66 40.15 0

Kaleid-
oscope

0.2 88.51 78.78 0.03 6.5 20.48 31.95 85.66 29.4 10.22 68.51 34.85 36.74 86.09 40.77 0.03

Kaleid-
oscope

0.5 87.01 79.62 0.56 16.38 24.13 31.67 84.48 32.74 23.06 68.61 58.09 37.94 84.2 45.12 0.43

Table 18: Intial Training Ablations- worst-case ℓ2 regularization on ImageNette. Accuracy of initially trained models
on ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks. ℓ2
regularization computed using single step optimization is also considered during initial training, with regularization strength
λ. Results where regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 90.04 83.95 7.57 5.27 33.91 65.17 89.3 28.99 67.52 62.85 49.22 45.78 12.76 46.03 0.51
ℓ2 0.05 88.51 82.75 13.55 10.14 33.5 63.03 87.11 29.66 69.17 63.9 53.27 41.78 17.12 47.08 2.22
ℓ2 0.1 89.5 83.64 16.89 9.2 41.71 56.97 86.93 37.91 71.52 62.62 54.34 51.85 20.71 49.52 1.45
ℓ2 0.2 88.87 84.17 25.27 14.04 44.71 74.27 86.96 36.74 74.39 63.36 53.07 49.45 15.34 51.82 2.42
ℓ∞ 0 84.51 81.71 58.39 43.49 67.82 72.61 83.31 41.83 65.35 63.9 67.18 63.64 30.75 61.67 13.2
ℓ∞ 0.05 83.13 80.15 58.73 44.92 67.44 65.53 83.24 41.53 61.58 62.42 62.98 65.07 29.63 60.26 14.55
ℓ∞ 0.1 83.36 80.23 58.93 43.57 67.85 69.71 82.85 40.13 56.79 63.13 65.58 65.66 31.97 60.53 16.08
ℓ∞ 0.2 81.22 77.83 59.21 51.57 67.97 65.66 80.69 42.52 58.19 61.76 61.15 67.44 40.03 61.17 19.13
StAdv 0 83.31 77.58 1.45 69.81 13.43 36.66 81.5 20.56 49.89 70.32 60.76 36.15 24.84 45.25 1.04
StAdv 0.05 82.14 77.17 2.06 73.02 24.94 45.5 78.62 22.09 48.97 69.99 62.47 38.73 28.79 47.7 1.63
StAdv 0.1 79.08 72.79 1.86 70.19 35.87 48.92 74.52 20.25 43.9 63.29 57.96 35.21 24.05 45.73 1.55
StAdv 0.2 80.89 74.09 3.31 75.49 30.42 51.21 77.61 16.56 52.56 67.06 62.75 36.28 22.39 47.48 2.98
ReColor 0 91.34 81.53 0.03 0.41 79.08 42.55 90.6 22.39 25.2 64.31 54.8 18.65 8.94 40.71 0
ReColor 0.05 91.08 80.64 0.03 0.56 79.24 46.8 90.45 29.3 27.24 64.03 55.31 26.55 12.03 42.68 0
ReColor 0.1 92.18 84.33 0.18 1.61 82.93 53.66 91.11 29.66 40.79 66.04 57.25 31.16 15.24 46.16 0
ReColor 0.2 92.1 83.92 0.25 2.45 83.9 54.52 91.54 33.73 43.26 67.57 57.83 37.94 12.51 47.45 0.1
Gabor 0 89.12 85.27 4.41 2.11 37.83 87.31 87.62 20.28 57.66 52.33 38.73 38.88 9.22 43.47 0.1
Gabor 0.05 88.76 84.48 5.61 3.54 35.49 87.54 88 18.73 56.61 56.08 43.21 37.45 12.69 44.12 0.61
