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Abstract

Robust training methods typically defend against
specific attack types, such as /,, attacks with fixed
budgets, and rarely account for the fact that de-
fenders may encounter new attacks over time. A
natural solution is to adapt the defended model
to new adversaries as they arise via fine-tuning,
a method which we call continual robust train-
ing (CRT). However, when implemented naively,
fine-tuning on new attacks degrades robustness
on previous attacks. This raises the question: how
can we improve the initial training and fine-tuning
of the model to simultaneously achieve robustness
against previous and new attacks? We present
theoretical results which show that the gap in
a model’s robustness against different attacks is
bounded by how far each attack perturbs a sample
in the model’s logit space, suggesting that regular-
izing with respect to this logit space distance can
help maintain robustness against previous attacks.
Extensive experiments on 3 datasets (CIFAR-10,
CIFAR-100, and ImageNette) and over 100 at-
tack combinations demonstrate that the proposed
regularization improves robust accuracy with lit-
tle overhead in training time. Our findings and
open-source code' lay the groundwork for the
deployment of models robust to evolving attacks.

1. Introduction

For safety critical applications, it is important to defend ma-
chine learning (ML) models against test-time attacks. How-
ever, many existing defenses (Madry et al., 2018; Zhang
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Figure 1: Impact of our proposed regularization term
(ALR) in both training and fine-tuning on CIFAR-10.
Adversarial /5 regularization (ALR) significantly improves
generalization to the unforeseen StAdv attack when per-
forming adversarial training for ¢5 robustness. Using ALR
when subsequently fine-tuning with only StAdv attack also
decreases the drop in /5 robustness.

Robust Accuracy (%)

et al., 2019; Croce et al., 2020) assume that the adversary is
restricted to a narrow threat model such as an £,, ball of fixed
radius around the input. When this assumption is violated,
the robustness of adversarially trained models can signif-
icantly degrade (Dai et al., 2023; Kaufmann et al., 2019).
Additionally, due to rapid development of new types of at-
tacks (Xiao et al., 2018; Laidlaw & Feizi, 2019; Laidlaw
et al., 2021; Kaufmann et al., 2019), it is difficult to antici-
pate all types of attacks in advance. This raises the question:
how can we defend models as new attacks emerge?

For long-term robustness, models must quickly adapt to new
attacks without sacrificing robustness to previous ones, a
goal known as continual adaptive robustness (CAR) (Dai
etal., 2024b) (§2). A natural approach is to apply adversarial
training on known attacks and fine-tune when new ones
emerge, a process we call continual robust training (CRT).
However, adversarial training provides poor generalization
to unseen attacks, leading to suboptimal starting points for
fine-tuning, and fine-tuning itself can degrade robustness
against past attacks (Figure 1).

We theoretically show that the robustness gap between at-
tacks is linked to logit-space distances between perturbed
and clean inputs and that regularizing these distances can
improve generalization to new attacks and reduce drops
in robustness on previous attacks. Extensive experiments
confirm these findings. Our key contributions are as follows:
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Figure 2: An overview of the problem of adapting to new adversaries (continual adaptive robustness) and our solution
framework (Regularized Continual Robust Training). The defender learns about the existence of new attacks sequentially,
and at time ¢ aims to achieve robustness against K (t), the set of attacks known at times < ¢. A model h is deployed at time
0 to be robust against an initial set of known attacks, and new attacks are introduced at times 1, to, and 3. We propose
performing regularized initial robust training on the initially known attack(s) and then using regularized fine-tuning to adapt
the model against future attacks within time At, leading to a sequence of models hq, bty + At, Pes+At, RtatAt-

Regularized Continual Robust Training for Adapting
to New Adversaries (§3) . To enhance CRT, we ana-
lyze the difference in robust losses between attacks and
show it is upper bounded by the sum of the maximal /5
distance between clean and perturbed logits for both attacks.
Training techniques which minimize this bound can thus
improve generalization to new attacks and preserve robust-
ness against previous ones. This motivates our proposed
adversarial 05 regularization (ALR), which penalizes the {5
distance between adversarial and benign logits.

Empirical Validation on Sequentially Introduced At-
tacks (§4.2). We conduct experiments on 2 sequences of 4
attacks across 3 datasets (CIFAR-10, CIFAR-100, and Ima-
genette). Our results show that ALR improves robustness
in CRT with a 5.48% gain in Union accuracy (worst-case
across all attacks) across £o, StAdv (Xiao et al., 2018), and
Recolor attacks (Laidlaw & Feizi, 2019) over its unregular-
ized counterpart. Figure 1 visualizes improvements brought
through ALR for a sequence of 2 attacks.

Impact of ALR and Efficient Approximations in Train-
ing and Fine-Tuning (§4.3,§4.4). We conduct ablations
using over 100 attack combinations (12 attack types, 9 of
which are non-£,,) to study ALR’s role in different stages of
CRT. We also explore random noise-based regularization as
a more efficient alternative. We find that while noise-based
regularization improves generalization in initial training,
ALR is essential for maintaining robust performance during
fine-tuning and improves Union accuracy by up to 7.85%.

Looking ahead (§5): We hope our methods inspire the
deployment of multi-robust models against changing real-
world threats. We believe our techniques could be adapted
to ensure other desirable properties, such as compliance
with changing standards for fairness or privacy.

2. Setup: Continual Adaptive Robustness

In this section, we introduce the problem of continual adap-
tive robustness (CAR) (Dai et al., 2024b), which aims
to achieve robustness against new attacks as they are se-
quentially discovered. We survey existing approaches to
this problem, with additional related work included in Ap-
pendix A. CAR is visualized in Figure 2.

2.1. A Motivating Example

Consider an entity that wants to deploy a robust ML system.
The entity uses recent techniques (e.g. adversarial training)
to defend their model against existing attack types (such
as £, perturbations) and deploys their model at time ¢ =
0. At a later time ¢;, a research group publishes a paper
about a new attack type (e.g. spatial perturbations (Xiao
et al., 2018)) against which the entity’s model is not robust.
Since the ML system has been deployed, the entity would
want to quickly modify the model to be robust against the
new attack while maintaining robustness against previous
attacks. Having a quick update procedure would minimize
the time that an attacker can exploit this vulnerability. Quick
adaptation to new attacks is the foundation of continual
adaptive robustness (CAR), a problem setting introduced in
a recent position paper (Dai et al., 2024b). In this work, we
propose and analyze the first dedicated defense for CAR.

2.2. Problem Formulation

Notation: D = X X Y denotes a data distribution where X
and Y are the support of inputs and labels, respectively. H
denotes the hypothesis class. We use C' : X — X to define
an adversarial constraint where X is the space of adversarial
examples. £: Y x Y — R denotes the loss function.

Attack sequences: In CAR (Dai et al., 2024b), different test-
time attacks are introduced sequentially (Figure 2). Each
attack P is associated with a constraint C' and can be
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formulated as a maximizer of the loss (i.e. Po(z,y,h) =
arg max, cc(y) L(h(x),y)). We refer to the time at which
P¢ is discovered by the defender as T'(P¢), and the set
of attacks known by the defender at a given time ¢ as the
knowledge set at time t: K(t) = {P |T(P) < t}. The
expansion of K over time can be viewed as modeling the
setting of research groups or security teams sequentially
discovering new attack types.

Goals in CAR: A defender in CAR uses a defense algo-
rithm Acar to deploy a model hy = Acar(D, K(t),H)
at each time step ¢. Performance at time ¢ is measured
by Union robust loss across the knowledge set: L(h,t) =
E(z,y)wD maxXpecK(t) [E(P(.’E, Y, h)7 y)]

Definition 2.1 (Continual Adaptive Robustness (Dai et al.,
2024b)). Given loss tolerances dxnown and dunknown With 0 <
Oknown < Sunknown and grace period At for recovering from
a new attack, a defense algorithm Acar achieves CAR if
forall £ > 0:

* When t — T'(P) < At for any attack P and T'(P) < t,
hy satisfies L(h, 1) < Sunknown
¢ Otherwise, ,C(ht, t) < 5kn0wn-

These criteria capture 3 distinct goals for the defender: (1)
The model at time ¢ must achieve good robustness if no
attacks have been introduced recently (within At time). This
is due to the dypown threshold on the robust loss in the second
criterion; (2) If a new attack has occurred within At period
before the current time ¢, the model at time ¢ must achieve
some robustness against the new attack. This is modeled
by the Sunknown threshold in the first criterion. Since 0 <
Oknown < Sunknown» CAR tolerates a degradation in robustness
between the 2 cases; (3) The defense is expected to recover
robustness quickly after new attacks. This is modeled by the
At time window; At time after the introduction of a new
attack, the loss threshold changes from dypknown O dknown-

2.3. Baseline Approaches to CAR

CAR through multiattack robustness (MAR). Prior works
for multiattack robustness often involve training with multi-
ple attacks simultaneously (Tramer & Boneh, 2019; Maini
et al., 2020), which can be computationally expensive. A
trivial (but expensive) defense algorithm for CAR is to use
these training-based techniques and retrain a model from
scratch on K (t) every time it changes. However, this would
require us to tolerate larger values of At.

CAR through unforeseen attack robustness (UAR). De-
fenses for unforeseen attack robustness (UAR) aim to en-
sure robustness to attacks that were not seen during training
(Laidlaw et al., 2021; Dai et al., 2022). This suggests another
trivial defense for CAR: use a UAR defense to get a model
h and use h for all time steps. This approach is efficient
since no time is spent updating the model, but would require

much higher values of xpown as these methods do not obtain
high robustness across all attacks (Dai et al., 2023).

3. Theoretical Motivation and Methods

In this section, we introduce continual robust training (CRT)
and provide theoretical results to demonstrate that adding a
regularization term bounding adversarial logit distances can
help balance performance across a set of adversaries.

3.1. Continual Robust Training (CRT)

Continual robust training consists of 2 parts, initial training
and iterative fine-tuning (Figure 2). The output of initial
training is deployed at ¢ = 0 while fine-tuning is used as
new attacks are introduced.

At time t = 0, the goal of the defender is to
minimize the initial training objective: L(h,0) =
% E:il g(h(PCmn(xiv Yi, h))’ yl) where {(xia yl)}:il is
the training dataset and P, is the initial attack. Notably,

using standard training in this stage yields a high dysknown-

At t > 0, as new attacks are introduced, we use a fine-
tuning strategy F' to select the attack from K (¢) to use
for each example. Specifically, we formulate this as:
L(h,t) = L3 U(h(Pc(xi,yi,h)),y:) where Po =
F(K(t),(x;,y;)). Fine-tuning strategies include picking
the attack that maximizes ¢(z;, y; ), randomly sampling from
K (t), and using the newest attack. A good fine-tuning strat-
egy would be able to quickly adapt the model to new attacks,
allowing it to satisfy a small At threshold. However, naive
fine-tuning does not guarantee good performance across all
attacks and may require large values of dxpown. As illustrated
in Figure 1, a model may lose robustness to the initial at-
tack after the fine-tuning stage. We now discuss how such
degradation can be addressed through regularization.

3.2. Bounding the Difference in Adversarial Losses

A successful implementation of CAR would both enhance
the robustness of a model to new attacks encountered at
a given time step and maintain robustness to attacks seen
at previous time steps. We will show how the gap in ro-
bustness between attacks relates to distances between ad-
versarially perturbed representations in the logit space of a
model, which suggests the use of regularization as a tool for
bounding the impact of any given attack.

Let h : R? — RF be a k class neural network classi-
fication model. To simplify the problem setting, we fo-
cus on the state of the model when attacks Pc, and Pc,
(with corresponding adversarial constraints C; and Cs) are
known to the defender. Consider the following two adversar-
ial loss functions: £q(h) := Ep [¢((h(Pc, (z,y)),y)] and
Lo(h) := Ep [((h(Pey(z,y)),y)] . Without loss of gener-
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ality, assume that £4(h) > Lo(h). We can then bound
the difference between £;(h) and £2(h), adapting a result
from Nern et al. (2023), as follows?:

Theorem 3.1. Assume that loss £(3,y) is My-Lipschitz in
I - ll2, for § € h(X) with My > 0 and bounded by M > 0
S ie 0 < U(9,y) < My Vg € h(X). Then, for a subset
X = {x;}}_, independently drawn from D, the following
holds with probability at least 1 — p:

n

£1(h) — Lo(h) < M@Z(

1h(2") = h(:)]2

max
z'€Cq(z;)

+ max ||h(x/)—h(xi)||2>+D,
z’'€Ca(x;)

log(p/2)
—2n

where D = Mo

This result suggests that regularization with respect to a sin-
gle attack (say, in pre-training) will give the model greater
resiliency against unforeseen attacks and help meet the
Ounknown threshold. Using regularization when fine-tuning on
a new attack could also prevent degradations in robustness
against previously seen attacks, helping to meet the dxpown
threshold. Using similar reasoning, we can also bound the
gap between Union and clean loss:

Corollary 3.2 Let L1 2(h) =

ED [max (€<h<PC1 (.CL', Y, h))7 y)a Z(h(PCz ($7 Y, h))7 y))}
Then, with probability at least 1 — p,

Laa(h) — L(h) < My~ i(

h(z") — h(z;
L [h(z) = ()]s

+ max
z'€Ca(x;)

I(e') = bzl )+D.

This corollary helps characterize the trade-off between clean
and robust loss in our setting. Although our results are stated
in terms of pairs of attacks, Theorem 3.1 and Corollary 3.2
straightforwardly lead to meaningful bounds for larger sets
of attacks. Theorem 3.1 upper bounds the maximum gap
in robust loss between any pair of attacks in the set, and
Corollary 3.2 upper bounds the gap between the clean loss
and the Union loss on all attacks. Proofs of Theorem 3.1
and Corollary 3.2 are present in Appendix D.

Comparison to Dai et al. (2022): We note that Dai et al.
(2022, Theorem 4.2) derive a related bound on the adver-
sarial loss gap between two attacks in the context of UAR.

2As stated, these results hold for loss functions that are Lips-
chitz with respect to the /2 norm. We note that similar bounds can
be derived for other norms by applying a constant scaling factor to
the first term of the bound (i.e. for losses Lipschitz with respect to
the ¢; norm, the scaling factor would be \/E).

3We note that surrogate losses such as the cross-entropy used
during training are not bounded, but the 0 — 1 loss which is often
the key quantity of interest is bounded.

However, their formulation assumes that the constraint set
of the target attack is a strict superset of that of the source
attack, whereas we make no assumptions about the relation-
ship between the two constraint sets.

3.3. Regularization Methods

Theorem 3.1 suggests that reducing the sensitivity of log-
its to either attack has the potential to reduce the perfor-
mance gap between attacks (see Figure 4 in the Appendix
for an empirical validation of this effect). To this end,
we propose incorporating regularization into both training
stages. Specifically, we adopt modified training objective
Licg(h,t) = L(h,t) + AR(h, K(t)), where A is the regular-
ization strength and R(h) is the regularization term used.
We will now discuss several forms of regularization.

Adversarial /5 regularization. (ALR) Driven by our the-
oretical results, we first introduce adversarial /5 regular-
ization: Rarr(h, K(t)) = L 3" max,co(,) [[h(2) —
h(z;)||2 where C' = Cipy in initial training and corresponds
to attack Po = F(K(t), (x;,y;)) chosen by the fine-tuning
strategy. {5 regularization penalizes the maximum distance
between a sample’s logits and the furthest adversarially per-
turbed logits within that sample’s neighborhood. Using
this regularization term would directly minimize the up-
per bounds in Theorem 3.1 and Corollary 3.2. We note
that while ALR is similar in form to TRADES (Zhang
et al., 2019), it uses a Euclidean distance instead of the
KL-divergence. Our paper is the first to show that this form
of regularization is beneficial for CAR.

Efficiently approximating ALR. Computing ALR uses
multi-step optimization which can be costly to compute in
practice. To improve efficiency in experiments, we consider
(1) using single step optimization for ALR and (2) using
randomly sampled, unoptimized perturbations can help with
CAR. For (2), we consider Gaussian noise regularization
(GR) and Uniform noise regularization (UR), specifically:
Rer(h, K(t)) = % S Ih(@’) — h(x;)|2 where 2/ ~
N(0,02) and Rug(h, K (1)) = & S [[h(a’) — h()l2
where 2/ ~ U(—0,0).

Other Regularizers. We compare to variation regulariza-
tion (VR), which has been shown to improve generalization
to unforeseen attacks (Dai et al., 2022). VR is defined
as: RVR(haK(t)) - % Z:il maXyr ¢rreC(x;) ||h(£C/) -
h(z")||2 where C = Ciy; in initial training. We also
consider VR in finetuning with C' corresponding to attack
Pc = F(K(t), (xi,y;)). The link between VR and ALR is
discussed in Appendix E.

We compare to the TRADES regularizer (Zhang et al.,
2019) during initial training of the model. This reg-
ularizer can be formulated as Rrrapgs(h, K(t)) =
Ly maXyec(z;) K L(h(2'), h(x;)) and measures the
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worst case KL-distance between the logit distributions after
a perturbation is applied.

For fine-tuning, we consider elastic weight consolidation
(EWC) (Kirkpatrick et al., 2017), a technique for reducing
catastrophic forgetting in continual learning. EWC ensures
that the model parameters do not deviate too much from the
previous task (or in our case, attack) learned. Mathemati-
cally, Rewc(h, K(t)) = Y, 5 Fi(0; — 0, ;)* Where F is
the diagonal of the Fisher information matrix, € is the model
parameters that we are optimizing, 6% . are the parameters

prev
of the model that we are fine-tuning from.

4. Experimental Results

In this section, we empirically demonstrate that using reg-
ularization in CRT helps improve robustness when attacks
are introduced sequentially. This section is organized as
follows: (i) experimental setup §(4.1), (ii) overall results for
using regularization in CRT (§4.2), (iii) ablations in initial
training (§4.3) and (iv) ablations in fine-tuning (§4.4).

4.1. Experimental Setup

Datasets. We experiment with CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and ImageNette (Howard), a 10-
class subset of ImageNet (Deng et al., 2009).

Architectures. For CIFAR-10 and CIFAR-100, we use
WideResnet-28-10 (WRN-28-10) architecture (Zagoruyko
& Komodakis, 2016) and ResNet-18 for ImageNette.

Attacks. We include results for /5, /o, StAdv (Xiao
et al., 2018), ReColor attacks (Laidlaw & Feizi, 2019),
and the 8 core attacks of Imagenet-UA (Kaufmann et al.,
2019). For ¢, attacks, we use a bound € = 0.5 for CIFAR
datasets and ¢ = 1 for ImageNette. For /., attacks, we
use € = %, and for StAdv and ReColor attacks, we use
the same bounds as used in their original papers Xiao et al.
(2018) (e = 0.05) and Laidlaw & Feizi (2019) (e = 0.06)
respectively. For ImageNet-UA attacks, we use the medium
distortion strength bounds used by Kaufmann et al. (2019).
For experiments investigating the impact of regularization
in the fine-tuning step of CRT (§4.4), we include results
for fine-tuning to the same attack type but with larger at-
tack bounds. For these experiments, the larger bounds are
given by € = 1 for {3, e = 72 for {, € = 0.07 for StAdv,
€ = 0.08 for ReColor, and high distortion strength bounds
for ImageNet-UA attacks.

Training from scratch baselines. We consider the follow-
ing baselines for training from scratch:

* Training with AVG and MAX objectives (Tramer &
Boneh, 2019): Tramer & Boneh (2019) propose two
different training objectives, AVG (Layg(h,t) =
m,\lé(t)| Y oim1 2opeer s PP, i), yi)

and MAX (LMAX (h, t) =
e maxpoer(r) L(h(Po(@i,yi)), yi)),  for  ro-
bustness against multiple known attacks.