Gabor 0.1 87.92 84.1 8.36 4.79 41.81 85.66 84.92 26.29 54.29 52.97 45.17 45.2 11.08 45.39 0.36
Gabor 0.2 87.97 84.33 12.46 8.99 44.36 86.55 85.27 29.12 57.4 55.67 51.41 49.91 13.25 48.23 1.55
Snow 0 87.69 71.59 0.08 1.53 11.97 30.68 62.9 7.31 8.59 66.24 70.78 11.82 9.91 29.45 0.05
Snow 0.05 86.85 70.34 0.05 1.48 10.01 33.2 64.71 7.52 9.15 64.46 69.55 11.41 8.94 29.24 0.03
Snow 0.1 86.04 70.96 0.18 1.86 10.57 23.77 61.43 8.48 7.49 65.32 70.34 15.21 7.77 28.62 0.13
Snow 0.2 87.62 68.89 0.15 1.61 11.97 29.91 64.38 7.06 8.03 66.09 71.8 12 9.96 29.32 0.1
Pixel 0 88.64 67.24 0 0.59 34.96 30.37 87.18 78.6 0.25 61.63 52.08 49.38 23.97 40.52 0
Pixel 0.05 89.07 68.99 0 1.12 40.66 29.38 87.92 80.79 0.64 62.32 49.32 52.05 25.86 41.59 0
Pixel 0.1 89.2 70.73 0 1.04 43.49 33.71 88.1 82.55 0.79 64.48 49.78 49.94 29.3 42.83 0
Pixel 0.2 90.7 67.41 0 1.02 46.45 33.25 89.25 83.95 1.73 63.77 50.8 52.89 31.24 43.48 0
JPEG 0 88.43 85.63 15.29 5.43 41.78 77.35 86.85 23.21 80.87 53.81 43.39 44.79 15.39 47.82 0.74
JPEG 0.05 87.31 84.54 23.72 8.51 46.7 80.56 86.11 24.82 80.87 54.39 45.02 45.3 17.32 49.82 2.01
JPEG 0.1 86.75 84.05 24.33 11.39 43.13 79.8 84.89 24.15 80.23 52.79 47.34 47.82 16.36 49.69 2.7
JPEG 0.2 86.65 83.64 27.57 15.44 45.61 81.17 84.74 26.78 80.64 57.68 49.99 50.93 20.08 52.02 4.13
Elastic 0 89.66 77.48 0 0.82 12.25 21.81 88.05 16.84 5.71 78.6 62.01 16.79 11.69 32.67 0
Elastic 0.05 88.99 75.67 0 0.74 11.11 19.06 88.23 15.34 5.17 79.21 59.97 15.69 7.85 31.5 0
Elastic 0.1 89.43 77.48 0 1.12 10.14 25.07 88.43 12.43 5.53 79.44 62.09 13.38 8.82 31.99 0
Elastic 0.2 88.36 74.14 0 0.66 12.33 26.93 87.31 15.13 3.13 77.25 58.98 14.75 13.99 32.05 0
Wood 0 85.91 50.09 0 0.82 11.11 35.87 83.31 11.13 1.2 60.94 78.83 14.96 11.13 29.95 0
Wood 0.05 88.61 72.03 0.03 0.36 10.27 29.43 86.11 8.43 4.1 67.69 85.27 17.99 9.76 32.62 0
Wood 0.1 87.54 70.93 0.03 0.48 12.25 23.59 86.62 10.6 5.2 65.1 83.24 20.87 8 32.24 0.03
Wood 0.2 87.77 73.89 0 2.22 10.14 34.78 86.04 9.15 9.27 66.14 84.08 20.28 11.03 33.92 0
Glitch 0 88.51 36.41 0 0 6.7 18.47 86.96 17.1 0 60 50.93 84.97 6.37 30.66 0
Glitch 0.05 87.97 6.62 0 0 4.2 29.81 86.5 12.1 0 53.71 49.12 81.91 2.96 27.24 0
Glitch 0.1 87.52 31.75 0 0.05 16.1 21.25 86.06 19.21 0.05 62.62 55.01 86.24 6.04 32.03 0
Glitch 0.2 86.47 53.61 0 0.64 23.21 24.51 85.22 25.55 1.35 61.15 52.08 84.79 9.86 35.16 0
Kaleid-
oscope

0 88.1 73.5 0 0.31 7.03 28.66 85.91 18.83 2.22 62.98 29.78 21.07 84.89 34.6 0

Kaleid-
oscope

0.05 86.9 71.03 0.03 0.64 6.24 29.15 85.32 15.69 3.11 59.85 44.71 23.49 84.23 35.29 0

Kaleid-
oscope

0.1 87.64 74.14 0 0.56 9.15 25.71 85.4 17.58 3.87 60.87 27.52 25.81 85.15 34.65 0

Kaleid-
oscope

0.2 87.46 74.8 0 1.25 9.78 24.36 86.06 20.87 3.49 62.39 28.15 23.64 85.17 35 0

Table 19: Intial Training Ablations- variation regularization on ImageNette. Accuracy of initially trained models on
ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks. Variation
regularization computed using single step optimization is also considered during initial training, with regularization strength
λ. Results where regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid
-oscope

Avg Union

ℓ2 0 90.04 83.95 7.57 5.27 33.91 65.17 89.3 28.99 67.52 62.85 49.22 45.78 12.76 46.03 0.51
ℓ2 0.5 89.68 83.49 8.64 6.17 34.17 64.59 88.92 29.1 68.41 64.59 51.49 42.14 13.58 46.27 0.36
ℓ2 1 89.45 82.9 10.37 7.49 33.1 67.95 87.59 28.05 69.38 61.27 50.83 42.5 14.9 46.36 0.76
ℓ2 2 89.76 83.36 10.6 6.73 35.01 63.03 88.46 29.17 68.79 62.83 51.11 42.22 12.87 46.18 0.61
ℓ∞ 0 84.51 81.71 58.39 43.49 67.82 72.61 83.31 41.83 65.35 63.9 67.18 63.64 30.75 61.67 13.2
ℓ∞ 0.5 84.51 81.63 58.93 44.66 67.62 72.05 83.69 43.31 62.62 62.22 64.54 66.42 32.71 61.7 14.42
ℓ∞ 1 83.97 81.22 59.01 44.87 66.6 71.9 81.73 43.52 66.47 63.26 66.39 66.73 33.99 62.14 15.97
ℓ∞ 2 85.2 83.36 58.42 47.92 69.27 69.99 84.18 43.97 73.53 64.33 66.7 62.75 26.75 62.6 13.81
StAdv 0 83.31 77.58 1.45 69.81 13.43 36.66 81.5 20.56 49.89 70.32 60.76 36.15 24.84 45.25 1.04
StAdv 0.5 84.1 79.31 2.09 69.81 16.28 39.52 81.55 23.95 55.97 71.49 62.6 42.42 27.95 47.75 1.5
StAdv 1 84.89 79.67 2.52 68.64 14.27 41.73 82.27 21.17 56.59 71.49 63.64 37.81 24.03 46.99 1.81
StAdv 2 83.62 79.34 2.96 69.66 16.59 40.08 81.66 22.06 59.87 71.54 62.01 39.18 21.66 47.22 1.68
ReColor 0 91.34 81.53 0.03 0.41 79.08 42.55 90.6 22.39 25.2 64.31 54.8 18.65 8.94 40.71 0
ReColor 0.5 91.82 82.85 0.08 0.38 79.75 50.83 91.08 22.83 28.28 62.57 53.17 21.48 9.91 41.93 0
ReColor 1 91.77 85.2 0.15 0.41 81.2 54.22 91.39 27.08 38.32 64.82 55.08 23.06 10.65 44.3 0
ReColor 2 92.31 85.53 0.28 0.54 80.99 52.69 91.67 24.46 44.38 64.82 52.61 21.94 9.81 44.14 0.03
Gabor 0 89.12 85.27 4.41 2.11 37.83 87.31 87.62 20.28 57.66 52.33 38.73 38.88 9.22 43.47 0.1