* Randomly sampling attacks (Madaan et al., 2020): AVG
and MAX require generating adversarial examples with
all attacks for each image. For a more efficient baseline,
we consider randomly sampling an attack for each batch
for use in adversarial training.

CRT Baselines. For CRT, we use PGD adversarial training
(AT) (Madry et al., 2018) for initial training and then fine-
tune the model using several different fine-tuning strategies:

* MAX objective fine-tuning (FI-MAX) (Tramer & Boneh,
2019): We use the MAX objective for fine-tuning when a
new attack is introduced.

* Croce & Hein (2022) fine-tuning (FT Croce): Croce &
Hein (2022) introduce a fine-tuning technique for use with
{+ and ¢, attacks which we generalize to training with
arbitrary attacks. This approach samples a single attack
per batch. The probability that an attack P¢ is sampled is

given by % where err(P) denotes the running
PeK(t

average of robust loss with respect to attack P computed
across batches of each attack.

* Single attack fine-tuning (FT Single): We also consider
fine-tuning with only the newly introduced attack, allow-
ing us to determine the extent to which previous attacks
are forgotten. The previous two fine-tuning techniques
involve replaying previous attacks.

We then investigate incorporating regularization into the
initial training and fine-tuning phases of CRT.

Training and Fine-tuning Procedures. During training,
we use 10-step Projected Gradient Descent (Madry et al.,
2018) to generate adversarial examples. For the regulariza-
tion terms (§3.3), VR and ALR use single step optimization
to reduce time overhead, while UR and GR use 0 = 2 and
o = 0.2, respectively. Results for additional values of o
are in Appendix I.1. We train models for 100 epochs for
initial training and 10 epochs for fine-tuning (results with
25 epochs in Appendix H). We include additional details
about the training procedure in Appendix G.

Evaluation Attacks and Metrics. Our main results in
Table 1 and additional ones in Appendix H use full AutoAt-
tack (Croce & Hein, 2020b) for evaluating ¢, robustness.
For ablations, we restrict to APGD-T and FAB-T from Au-
toAttack to reduce evaluation time. We use 20-step opti-
mization when evaluating StAdv and ReColor attacks and
the default evaluation hyperparameters for ImageNet-UA
attacks in Kaufmann et al. (2019). We report accuracy on
each attack, Union accuracy (overall accuracy when the
worst case attack is chosen for each test example), Aver-
age accuracy (average over accuracy on each attack), and
training time (in hours). Metrics are reported for the epoch
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EI::; Procedure Threat Models Clean ly StAdv loo Recolor (krﬁj\fm) (121 I::::/[rll) 2\1/1% [i;llli))n ?}112?
0 2 AT 2 91.17 | 69.7 2.08 2841 4494 69.7 69.7 3628 1.24 8.68
= | AT+ALR(\A=1) | {» 89.43 | 69.84 4823 34.00 65.46 69.84 69.84 | 54.38 31.27 | 17.17

FT MAX U, StAdv 83.73 | 57.07 58.67 12.51  49.03 57.87 51.32 | 4432 1236 | 4.00

2 | FT Single {2, StAdv 80.89 | 4545 545 6.09 41.98 49.98 41.05 37.0 5.87 2.78

1 % FT Croce U, StAdv 847 | 57.88 5427 1438 51.08 56.07 48.13 444 13.8 2.40
-E FT Single + ALR U, StAdv 87.24 | 6222 61.5 214 70.87 61.86 55.04 54.0 21.14 | 4.24

FT Croce + ALR U, StAdv 86.03 | 59.18 65.14 1536 63.31 62.16 55.83 50.75 1529 | 3.47

FT MAX Lo, StAdv, £, 83.16 | 65.63 56.68 36.9 65.69 53.07 35.18 56.23 34.83 | 5.62

2 | FT Single lo, StAdV, £, 87.99 | 70.53 11.17 41.63 63.46 41.11 7.95 46.7 7.74 1.57

2 % FT Croce U, StAQV, (o 85.05 | 67.3 48.07 33.38 62.52 49.58 28.96 52.82 28.63 | 2.27
-E FT Single + ALR la, StAdv, £, 88.74 | 69.15 4733 42.08 68.62 52.85 36.66 56.8  36.62 | 2.26

FT Croce + ALR U, StAQvV, (o 86.57 | 67.99 61.55 36.59 72.16 55.38 35.68 59.57 35.52 | 2.87

FT MAX la, StAdv, /., Recolor | 83.64 | 66.21 57.53 37.77 69.32 57.71 36.02 57.71  36.02 | 8.45

2 | FT Single ls, StAdv, {, Recolor | 90.41 | 66.47 3.93 29.6 69.03 42.26 2.49 4226 249 3.11

3 % FT Croce U, StAdv, £+, Recolor | 86.64 | 68.76 4481 36.02 68.05 54.41 29.44 54.41 2944 | 234
-E FT Single + ALR lo, StAdv, £, Recolor | 90.45 | 61.58 25.77 27.43 69.26 46.01 19.2 46.01 19.2 4.24

FT Croce + ALR U, StAdv, £, Recolor | 87.62 | 68.14 58,5 36.39 7235 58.85 3492 | 5885 3492 | 335

Table 1: Continual Robust Training on CIFAR-10. Best performance for each time step are bolded. The defender initially
knows about /5 attacks and over time, is sequentially introduced to StAdv, /., and ReColor attacks. We report clean
accuracy, accuracy on individual attacks, and average and union accuracies. The “Threat Models” column specifies known

attacks at the current time step, and accuracies on these attacks are in

. Initial adversarial training occurs at time

step 0, and the model is updated through fine-tuning the model from the previous time step. “Avg (known)” and “Union
(known)” columns represent average and union accuracies on known attacks while “Avg (all)” and “Union (all)” columns
report performance across all four attacks. We report training time for each time step in the “Time” column.

E™ with best performance on the set of known attacks. For
training from scratch, the reported training time is scaled
by fraction of training for the best epoch (i.e. we report
% x training time for 100 epochs). For fine-tuning we re-
port training time for the full 10 epochs. This allows us to
see how much faster fine-tuning is to optimal early stopping

when re-training from scratch.

Procedure Clean | Avg Union | Time
MAX 84.3 | 54.18 37.44 | 61.09
AVG 87.77 | 545 30.39 | 51.55
Random 86.32 | 5427 30.76 | 13.15
CRT + ALR | 87.62 | 58.85 34.92 | 26.86

Table 2: Regularized CRT (using Croce & Hein (2020b)
fine-tuning strategy) compared to training from scratch on
{5, StAdv, ¢, and Recolor attacks on CIFAR-10.

4.2. Improving CRT with Regularization

We now analyze the robustness of models trained using CRT
with and without regularization. For simplicity, we focus on
ALR with other methods analyzed in §4.3. To model a CAR
setting, we consider a sequence of 4 attacks: {5 — StAdv
— f» — Recolor. The first attack is the initially known
attack while other attacks are introduced at later time steps.
We present results for CIFAR-10 in Table 1. We include
results in Appendix H for Imagenette and CIFAR-100 as
well as additional results for longer duration of fine-tuning
(25 epochs) and a separate sequence of attacks: (o, —
StAdv — Recolor — /5. For these experiments, we use
A = 0.5 unless specified otherwise.

Regularization reduces degradation on previous attacks.
From Table 1, we observe that fine-tuning with only the
new attack (FT Single) can lead to degradation of robust-
ness against previous attacks. The incorporation of ALR
significantly decreases this drop in robustness. For exam-
ple, when fine-tuning from an ¢5 robust model with StAdv
attacks (time step 1 in Table 1), FT Single incurs a 24.25%
drop (from 69.7% to 45.45%) in {9 accuracy from the ini-
tial checkpoint (AT at time step 0). Meanwhile FT Single
+ ALR only experiences a 7.62% drop (from 69.84% to
62.22%) in {5 accuracy from the initial checkpoint (AT +
ALR at time step 0). Similarly, after the introduction of /.,
attack at time step 2, the accuracy of FT Single on StAdv
attacks drops 43.42% (from 54.5% to 11.17%) while FT
Single + ALR only experiences a 14.17% drop (from 61.5%
to 47.33%). These results align with Theorem 3.1: when
incorporating ALR into training, the gap in loss on the two
attacks is lessened.

Regularization improves performance on held out (un-
foreseen) attacks. We observe that regularized CRT leads
to higher robustness on attacks held out from training. For
example, at time step 1 in Table 1, which trains with ¢5 and
StAdyv attacks, the best accuracy on Recolor attacks out of
unregularized CRT methods is 51.08%, while FT Single +
ALR achieves 70.87% accuracy on Recolor attacks and FT
Croce + ALR achieves 63.31% accuracy on Recolor attacks.
The improvement in robustness on unforeseen attacks aligns
with Corollary 3.2 as regularization helps decrease the drop
in accuracy between clean inputs and perturbed inputs. This
also aligns with CAR’s goal of having a small Synknown-



Adapting to Evolving Adversaries with Regularized Continual Robust Training

Initial | Reg |\ cjean | 4 4. StAdv ReColor Gabor Snow Pixel JPEG Elasc Wood Glich S29% | Ave  Union
Attack | Type oscope

05 None | 0 | 91.08 | 70.02 2938 079 3360 6693 2459 1499 6422 4513 7085 8030 3008 | 4425 0.10
0 VR | 028999 | 7038 | 3456 1341 4899  67.64 2909 2257 6664 4838 7331 80.07 | 32.33 | 4894 540
0y ALR | 0.5 | 89.57 | 7029 3416 17.44 5104 6563 2871 2250 6676 48.80 7324 79.66 28.83 | 4892 5.94
0 UR | 5 | 8834 | 66.66 2741 2622 6022 69.16 2667 2257 6408 4683 7114 77.60 3136 | 49.16 6.23
0y GR | 05| 8689 | 68.19 3202 1654 5832 7485 2569 2126 6532 4682 7408 7699 3193 | 4933 4.8
[~ | Nome | 0 | 8553 | 5936 5098 634 5627 6894 3679 2057 5402 5100 6424 7594 3944 | 4866 131
o VR | 02| 8258 | 5836 5153 1898 6212 6718 3922 2362 5473 52 6335 7172 4318 | 5050 5.08
o ALR | 0.5 | 83.18 | 5821 5147 1950 6102 6875 3794 2278 5389 4982 6347 7357 39.88 | 5002 5.52
o UR | 5 | 7804 | 6028 4059 4225 7000 67.06 3340 2657 60.07 4921 6461 67.08 3843 | 5163 8.36
o GR | 05| 80.65 | 59.74 4612 3457 7049 6833 3580 2604 5728 5198 | 6546 7073 3821 | 5206 628

Table 3: Impact of Regularization on Unforeseen Robustness. We consider the setting where the defender is only
aware of a single attack and performs training with and without different types of regularization: variation regularization
(VR), adversarial /5 regularization (ALR), uniform regularization (UR), and Gaussian regularization (GR) at regularization

strength \. We report clean accuracy and robust accuracies on a range of attacks.
represent a drop of at least 1% in comparison to no regularization.

at least 1% while

124 -0. -0, 046 0.46 -0.
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(a) Adversarial ¢ regularization (A = 0.5)

represent an improvement of
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Figure 3: Ablation 2: Change in union robust accuracy after fine-tuning with regularization (initial model does not
use regularization). We fine-tune models on Imagenette across 144 pairs of initial attack and new attack. The initial attack
corresponds to the row of each grid and new attack corresponds to each column. Values represent differences between the
accuracy measured on a model fine-tuned with and without regularization. Gains in accuracy of at least 1% are highlighted
in green, while drops in accuracy of at least 1% in red. Further results are in Appendix J.

Regularization balances performance and efficiency.
Our proposed regularization term adds a small computa-
tional overhead over other FT approaches but generally im-
proves union performance on the set of known attacks. For
example, when considering the sequence of /5 and StAdv
attacks (time step 1 in Table 1), FT Croce + ALR improves
union accuracy over FT Croce by 7.7% while adding a time
overhead of 1.07 hours. Additionally, when considering the
sequence of 3 attacks (¢2, StAdv, and ¢, attacks), FT Croce
+ ALR improves union accuracy over FT Croce by 6.72%
while adding a time overhead of 0.6 hours. This increase in
time complexity is much smaller than FT MAX which takes
1.6 hours longer than FT Croce for ¢, and StAdv and 3.35
hours longer for /5, StAdv, and ¢.,. With respect to goals
in CAR, regularization balances dxpown and At.

Comparison to training from scratch. In Table 2, we
report clean, average, and union accuracies along with total
training times for using training from scratch on all 4 attacks
compared to training sequentially with regularized CRT on
CIFAR-10. We observe that regularized CRT is significantly
more efficient than MAX and AVG training (taking a total
of 26.86 hours while AVG and MAX take over 50 hours of
training time). Surprisingly, we find that on CIFAR-10, reg-
ularized CRT can outperform training from scratch methods,
achieving 4.35% higher average accuracy compared to the
best achieved by training from scratch. This suggests that
transferable robustness between carefully chosen attacks can
improve MAR as a whole. However, we note that the ability
to outperform training from scratch seems to be specific to
CIFAR-10; for ImageNette and CIFAR-100 (Appendix H)
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training from scratch outperforms using fine-tuning in CAR.

Impact of dataset and attack sequence. In Appendix H,
we provide results on ImageNette and CIFAR-100 as well as
for attack sequence ¢, — StAdv — Recolor — /5. Over-
all, we observe that trends such as improved robustness to
unforeseen and the union of attacks are generally consistent.
However, but the extent to which regularization improves
performance over FT Croce varies. The choice of the initial
attack seems to play a role in subsequent robustness, and if
defenders are aware of multiple attacks, choosing the right
one to start with is an interesting open question.

TAKEAWAY 1. CRT+ALR improves robustness on
both known and unforeseen attacks, and reduces drop in
robustness on previous attacks with only a small overhead
in fine-tuning time compared to unregularized CRT.

4.3. Ablation 1: Regularization in Initial Training

We now study the impact of regularization only in the initial
training phase of CRT. In Table 3, we present results for
robust accuracies of models initially trained on ¢5 and ¢,
attacks with different forms of regularization. We present
results for different regularization strengths and initial attack
choices in Appendix 1.3.

Regularization improves robustness on unforeseen at-
tacks. Interestingly, we find that all regularization types
including random noise-based regularization can improve
unforeseen robustness. For example, at A\ = 5, UR improves
union accuracy across all attacks by 6.13% for /5 initial at-
tack and by 7.05% for /., initial attack compared to the
model trained without regularization. Improved unforeseen
robustness provides a better starting point for fine-tuning,
which we demonstrate experimentally in Appendix 1.4.

Trade-offs for clean and different attack accuracies. We
observe that all regularization types generally exhibit a trade-
off with clean accuracy and trade-offs with a few attack
types such as Glitch. This trade-off aligns with Corollary 3.2
which states that the gap between clean loss and loss over
the union of attacks is decreased via regularization. We also
find that random noise based regularization (UR and GR)
generally exhibits trade-off with the robust accuracy on the
initial attack. This is generally not the case for adversarial
regularization (ALR and VR) which maintains performance
on the initial attack.

Regularized initial models are better starting points for
fine-tuning. In Appendix 1.4, we present results for fine-
tuning with a new attack from models using regularization
in only initial training. We observe that for all regulariza-
tion types, regularization in initial training can improve the
robustness on the union of attacks after fine-tuning, but
this trend is more consistent with adversarial regularization

types (ALR and VR) compared to random regularization
types (UR and GR).

Comparison to TRADES. In Table 4, we compare ALR at
A =1 for ¢5 and A = 0.5 for ¢, to TRADES regularizer at
A = 6. Results for other strengths of TRADES regularizer
in Appendix I. We observe that TRADES regularizer can
also help improve unforeseen robustness but ALR is gener-
ally more effective. We also find that for /., initial attack,
TRADES heavily trades off robustness on ¢, and /5 attacks
in order to obtain higher ReColor attack accuracy.

IAntltt;Zi( Reg Type | Clean Uy loo StAdv  ReColor | Union
ly None 91.17 | 69.7 2841 2.08 44.94 1.24
Ly TRADES | 88.76 | 69.69 33.00 7.04 56.82 5.51
12 ALR 89.43 | 69.84 34.00 48.23 65.46 31.27
loo None 8593 | 59.48 5144 14.87 62.48 11.9
loo TRADES | 85.72 | 56.44 41.70 23.17 70.23 17.83
loo ALR 83.18 | 58.15 51.49 34.78 58.15 29.87

Table 4: Comparison to TRADES. We compare robustness
measured across different threat models when initial training
on /9 and £, with either TRADES at A = 6 and or ALR at
A = 1for {5 and A = 0.5 for ¢, regularizer.

TAKEAWAY 2. Adversarial and random noise reg-
ularization in initial training improves performance on
unforeseen attacks. Fine-tuning on a new attack from a
regularized model boosts resulting Union accuracy.

4.4. Ablation 2: Regularization during Fine-tuning

We now investigate whether regularization within just the
the fine-tuning phase can improve CAR. We initially train
models on a single initial attack using adversarial training
(without regularization) and then fine-tune with Croce &
Hein (2022)’s fine-tuning approach both with and without
regularization on a new attack. In Figure 3, we present
grids representing differences in Union accuracy between
regularized and unregularized fine-tuning. Rows represent
the initial attack used to adversarially train the model (with-
out regularization), columns represent the new attack. We
provide corresponding plots detailing differences in average
accuracy, initial attack accuracy, new attack accuracy, and
clean accuracy in Appendix J.1.

Adversarial regularization can improve union accuracy
in fine-tuning. We find that across different initial and new
attack pairs, using ALR in fine-tuning generally improves
union accuracy as most cells in Figure 3(a) are green. These
increases in robustness can be quite large; for example,
when the initial attack is StAdv (Xiao et al., 2018) and the
new attack is Kaleidoscope (Kaufmann et al., 2019), ALR
improves robustness on the union by 8.66%. Additionally,
when the initial attack is ¢, and the new attack is Snow
(Kaufmann et al., 2019), ALR improves robustness on the
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Procedure Clean lo StAdv

Avg Union Avg  Union

Recolor (known) (known) | (all)  (all)

FT Single 80.89 | 4545 545

41.98 49.98 41.05 37.0 5.87

FT Single + EWC (0.5) | 83.98 | 58.85 51.15

1544  51.55 55.00 46.25 4425 1454

FT Single + EWC (1) 85.20 | 57.69 56.18

13.07  50.99 56.93 49.42 4448 12.69

FT Single + EWC (2) 85.10 | 57.96 55.14

13.54  51.23 56.55 48.9 4447 1299

FT Single + ALR 87.24 | 6222 615

70.87 61.86 55.04 540 21.14

Table 5: FT Single with EWC compared to FT Single with ALR for the sequence /5 —StAdv attack (analogous to time step
1 in Table 1). Regularization strength for EWC is shown in parentheses. Accuracy on known attacks are in

Union of both attacks by 7.85%. We find same trend holds
for VR (Appendix J.1).

Random noise based regularization is harmful when
used in fine-tuning. Although random noise based regu-
larization can improve robustness when used in the initial
training phase of CRT, Figure 3(b) demonstrates that UR in
fine-tuning hurts union accuracy for many initial and new
attack pairs (corresponding results for GR are present in
Appendix J.1). This suggests that while random noise based
regularization can be used to perform initial training more
efficiently, they should not be used during fine-tuning. Since
we found that UR and GR trade off accuracy on the initial
attack when used in initial training in §4.3, this suggests
that UR and GR generally trade off performance on attacks
that are used in training or fine-tuning.