Gabor 0.5 88.33 84.1 4.41 2.9 33.4 86.75 86.06 18.62 54.29 53.68 35.49 36.33 10.78 42.24 0.13
Gabor 1 88.23 84.41 6.57 4.03 31.64 85.43 87.24 18.09 57.12 53.4 40.2 38.09 11.11 43.11 0.71
Gabor 2 86.19 82.39 9.12 5.91 33.1 84.03 84.38 17.68 63.16 44.89 33.1 43.67 14.32 42.98 0.84
Snow 0 87.69 71.59 0.08 1.53 11.97 30.68 62.9 7.31 8.59 66.24 70.78 11.82 9.91 29.45 0.05
Snow 0.5 88.46 76.46 0.03 1.12 13.22 36.94 58.78 8.84 10.96 66.42 70.62 18.27 6.42 30.67 0.03
Snow 1 87.82 77.04 0.1 1.48 14.14 43.21 59.06 8.64 13.48 65.22 68.89 17.76 7.67 31.39 0.08
Snow 2 88.36 79.29 0.15 2.34 16.2 48.99 59.69 10.14 21.48 68.13 70.24 19.03 9.58 33.77 0.1
Pixel 0 88.64 67.24 0 0.59 34.96 30.37 87.18 78.6 0.25 61.63 52.08 49.38 23.97 40.52 0
Pixel 0.5 89.81 75.54 0 0.43 38.8 31.06 87.67 80.48 1.1 63.67 49.58 50.01 23.26 41.8 0
Pixel 1 89.43 75.85 0 0.84 39.95 34.52 88 80.25 1.27 63.18 49.27 46.96 21.78 41.82 0
Pixel 2 87.62 75.62 0 1.27 39.03 30.22 86.04 77.86 2.88 61.15 52.08 49.3 24.1 41.63 0
JPEG 0 88.43 85.63 15.29 5.43 41.78 77.35 86.85 23.21 80.87 53.81 43.39 44.79 15.39 47.82 0.74
JPEG 0.5 89.02 86.17 17.89 6.52 43.29 79.01 87.52 24.56 81.15 55.62 42.78 45.55 15.92 48.83 1.3
JPEG 1 87.9 84.89 16.59 7.34 40.13 78.06 86.65 21.94 80.38 55.57 42.93 44.48 15.77 47.89 1.66
JPEG 2 88.08 85.1 17.68 7.46 41.58 73.02 86.29 23.49 79.85 56.51 42.8 45.25 13.3 47.69 0.97
Elastic 0 89.66 77.48 0 0.82 12.25 21.81 88.05 16.84 5.71 78.6 62.01 16.79 11.69 32.67 0
Elastic 0.5 90.68 81.61 0.03 1.66 14.11 35.57 89.63 18.27 11.87 80.64 60.61 18.45 13.76 35.52 0.03
Elastic 1 91.13 82.93 0 1.78 14.37 31.69 89.99 17.07 17.4 81.48 65.1 21.53 10.96 36.19 0
Elastic 2 90.06 82.96 0.03 1.86 16.54 31.75 89.1 17.22 20.38 81.53 64.61 18.88 10.42 36.27 0
Wood 0 85.91 50.09 0 0.82 11.11 35.87 83.31 11.13 1.2 60.94 78.83 14.96 11.13 29.95 0
Wood 0.5 88.03 74.22 0 0.97 11.77 41.02 85.68 9.81 6.57 64.54 81.76 18.24 11.01 33.8 0
Wood 1 88.82 78.68 0.03 0.69 14.06 40.46 86.65 9.83 11.49 66.7 84.94 17.02 9.76 35.03 0
Wood 2 89.38 81.71 0.31 2.62 15.26 43.64 87.64 11.16 24.64 68.99 84.84 17.81 12.56 37.6 0.18
Glitch 0 88.51 36.41 0 0 6.7 18.47 86.96 17.1 0 60 50.93 84.97 6.37 30.66 0
Glitch 0.5 90.01 74.73 0 0.54 14.96 24.38 87.97 24.69 2.7 64.82 52.92 86.98 8 36.89 0
Glitch 1 88.05 76.25 0.03 1.38 14.5 28.25 85.73 25.3 3.41 62.17 53.1 84.69 8.79 36.97 0
Glitch 2 89.55 80.97 0.03 1.25 15.16 25.89 87.9 27.54 7.52 65.07 52.05 85.99 10.47 38.32 0
Kaleid-
oscope

0 88.1 73.5 0 0.31 7.03 28.66 85.91 18.83 2.22 62.98 29.78 21.07 84.89 34.6 0

Kaleid-
oscope

0.5 85.2 75.8 0.05 3.01 12.79 47.67 82.45 19.8 15.67 59.18 41.48 29.71 81.32 39.08 0.05

Kaleid-
oscope

1 87.52 80.48 0.03 2.52 20.89 45.89 86.04 23.85 27.57 64.28 33.63 27.69 83.03 41.32 0

Kaleid-
oscope

2 80.41 71.54 0.84 5.78 19.06 54.55 76.2 25.02 24.41 52.56 27.82 35.41 75.49 39.06 0.46

Table 20: Intial Training Ablations- Uniform regularization on ImageNette. Accuracy of initially trained models
on ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks.
Uniform regularization (with σ = 2) is also considered during initial training, with regularization strength λ. Results where
regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green, while results where
regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to regularization
strength are bolded.
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Train
Attack

λ Clean ℓ2 ℓ∞ StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch
Kaleid-
oscope

Avg Union

ℓ2 0 90.04 83.95 7.57 5.27 33.91 65.17 89.3 28.99 67.52 62.85 49.22 45.78 12.76 46.03 0.51
ℓ2 0.1 89.35 83.13 12.84 6.22 35.59 72.05 87.82 29.45 71.36 62.22 50.14 45.02 16.18 47.67 1.07
ℓ2 0.2 89.38 83.54 15.82 7.54 38.04 73.43 88.41 30.6 72.2 60.13 50.62 46.14 15.64 48.51 1.35
ℓ2 0.5 87.03 81.89 22.09 12.31 40.36 74.09 84.15 34.98 72.79 60.13 51.49 52.2 18.45 50.41 2.96
ℓ∞ 0 84.51 81.71 58.39 43.49 67.82 72.61 83.31 41.83 65.35 63.9 67.18 63.64 30.75 61.67 13.2
ℓ∞ 0.1 83.9 82.09 57.86 47.77 68.38 73.4 82.96 44.92 74.55 63.21 64.41 63.18 36.36 63.26 17.04
ℓ∞ 0.2 84.25 82.39 58.39 49.38 68.59 76.33 82.9 45.45 76.46 64.56 66.19 63.36 31.44 63.79 16.25
ℓ∞ 0.5 83.87 82.22 58.42 47.87 68.23 75.69 82.78 46.24 77.53 62.14 64.87 62.5 35.31 63.65 17.66
StAdv 0 83.31 77.58 1.45 69.81 13.43 36.66 81.5 20.56 49.89 70.32 60.76 36.15 24.84 45.25 1.04
StAdv 0.1 82.34 77.76 4.18 66.45 16.54 57.91 79.52 22.14 60.43 68.56 62.29 40.59 23.46 48.32 2.78
StAdv 0.2 83.11 79.21 6.5 67.64 18.7 45.32 80.03 26.34 64.84 70.27 61.94 50.14 30.37 50.11 3.34
StAdv 0.5 83.13 80.03 9.35 68.25 18.34 57.63 80.28 27.44 68.08 69.78 60.05 49.4 32.66 51.77 5.22
ReColor 0 91.34 81.53 0.03 0.41 79.08 42.55 90.6 22.39 25.2 64.31 54.8 18.65 8.94 40.71 0
ReColor 0.1 90.83 84.97 0.38 0.92 79.69 57.17 90.62 29.94 48.41 60.94 53.02 33.81 8.54 45.7 0.05
ReColor 0.2 90.8 85.73 1.2 1.17 78.98 62.88 90.5 27.87 55.34 60.74 49.07 31.57 14.29 46.61 0.18
ReColor 0.5 89.15 85.2 5.81 2.75 77.81 71.26 88.46 31.34 65.07 59.77 52.41 41.27 15.39 49.71 0.33