Comparison to EWC. In Table 5, we compare FT Single
using EWC (Kirkpatrick et al., 2017) to FT Single with
ALR. In these experiments, the model is initially trained
on CIFAR-10 to be robust against {5 attacks, and now we
want to finetune to achieve robustness against StAdv attacks
(analogous to time step 1 in Table 1). Overall, we find that
ALR’s improvement in robustness on known and unforeseen
attacks is significant compared to EWC. We believe that
this is because ALR can also be applied in initial training
to boost the initial state of the model prior to finetuning.
EWC’s improvement over FT Single is similar to using FT
Croce results in Table 1 (Time step 1) which uses replay of
previous attacks in finetuning.

TAKEAWAY 3. In fine-tuning, adversarial regularization
(ALR and VR) can improve Union accuracy significantly
(up to ~ 7%) while random noise-based regularization
hurts Union accuracy.

5. Discussion and Related Work

This work makes early progress towards deployable de-
fenses that mitigate model obsolescence in the face of evolv-
ing adversaries. Such approaches could promote the adop-
tion of robust models, as they allow model trainers to ‘patch’
against vulnerabilities without training from scratch.

Related Work: Prior works investigate multiattack robust-
ness (MAR) (Maini et al., 2020; Tramer & Boneh, 2019;
Madaan et al., 2020; Croce & Hein, 2020a; Jiang & Singh,

2024) and unforeseen attack robustness (Laidlaw et al.,
2021; Zhang et al., 2018; Dai et al., 2022; Jin & Rinard,
2020; Dai et al., 2023). Unlike these methods, we assume
that the defender may not know all attacks a priori but can
adjust their model as new attacks emerge. Croce & Hein
(2022) propose a fine-tuning method for MAR on unions of
¢, attacks. Our work differs by exploring additional attack
types (e.g. spatial attacks (Xiao et al., 2018) and color shifts
(Laidlaw & Feizi, 2019)) and improvements to the initial
training stage prior to fine-tuning. We provide detailed dis-
cussion of related work in adversarial ML in Appendix A.

Our problem setting is also related to continual learning
(CL). In CL, a set of tasks is learned sequentially with the
goal of performing as well as if they were learned simul-
taneously (Wang et al., 2023a). Few works have studied
the intersection of CL and adversarial ML with most works
focusing on evaluating or improving the robustness of mod-
els trained in the CL framework (Bai et al., 2023; Khan
et al., 2022a;b). The most similar to our work is Wang
et al. (2023b) which treats different attacks as tasks and
uses approaches in CL to sequentially adapt a model against
attacks using a different optimization procedure (ie. FGSM
or PGD) rather than a different attack type as in our work.

Gradual domain adaptation (Kumar et al., 2020; He et al.,
2024; Wang et al., 2022; Zhuang et al., 2024) is another
related field which looks adapting a model to distribution
shifts with access to intermediate domains with pseudola-
bels. These intermediate domains can be thought of as
gradual shifts in data distribution over time and are not
designed adversarially. In comparison, our work looks at
changes in the space of attacks over time, and we assume
that the defender is able to generate these attacks on their
own data, thus ensuring that they have access to labels.

Limitations: More work is needed to improve the perfor-
mance of regularized CRT, as our approach does not out-
perform existing baselines in all settings. It also remains
unclear whether training from scratch with all attacks or
fine-tuning on new attacks is optimal from both a theoretical
and empirical perspective. Future work could also compare
the convergence rates of training from scratch and CRT. De-
riving tighter bounds and potentially better continual robust
training methods by bounding the change in loss between
the models at each stage remains open. Further limitations
and future directions are discussed in Appendix C.
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Schaffner et al., 2024), and face authentication (Komkov &
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towards training and updating models in order to maintain
robustness over time. However, there are cases in which ad-
versarial examples are used for good (e.g. defending against
website fingerprinting (Rahman et al., 2020; Shan et al.,
2021)) which may be adversely affected by models robust
to adversarial examples, including our proposed approach.
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This appendix is organized as follows:

1. Additional related work (Appendix A)

2. Applications of CAR (Appendix B)

3. Future directions (Appendix C)

4. Proofs (Appendix D)

5. Connection to variation regularization (Appendix E)

6. Experimental verification of theoretical results (Appendix F)

7. Additional experimental setup details (training and attack parameters, model selection, regularization setup) (Ap-
pendix G)

8. Additional experiments

» Longer attack sequences and different datasets (CIFAR-100 and ImageNette) (Appendix H)
* Ablations on initial training (comparison to TRADES, attack choice, regularization parameters) (Appendix I)
* Ablations on fine-tuning (attack choice, regularization parameters) (Appendix J)

A. Additional Related Work

Adversarial Attacks and Defenses: ML models are vulnerable to input-space perturbations known as adversarial examples
(Szegedy et al., 2014). These attacks come in different formulations including £,-norm bounded attacks (Madry et al.,
2018; Carlini & Wagner, 2017), spatial transformations (Xiao et al., 2018), color shifts (Laidlaw & Feizi, 2019), JPEG
compression and weather changes (Kaufmann et al., 2019), bounded Wasserstein distance (Wong et al., 2019; Wu et al.,
2020) as well as attacks based on distances that are more aligned with human perception such as SSIM (Gragnaniello et al.,
2021) and LPIPS distances (Laidlaw et al., 2021; Ghazanfari et al., 2023).

Despite the wide variety of attacks that have been introduced, defenses against adversarial examples focus mainly on ¢,
or {5-norm bounded perturbations (Cohen et al., 2019; Zhang et al., 2020; Madry et al., 2018; Zhang et al., 2019; Croce
et al., 2020). Of existing defenses, adversarial training (Madry et al., 2018), an approach that uses adversarial examples
generated by the attack of interest during training, can most easily be adjusted to different attacks. In our work, we build off
of adversarial training in order to adapt to new adversaries.

Training Techniques for Multi-Robustness: A few prior works have studied the problem of achieving robustness against
multiple attacks, under the assumption that all attacks are known a priori. These include training based approaches (Maini
et al., 2020; Tramer & Boneh, 2019; Madaan et al., 2020; Jiang & Singh, 2024) which incorporate adversarial examples from
the threat models of interest (usually the combination of ¢1, /5, and /., norm bounded attacks) during training. Croce &
Hein (2020a) provides a robustness certificate of all £, norms given certified robustness against /o, and ¢; attacks. Of these
approaches (Jiang & Singh, 2024) is similar to ours. Jiang & Singh (2024) looks at the problem of achieving robustness
against multiple £, norms and proposes a logit pairing loss which aims to minimize the KL divergence between the logits of
predicting on 2 different ¢, attacks. Additionally, they use gradient projection to integrate model updates between natural
training and adversarial training for better clean accuracy-robustness tradeoff. In comparison, our work looks at robustness
against sequences of attacks including non-¢,, attacks. Our regularization term uses ¢ distance between clean and adversarial
logits.

Another line of works has looked at defending against attacks that are not known by the defender, which is a problem known
as unforeseen robustness. These techniques are all training-based and include Laidlaw et al. (2021) which proposes training
based on LPIPS (Zhang et al., 2018), a metric more aligned with human perception than ¢,, distances, and Dai et al. (2022);
Jin & Rinard (2020) which use regularization during training in order to obtain better generalization to unforeseen attacks.
Dai et al. (2023) provides a comprehensive leaderboard for the performance of existing defenses against a large variety of
attacks at different attack strengths.

Our work differs from these lines of works since we assume that while the defender may not know all attacks a priori,
they are allowed to adjust their defense when they become aware of new attacks. The work most similar to ours is Croce
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& Hein (2022), which proposes fine-tuning a model robust against one £,, attack to be robust against the union of £,
attacks. Specifically, they demonstrate that we can achieve simultaneous multiattack robustness for the union of £, attacks
by obtaining robustness against /1 and /., attacks, and thus propose fine-tuning with ¢; and /., attacks to achieve this
efficiently. Our work differs from this work since we explore adapting to attacks outside of ¢, attacks, investigate ways of
improving the initial state of the model prior to fine-tuning, and consider adapting to sequences of attacks.

B. Applications of CAR

Solving CAR is of interest in any safety-critical domain where an attacker is motivated to evade a ML model. A good
example is automated content moderation, where malicious actors try to post content that violates policies by uploading
obfuscated images . Strategies naturally evolve over time for motivated attackers who can also use numerous open-source
methods proposed in the literature, which also evolve over time. Given that ML models will continue to be used in sensitive
domains such as finance, cyber-physical systems and medicine, model deployers need methods to update their models to
evolving threats.

C. Future Directions

We now discuss a few directions for future work in depth.

Choice of initial attacks and attack similarities. In this work, we looked at /5 and /., attacks as the initial attack in the
CAR problem. However, in practice, we would like to choose an initial attack that is the most representative of the attacks
we want to be robust against, in order to generalize to downstream new attacks. Further research on understanding and
improving the initial attack can improve the accuracies achieved through training with CRT. Additionally, having ways of
measuring attack similarity between the known attacks and new attacks can help allow us to decide whether using CRT is
sufficient for achieving good robustness or whether we need to train from scratch or combine the model with other defenses
tailored towards the new attack.

Attack Monitoring. One assumption of CAR is that the defender is able to discover when a new attack exists. While this
is clear in cases such as a research group publishing a paper with a new attack or a company’s security team finding a
vulnerabilities, in practice, we would also be interested in recovering after an adversary discovers a new, unknown attack
and successfully attacks the model. In this case, we would need a good monitoring system for detecting and synthesizing
these new attacks for use with CRT.

Towards real world robustness. In our work, we focus on changes in the defender’s knowledge of attacks over time which
is useful in cases such as a research or security team discovering a new attack type. A real-time attack setting poses new
challenges:

* No access to threat model- the defender does not know the threat model and cannot generate adversarial examples. They
only have access to the perturbed data generated by the adversary.

* Missing true labels and no access to the original unperturbed input - the defender also does not have the corresponding
true labels or the original clean input for use in training.

» Few shot updates - it becomes critical that the model can be made robust with only a few examples of successful attacks,
otherwise it means that the adversary has been exploiting the vulnerabilities of the model for a long time

Defending in this setting is outside of the scope of this paper, but potentially using generative models in order to model the
perturbation (Wong & Kolter, 2020) used by the adversary can help to bridge the gap from points (1) and (2) and allow for
the defender to apply the attack on their own dataset and finetune with our proposed CRT + ALR. If the generative model is
able to learn to model perturbations with only a few adversarial examples, then this can also address (3).

Reducing catastrophic forgetting. In CAR, since attacks are introduced sequentially, catastrophic forgetting is an
important problem. In our work, we utilized replay via Croce & Hein (2022)’s fine-tuning approach and also found that
ALR reduces catastrophic forgetting to some extent. Future work on reducing catastrophic forgetting can help improve the
effectiveness of updating the model with CRT.

Training and fine-tuning efficiency. In our experiments, we combine regularization with Croce & Hein (2022)’s fine-tuning
approach due to the effectiveness and efficiency of that approach. Further research on developing better and more efficient
fine-tuning techniques for achieving robustness to new attacks (while maintaining robustness against previous attacks) can
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improve our CRT framework.

Model capacity. Current works in adversarial robustness literature show that adversarially robust models need higher
model capacity (Madry et al., 2018; Gowal et al., 2020; Cianfarani et al., 2022). As we increase the space of attacks to
defend against, we may need to increase the capacity of the model in order to achieve multi-robustness (Dai et al., 2024a).
An interesting future direction is looking at the connection between model capacity and CAR and seeing if adding more
parameters to the network during fine-tuning (such as using adapters (Rebuffi et al.)) can be used to address the issue of
model capacity.

Theory. We believe further work is necessary to extend the theory of CAR. Our results focus on the relationship between
robust loss and logit distance between attacks for a single model. However, we do not extend them to comparisons between
loss under different attacks for different models, such as the initial robust model and the one at the end of fine-tuning.
Additionally, the CAR framework could be extended to the multi-task setting, as is the case in multi-task representation
learning (Watkins et al., 2024; Tripuraneni et al., 2020). These prior works connect the ability of a class of models to learn a
set of tasks to the complexity of that class (measured using Gaussian or Rademacher complexity, for example). Similar
methods may also be useful for proving a model’s ability to defend against multiple adversaries.

D. Proofs

D.1. Proof of Theorem 3.1

The proof of Theorem 3.1 adapts that of Theorem I from Nern et al. (2023) by considering multiple attacks compared to the
single one considered there.

Proof. Define independent random variables Dy, ..., D,, as
Di = max {(h :ZJ; yYi) — max Y(h .17/»/ Ui,
C zleCi(z) (h(x3), i) €0 (1) (h(7),y3)

based on independently drawn data points with probability distribution P (X ). Using Hoeffding’s inequality, we get

<2-e 2t2>
Xp
M%
1 1 2
:>P< M, 0g(ﬂ/)>>1_p.

n —2n

Thus, with probability at least 1 — p it holds that

E[D] = |£1(h) — L2(h)]

(B [mas e~ s )]

; — nlE[D

n

ZD E[D]| <

i=1

.’Ijlecl(l‘) ’ 2/ €Ca(x)
Ly log(p/2)
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< |52 ) = s K" p0) | + Moy =200 0
We can further bound the first term on the right hand side, since the loss function ¢(r,y) is M;-Lipschitz in || - ||z for
r € h(X):
l n max E(h(xl)’yz) —  max g(h(x//)vyz)
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where 1, ...,z with 2} € Ci(x;) and 27, ..., 2], with 2} € Cy(x;) are chosen to maximize ¢(h(-),y;) for each i. The
perturbed samples represented in this inequality might not maximize the distance between the logits, but that distance can be
bounded by the maximally distant perturbations within each neighborhood. Making use of the triangle inequality, we obtain:

n

> lIaah) = )l

i=1

= ST lh(a) = b)) — (blat) — b))

< Z A7) = h(i)ll2 + (7)) — h(xi)ll2

< ma h(z") — h(z;)||s + ma h(z") — h(x;)]2. 3
<Y mm ) hGlat m 16—l ®

We then achieve our final result, recalling the assumption that £1(h) > Lo(h):

Li(h) — L2(h) = [L1(h) — La(h)]

n

1
<M~ ( h(z') — h(zs)|)2 + h”fh,->+D, 4
<M S mas 6~ R+ mas G") bl )
where D = M> %. O
D.2. Proof of Corollary 3.2
Proof. Define independent random variables Dy, ..., D, as

max

based on independently drawn data points with probability distribution P(X). Using Hoeffding’s inequality, we get
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We can further bound the first term on the right hand side, since the loss function #(r,y) is M;-Lipschitz in || - ||2 for
r € h(X):

n

1

- a C(h(z"), y;) — 0(h(z;), y;
nzla:’ecl(IgIvli)EJ(CQ(wi) ( (I) y) ( (I) y)
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1 n
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where «f,..., 2z, with z; € Cy(z;) U Ca(z;) are chosen to maximize £(h(-),y;) for each i. The perturbed samples

represented in this inequality might not maximize the distance between the logits, but that distance can be bounded by the
maximally distant perturbations within each neighborhood.
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DI N LR

n
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We then achieve our final result :
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1 n
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D.3. Relating the Loss Gap to Internal Representations

While our results bound the robust loss gap in terms of the distance between logits of samples perturbed with different
attacks, similar results hold for the distance between internal activations. To show how our results can apply to common
transfer learning settings (such as that of Nern et al. (2023)), we prove the following corollary:

Corollary D.1. Let h : R? — R€ be a c class neural network classification model with a final linear layer (i.e. h(c) =
Wg(x), where g : RY — R", and W € R*"). Assume that loss £({),y) is My-Lipschitz in || - ||o for a € {1,2, 00}, for
9 € h(X) with My > 0 and bounded by M > 0, i.e. 0 < U(§,y) < My Vy € h(X). Then, for a subset X = {z;} ;
independently drawn from D, the following holds with probability at least 1 — p:

1 n
L1(h) — La(h) < La(W)Mlﬁ Z (w&?ﬁii) llg(z") — g(x;)|2 + e lg(z') — g(xi)||2> +D,

where D = Mo log(p/2) g

—2n
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Proof. From (5), (6), and the definition of h, we have that

1 & log p/2
Ly — Lo < My— Wg(z;) — h(x} Moy ———.
63 £ < Myy S IWolal) — ha)la + My 55

We then apply Lemma 2 from Nern et al. (2023) and the definition of L:

1 n
M= [Woah) = Wyl
i=1

1 n
< La(W)Mi— > llg(a?) — g(a)l2-
i=1

As in the proof for Theorem 3.1, the perturbed samples represented in this inequality might not maximize the distance between
the representations, but that distance can be bounded by the maximally distant perturbations within each neighborhood.
Making use of the triangle inequality, we obtain:
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E. Connection Between Adversarial /; Regularization and Variation Regularization

In this section, we will show the relationship between adversarial /5 regularization (ALR) and variation regularization (VR)
(Dai et al., 2022). To begin, we first revisit the definitions of ALR and VR:

1 m
R h,K(t)) = — h(z") — h(z;
ar(h, K(t)) = — - o [7(z") = h(zi)|l2
— 1 - / "
Rvr(h, K (1)) = — ;w,’ﬁlgg(wi) [7(z") — h(z")]|2

Since VR optimizes over 2 perturbations ' and 2" for each example while ALR optimizes only for z’, it is clear that
Rarr < Rygr. Additionally, we note that:

m

Ru(h K(0) = - 3" max [(a") = ha) + h(z) = h(a")]

— z',z"eC(x,

< %Z max _)Hh(:c’) = h(z)|l2 + [[h(z) — h(z")]2
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Figure 4: Adversarial loss gap (L1 2(h) — £(h)) and average > distance between logits of {2 (¢ = 0.5, representing Pc,)
and StAdv (e = 0.05, representing P, ) attacked samples over 25 epochs of fine-tuning using (Croce & Hein, 2022)’s
fine-tuning method, both with and without regularization. Each model is fine-tuned starting from a model that is adversarially
trained against an ¢ adversary, as described in Section 4.1. In all training scenarios, there is a visible correlation between
the loss gap and the logit distance, aligning with the theoretical result in Corollary 3.2.

m

2
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Thus, ALR and VR are related in the sense that Rajr < Rvr < 2Ra1R.

F. Experimental Verification of Theoretical Results

We now briefly demonstrate that our chosen regularization terms align with our theoretical results. In Figure 4, we start with
WRN-28-10 models that were adversarially trained to be robust against £o-bounded attacks, and fine-tune them to increase
their robustness against StAdv attacks using either no regularization, uniform regularization, or adversarial ¢ regularization.
We observe a number of trends:

Sensitivity correlates with loss gap. Whether or not regularization is used, there is a clear correlation between total
adversarial sensitivity across both attacks (i.e. max,/cc, (z) [|P(2") — h(z)|| + max, ecy, (2 [|(z") — h(x)|)) and the loss
gap between the union robust loss and the benign loss (i.e. £1 2(h) — L(h)).

Regularization reduces sensitivity and loss gap. Both metrics are significantly lower throughout fine-tuning when
regularization is used, indicating that regularization is successfully targeting our theoretical bounds.

Loss gap increases over time. Across all three models there is an increase in both loss gap and adversarial sensitivity over
the course of fine-tuning. While this may seem like a failure of regularization, the benefit is more apparent when further
analyzing what is causing the loss gap to increase. In the regularized fine-tuning runs, both benign and robust losses are
decreasing, with benign loss decreasing more quickly. This is likely influenced by an initial increase in benign loss at the
very beginning of fine-tuning which is not captured in Figure 4. However, without regularization, benign loss decreases
while union robust loss increases. This shows us that despite theoretically targeting the gap between union robust loss and
benign loss, the use of regularization still aids in individually reducing both losses in absolute terms.

G. Additional Experimental Setup Details

Additional training details. For initial training, we start with a learning rate of 0.1 and then use the multistep learning rate
scheduling proposed by Gowal et al. (2020); specifically, we scale the learning rate down by a factor of 10 halfway and 3/4
of the way through initial training or fine-tuning. For fine-tuning, we maintain a learning rate of 0.001. We train with SGD
with momentum of 0.9 and weight decay of 0.0005.

Additional Attack parameters in training. Following other works on adversarial robustness, we use a step size of 0.075
for /5 attacks on CIFAR-10, 0.15 for ¢5 attacks on ImageNette, and % for ¢ attacks. For other attacks, we use § where €
is the attack strength as the step size during training. We provide visualizations of each perturbation type in Figure 5.
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StAdv

Snow

Elastic Elastic

Original Glitch Glitch Kaleidoscope

(a) Clean image (b) Most commonly used perturbation size (c) Largest perturbations used

Figure 5: Attack visualizations for CIFAR-10. The original image is portrayed in (a), the perturbed images at perturbation
budgets used for most evaluations is shown in (b), and the largest perturbation sizes used in evaluations (diagonal entries in
Figure 3) are shown in (c).

Model selection. In the main paper, we stated that we perform evaluation using the epoch at which the model has the best
performance measured across known attack types. Specifically, after each epoch of training, we evaluate the performance
of each model against the attacks used during training (with the same attack parameters as used during training). For
training with AVG, we use the best performing model with respect to the AVG objective (which is the model with the best
performance measured as an average over individual attack accuracies). Meanwhile for MAX and FT MAX, we use the best
performing model with respect to the MAX objective (which is the best performing model across the union of all attacks).
For procedures that only use a single attack per batch during training (Random, FT Single, FT Croce, and our procedure),
we use the best performing model measured by sampling attacks per batch randomly.

Regularization setup. We note that all attacks used in this paper use a gradient based optimization scheme for finding
the attack. In order to compute regularization for non-/,, threat models, we follow the same optimization scheme used
by the attack (Xiao et al., 2018; Laidlaw & Feizi, 2019; Kaufmann et al., 2019) but replace the classification loss portion
of the optimization objective to be the /5 distance between features/logits between the perturbed and unperturbed input.
For fine-tuning with regularization, since Croce & Hein (2022)’s fine-tuning approach only uses a single attack per batch,
we structure the regularization to mimic Croce & Hein (2022)’s fine-tuning procedure. Specifically, for each batch, the
regularization is for a single attack type (the same one which is selected to use with adversarial training by Croce & Hein
(2022)’s fine-tuning approach). This helps to reduce the overhead from regularization.

H. Additional Experimental Results for CAR
H.1. Addition Datasets and Attack Sequences

We present additional results for CAR on CIFAR-10 in Tables 6 and 7, results for CAR on Imagenette in Table 8 and
9 and results for CIFAR-100 in Tables 10 and 11. We also compare different fine-tuning approaches in the absense of
regularization.
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Training time and robust performance. We find that fine-tuning with MAX objective (FT MAX) or Croce & Hein (2022)
(FT Croce) can generally achieve robustness across previous attacks and the new attack in the sequence comparable to
training from scratch. For example, in Table 7, when fine-tuning to gain robustness against StAdv attack starting from a
model initially trained with adversarial training on ¢, attacks on CIFAR-10, we find that FT MAX achieves 50.75% average
robustness across the two attacks and 41.57% union robustness across the two attacks, and FT Croce achieves 49.48%
average robustness and 29.69% union robustness. These values lie within (or even above) the range obtained through training
from scratch (42.23%-49.61% average robustness and 28.03%-40.8% union robustness). We find that this trend generally
holds as well across time steps when new attacks are introduced, when using a different sequence ordering (Table 6).

Of these two techniques, we find that FT MAX generally achieves higher average and union accuracies across the set of
known attacks, but is less efficient when used in fine-tuning. For example, In Table 7, FT MAX takes 3.99 hours for 10
epochs of fine-tuning from an /., robust model while FT Croce takes 2.31 hours. The time complexity of FT MAX also
scales as the number of attacks increases, leading to 7.9 hours of fine-tuning for 10 epochs when there are 4 known attacks
while FT Croce maintains approximately the same training time.

In comparison to naively training from scratch, we also find that these fine-tuning techniques can be much more efficient.
For example, a model robust to a sequence of 4 attacks in Table 6 can be found in roughly 17 hours using CRT, but training
from scratch each time would require 44 hours cumulatively.

Importance of replay. We find that replay of previous attacks is important for achieving good robustness across the set of
known attacks when training with CRT. Fine-tuning with only the new attack (FT Single) usually leads to rapid forgetting of
the previous attack. For example, in Table 7 we observe that the accuracy of robustness on the initial attack (/) drops to
31.14% robust accuracy at time step 1 (from the initial accuracy of 51.49% at time step 0) and then further drops to 25.27%
at time step 2 when the third attack (Recolor) is introduced. This forgetting is independent from tradeoffs between attacks
as we find that training from scratch and FT MAX and FT Croce techniques can all achieve at least 40% (. accuracy at
time step 1 and at least 35% (. accuracy at time step 2. The forgetting of previous attacks is also analogous to catastrophic
forgetting of previous tasks in continual learning (Wang et al., 2023b; McCloskey & Cohen, 1989). We note however that
forgetting is less of a limitation in CAR than in continual learning since the defender’s knowledge set only grows over time;
they do not forget the formulation of previous attacks and can thus can always use methods such as replay.

ALR applied on logits vs features. In Table 6, we also provide results for using regularization based on distances in
the feature space (before the final linear layer), which are labelled with “+ ALR feature”. Overall we observe that using
regularization in the feature space can also help improve performance on average and union robustness across known attacks
as well as improve unforeseen robustness over baselines. However, we observe that feature space regularization leads to
larger tradeoffs in clean accuracy than regularization on the logits (“+ ALR” rows) while robust performance is comparable
to regularization applied on the logits.

Training durations. Across all tables we also provide experiments for fine-tuning with 25 epochs (as opposed to 10 epochs
reported in the main body). We find that increasing the number of fine-tuning epochs can help methods such as FT Croce
achieve robustness closer to that of training from scratch, but at the cost of increased time for updating the model.

Performance on other datasets. We find that the gain in performance through using ALR varies across datasets. For
Imagenette the gain in performance is generally much smaller than on CIFAR-10 (ALR closes the gap between fine-tuning
based updates and training from scratch rather than surpassing training from scratch as in CIFAR-10. On CIFAR-100 ALR
generally does not improve performance over fine-tuning. We believe that this is because achieving robustness on multiple
attacks is quite hard on CIFAR-10; clean accuracy is between 60-70% and robust accuracies are even lower with StAdv and
£ robustness only achieving up to 32% robust accuracy and 25% robust accuracy respectively.

I. Initial Training Ablations

In this section, we present some ablations across regularization strength of each regularization method on the initial training
portion of our approach pipeline. We present ablation results for CIFAR-10 and ImageNette.

I.1. Impact of random noise parameter o

To investigate the impact of the noise parameter o, we perform initial training on CIFAR-10 with uniform and gaussian
regularization at different values of 0. We maintain a value of regularization strength A = 5 to isolate the impact of the
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rlswll{:: Procedure Threat Models Clean ly StAdv loo Recolor (knA(:,v%n) (121 I:‘?/I;) él\lllg) (i:ho)n '{}111::
AT 2 91.17 | 69.7 2.08 2841 44.94 69.7 69.7 36.28 1.24 8.35
0 AT+ALR (A =1) Uy 89.43 | 69.84 4823 34.00 65.46 69.84 69.84 | 5438 31.27 | 11.15
AT + ALR feature (A = 5) 123 83.7 63.1 26.57 316 62.53 63.1 63.1 4595 20.16 | 11.13
AVG la, StAdv 87.74 | 62.17 5092 17.17 4547 56.55 4755 | 4393 1592 | 23.72
MAX Lo, StAdv 86.18 | 58.65 57.21 11.21 43.07 57.93 51.72 | 42.54  11.03 | 23.69
Random {5, StAdv 8491 | 57.77 59.74 14.05  44.88 58.76 52.15 | 44.11 13.68 | 10.92
[ FTMAX (10ep) | l, StAdv — T 8373 | 57.07 58.67 1251  49.03 | 57.87 5132 | 4432 1236 | 4
FT MAX (25 ep) ls, StAdv 84.85 | 56.44 6134 1035  48.08 58.89 52.52 | 44.05 10.24 10
FT Croce (10 ep) lo, StAdv 84.7 | 57.88 5427 1438  51.08 56.07 48.13 44.4 13.8 24
FT Croce (25 ep) lo, StAdv 86.24 | 5894 5737 1326 5036 58.16 50.89 | 44.98 13 5.98
FT Single (10 ep) lo, StAdv 80.89 | 4545 545 6.09 41.98 49.98 41.05 37 5.87 2.78
1 FT Single (25 ep) L, StAdv 81.21 | 44.17 54.6 5.56 40.95 49.38 39.76 | 3632 536 6.92
FT Single + ALR (10 ep) ls, StAdv 87.24 | 6222 615 21.4 70.87 61.86 55.04 54 21.14 | 4.24
FT Single + ALR (25 ep) ls, StAdv 87.54 | 6121 60.38 20.81 69.49 60.8 5422 | 5297 2048 | 8.77
FT Single + ALR feature (A = 2, 10 ep) | /2, StAdv 81.79 | 5698 60.28 20.59  63.64 58.63 51.65 50.37 2021 | 3.52
FT Single + ALR feature (A = 5, 10 ep) | {2, StAdv 81.26 | 60.43 57.61 2817 67.95 59.02 51.99 | 53.54 27.24 | 3.53
FT Croce + ALR (10 ep) lo, StAdv 86.03 | 59.18 65.14 1536  63.31 62.16 5583 | 50.75 1529 | 347
FT Croce + ALR (25 ep) Lo, StAdv 88.5 | 64.88 5898 239 70.79 61.93 55.03 | 54.64 23.33 | 7.96
FT Croce + ALR feature (A = 2, 10 ep) | {2, StAdv 83.19 | 61.28 59.04 2398  62.69 60.16 5325 | 51.75 232 297
FT Croce + ALR feature (A = 5, 10 ep) | /5, StAdv 83.51 | 61.69 61.76 2333 6248 61.73 5525 | 52.31 2277 | 3.13
AVG la, StAdv, 8598 | 67.60 4581 4239 6243 51.93 34.05 | 5456 33.39 | 33.12
MAX Lo, StAdv, (o 84.54 | 54.87 5233 3823 5590 48.48 3525 | 5033  34.08 | 79.04
Random Lo, StAdv, (o 39.52 | 6746 4735 4212  63.61 52.31 3546 | 55.13 3479 | 10.92
[ FTMAX (10ep) | 0y, StAdv, o, ~ | 83.16 | 65.63 56.68 369 6569 | 5307 3518 | 5623 3483 [ 5.62
FT MAX (25 ep) Uy, StAdV, {o 83.99 | 65.69 58.16 37.21 65.52 53.69 3576 | 56.65 35.31 | 12.88
FT Croce (10 ep) lo, StAdV, {o 85.05 | 67.3 48.07 3338 6252 49.58 2896 | 52.82 28.63 | 2.27
FT Croce (25 ep) lo, StAdv, {o 86.14 | 67.3 5247 3586 63.43 51.88 3254 | 5477 32.08 | 5.01
FT Single (10 ep) la, StAdV, {o 87.99 | 70.53 11.17 41.63  63.46 41.11 7.95 46.7 7.74 1.57
2 FT Single (25 ep) Lo, StAdv, (o 88.67 | 7023 8.79 43.4 63.03 40.81 6.19 4636  6.05 3.91
FT Single + ALR (10 ep) Lo, StAdv, (o 88.74 | 69.15 4733 4208 68.62 52.85 36.66 56.8 36.62 | 2.26
FT Single + ALR (25 ep) Lo, StAdv, (o 88.14 | 6826 49.1 4148 66.73 52.95 37.55 | 5639 375 5.4
FT Single + ALR feature (A = 2, 10 ep) | {2, StAdv, { 85.69 | 67.62 29.42 43.68  68.75 46.91 2444 | 5237 2438 | 2.16
FT Single + ALR feature (A = 5, 10 ep) | {2, StAdv, { 84.03 | 67.64 42.03 4436 71.36 51.34 3254 | 5635 3248 | 229
FT Croce + ALR (10 ep) lo, StAdV, {o 86.57 | 67.99 61.55 36.59 72.16 55.38 35.68 | 59.57 3552 | 2.87
FT Croce + ALR (25 ep) lo, StAdv, { 86.96 | 6891 5721 39.65 72.22 55.26 37.25 59.5 37.14 | 6.87
FT Croce + ALR feature (A = 2, 10 ep) | {2, StAdv, (o 83.13 | 6691 56.76 38.66  68.57 54.11 3595 | 57.73 35776 | 2.82
FT Croce + ALR feature (A = 5, 10 ep) | {5, StAdyv, { 84.25 | 68.14  57.7 39.8 70.29 55.21 37.4 5898 37.21 | 2.79
AVG U, StAdv, (o, Recolor | 87.77 | 68.55 39.55 4197 67.93 54.5 30.39 545 3039 | 50.54
MAX U, StAdv, (o, Recolor | 843 | 57.62 523  41.69 65.1 54.18 3744 | 54.18 3744 | 5554
Random lo, StAdv, {, Recolor | 86.32 | 65.87 47.82 35.04  68.35 54.27 30.76 | 54.27 30.76 | 12.41
[ FTMAX (10ep)y ~ |* 05, StAdv, I, Recolor | 83.64 | 6621 57.53 37.77 6932 | 57.71 3602 | 5771 36.02 | 845
FT MAX (25 ep) U5, StAdv, ., Recolor | 83.9 | 65.72 57.84 3837 68.84 57.69 36.87 | 57.69 36.87 | 21.44
FT Croce (10 ep) ls, StAdv, ., Recolor | 86.64 | 68.76 44.81 36.02  68.05 54.41 2944 | 5441 2944 | 234
FT Croce (25 ep) ls, StAdv, ., Recolor | 87.11 | 67.89 49.57 3558  67.05 55.02 31.21 55.02  31.21 59
FT Single (10 ep) la, StAdv, £, Recolor | 90.41 | 6647  3.93 29.6 69.03 4226 2.49 4226 249 3.11
3 FT Single (25 ep) U, StAdv, (o, Recolor | 90.89 | 65.14 3.02 3032 68.54 41.75 1.92 4175 192 7.41
FT Single + ALR (10 ep) U, StAdv, (o, Recolor | 90.45 | 61.58 2577 2743  69.26 46.01 19.2 46.01 19.2 | 4.24
FT Single + ALR (25 ep) l, StAdv, £, Recolor | 90.4 | 57.07 2491 2291 67.39 43.07 17.21 43.07 1721 | 9.79
FT Single + ALR feature (A = 2, 10 ep) | ¢2, StAdv, (., Recolor | 90.15 | 57.89 875 22.86  72.27 40.44 6.61 4044  6.61 3.94
FT Single + ALR feature (A = 5, 10 ep) | {2, StAdyv, ¢, Recolor | 88.44 | 66.03 18.88  34.17 69.35 47.11 16.1 47.11 16.1 3.76
FT Croce + ALR (10 ep) ls, StAdv, {, Recolor | 87.62 | 68.14 585 3639 7235 58.85 3492 | 58.85 3492 | 3.35
FT Croce + ALR (25 ep) ls, StAdv, ., Recolor | 87.05 | 68.05 59.26 3838 73.42 59.78 36.83 | 59.78 36.83 | 7.78
FT Croce + ALR feature (A = 2, 10 ep) | {5, StAdv, £, Recolor | 84.78 | 67.67 53.13 40.25 69.99 57.76 36.3 5776  36.3 3.04
FT Croce + ALR feature (A = 5, 10 ep) | {3, StAdv, £, Recolor | 83.94 | 67.28 59.21 39.38 71.67 59.38 37.15 59.38 37.15 | 291