Gabor 0 89.12 85.27 4.41 2.11 37.83 87.31 87.62 20.28 57.66 52.33 38.73 38.88 9.22 43.47 0.1
Gabor 0.1 87.29 83.77 11.26 5.53 38.22 85.58 84.54 20.64 66.11 48.82 37.02 41.96 15.06 44.87 0.76
Gabor 0.2 86.22 82.88 12.97 6.47 37.27 84.69 83.92 22.45 67.77 48.46 36.31 41.15 19.01 45.28 1.04
Gabor 0.5 87.29 84.13 19.87 9.48 41.35 85.4 85.07 26.8 72.28 52.79 42.29 46.19 19.9 48.8 1.99
Snow 0 87.69 71.59 0.08 1.53 11.97 30.68 62.9 7.31 8.59 66.24 70.78 11.82 9.91 29.45 0.05
Snow 0.1 87.69 80.25 1.35 5.81 16.41 60.87 57.02 10.09 38.24 65.17 71.77 22.62 10.85 36.7 0.38
Snow 0.2 86.8 80.36 1.94 23.82 33.45 61.55 58.19 11.97 47.77 67.16 71.54 25.68 15.9 41.61 1.66
Snow 0.5 85.04 80.46 4.31 15.34 21.55 66.65 55.82 14.04 56.33 65.3 69.48 32.51 13.61 41.28 2.6
Pixel 0 88.64 67.24 0 0.59 34.96 30.37 87.18 78.6 0.25 61.63 52.08 49.38 23.97 40.52 0
Pixel 0.1 88.15 76.99 0.03 0.59 41.5 42.04 85.2 77.25 8.56 56.64 46.88 43.92 28.2 42.32 0
Pixel 0.2 88.89 80.99 0.03 1.4 46.7 44.23 87.64 78.73 20.18 61.4 46.85 49.12 26.37 45.3 0
Pixel 0.5 86.6 82.14 1.43 6.62 46.73 53.45 84.97 77.35 44.99 59.08 48.28 53.73 28.66 48.95 0.38
JPEG 0 88.43 85.63 15.29 5.43 41.78 77.35 86.85 23.21 80.87 53.81 43.39 44.79 15.39 47.82 0.74
JPEG 0.1 88.18 84.79 20.33 9.2 42.34 80.54 85.45 23.36 80.18 57.38 46.55 46.78 17.96 49.57 2.22
JPEG 0.2 88.92 86.04 23.31 8.28 46.88 80.61 87.36 26.73 81.68 57.22 47.18 48.94 16.36 50.88 1.86
JPEG 0.5 87.18 84.41 26.5 12.46 44.94 79.36 85.07 28.36 80.54 56.59 47.77 52.71 19.01 51.48 3.06
Elastic 0 89.66 77.48 0 0.82 12.25 21.81 88.05 16.84 5.71 78.6 62.01 16.79 11.69 32.67 0
Elastic 0.1 88.59 82.65 0.46 4.31 17.83 45.53 87.44 18.8 35.85 79.85 64.23 27.11 11.11 39.6 0.08
Elastic 0.2 89.35 84.03 1.66 5.55 20.64 53.22 88 22.45 50.75 80.15 62.29 31.75 8.1 42.38 0.23
Elastic 0.5 82.17 77.61 6.9 62.17 63.8 55.44 78.32 29.61 55.75 73.22 63.36 36.66 19.52 51.86 4.15
Wood 0 85.91 50.09 0 0.82 11.11 35.87 83.31 11.13 1.2 60.94 78.83 14.96 11.13 29.95 0
Wood 0.1 88.1 80.71 0.87 6.68 14.19 46.55 86.22 11.85 33.3 66.68 82.88 30.8 8.1 39.07 0.33
Wood 0.2 88.99 83.03 2.14 7.67 17.17 45.25 86.98 13.96 45.22 68.33 83.67 30.29 14.19 41.49 1.15
Wood 0.5 88.13 83.92 5.53 13.66 24.87 64.15 86.68 18.83 60.41 69.94 82.98 39.9 15.77 47.22 1.99
Glitch 0 88.51 36.41 0 0 6.7 18.47 86.96 17.1 0 60 50.93 84.97 6.37 30.66 0
Glitch 0.1 87.41 80.08 1.32 4.56 27.77 48.15 85.1 26.93 46.19 61.45 48.56 82.47 12.36 43.75 0.33
Glitch 0.2 86.93 83.54 4.54 8.31 24.08 47.34 85.73 32.94 53.61 62.29 52.36 83.21 17.4 46.28 1.27
Glitch 0.5 87.16 84.38 13.73 14.96 28.94 62.11 84.89 35.9 67.92 60.92 51.46 82.8 20.48 50.71 2.8
Kaleid-
oscope