Table 6: Continual Robust Training on CIFAR-10 (Sequence of 4 attacks starting with ¢5). The learner initially has
knowledge of ¢5 attacks and over time, we are sequentially introduced to StAdyv, /., and ReColor attacks. We report clean
accuracy, accuracy on different attack types, and average and union accuracies. The threat models column represents the set
of attacks known to the defender and accuracies on known attacks are highlighted with in green cells. “FT” procedures
are fine-tuning approaches starting from adversarially trained to /o model (AT) and then sequentially fine-tuning with new
attacks for 25 epochs. AVG, MAX, and Random strategies train models from scratch with all attacks for 100 epochs. The
“Avg (known)” and “Union (known)” columns represent average and union accuracies on attacks known to the defender
while “Avg (all)” and “Union (all)” columns represent average and union accuracies on all four attacks. Additionally, we
report training times for the procedure (non-cumulative) in the “Time” column. Best performance out of both training from
scratch and fine-tuning are bolded, while best performance when only comparing fine-tuning approaches is underlined.
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’1;?; Procedure Threat Models Clean loo StAdv  Recolor Uy (knA(:/v%n) (121 [:)1‘3[;) é\{ﬁ U(legn Time
0 AT loo 8593 | 51.44 14.87 62.48 59.48 51.44 51.44 47.07 119 7.52
AT + ALR loo 83.18 | 51.49 3478 5815 58.15 | 51.49 51.49 | 53.27 29.87 | 11.12
AVG loo, StAdV 86.44 | 30.05 54.4 46.71 52.1 42.23 28.03 4581 26.75 | 23.68
MAX Lo, StAdV 82.62 | 4496 53.68 64.24  60.85 | 49.32 40.8 5593  39.81 | 23.68
Random loo, StAdV 83.15 | 40.86 58.37 60.53 58.17 49.61 38.95 54.48 37.64 | 11.70
| FTMAX (10ep) | foo, StAdv | 81.63 | 44.13 5738  66.66 60.27 | 50.75 = 4157 [ 57.11 4096 | 3.99 |
FT MAX (25 ep) Lo, StAdV 81.99 | 4432 57.8 66.25 6029 | 51.06 4198 | 57.16 41.25 | 9.93
FT Croce (10 ep) loo, StAdV 82.66 | 44.75 54.2 65.99 60.27 49.48 39.69 56.3 39.01 2.31
1 FT Croce (25 ep) loo, StAdV 83.55 | 45.12 53.25 66.44  60.65 49.19 3943 5636 38.74 | 5.44
FT Single (10 ep) loo, StAdv 80.39 | 31.14 5588 59.13 51.58 | 4351 29.01 4943  28.67 | 2.77
FT Single (25 ep) loo, StAdV 79.85 | 31.34 54.86 58.69 51.43 43.1 29.01 49.08 28.66 6.6
FT Single + ALR (10 ep) | /s, StAdv 82.77 | 35.67 57.92 6838 5491 46.8 33.69 | 5422 33.65 | 3.51
FT Single + ALR (25 ep) | {00, StAdv 81.81 | 354 5947 68.63 5434 | 4744 3372 | 5446 33.66 | 8.73
FT Croce + ALR (10 ep) | £o0, StAdv 8294 | 4639 6413 7358 5941 | 5526  44.47 | 60.88 44.03 | 2.99
FT Croce + ALR (25 ep) | o0, StAdV 82.3 | 45.89 63.76 72.8 59.56 | 54.82 44 60.5 43.54 7.5
AVG {0, StAdv, Recolor 88.67 | 39.46 47.1 66.87 57.16 51.14 32.61 52.65 32.55 | 39.72
MAX {0, StAdv, Recolor 83.42 | 4454 53.06 67.56 60.71 55.05 40.23 | 56.47 4017 | 47.21
Random {0, StAdv, Recolor 83.23 | 35.01 54.7 68.68 62.92 52.8 32.83 55.33  32.83 | 13.81
| FTMAX (10ep) | %o, StAdv,Recolor | 81.97 | 44.1 5736 68.68 6037 | 5671 4121 | 5763 412 | 672 |
FT MAX (25 ep) {0, StAdv, Recolor 82.24 | 4436 5852 68.87 6023 | 57.25 41.73 | 57.99 41.67 | 16.69
FT Croce (10 ep) {0, StAdv, Recolor 8498 | 43.32 5245 69.46 61.04 55.08 37.05 56.57 37.01 2.53
2 FT Croce (25 ep) {0, StAdv, Recolor 84.89 | 44.66 51.6 68.86 61.59 55.04 38.02 56.68 37.96 6.3
FT Single (10 ep) {0, StAdyv, Recolor 90.55 | 25.27 1277 74.01 4899 | 37.35 10.85 | 40.26 10.85 | 4.35
FT Single (25 ep) {0, StAdv, Recolor 90.24 | 3394 1343 73.23 53.51 40.2 10.67 43.53 10.64 | 7.83
FT Single + ALR (10 ep) | {~, StAdv, Recolor 88.38 | 38.62 24.87 72.69 56.66 45.39 19.2 48.21 19.19 3.41
FT Single + ALR (25 ep) | /o0, StAdv, Recolor 89.38 | 33.64 2091 73.52 5336 | 42.69 17.39 | 4536 17.38 | 9.87
FT Croce + ALR (10 ep) | £oo, StAdv, Recolor 84.3 | 4439 58.86 71.67 60.42 58.31 40.82 58.84  40.69 3.52
FT Croce + ALR (25 ep) | /o, StAdv, Recolor 84.69 | 44.96 59.53 7354 61.73 59.34 41.39 5994 41.22 8.21
AVG {0, StAdv, Recolor, o | 87.77 | 41.97 39.55 67.93 68.55 54.5 30.39 54.5 30.39 | 50.54
MAX ls, StAdv, Recolor, /5 | 843 | 41.69 523 65.1 57.62 | 54.18 3744 | 54.18 3744 | 5554
Random U0, StAdv, Recolor, {5 | 86.32 | 35.04 47.82 6835 6587 | 54.27 30.76 | 54.27 30.76 | 12.41
| FTMAX (10ep) | Zo0, StAdv, Recolor, /5 | 82.27 | 44.21 58.13 69.08 60.7 | 58.03  41.48 | 5803 4148 | 79 |
FT MAX (25 ep) lso, StAdv, Recolor, /5 | 82.6 | 43.84 57.75 68.84 6023 | 57.66 41.19 | 57.66 41.19 | 19.74
FT Croce (10 ep) {0, StAdv, Recolor, /5 | 85.11 | 44.71 50.32 68.39 63.29 56.68 37.23 56.68 37.23 2.37
3 FT Croce (25 ep) loo, StAdv, Recolor, /5 | 85.33 | 43.8  50.28 68.77 63.17 56.51 36.77 56.51 36.77 5.95
FT Single (10 ep) {0, StAdv, Recolor, /> | 88.49 | 4493 18.06 6596 67.56 | 49.13 1578 | 49.13 15.78 | 1.63
FT Single (25 ep) {0, StAdv, Recolor, /5 | 89.3 | 42.72 11.85 60.27 69.12 45.99 10.71 4599 10.71 4.07
FT Single + ALR (10 ep) | {o, StAdv, Recolor, {5 | 88.14 | 41.52  26.06 61.97 68.77 49.58 24.19 49.58 24.19 2.52
FT Single + ALR (25 ep) | /s, StAdv, Recolor, /2 | 87.8 | 40.78 28.34 5947 6832 | 49.23 2592 | 49.23 2592 | 5.89
FT Croce + ALR (10 ep) | {oo, StAdv, Recolor, {5 | 84.56 | 42.19 55.55 69.95 60.69 57.1 38.24 57.1 38.24 34
FT Croce + ALR (25 ep) | {co, StAdv, Recolor, /5 | 84.1 | 43.32 582 7209 61.96 58.89 39.97 58.89 3997 | 8.28
Table 7: Continual Robust Training on CIFAR-10 (Sequence of 4 attacks starting with /..). The learner initially has

knowledge of ¢, attacks and over time, we are sequentially introduced to StAdv, ReColor, and /5 attacks. We report clean
accuracy, accuracy on different attack types, and average and union accuracies. The threat models column represents the set
of attacks known to the defender and accuracies on known attacks are highlighted with in green cells. “FT” procedures are
fine-tuning approaches starting from adversarially trained to ¢, model (AT) and then sequentially fine-tuning with new
attacks for 25 epochs. AVG, MAX, and Random strategies train models from scratch with all attacks for 100 epochs. The
“Avg (known)” and “Union (known)” columns represent average and union accuracies on attacks known to the defender
while “Avg (all)” and “Union (all)”” columns represent average and union accuracies on all four attacks. Additionally, we
report training times for the procedure (non-cumulative) in the “Time” column. Best performance out of both training from
scratch and fine-tuning are bolded, while best performance when only comparing fine-tuning approaches is underlined.
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’1;::;’ Procedure Threat Models Clean ly StAdv loo Recolor (k:(j\in) (lgl Iz:::jr:l) 21‘111% U(Z;Sn ?}1;2;3
0 AT 123 90.22 | 8395 10.65 7.67 49.22 83.95 83.95 37.87 3.16 1.71
AT + ALR 123 89.76 | 84.41 2823 2522 54.70 84.41 84.41 48.14 18.01 | 2.15

AVG {2, StAdv 84.56 | 77.68 7432 7.57 31.33 76 73.68 47773 744 3.58
MAX U, StAdv 8522 | 76.87 77.63 4.94 27.61 77.25 75.57 | 4676 4.76 352
Random ls, StAdv 8571 | 71.55 7432 5.8 29.61 75.94 73.55 46.82  5.53 2.58
| FTMAX (10ep) | 6y, StAdv | 8392 | 775 69.02 1078 < 3577 | 7326 ~ 68.89 [ 4827 1045 [ 0.61

FT MAX (25 ep) U, StAdv 84.56 | 7173 6935 9.76 36.15 73.54 69.1 48.25  9.43 1.44

FT Croce (10 ep) £, StAdv 85.07 | 78.62 67.52 10.57 38.34 73.07 67.31 4876 10.29 04

1 FT Croce (25 ep) {9, StAdv 86.37 | 79.67 69.32 9.81 38.27 74.5 69.17 49.27  9.63 0.98
FT Single (10 ep) ls, StAdv 84.08 | 77.86 6831 10.83  36.97 73.08 68.13 48.49 1045 | 0.51

FT Single (25 ep) lo, StAdv 85.63 | 7839 7231 7.57 35.31 75.35 72.08 4839  7.36 1.15

FT Single + ALR (10 ep) | {2, StAdv 83.8 | 77.94 71.62 20.71 43.13 74.78 7134 | 5335 20.13 | 0.58

FT Single + ALR (25 ep) | {2, StAdv 839 | 77.78 7197 17.35 38.39 74.88 71.59 51.38 16.76 | 1.44

FT Croce + ALR (10 ep) | {2, StAdv 85.04 | 79.54 69.99 18.68 4293 74.76 69.89 5278 18.09 | 0.51

FT Croce + ALR (25 ep) | {2, StAdv 85.07 | 79.39 68 19.57  43.67 73.69 67.97 52.66 19.16 | 1.24

AVG la, StAdv, £, 86.62 | 8492 68.89 50.57 66.98 68.13 49.17 67.84 47.82 | 10.51
MAX Lo, StAQV, {o 80.36 | 78.09 6838 52.61 67.29 66.36 51.77 66.59 50.37 | 11.96
Random la, StAdv, (o, 8492 | 83.06 68.76 49.50 66.11 67.11 48.15 66.86 46.60 | 4.29
| FTMAX (10ep) | £, StAdv, (o, | 8176 | 76.69 71.03 2831 5432 | 58.68 2831 | 5759 27.69 | 0.67

FT MAX (25 ep) L, StAQV, {o 82.04 | 77.86 69.02 42.83 66.9 63.24 42.37 64.15 41.86 | 1.71

FT Croce (10 ep) la, StAdv, £, 83.59 | 788 69.53 34.17 61.5 60.83 34.06 61 33.61 0.3

2 FT Croce (25 ep) U, StAdV, (o 85.22 | 81.02 69.58 39.92 64.79 63.51 39.59 63.83 39.03 | 0.73
FT Single (10 ep) L, StAdV, {o 82.06 | 77.25 73.1 27.21 57.4 59.18 27.21 58.74 269 0.22

FT Single (25 ep) la, StAdv, £, 82.04 | 7796 7042 41.15 66.09 63.18 40.92 639 4046 | 0.54

FT Single + ALR (10 ep) | {2, StAdv, (o 81.38 | 77.89 71.8 46.68 7213 65.45 46.5 67.12 46.14 | 031

FT Single + ALR (25 ep) | {2, StAdv, (o 80.92 | 7743 70.78 47.16 70.6 65.12 46.96 | 66.49 46.62 | 0.79

FT Croce + ALR (10 ep) | {2, StAdv, (o 83.95 | 79.57 69.22 3796 59.77 62.25 37.86 61.63 36.99 | 0.40

FT Croce + ALR (25 ep) | {2, StAdv, (o 83.11 | 79.24 7238 36.61 60.18 62.74 36.59 62.1 36.15 | 1.01

AVG la, StAdv, {,, Recolor | 87.67 | 85.66 66.06 50.42  75.90 69.51 47.90 69.51 47.90 | 13.79
MAX U2, StAdv, {, Recolor | 83.26 | 81.22 70.70 56.94 74.80 70.92 55.31 70.92 55.31 | 14.60
Random U, StAdv, £+, Recolor | 86.55 | 84.64 66.52 47.29 74.93 68.34 45.71 68.34 4571 | 9.61
| FTMAX (10ep) | o, StAdv, (o, Recolor | 81.99 | 77.78 68.28 41.83 6991 | 6445 414 | 6445 414 | 131

FT MAX (25 ep) U9, StAdv, {+, Recolor | 82.78 | 79.21 70.83 45.15 71.39 66.64 44.76 66.64 44.76 3.6

FT Croce (10 ep) ls, StAdv, £+, Recolor | 84.87 | 80.38 66.68 36.82 68.61 63.12 36.31 63.12 3631 | 045

3 FT Croce (25 ep) l2, StAdv, /o, Recolor | 86.32 | 82.11 68.79 41.27 7241 66.15 40.69 66.15  40.69 1.2
FT Single (10 ep) U, StAdv, £+, Recolor | 86.27 | 81.35 5473 23.59 70.17 57.46 22.55 5746 22.55 | 0.71

FT Single (25 ep) ls, StAdv, £, Recolor | 85.1 | 80.48 58.17 36.38 70.62 61.41 34.45 61.41 3445 | 2.03

FT Single + ALR (10 ep) | {2, StAdv, ¢, Recolor | 85.3 | 81.04 49.35 4048 74.8 61.42 35.62 61.42 3562 | 0.85

FT Single + ALR (25 ep) | {2, StAdv, ¢, Recolor | 86.78 | 82.8 47.82 33.12 77.58 60.33 29.17 60.33 29.17 | 2.38

FT Croce + ALR (10 ep) | {2, StAdv, (o, Recolor | 85.3 81.3 6935 43.13 7085 66.16 42.62 66.16 42.62 | 0.53

FT Croce + ALR (25 ep) | {2, StAdv, (o, Recolor | 85.81 | 81.76 67.13 4538 73.02 66.82 44.56 66.82 4456 | 1.36

Table 8: Continual Robust Training on ImageNette (Sequence of 4 attacks starting with /).
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

’1;::; Procedure Threat Models Clean loo StAdv  Recolor ly (kr?:»%n) (121 r::\),r;) g\lllg) Lizﬁ))n Elrrl;?
0 AT loo 82.52 | 56.94 61.32 71.62 7839 | 56.94 56.94 | 67.07 50.32 | 1.70
AT + ALR loo 81.52 | 59.62 60.51 73.50  72.69 59.62 59.62 66.58 5292 | 2.67

AVG loo, StAdV 85.78 | 53.30 75.69 67.69  81.96 64.5 53.02 69.66 51.11 | 5.87
MAX loo, StAdV 83.77 | 58.04 70.04 72.76 80.38 64.04 56.54 | 70.31 5526 | 6.11
Random loo, StAdv 83.34 | 52.23 73.76 67.85  79.87 62.99 51.77 68.43 50.39 | 2.44
| FTMAX (10ep) | foo, StAdv | '82.27 | 55.03 70.52 ~ 69.78 7827 | 6278 5417 | 684 52.66 | 0.62

FT MAX (25 ep) loo, StAdV 82.57 | 5546 71.75 69.94  78.73 63.61 54.85 68.97 5322 | 1.48

FT Croce (10 ep) loo, StAdV 82.29 | 54.62 69.2 68.87  78.32 61.91 53.35 67.75 519 0.37

1 FT Croce (25 ep) loo, StAdV 83.67 | 54.27 71.57 69.07 79.54 | 6292 53.58 68.61 522 0.86
FT Single (10 ep) Lo, StAdV 83.06 | 50.52 71.52 6543  78.78 61.02 49.96 66.56 48.18 | 0.51

FT Single (25 ep) loo, StAdV 84.00 | 43.59 73.68 58.14  78.85 58.64 4346 | 63.57 4127 | 1.16

FT Single + ALR (10 ep) | {o, StAdv 82.19 | 427 73.17 60.97  77.55 57.94 42.6 63.6 41.27 | 0.58

FT Single + ALR (25 ep) | {oo, StAdv 81.4 | 51.8 69.35 66.32  76.54 | 60.57 51.08 66 50.04 | 1.47

FT Croce + ALR (10 ep) | {o, StAdv 82.62 | 57.71 70.11 7241  77.89 63.91 56.54 | 69.53 55.62 | 049

FT Croce + ALR (25 ep) | loo, StAdv 82.37 | 57.55 71.64 7093  78.14 64.6 56.54 | 69.57 55.64 | 1.11
AVG {0, StAdv, Recolor 86.39 | 51.80 73.81 7799 83.13 | 67.86 51.31 71.68 51.31 | 11.57
MAX {0, StAdv, Recolor 81.20 | 54.55 68.64 72.82  78.01 65.33 53.12 68.5 53.12 | 13.55
Random {0, StAdv, Recolor 86.29 | 50.96 72.28 76.59 8296 | 66.61 50.27 70.69 50.27 | 4.90
| FTMAX (10ep) | %o, StAdv,Recolor | 82.34 | 55.34 71.34 72.87 7822 | 6651 5404 | 69.44 5404 [ 1.21

FT MAX (25 ep) {0, StAdv, Recolor 83.75 | 5529 7256 7483 7997 | 67.56 5427 | 70.66 5427 | 3.03

FT Croce (10 ep) {0, StAdv, Recolor 84.28 | 54.01 6996 72.56 79.72 65.51 52.13 69.06 52.13 0.5

2 FT Croce (25 ep) loo, StAdv, Recolor 84.05 | 52.99 70.47 73.07  80.33 65.51 5192 | 6922 5192 | 1.23
FT Single (10 ep) {0, StAdv, Recolor 83.77 | 53.61 65.38 7335 7936 | 64.11 50.7 67.92  50.7 0.75

FT Single (25 ep) {0, StAdv, Recolor 85.07 | 482 6586 7541 8041 | 63.16 46.34 6747 46.34 | 1.88

FT Single + ALR (10 ep) | /s, StAdv, Recolor 84.94 | 50.8 65.71 76.33  80.15 64.28 48.31 68.25 48.31 | 0.88

FT Single + ALR (25 ep) | £, StAdv, Recolor 82.09 | 5546 66.27 73.63 77776 | 65.12 52.89 68.28 52.89 | 2.14

FT Croce + ALR (10 ep) | /o, StAdv, Recolor 8242 | 5575 65.83 73.3 78.06 | 64.96 5294 | 68.24 5294 | 0.61

FT Croce + ALR (25 ep) | {o0, StAdv, Recolor 839 | 5552 71.21 7529 79.82 | 67.34 5432 | 7046 54.32 | 149
AVG {0, StAdv, Recolor, /5 | 87.67 | 5042 66.06 7590 85.66 | 69.51 47.90 69.51 4790 | 13.79
MAX loo, StAdv, Recolor, {5 | 83.26 | 56.94 70.70 7480 81.22 | 70.92 55.31 70.92 55.31 | 14.60
Random {0, StAdv, Recolor, {5 | 86.55 | 47.29 66.52 7493  84.64 | 68.34 45.71 68.34 4571 | 4.58
| FTMAX (10ep) | Zo, StAdv, Recolor, /5, | 82.73 | 55.08 71.36 735 7898 | 69.73 5419 | 6973 5419 | 13~

FT MAX (25 ep) loo, StAdv, Recolor, {5 | 83.72 | 5493 72.18 74.42 79.9 70.36 5394 | 70.36 5394 | 3.26

FT Croce (10 ep) {0, StAdv, Recolor, /5 | 84.33 | 52.18  69.5 72774 79.97 68.6 50.55 68.6 50.55 | 0.44

3 FT Croce (25 ep) l~, StAdv, Recolor, ¢y | 84.84 | 52.59 68.74 73.27 81.45 69.01 50.96 69.01 50.96 1.1
FT Single (10 ep) U0, StAdv, Recolor, {5 | 84.79 | 53.02 65.43 72.82  80.08 67.83 50.29 67.83 5029 | 0.26

FT Single (25 ep) loo, StAdv, Recolor, /5 | 85.5 | 49.12 64.79 7427 80.76 | 67.24 47.21 67.24 4721 | 0.63

FT Single + ALR (10 ep) | {s, StAdv, Recolor, ¢5 | 85.1 454 6344 67.06  80.59 64.12 4296 | 64.12 4296 | 0.35

FT Single + ALR (25 ep) | {oo, StAdv, Recolor, {5 | 83.64 | 54.37 64.48 7241  79.69 67.74 50.96 67.74 5096 | 0.92

FT Croce + ALR (10 ep) | {oo, StAdv, Recolor, ¢» | 83.03 | 53.96 67.9 7238 79.08 68.33 51.95 68.33 5195 | 0.55

FT Croce + ALR (25 ep) | {oo, StAdv, Recolor, /5 | 84.84 | 53.94 68.51 75.11 81.32 | 69.72 52.23 69.72 5223 | 1.36

Table 9: Continual Robust Training on ImageNette (Sequence of 4 attacks starting with /).
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

2::; Procedure Threat Models Clean Uy StAdv (o Recolor (kr?(jin) (121 I:)lvov?l) g\{]‘(’; U(ZIBH "{}1;1;;3
o | AT 0y 67.75 | 41.65 421 1428 2246 41.65 4165 | 2065 234 | 14.85
Ours Ly 63.53 | 42.88 6.16 198  23.36 42.88 42.88 | 23.05 437 | 2198

AVG 05, StAdv 64.48 | 3572 2857 9.18 1951 32.15 2525 | 2324 753 | 4724
MAX 3, StAdv 61.80 | 33.82 3177 758 17.76 32.79 27.68 | 2273 651 | 47.24
Random 05, StAdv 627 | 3175 3225 650 17.62 32.00 2628 | 2203 579 | 2356
[ FTMAX (10ep) | £, StAdv | 603 | 309 2932 596 17.04 | 30.11 2397 | 208 515 | 4

FT MAX (25 ep) 03, StAdv 61.14 | 31.69 2993 6.21 17.84 30.81 2484 | 2142 53 10.71

FT Croce (10 ep) 05, StAdv 62.68 | 352 237 8.9 19.93 29.45 21.02 | 2193 6.77 2.6

1 FT Croce (25 ep) 0y, StAdv 6339 | 31.38 2895 5.7 17.98 30.16 23.87 21 504 | 596
FT Single (10 ep) 3, StAdv 6048 | 1829 30.83 224  13.28 24.56 16.19 | 16.16 1.84 | 2.77

FT Single (25 ep) 09, StAdv 60.78 | 1822 31.79 199 1332 25 1634 | 1633 1.6 6.91

FT Single + ALR (10 ep) | /2, StAdv 53 (2923 24 845  17.18 26.61 2012 | 1971 6.71 277

FT Single + ALR (25 ep) | {5, StAdv 5444 | 2203 29.1 446 13.6 25.56 19.21 173 3.78 8.73

FT Croce + ALR (10 ep) | /2, StAdv 59.09 | 3409 2659 9.84 19.2 30.34 23.62 | 2243 828 3.11

FT Croce + ALR (25 ep) | /2, StAdv 58.59 | 34.65 26.45 10.55 19.65 30.55 2367 |22.82 8.64 | 7.67

AVG 05, StAdv, 0o 62.09 | 4034 25.13 2088 28.34 28.78 16.18 | 2880 14.71 | 69.49
MAX Ly, StAdV, o 56.94 | 34.74 28.46 2272  30.35 28.64 19.66 | 29.04 17.55 | 69.36
Random Ly, StAdV, o 6098 | 38.01 2521 1725 2576 26.82 1426 | 2656 12.97 | 19.58
[ FTMAX (10ep) | o, StAdv, {0 | 7599 | 3894 2655 1695 2572 | 2748 1478 2704 1307 | 52

FT MAX (25 ep) Ly, StAQV, o 61.01 | 38.56 27.54 17.05 2591 2772 1534 | 2727 13.66 | 12.25

FT Croce (10 ep) 03, StAdv, £og 62.78 | 39.87 20.17 1459 237 24.88 1046 | 2458 92 2.29

2 | FT Croce (25 ep) Ly, StAdV, o 65.85 | 4251 11.05 19.67 26.55 24.41 8.06 | 2495 73 5.06
FT Single (10 ep) Ly, StAdV, o 65.62 | 4295 7.55 2203 28.06 24.18 557 | 25.15 498 1.49

FT Single (25 ep) 0y, StAdv, 0o 65.93 | 4282 762 2183 282 24.09 565 | 2512 512 3.71

FT Single + ALR (10 ep) | /2, StAdv, (o 62.35 | 43.56 8.76 2372 27.77 25.35 698 | 2595 6.29 2.16

FT Single + ALR (25 ep) | /2, StAdv, log 62.56 | 4233 77  25.06 26.57 25.03 6.67 | 2541 6.02 5.39

FT Croce + ALR (10 ep) | /2, StAdv, {o, 60.67 | 4206 16.66 21.18 25.89 26.63 1259 | 26.45 1121 | 3.05

FT Croce + ALR (25 ep) | /2, StAdv, (o 63.43 | 4292 10.14 23.16 26.37 25.41 829 | 25.65 7.64 6.7
AVG 09, StAdv, {, Recolor | 65.61 | 40.86 224 2045 37.27 30.25 14.09 | 3025 14.09 | 101.43
MAX 3, StAdv, Lo, Recolor | 59.12 | 33.89 28.02 2220 35.00 29.78 18.74 | 2978 18.74 | 101.43
Random 0y, StAdv, Lo, Recolor | 63.1 | 39.47 2479 19.04 38.15 30.36 1457 | 3036 14.57 | 22.87
| FTMAX (10ep) | £o, StAdv, /o, Recolor | 61.5 | 39.34 2697 17.25 3356 | 29.28 1455 |29.28 1455 | 861

FT MAX (25 ep) 03, StAdv, /oo, Recolor | 62.14 | 38.68 27.51 17.13  33.06 29.09 14.84 | 29.09 14.84 | 19.67

FT Croce (10 ep) 03, StAdv, £o, Recolor | 64.82 | 41.09 19.78 16.55 32.26 27.42 10.57 | 27.42 1057 | 242

3 | FT Croce (25 ep) 05, StAdv, £o, Recolor | 66.31 | 41.02 1342 1734 31.02 25.7 8.4 25.7 8.4 6.03
FT Single (10 ep) L2, StAdv, /oo, Recolor | 69.82 | 32.63 4.07 938  40.07 21.54 142 | 2154 142 3.06

FT Single (25 ep) 03, StAdv, /o, Recolor | 68.63 | 37.06 557 1328  37.66 23.39 276 | 2339 276 | 778

FT Single + ALR (10 ep) | £2, StAdv, £o, Recolor | 66.58 | 37.98  6.65 1637 3923 25.06 383 | 2506 3.83 3.91

FT Single + ALR (25 ep) | £2, StAdv, {oc, Recolor | 68.15 | 3205 5.08 11.82 415 22.61 246 | 2261 246 | 972

FT Croce + ALR (10 ep) | £2, StAdv, £o, Recolor | 64.11 | 42.52 10.89 21.36  34.05 27.21 8.11 2721 8.1 3.42

FT Croce + ALR (25 ep) | /2, StAdv, {o, Recolor | 6533 | 394 1141 16.84 34.15 25.45 735 | 2545 135 7.41

Table 10: Continual Robust Training on CIFAR-100 (Sequence of 4 attacks starting with /5).
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

?::; Procedure Threat Models Clean loo StAdv  Recolor Uy (k:(:/v%n) (lgl I;l::/r:l) 21‘111% U(Z;Bn };111;;?
0 AT loo 60.95 | 27.61 9.92 33.2 35.6 27.61 27.61 2658 745 16.33
AT + ALR loo 55.36 | 28.01 11.25 31.01  33.95 28.01 28.01 26.05 8.62 23.75
AVG {0, StAdV 66.09 | 8.65 33.19 1842  21.58 20.92 8.18 2046  7.47 47.59
MAX Lo, StAdV 57.01 | 22.8 29.23 30.54  33.58 | 26.02 20.28 | 29.04 17.96 | 46.97
Random Lo, StAdV 47.14 | 16.62 25.61 2535 27.25 21.12 14.63 2371 1337 | 23.92
| FTMAX (10ep) | foo, StAdv | 58.05 | 22.48 28.66 30.43 3315 | 2557 1895 |[28.68 17.05 | 4.03 |
FT MAX (25 ep) Lo, StAdV 5856 | 2236 2938 3097 33.16 | 25.87 19.38 | 28.97 17.43 | 10.02
FT Croce (10 ep) {0, StAdV 60.17 | 22.75 26.81 31.22  33.68 24.78 17.54 28.62 15.95 2.49
1 FT Croce (25 ep) Lo, StAdV 60.27 | 22.18 28.17 30.38 33.25 | 25.18 17.81 285 16.21 5.69
FT Single (10 ep) Lo, StAdV 55.87 | 1543 24.29 2434  27.54 19.86 11.9 229 10.95 2.77
FT Single (25 ep) loo, StAdV 56.11 | 16.09 24.46 24.84  28.65 20.27 12.5 23.51 11.33 6.95
FT Single + ALR (10 ep) | {o, StAdv 56.03 | 3.81 3521 1852 17.31 19.51 3.77 18.71  3.51 75.49
FT Single + ALR (25 ep) | {s0, StAdv 59.65 2.6 37.96 18.51 13.52 20.28 2.58 18.15 241 8.34
FT Croce + ALR (10 ep) | {oo, StAdv 54.86 | 23.33 27.19 30.15 3154 25.26 18.75 28.05 16.86 2.97
FT Croce + ALR (25 ep) | {oo, StAdV 5427 | 2327 26.27 29.4 31.79 24.77 18.25 27.68 16.06 7.4
AVG {0, StAdv, Recolor 68.19 | 16.88 29.53 38.12  30.75 28.18 14.14 28.82  14.11 | 79.47
MAX {0, StAdv, Recolor 57.96 | 22.38 28.92 35.24 339 28.85 19.27 30.11  19.17 79.5
Random £, StAdv, Recolor 47.14 | 16.62  25.61 2535 27.25 21.12 14.63 2371 1337 | 23.92
| FTMAX (10ep) | Zo0. StAdv, Recolor | 58.96 | 22.04 29 3635 3455 | 20.13 1837 | 3048 1831 | 6.75 |
FT MAX (25 ep) {0, StAdv, Recolor 59.41 | 21.7 29.2 3557 33.24 28.82 18.21 29.93 18.09 | 16.75
FT Croce (10 ep) {0, StAdv, Recolor 62.27 | 2242  26.16 37.25 34.5 28.61 16.34 30.08 16.24 2.77
2 FT Croce (25 ep) {0, StAdv, Recolor 62.09 | 2324 25.6 3691 35.89 | 28.58 16.63 | 3041 16.52 6.46
FT Single (10 ep) {0, StAdv, Recolor 64.02 | 20.72 14.72 41.7 32.89 25.71 9.61 2751  9.57 3.01
FT Single (25 ep) {0, StAdv, Recolor 67.39 | 13.25 6.94 45.1 27.71 21.76 3.59 2325 3.57 7.86
FT Single + ALR (10 ep) | £o, StAdv, Recolor 64.86 | 8.76 9.34 46.4 25.62 21.5 391 2253 391 3.8
FT Single + ALR (25 ep) | {oo, StAdv, Recolor 66.87 | 3.74 8.44 50.81 19.81 21 2.03 20.7 2.03 9.89
FT Croce + ALR (10 ep) | {o, StAdv, Recolor 56.41 | 2428 25.62 36.21 34.43 28.7 17.6 30.14 1741 3.6
FT Croce + ALR (25 ep) | {oo, StAdv, Recolor 56.83 | 2243 259 38.27 335 28.87 16.98 30.03 16.76 8.28
AVG lso, StAdv, Recolor, o | 64.8 209 2246 37.27  41.05 30.42 14.56 3042 14.56 | 101.39
MAX {0, StAdv, Recolor, 5 | 57.9 | 22.39 28.72 3596  35.65 30.68 19.15 | 30.68 19.15 | 101.25
Random {0, StAdv, Recolor, ¢5 | 63.23 | 19.52 21.29 39.71 3995 30.12 13.6 30.12  13.6 24.88
| FTMAX (10ep) | Zo, StAdv, Recolor, /5 | 59.61 | 22.14 29.13  36.17 3435 | 3045  18.61 | 3045 1861 | 858 |
FT MAX (25 ep) U0, StAdv, Recolor, {5 | 59.42 | 22.02 29.28 3596 3445 | 3043 18.64 | 3043 18.64 | 21.36
FT Croce (10 ep) {0, StAdv, Recolor, ¢5 | 62.44 | 20.96 26.06 3591  36.77 29.93 15.83 29.93 15.83 2.38
3 FT Croce (25 ep) {0, StAdv, Recolor, /5 | 62.17 | 21.84 26.14 3692  36.69 30.4 16.08 304  16.08 5.81
FT Single (10 ep) {0, StAdv, Recolor, {5 | 63.94 | 23.86 13.73 3722 4147 29.07 9.92 29.07  9.92 1.61
FT Single (25 ep) {0, StAdv, Recolor, 05 | 66.44 | 21.17  7.72 31.83 42.5 25.8 5.67 25.8 5.67 4.07
FT Single + ALR (10 ep) | ¢, StAdyv, Recolor, 5 | 60.76 | 22.36  10.35 31.33 4191 26.49 7.99 26.49  7.99 2.35
FT Single + ALR (25 ep) | {oo, StAdv, Recolor, {5 | 62.25 | 20.56  7.92 30.69 41.42 25.15 6.25 2515 6.25 6.35
FT Croce + ALR (10 ep) | ¢, StAdv, Recolor, ¢5 | 57.56 | 24.64 22.52 35.77 3755 30.12 15.96 30.12  15.96 3.36
FT Croce + ALR (25 ep) | {o, StAdv, Recolor, /5 | 58.14 | 24.85 18.69 36.75  39.16 29.86 13.87 29.86 13.87 7.64

Table 11: Continual Robust Training on CIFAR-100 (Sequence of 4 attacks starting with /).
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Adapting to Evolving Adversaries with Regularized Continual Robust Training

noise variance from regularization strength. We report results in Table 12. Overall, we find that o has an effect similar to the
effect of increasing A where higher values of ¢ leads to higher average and union robust accuracies at the cost of lower clean
accuracy and accuracy on the initial attack.

Noise type o Clean ly {so  StAdv Recolor | Avg  Union
Uniform 0.5 | 90.40 | 70.21 31.91 1.31 39.83 | 3581 0.86
Uniform 1 90.76 | 69.89 3258 149 40.14 | 36.02 1.15
Uniform 2 8528 | 63.65 50.73 10.62  60.10 | 46.28  8.40
Gaussian 0.05 | 90.04 | 69.62 31.61 7.25 43.84 | 38.08 6.64
Gaussian 0.1 | 88.53 | 68.54 32.04 145 51.73 | 41.70  12.63
Gaussian 0.2 | 87.00 | 64.88 2746 31.82 6359 | 4694 18.7

Table 12: Impact of o on regularization based on random noise in initial training. We maintain regularization strength
A = 5 and perform initial training on CIFAR-10 with /5 attacks. We report the clean accuracy, accuracy on {g, {~,, StAdyv,
and Recolor attacks, and the average and union accuracies on the set.

I.2. Comparison to TRADES

In this section, we compare ALR regularizer to TRADES regularizer (Zhang et al., 2019). TRADES is designed for
improving clean accuracy tradeoff while ALR is designed for improving generalization across (seen and unforeseen) attacks.
Since TRADES regularizer also maximizes a distance (KL instead of L2) in the logit space, we expect it can also improve
generalization across attacks as well and provide results below. Similar to experiments with ALR, we add the regularizer on
top of PGD L2 and Linf adversarial training. We present results in Table 13 with regularization strength in parentheses next
to each regularization method. Notably, increasing TRADES strength in Linf training trades off Linf performance, whereas
ALR does not.

Threat model | Regularizer | Clean 2 loo StAdv ReColor | Union
Ly None 91.17 | 69.7 2841 2.08 44.94 1.24
Uy Trades (1) 90.43 | 70.08 31.33 0.89 38.51 0.6
Ly Trades (3) 88.93 | 70.05 33.81 9.04 58.25 6.74
ly Trades (6) 88.76 | 69.69 33.00 7.04 56.82 5.51
Ly ALR (1) 89.43 | 69.84 34.00 48.23 65.46 31.27
lo None 8593 | 5948 5144 1487 62.48 11.9
loo Trades (1) 85.39 | 59.33 4923 14.11 64.45 11.45
lo Trades (3) 83.97 | 58.54 47.00 20.51 69.33 16.34
loo Trades (6) 85.72 | 56.44 4170 23.17 70.23 17.83
loo ALR (0.5) 83.18 | 58.15 51.49 34.78 58.15 29.87

Table 13: Comparison to TRADES. We compare robustness measured across different threat models when initial training
on /5 and /., with either TRADES and or ALR regularizer.

1.3. Performance across different threat models

In this section, we perform initial training with models using different initial attacks including attacks in the UAR benchmark
(Kaufmann et al., 2019) and evaluate the performance across attack types for training with single-step variation regularization,
single-step adversarial /5 regularization, uniform regularization, and gaussian regularization.

We present ablation results for CIFAR-10 (Table 15 for variation regularization, Table 14 for adversarial /5 regularization,
Table 16 for uniform regularization, and Table 17 for Gaussian regularization) and ImageNette (Table 19 for variation
regularization, Table 18 for adversarial /5 regularization, Table 20 for uniform regularization, and Table 21 for Gaussian
regularization). Overall, we find that across different starting attacks and unseen test attacks, regularization generally
improves performance on unseen attacks, leading to increases in average and union accuracy across all attacks with
regularization. We find that in many cases (especially using random noise types) using regularization trades off clean
accuracy. Additionally, some threat models such as Snow are generally more difficult to gain improvement on via
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regularization; for many starting models, using regularization decreases accuracy on Snow attack.

L.4. Impact of starting and new attack pairs

In order to see how much our results depend on attack choice, we experiment with starting with a model initially trained
with a starting attack and then fine-tuned for robustness to a new attack for different starting and new attack pairs on
Imagenette. In this section, we ask the question: does regularization in initial training generally lead to better starting points
for fine-tuning? In the following experiments, we use adversarial training as the base initial training procedure and Croce
& Hein (2022)’s fine-tuning approach as the base fine-tuning procedure. We consider these approaches with and without
regularization.

We compare models initially trained with regularization (and fine-tuned without regularization) to models initially trained
without regularization (and fine-tuned without regularization). We present the differences in average accuracy across the 2
attacks, union accuracy across the 2 attacks, accuracy on the starting attack, accuracy on the new attack, and clean accuracy
between the 2 settings for adversarial ¢, regularization (with A = 0.5) in Figure 6, for variation regularization in Figure 7
(with A = 0.2), for uniform regularization (with o = 2 and A = 1) in Figure 8, and for gaussian regularization (with o = 0.2
and A = 0.5) in Figure 9. In these figures, we highlight gains in accuracy larger than 1% in green and drops in accuracy
larger than 1% in red.

Regularization in initial training generally improves performance. Across all figures, we can see that for most pairs of
attacks, regularization leads to improvements on average accuracy, union accuracy, accuracy on the initial attack, accuracy
on the new attack. We find that this improvement is more consistent across attack types when using adversarial versions
of regularization such as adversarial {5 regularization or variation regularization in comparison to random noise based
regularizations. This improvement in performance may be due to the fact that regularization improves unforeseen robustness,
causing the initial accuracy on the new attack to generally be higher, and thus a better starting point for fine-tuning the
model for robustness against new attacks.

Uniform regularization in initial training can improve clean accuracy for certain starting attack types. From Figure
8e, we observe that using uniform regularization in initial training can lead to increases in clean accuracy after fine-tuning
for several initial attack types: StAdv, ReColor, Pixel, Elastic, Wood, and Kaleidoscope attacks. In comparison, Figure
6e, demonstrates that using adversarial ¢, regularization does not improve clean accuracy for as many threat models as
uniform regularization; for adversarial /5 regularization, the most improvements in clean accuracy are when the initial attack
is Elastic attack or when the new attack is ¢, attack. Adversarial /5 regularization generally maintains clean accuracy
for most attacks, but leads a drop in clean accuracy when the starting attack type is StAdv attack. We find that similarly,
variation regularization also maintains clean accuracy. Gaussian regularization on the other hand either maintains or exhibits
a tradeoff with clean accuracy.

J. Fine-tuning Ablations
J.1. Impact of starting and new attack pairs

Similar to Appendix 1.4, we ablate over starting and new attack pairs in finetuning. In this section, we address the question:
does regularization in fine-tuning generally lead to more robust models? We follow the same setup as in Appendix 1.4 but
we compare models fine-tuned with regularization (with no regularization in pretraining) to models fine-tuned without
regularization (with no regularization in pretraining). We present the differences in average accuracy across the 2 attacks,
union accuracy across the 2 attacks, accuracy on the starting attack, accuracy on the new attack, and clean accuracy between
the 2 settings for adversarial /5 regularization (with A = 0.5) in Figure 10 and for uniform regularization (with ¢ = 2 and
A = 1) in Figure 13. In these figures, we highlight gains in accuracy larger than 1% in green and drops in accuracy larger
than 1% in red.