0 88.1 73.5 0 0.31 7.03 28.66 85.91 18.83 2.22 62.98 29.78 21.07 84.89 34.6 0

Kaleid-
oscope

0.1 84.05 72.25 0.1 2.98 14.27 40.74 80.87 14.7 14.29 55.39 46.42 21.15 74.96 36.51 0.1

Kaleid-
oscope

0.2 69.17 62.19 1.27 10.11 18.7 55.72 66.14 17.81 30.57 41.78 21.68 32.36 66.8 35.43 0.66

Kaleid-
oscope

0.5 71.95 66.85 7.82 28.54 21.91 58.5 68.64 24.92 47.44 47.77 38.32 43.62 65.04 43.28 6.01

Table 21: Intial Training Ablations- Gaussian regularization on ImageNette. Accuracy of initially trained models
on ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks.
Gaussian regularization (with σ = 0.2) is also considered during initial training, with regularization strength λ. Results
where regularization improves over no regularization (λ = 0) by at least 1% accuracy are highlighted in green, while
results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to
regularization strength are bolded.
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Figure 6: Change in robust accuracy after fine-tuning with models initally trained with adversarial ℓ2 regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Figure 7: Change in robust accuracy after fine-tuning with models initally trained with variation regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Figure 8: Change in robust accuracy after fine-tuning with models initally trained with uniform regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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(e) Difference in Clean Acc

Figure 9: Change in robust accuracy after fine-tuning with models initally trained with Gaussian regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Random noise regularization in fine-tuning hurts overall robustness. Unlike adversarial ℓ2 regularization which can
improve performance when used in both initial training and regularization, we find that uniform and Gaussian regularization
generally hurts average, union, initial attack, and new attack accuracies when incorporated in fine-tuning. This suggests that
while random noise based regularization may help with initial training (and unforeseen robustness), they do not necessarily
help with continual adaptive robustness through fine-tuning.
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(b) Difference in Union Acc
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Figure 10: Change in robust accuracy after fine-tuning with adversarial ℓ2 regularization. We fine-tune models on
Imagenette across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new
attack corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with
and without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1%
are highlighted in red.
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(d) Difference in New Attack Acc
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(e) Difference in Clean Acc

Figure 11: Change in robust accuracy after fine-tuning with variation regularization. We fine-tune models on Imagenette
across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new attack
corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with and
without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are
highlighted in red.
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(d) Difference in New Attack Acc
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(e) Difference in Clean Acc

Figure 12: Change in robust accuracy after fine-tuning with uniform regularization. We fine-tune models on Imagenette
across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new attack
corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with and
without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are
highlighted in red.
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(a) Difference in Avg Acc
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(b) Difference in Union Acc
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(d) Difference in New Attack Acc
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(e) Difference in Clean Acc

Figure 13: Change in robust accuracy after fine-tuning with Gaussian regularization. We fine-tune models on
Imagenette across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new
attack corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with
and without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1%
are highlighted in red.
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