Adyversarial /> regularization in fine-tuning generally improves performance but trades off clean accuracy. From
Figure 10, we can see that for many pairs of initial and new attack, regularization leads to improvements in union accuracy,
average accuracy, and new attack accuracy. However, this comes at a clear tradeoff with clean accuracy. For accuracy on
the initial attack, it is difficult to see clear trends; depending on threat models there can be gains in robustness or drops in
robustness. For example, when the new attack is ¢, we find that the initial attack accuracy generally drops. We find that
variation regularization can also lead to gains in performance, but these gains are much less consistent than compared to
adversarial /5 regularization.
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Train A | Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope

ly 0 | 91.08 | 70.02 29.38 0.79 33.69 66.93 2459 1499 6422 4513 7085 80.3 30.08 | 44.25 0.1
ly 0.1 | 90.4 69.7 3178 227 38.16 6299 2577 1691 6535 4594 71.05 79.72 30.17 | 4498 0.74
ly 0.2 | 89.49 | 7049 3343 429 42.8 68.03 2685 18.79 66.04 4727 7221 79.65 3338 | 4694 1.78
ly 0.5 | 89.57 | 70.29 34.16 17.44 51.04 65.63 28.71 22,5 6676 488 7324 79.06 28.83 | 4892 5.94
loo 0 | 8553 | 5936 5098 6.34 56.27 68.94 36.79 20.57 54.02 51 6424 7594 3944 | 48.66 1.31
loo 0.1 | 85.06 | 58.77 5144 743 55.59 68.33 37.09 20.11 53.89 51.84 6438 7496 4243 | 4886 195
loo 0.2 | 85.23 | 58.08 5149 8.96 56.32 68.3 37.11 2148 5286 51.61 6372 7549 40.22 48.8 2.44
loo 0.5 | 83.18 | 58.21 5147 195 61.02 68.75 3794 2278 5389 49.82 6347 7357 39.88 | 50.02 5.52

StAdv 0 | 8712 | 548 0.07 56.22 5.69 1762 578 593 11.09 76.02 7747 54.04 434 3424  0.05
StAdv 0.1 | 8695 | 463 0.08 56.16 4.44 20.44 5725 493 927 752  76.66 5277 40.68 | 33.54  0.06
StAdv 0.2 | 81.39 | 599 0.1 54.98 8.16 1597 4837 581 11.07 68.05 72.03 48.7 4522 | 32.04 0.09
StAdv 05| 8.05 | 535 007 56.49 5.09 23.63 58.09 551 1129 7377 75.86 5132 4285 | 34.11 0.06
ReColor | 0 | 93.61 | 37.17 7.03 0.01 67.48 55.53 37.14 827 4536 3555 6092 772 32.28 | 38.66 0
ReColor | 0.1 | 93.79 | 35.12 6.7 0 67.12 51.54 37.64 8.69 43.64 36.17 63.33 76 28.53 | 37.87 0
ReColor | 0.2 | 93.84 | 37.7 7.87 0.01 68.67 5597 383 981 4685 3854 6001 77.73 31.13 | 39.38 0.01
ReColor | 0.5 | 94.57 | 32.67 5.83 32.12 73.79 52.74 38.66 20.19 50.07 3585 6198 7572 2493 | 42.05 2.27
Gabor 0 | 9408 | 03 0.01 0.01 4.43 9239 1696 896  2.08 2.31 17.99  41.61 11.87 | 16.58 0
Gabor 0.1 9333 | 075 0.02 0.28 29.93 91.15 1797 16.13 11.13 811  20.77 46.33 10.78 | 21.11 0
Gabor 029338 | 1.17 0.01 9.4 54.87 91.15 2547 3347 2637 19.74 2157 51.05 9.43 28.64 0
Gabor 059327 | 1.57 0.03 10.16 56.04 91.52 249 30.66 2636 1533 2418 51.55 11.15 | 28.62 0.01
Snow 0 | 95.89 | 0.05 0 0.01 2.63 30.13  92.02 7.23 0.9 1517 3149 4798 2239 | 20.83 0
Snow 0.1 | 94.68 | 0.17 0.12 5.99 2392 89.23 3.96 1.17  26.82 4503 4274 2393 | 21.92
Snow 02 | 9451 | 0.21 6.28 20.53 29.14  89.7 7.12 648 4055 5142 4523 2596 | 26.89
Snow 0.5 | 88.84 | 0.53 9.13 15.16 19.39 8383 3.6 6.13 3954 57.62 3358 20.73 24.1
Pixel 0 | 94.76 | 0.07 0.01 8.87 57.65 36.6 8835 1.77 1452 38.18 67.5 16.21 | 27.48
Pixel 0.1 | 94.47 | 0.27 1.86 31.03 5229 4144 88.01 759 2696 4124 6823 19.99 | 31.58
Pixel 0.2 | 94.01 | 0.27 5.57 34.43 51.54 4331 8853 89 2875 4353 66.73 18.36 | 32.49
Pixel 0.5 | 92.34 | 0.06 0 5.38 19.85 44.07 38.11 87.21 485 2722 49.64 5839 2092 | 29.64 0
JPEG 0 | 90.26 | 56.48 215 0.52 34.74 68.59 21.12 10.57 73.46 40 743 7835  28.02 42.3 0.09
JPEG 0.1 | 89.41 | 582 2443 124 37.73 73.19 22 12.59 74.05 40.57 7502 77.88  27.61 | 43.71 041
JPEG 0.2 | 88.56 | 58.55 2621 3.19 41.12 7149 221 1465 7423 407 7543 7817 2493 | 4423 1.08
JPEG 0.5 | 87.33 | 60.43 29.14 11.66 46.74 72.68 2434 1781 7437 4352 7544 77.08 2576 | 46.58  3.39
Elastic 0 | 9406 | 132 0.02 7.5 7.92 2541 53.68 9.16 112 7947 7294 50.24 33.1 29.33  0.01
Elastic 0.1 9349 | 1.68 0.03 5142 41.84 28.14 56.78 14.2 2691 80.19 7493 5378 29.16 | 3825 0.02
Elastic 029332 | 1.87 001 17.64 11.84 25.67 5538 5.61 9.2 80.66 772 5152 36.14 | 31.06 0.01
Elastic 0.5 | 92.62 | 2.64 0.1 40.11 28.38 272  51.69 1024 2046 803  77.69 55.69 3425 | 3573 0.08
‘Wood 0 | 93.57 | 0.03 0 0.4 1.27 1847 3944 343 037 33.68 93.04 28.04 1411 | 19.36 0

S O oo © O

Wood 0.1 | 92.79 | 0.04 0 3.84 4.88 16.77 42.61 3.32 1.21 37.35 923  29.72 16.04 | 20.67 0
Wood 0.2 | 92.68 | 0.02 0 10.98 11.85 15.74 4447 555 376 3877 9225 3248 14.83 | 22.56 0
Wood 0.5 ] 92.03 | 0.04 0 25.21 21.39 17.58 47.09 17.52 6.2 43.25 9136 36.32 15.18 | 25.93 0
Glitch 0 | 93.26 | 0.02 0 0 11.49 49.03 2444 1247 3.4 10.89  31.99 90.77 16.61 20.9 0
Glitch 0.1 | 92.06 | 0.07 0 0 8.05 4558 20.58 5.59 1.16 9.27 3245 87.47 16.96 | 18.93 0
Glitch 0219033 | 1.09 0.09 0.01 17.43 5443 20.15 83 7.71 21.52 4755 83.74 19.34 | 23.45 0
Glitch 0.5 (9203 | 036 0.02 16.62 45.09 54.52 2511 18.73 21.68 27.67 47.92 8759 19.87 | 30.43 0
Kaleid- 0 | 96.03 0 0 0 0.8 39.49 4094 575 0.02 2.4 43.08 33.71 91.97 | 21.51 0
oscope

Kaleid-

oscope 0.1 | 96.22 | 0.03 0 2.15 33.97 3741 357 16.06 5.21 13.03 50.03 45.1 93.13 | 27.65 0
Kaleid-

oscope 0.2 | 96.14 | 0.07 0 7.48 43.57 39.96 3895 18.03 843 16.61 50.22 48.81 92.94 | 30.42 0
OK:::IS;(: 0.5 ] 9571 | 0.09 0 27.92 63.33 41.84 43.26 25.65 16.73 2398 48.61 5228 9243 | 36.34 0

Table 14: Intial Training Ablations- adversarial /5 regularization on CIFAR-10. Accuracy of initially trained models
on CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks. {2
regularization computed using single step optimization is also considered during initial training, with regularization strength
A. Results where regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.

31



Adapting to Evolving Adversaries with Regularized Continual Robust Training

Train A Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope

ly 0 91.08 | 70.02 29.38 0.79 33.69 66.93 2459 1499 6422 4513 7085 80.3 30.08 | 44.25 0.1
Ly 0.05 | 90.15 | 69.61 3239 1.88 40.16 6599 27.04 1933 0648 47.01 72.13 7982 30.18 | 4586 0.72
ly 0.1 | 89.24 | 70.36 33.37 4.27 42.96 64.75 29.09 19.85 66.28 4946 72.01 79.6 3248 | 47.04 192
ly 02 | 89.99 | 70.38 34.56 13.41 48.99 67.64 29.09 2257 66.64 4838 7331 80.07 3233 | 48.94 54
loo 0 85.53 | 59.36 5098 6.34 56.27 68.94 36.79 20.57 54.02 51 6424 7594 3944 | 48.66 1.31
loo 0.05 | 84.57 | 58.68 51.28 7.82 55.74 65.31 38.58 21.17 5441 5259 63.87 7438 39.5 48.61 1.92
loo 0.1 | 8498 | 57.76 51.52 11.45 57.69 67.39 39.27 2222 5362 51.09 60.19 7473 4148 | 49.03 345
loo 0.2 | 82.58 | 5836 51.53 18.98 62.12 67.18 39.22 23.62 54.73 52 63.35  71.72 43.18 50.5 5.08
StAdv 0 87.12 | 548 007 5622 5.69 17.62 57.8 593 11.09 76.02 7747 54.04 434 3424 0.05

StAdv 005 | 756 | 352 002 69.34 23.98 1536 3722 3.69 973 5575 66.64 37.79 26.08 | 29.09 0.02
StAdv 0.1 | 81.12 | 878 0.24 69.82 15.75 27.34 484 51 29.68 66.67 77.1 53.77 34.7 36.45 0.17
StAdv 02 | 844 | 1093 0.19 69.1 28.03 33.19 47.19 6.06 2829 6646 7631 58.5 40.51 | 38.73 0.14
ReColor | 0 93.61 | 3717 7.03 0.01 67.48 55.53 37.14 827 4536 3555 6092 772 32.28 | 38.66 0
ReColor | 0.05 | 93.68 | 35.65 7.10  0.07 69.73 51.67 3685 926 44.65 3842 60.68 77.36 31.85 | 38.61 0.02
ReColor | 0.1 | 93.63 | 3332 7.00 19.46 77.93 57.73 36.18 1735 47.63 34.61 61.9  76.26 27.3 4139 222
ReColor | 0.2 | 92.67 | 29.88 5.83  30.85 83.95 5541 3724 1871 4831 349 6033 7458 2793 | 4233 207
Gabor 0 94.08 | 0.3 0.01 0.01 4.43 9239 1696 896  2.08 2.31 17.99 41.61 11.87 | 16.58 0
Gabor 0.05 | 93.84 | 0.41 0.01 0.17 20.82 91.9 17.71 1423 17.61 636  16.61 4552 10.71 | 19.34 0
Gabor 0.1 | 93.69 | 1.14  0.03 4.47 4521 912 2226 2721 2228 192 1973 47.75 9.99 25.87 0
Gabor 02 | 9361 | 1.35 002 13.59 57.17 90.85 29.97 3381 31.63 2528 2252 524 9.08 30.64
Snow 0 95.89 | 0.05 0 0.01 2.63 30.13  92.02 7.23 0.9 15.17 3149 4798 2239 | 20.83
Snow 0.05 | 89.84 | 0.12 0 0.01 0.81 2479 8266 095 0.14 1489 2876 35.46 213 17.49
Snow 0.1 | 88.07 | 0.28 0 0.18 1.39 1833 8328 1.12 0.88 2973 56.23 27.04 19.81 | 19.86
Snow 0.2 | 9456 | 0.21 0 29.86 42.55 2326 90.96 144 1556 4951 5092 5035 26.23 | 32.82
Pixel 0 94.76 | 0.07 0 0.01 8.87 57.65 36.6 8835 1.77 1452 38.18 675 16.21 | 27.48
0
0
0

Pixel 0.05 | 93.81 | 0.01 0.03 12.65 59.31 368 88.88 3.83 14.19 4033 62.99 16.9 27.99
Pixel 0.1 | 93.54 | 0.02 0.22 15.32 54.00 3837 8945 39 1435 3881 6348 17.75 | 27.97
Pixel 0.2 | 93.06 | 0.06 0.01 3.59 22.18 50.55 4096 8939 9.85 1649 40.79 6144 18.25 | 29.46 0

JPEG 0 90.26 | 56.48 215 0.52 34.74 68.59 21.12 10.57 73.46 40 743 7835  28.02 42.3 0.09
JPEG 0.05 | 89.52 | 57.89 2381 1.19 37.2 71.84 2188 13.16 739  38.82 7405 78.61 2797 | 4336 046
JPEG 0.1 | 89.09 | 58.18 25.89 4.28 40.45 743 2085 1435 7442 4082 75.08 78.07 2535 | 4434 142
JPEG 0.2 | 87.98 | 5894 26.85 10.19 44.26 70.96 2218 1637 74.17 4113 76.03 77.65 24.9 453 274
Elastic 0 94.06 | 1.32  0.02 7.5 7.92 2541 53.68 9.16 112 7947 7294 50.24 33.1 29.33  0.01
Elastic 0.05 | 93.88 | 149 0.01 7.27 8.18 2348 S51.12 932 115 79.77 7388 502 30.32 | 28.88  0.01
Elastic 0.1 | 94.13 12 0 7.25 7.87 20.68 53.62 852 1093 7993 7477 4944  30.54 | 28.73 0

Elastic 02 |9379 | 123 001 6.49 6.77 21.8 5329 7.64 1075 79.76  73.77 49.72 3275 | 28.67 0

Wood 0 93.57 | 0.03 0 0.4 1.27 18.47 3944 343 037 33.68 93.04 28.04 14.11 19.36 0
Wood 0.05 | 92.78 | 0.01 0 0.65 1.65 1647 416 241 0.51 35.08 9236 27.79 17.15 | 19.64 0
Wood 0.1 | 9259 | 0.02 0 33 5.25 18.41 4333 4.07 1.67 3747 92.02 2995 14.92 | 20.87 0
‘Wood 02 |91.92 | 0.03 0 8.21 8.76 1598 4264 512 258 3815 915 32.01 14.15 | 21.59 0
Glitch 0 93.26 | 0.02 0 0 11.49 49.03 2444 1247 3.4 10.89 3199 90.77  16.61 20.9 0
Glitch 0.05 | 92.38 | 0.01 0 0.03 16.86 48.73 23.12 996 5.16 14.01 31.82 90.8 15.63 | 21.34 0
Glitch 0.1 | 92.14 | 0.02 0 0.23 24.38 48.71 22.89 10.69 5.38 17.19 32.08 91.19 1459 | 22.28 0
Glitch 0.2 | 92.62 | 0.04 0 5.11 39.62 56.19 26.18 18.76 145 2628 31.86 90.95 16.25 | 27.15 0
Kaleid- 0 96.03 0 0 0 0.8 39.49 4094 575 0.02 2.4 43.08 33.71 91.97 | 21.51 0
oscope
Kaleid-

0.05 | 96.31 0 0 0 1.59 39 3573 629 0.02 1.88 4031 36.53  93.07 21.2 0
oscope
Kaleid-

0.1 | 96.22 0 0 0 1.4 3998 33.78 6.75 0.01 1.9 43.17 35.1 92.83 | 21.24 0
oscope
Kaleid-

0.2 | 96.01 0 0 0 1.33 3492 3541 6.01 0.1 2.61 3835  36.8 92.7 20.69 0
oscope

Table 15: Intial Training Ablations- variation regularization on CIFAR-10. Accuracy of initially trained models on
CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks. Variation
regularization computed using single step optimization is also considered during initial training, with regularization strength
A. Results where regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train A | Clean ly o StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope

ly 0 | 91.08 | 70.02 29.38 0.79 33.69 66.93 2459 1499 6422 4513 7085 80.3 30.08 | 44.25 0.1
ly 1 904 | 70.22 3273 6.17 41.96 69.81 2546 18.13 6598 4571 7272 7951 30.13 | 46.54 248
ly 2 | 8945 | 69.44 3197 12.15 51.04 69.03 25.71 19.54 66.11 47.5 7144 79.25 30.8 47.83 321
ly 5 | 8834 | 66.66 2741 26.22 60.22 69.16 26.67 22.57 64.08 46.83 71.14 77.6 31.36 | 49.16 6.23
loo 0 | 8553 | 5936 5098 6.34 56.27 68.94 36.79 20.57 54.02 51 6424 7594  39.44 | 48.66 1.31
loo 1 85.28 | 63.66 50.72 10.51 60.1 66.63 36.67 21.66 60.69 51.72 @ 65.61 76.04 38.41 50.2 3.01
loo 2 | 8197 | 635 4824 17.33 64.72 65.73 387 2449 61.25 5196 63.63 7282 39.16 | 5096 4.97
Loo 5 | 78.04 | 60.28 40.59 42.25 70 67.06 334 2657 6007 4921 6461 67.08 3843 | 51.63 8.36
StAdv 0 | 87.12 | 548 0.07 5622 5.69 17.62 57.8 593 11.09 76.02 77.47 54.04 43.4 3424 0.05
StAdv 1 81.36 | 2444 129 73.69 53.63 4094 3939 1047 39.05 65.18 7243 6243 3621 | 4326 0.88
StAdv 2 82.8 | 3842 39 71.03 55.3 51.03 39.71 1212 504 6357 7424 6898 3832 | 4725 211
ReColor | 0 | 93.61 | 37.17 7.03 0.01 67.48 5553 3714 827 4536 3555 6092 772 32.28 | 38.66 0
ReColor | 1 | 9296 | 51.36 1358 5.96 73.47 63.31 3194 873 59.67 42.6 6549 7837 3422 | 44.06 143
ReColor | 2 | 92.34 | 53.34 14.88 17.02 78.21 63.32 3431 1328 58.69 4423 6548 77.02 3779 | 46.46 3.7
ReColor | 5 | 86.49 | 5492 16.5 4441 78.3 68.38 32.22 2748 56.59 4533 65.82 7344 274 49.23 6.81
Gabor 0 | 94.08 0.3 0.01 0.01 4.43 9239 1696 896  2.08 2.31 17.99 41.61 11.87 | 16.58 0
Gabor 1 | 91.84 | 2427 0.69 10.02 41.71 87.58 23.11 1399 32.19 2795 4751 62.62 1527 | 3224 0.24
Gabor 2 | 90.58 | 9.65 0.06 0.17 17.39 87.02 1634 568 9.84 1566 4222 5281 14.41 22.6 0
Snow 0 | 95.89 | 0.05 0 0.01 2.63 30.13  92.02 7.23 0.9 15.17 3149 4798 2239 | 20.83 0
Snow 0.5 | 90.18 | 26.34 0.63 4.74 22.47 7047 796 7.67 2569 39.56 4621 69.51 1455 | 3395 0.13
Snow 1 86.82 | 25.02 093 14.74 404 65.19 7404 876 3182 41.78 5021 67.76 22.3 3691 036
Snow 2 | 7597 | 38.33 8.48 3.21 24.12 57.66 66.64 8.1 3475 39.83 47.16 60.87 2536 | 3454 0.85
Pixel 0 | 9476 | 0.07 0 0.01 8.87 57.65 36.6 8835 1.77 1452 3818 675 16.21 | 27.48 0
Pixel 1 88.35 | 11.76  0.16 0.38 23.23 63.75 284 7123 72 31.88 47.73 71.87 21.77 | 31.61 0.02
Pixel 2 | 7987 | 228 338 1.75 34.1 59 24 60.74 13.63 33.78 528 6658 31.06 | 33.63 0.22
JPEG 0 | 90.26 | 56.48 21.5 0.52 34.74 68.59 21.12 10.57 73.46 40 743 7835  28.02 423 0.09
JPEG 1 89.29 | 60.05 26.16 4.69 42.29 74.59 22.64 13.53 7429 4393 74.64 7774 @ 29.07 453 1.33
JPEG 2 | 8849 | 61.79 27.73 1237 47.32 7146 25.63 17.62 7398 4512 728 78.03 27.9 46.81 3.87
Elastic 0 | 9406 | 1.32 0.02 7.5 7.92 2541 53.68 9.16 112 7947 7294 50.24 33.1 29.33  0.01
Elastic 1 | 9185 | 17.14 0.54 5.55 14.6 40.8 3505 555 3141 669 7526 65.89 3044 | 3243 0.17
Elastic 2 | 6779 | 43.66 17.81 23 31.04 56.14 28.89 15.31 47.71 51.31 579 59.33 3456 | 38.89 4.6
Wood 0 | 93.57 | 0.03 0 04 1.27 1847 3944 343 037 3368 93.04 28.04 14.11 19.36 0
Wood 1 89.61 | 3094 352 17.14 30.98 26.2 49 5336 45.05 56.82 8292 66.69 25.1 3697 0.69
Wood 2 | 8572 | 30.94 352 17.14 30.98 53.36  26.2 49 4505 56.82 8292 66.69 25.1 36.97 0.69
Glitch 0 | 93.26 | 0.02 0 0 11.49 49.03 2444 1247 3.14 10.89  31.99 90.77 16.61 20.9 0
Glitch 1 | 90.16 | 34.66 2.61 0.28 22.95 64.19 22.01 1238 2875 3922 60.2 83.26 23.6 32.84 0.01
Glitch 2 | 79.67 | 44.33  9.64 1.01 27.31 60.07 17.26 1528 3823 4231 58.64 7243 30.1 34.72  0.36
Kaleid- 0 | 96.03 0 0 0 0.8 3949 4094 575 0.02 24 43.08 33.71 91.97 | 21.51 0
oscope

Kaleid-

oscope 0.1 | 93.16 | 539 0.02 0.02 4.89 55.54 35.63 532 325 1743 5259 60.06 86.77 | 27.24 0
Kaleid-

oscope 05| 889 | 16.02 0.22 0.17 9.98 54.63 29.68 635 975 2938 4924 64.47 78.4 29.02 0
fsacl;l)i- 1 | 6825 | 1405 0.51 5.33 42 48.53 1455 1046 13.6 2192 3266 45.02 62.09 | 2589 0.09

Table 16: Intial Training Ablations- Uniform regularization on CIFAR-10. Accuracy of initially trained models
on CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks.
Uniform regularization (with ¢ = 2) is also considered during initial training, with regularization strength A. Results where
regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green, while results where
regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to regularization
strength are bolded.
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Train A | Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope
ly 0 | 91.08 | 70.02 29.38 0.79 33.69 66.93 2459 1499 6422 4513 7085 80.3 30.08 | 44.25 0.1
ly 0.1 | 90.24 | 70.25 31.05 3.01 40.33 7049 246 1678 65.57 4487 7393 79.68 2994 | 4586 1.21
ly 0.2 | 90.07 | 69.57 31.8 9.58 46.6 7249 2522 1895 6522 46.79 7623 7936  28.74 | 47.55 3
ly 0.5 | 86.89 | 68.19 32.02 16.54 58.32 74.85 25.69 21.26 6532 4682 7408 7699 3193 | 4933 4.18
loo 0 | 8553 | 5936 5098 6.34 56.27 68.94 36.79 20.57 54.02 51 6424 7594 3944 | 48.66 1.31
loo 0.1 | 86.18 | 60.45 51.52 7.07 57.5 68.54 3896 21.24 5643 5039 64.66 7578  38.74 | 49.27 1.8
loo 0.2 | 85.19 | 61.63 50.12 17.67 67.92 69.6 40.02 2322 57.72 5276 66.28 75 40.86 51.9 3.93
loo 0.5 | 80.65 | 59.74 46.12 34.57 70.49 68.33 358 26.04 5728 5198 6546 70.73 3821 | 52.06 6.28
StAdv 0 | 87.12 | 548 007 5622 5.69 17.62 57.8 593 11.09 76.02 7747 54.04 434 3424  0.05
StAdv 0.1 | 7219 | 1.16 0.02 = 62.36 42.38 4484 359 1054 16.17 5273 65.04 50.52 3458 | 3469 0.02
StAdv 02| 79.63 | 11.11 042  72.58 57.96 4327 40.28 11.09 2526 60.64 7043 577 36.15 | 40.57 0.34
StAdv 0.5 | 7635 | 30.61 4.69 066.84 61.11 50.18 36.59 16.76 39.22 57 67.71  62.31 34.1 4392 313
ReColor | 0 | 93.61 | 37.17 7.03 0.01 67.48 55.53 37.14 827 4536 3555 6092 772 32.28 | 38.66 0
ReColor | 0.1 | 93.51 | 36.05 8.59 24.25 79.15 65.07 36.75 17.11 49.12 3586 65.18 76.15 3197 | 4377 3.03
ReColor | 0.2 | 9149 | 37.6 9.06 37.99 84.17 69.1 3402 1872 5151 38.12 68.6 73.16 31.63 | 46.14 3.02
ReColor | 0.5 | 74.12 | 34.15 8.14 4198 71.03 582 2392 1845 437 32,07 5727 5579 2493 | 39.14 3.53
Gabor 0 | 94.08 0.3 0.01 0.01 443 9239 1696 896  2.08 2.31 17.99 41.61 11.87 | 16.58 0
Gabor 0.1 | 91.52 | 10.06 0.38 = 12.04 49.59 89.29 2641 19.27 3258 2399 5029 54.77 16.1 3206 0.13
Gabor 0.2 | 88.56 | 945 0.34 0.72 23.46 85.27 20.59 844 17.77 19.99 49 54.96 15.62 | 2547 0.04
Gabor 0.5 | 83.09 | 31.81 4.79 1.81 26.15 79.32  20.61 10.17 3049 3434 64.64 64.17 19.19 | 3229 0.44
Snow 0 | 95.89 | 0.05 0 0.01 2.63 30.13  92.02 7.23 0.9 15.17 3149 4798 2239 | 20.83 0
Snow 0.1 | 91.74 | 9.94 0.1 0.51 19.93 69.04 8263 7.67 1296 3424 4421 70.07 15.53 | 30.57 0
Snow 0.2 | 89.18 | 19.18 0.57 0.95 18.26 73.07 7698 9.2 19.02 3691 44.69 70.51 1424 | 3196 0.04
Snow 0.5 | 7452 | 24.82 1.68 3.67 33.1 57.71 65 10.01 22.39 40 40.36 61.17 2148 | 31.78  0.56
Pixel 0 | 9476 | 0.07 0 0.01 8.87 57.65 36.6 8835 1.77 1452 38.18 675 16.21 | 27.48 0
Pixel 0.1 | 86.83 0.9 0 1.1 41.32 6739 327 77.05 6.22 1543 4224 5145 18.18 29.5 0
Pixel 02| 89.6 | 425 0.01 0.14 20.42 68.55 29.56 7623 357 2536 46.03 68.2 19.96 | 30.19 0
Pixel 0.5 | 61.01 | 23.09 341 6.93 34.6 4926 19.29 4475 1711 30.67 44.62 5242 2813 | 2952 0.89
JPEG 0 | 90.26 | 56.48 21.5 0.52 34.74 68.59 21.12 10.57 73.46 40 743 7835  28.02 423 0.09
JPEG 0.1 | 89.2 | 5897 2522 237 38.03 72.82 22.11 12.85 74.03 41.87 76.66 77.74 2558 | 44.02 0.76
JPEG 0.2 | 88.78 | 61.28 27.5 8.27 43.35 71.66 2278 1446 74.65 43.63 75.89 78 26.09 | 45.63 2.01
JPEG 0.5 | 87.31 | 59.83 27.21 15.54 45.36 7131 2382 17.46 73.08 427 76.09 769 23.25 | 46.05 3.92
Elastic 0 | 9406 | 132 0.02 75 7.92 2541 53.68 9.16 112 7947 7294 50.24 33.1 29.33  0.01
Elastic 0.1 | 85.66 | 13.24 091 5.6 14.65 46.65 3792 534 18.66 6335 7045 58.79 27.89 | 3029 0.39
Elastic 02| 85.22 | 289 2.8 6.43 18.55 5396 3791 643 3593 63.82 6997 6553 33.61 | 3532 0.26
Elastic 0.5 | 76.85 | 42.02 10.72 26.19 46.27 5845 30.94 11.09 48.24 5725 6224 65.81 2898 | 40.68 2.76
Wood 0 | 93.57 | 0.03 0 0.4 1.27 18.47 3944 343 037 33.68 93.04 28.04 14.11 19.36 0
Wood 0.1 9108 | 1.29 0.12 11.65 19.03 49.39 3026 7.09 10.12 44.63 89.51 5035 2237 | 2798 0.01
Wood 0.2 | 90.9 39 0.12  18.97 27.03 50.3  31.63 797 1849 50.87 89.35 5841 2288 | 31.66 0.05
‘Wood 05| 77.59 | 29.6  6.65 9.33 23.37 554 1974 83 3475 49.11 7526 59.65 24.26 | 3295 0.87
Glitch 0 | 93.26 | 0.02 0 0 11.49 49.03 2444 1247 3.14 10.89  31.99 90.77 16.61 20.9 0
Glitch 0.1 | 8596 | 1.29 0.13 0.08 16.46 5648 1995 838 656 20.67 4452 78.95 18.31 | 22.65 0
Glitch 02| 834 | 18.14 194 0.23 24.5 60.76 19.24 11.85 2746 3338 5736 77.04 23.12 | 29.59 0.01
Glitch 0.5 | 75.81 | 36.99 6.88 1.22 27.29 59.99 1729 14.18 3471 36.39 60.77 68.21 2275 | 3222 0.21
Kaleid- 0 | 96.03 0 0 0 0.8 39.49 4094 575 0.02 2.4 43.08 33.71 91.97 | 21.51 0
oscope
Kaleid-

0.1 | 83.96 | 1.15 0 0.07 19.63 53.87 29.05 7.32 1.72 15.51 478 5233 72.8 25.1 0
oscope
Kaleid-
oscope 0.2 | 82.48 0.8 0 0.07 3.81 5993 2575 65 0.89 10.87 4035 5044 6642 | 22.15 0
OK:::IS;(Z 0.5 | 46.61 | 28.96 11.27 23.59 23.05 41.04 1598 15.01 33.14 3043 422 414 44.04 | 29.18 531

Table 17: Intial Training Ablations- Gaussian regularization on CIFAR-10. Accuracy of initially trained models on
CIFAR-10 trained using different attacks as indicated in “Train Attack” column measured across different attacks. Gaussian
regularization (with 0 = 0.2) is also considered during initial training, with regularization strength A. Results where
regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green, while results where
regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to regularization
strength are bolded.
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Train A | Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope

ly 0 | 90.04 | 8395 7.57 5.27 3391 65.17 893 2899 6752 62.85 4922 4578 12.76 | 46.03  0.51
ly 0.1 | 88.97 | 83.13 12.69 8.54 35.64 66.65 882 3139 68.69 61.73 4922 4634 17.3 47.46 1.2
ly 0.2 | 89.68 | 84.36 16.94 9.96 39.95 66.37 88.89 3248 72.87 63.67 5225 48.64 17.1 49.46 1.83
ly 0.5 | 89.76 | 84.41 25.32 16.08 44.38 69.25 87.69 3546 7442 06247 57.66 5037 20.84 | 52.36 41.27
loo 0 | 84.51 | 81.71 5839 43.49 67.82 72.61 8331 41.83 6535 639 67.18 63.64 30.75 | 61.67 132
loo 0.1 | 82.29 | 80.25 585  47.85 66.8 69.55 815 414 6553 6145 63.13 6423 3389 | 61.17 16.15
loo 0.2 | 83.56 | 81.04 59.75 46.04 67.69 7312 8275 4227 67.26 6397 67.01 6293 3404 | 6232 1692
loo 0.5 | 81.53 | 7791 59.62 48.48 69.3 67.87 8023 4186 5485 6171 64.18 67.77 3898 | 61.06 19.31

StAdv 0 | 8331 | 7758 145 69.81 13.43 36.66 815 2056 49.89 7032 60.76 36.15 24.84 | 4525 1.04
StAdv 0.1 | 81.89 | 76.31 2.24  69.17 12.23 3223 7992 1839 5225 7042 6046 39.29 20.59 | 4446 1.25
StAdv 0.2 | 82.09 | 76.66 1.71  69.04 11.11 4525 80.13 17.1 4474 69.61 60.89 40.03  21.32 44.8 1.25
StAdv 0.5 | 80.66 | 73.86 1.68  67.67 10.65 60.03 7758 1539 4497 678 5941 4186 21.78 | 4522 135
ReColor | 0 | 91.34 | 81.53 0.03 0.41 79.08 4255 90.6 2239 252 6431 548  18.65 8.94 | 40.71 0
ReColor | 0.1 | 91.26 | 825  0.05 0.48 80.74 47.03 91.08 253 27.16 63.54 5539 2094 11.75 | 42.16 0
ReColor | 0.2 | 91.87 | 83.67 0.03 0.89 81.76 49.63 9144 2362 34.62 6637 57.61 23.64 1093 | 43.68 0
ReColor | 0.5 | 90.32 | 81.43 0 0.84 80.69 46.32  89.55 30.09 32.18 65.63 61.17 2642 13.35 | 43.97 0
Gabor 0 | 89.12 | 8527 441 2.11 37.83 87.31 87.62 20.28 57.66 5233 3873 38.88 9.22 4347 0.1
Gabor 0.1 | 87.44 | 83.77 9.45 5.96 40.05 86.01 855 21.94 5847 5241 41.61 43.57 16.13 | 4541 1.25
Gabor 0.2 | 88.56 | 8548 134 8.84 44.28 87.36 87.54 27.77 6298 5498 4792 48.05 16.87 | 48.79 1.4
Gabor 0.5 | 87.06 | 84.33 21.04 15.34 50.45 8538 84.18 32.05 64.84 55.62 53.61 5144 1546 | 51.14 4.05
Snow 0 | 87.69 | 71.59  0.08 1.53 11.97 30,68 629 731 859 6624 70.78 11.82 9.91 29.45  0.05
Snow 0.1 | 88.18 | 70.47 0.08 1.32 11.9 2986 5997 696 726 6657 7124 11.67 8.61 28.83  0.03
Snow 02 | 87.69 | 71.85 0.03 1.81 12.71 4433 6227 831 922 6639 71.08 1554 1312 | 31.39 0.03
Snow 0.5 88 71.39  0.05 2.06 15.77 38.88 6232 10.22 1024 6634 7225 15.13 10.47 | 31.26 0
Pixel 0 | 88.64 | 67.24 0 0.59 34.96 3037 87.18 786 025 61.63 5208 4938 2397 | 40.52 0
Pixel 0.1 | 89.73 | 69.17 0 0.79 39.18 3781 88.61 8148 0.51 6217 49.02 5011  26.32 42.1 0
Pixel 0.2 | 90.47 | 70.55 0 0.61 45.02 3269 89.07 83.06 1.07 6599 5159 5332 2823 | 4343 0
Pixel 0.5 | 882 | 64.38 0 112 45.68 30.11 87.59 8237 0.74 64.13 5335 5946 30.27 | 43.27 0
JPEG 0 | 8843 | 85.63 1529 543 41.78 77.35 86.85 2321 80.87 5381 4339 4479 1539 | 47.82 0.74
JPEG 0.1 | 88.23 | 85.68 2298 9.17 4522 84.03 86.17 24.08 81.76 56.87 4652 4647 15.08 | 50.34 2.04
JPEG 02| 882 | 8571 2568 11.82 44.31 82.85 86.17 2471 81.86 5625 47.67 4729 17.66 51 2.55
JPEG 0.5 | 87.08 | 84.890 318 15.75 51.36 8446 8492 2882 82.06 5493 48.18 54.85 18.6 5338 38
Elastic 0 | 89.66 | 77.48 0 0.82 12.25 21.81 88.05 16.84 5.71 78.6 6201 1679 11.69 | 32.67 0
Elastic 0.1 | 90.96 | 80.36 0 2.57 12.54 28.05 89.71 16.18 14.04 8262 6558 1699 1447 | 35.26 0
Elastic 0.2 | 88.41 | 79.18 0.05 5.15 13.04 2642 86.7 17.89 1524 8127 66.11 21.02 1355 | 3547 0.03

Elastic 0.5 | 89.53 | 80.79 0.03 8.79 16.71 29.66 87.62 19.52 2229 83.97 66.88 20.31 11.21 | 37.31 0
‘Wood 0 | 8591 | 50.09 0 0.82 11.11 35.87 8331 11.13 1.2 60.94 78.83 1496 11.13 | 29.95 0
‘Wood 0.1 | 88.28 | 75.77 0 2.42 14.14 389 86.09 1297 994 67.18 8431 22.09 9.66 | 35.29 0

Wood 02 | 89.45 | 72.61 0.03 1.91 11.44 43.69 8736 805 986 6749 8688 1679 10.17 | 34.69 0.03
‘Wood 0.5 | 8599 | 67.18 0.03 4.1 12.87 38.8 8301 1034 991 6637 85.07 20.46 9.32 33.96  0.03

Glitch 0 | 88.51 | 36.41 0 0 6.7 1847 86.96 17.1 0 60 50.93  84.97 6.37 30.66 0
Glitch 0.1 | 88.33 | 32.38 0 0.08 7.26 21.86 86.27 1536 0.03 61.2 50.6 ~ 86.68 6.73 30.7 0
Glitch 0.2 | 87.85 | 48.89 0.03 0.43 22.78 23.75 8535 20.08 252 63.13 5034 86.19 1042 | 34.49 0
Glitch 0.5 | 86.98 | 65.1 0 2.57 23.11 32.18 8405 30.7 7.1 6436 58.75 8535 16.64 | 39.16 0
Kaleid- 0 88.1 73.5 0 0.31 7.03 28.66 8591 18.83 222 6298 29.78 21.07 84.89 34.6 0

oscope
Kaleid-
oscope
Kaleid-
oscope
Kaleid-

oscope

0.1 | 88.38 | 7898 0.03 2.68 13.96 33.53 8596 25.12 1187 67.13 49.12 27.77 85.66 | 40.15 0

0.2 | 88.51 | 78.78 0.03 6.5 20.48 3195 8566 294 1022 6851 3485 36.74 86.09 | 40.77 0.03

0.5 | 87.01 | 79.62 0.56 16.38 24.13 31.67 8448 3274 23.06 68.61 58.09 37.94 842 | 4512 043

Table 18: Intial Training Ablations- worst-case /> regularization on ImageNette. Accuracy of initially trained models
on ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks. ¢
regularization computed using single step optimization is also considered during initial training, with regularization strength
A. Results where regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train A Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope

ly 0 90.04 | 8395 7.57 5.27 3391 65.17 893 2899 67.52 62.85 4922 4578 12.76 | 46.03  0.51
Ly 0.05 | 88.51 | 82.75 13.55 10.14 335 63.03 87.11 29.66 69.17 639 5327 41.78 17.12 | 47.08 222
ly 0.1 89.5 | 83.64 16.89 9.2 41.71 56.97 8693 3791 7152 62.62 5434 51.85 20.71 | 49.52 145
ly 0.2 | 88.87 | 84.17 2527 14.04 44.71 7427 8696 36.74 7439 6336 53.07 49.45 1534 | 51.82 242
loo 0 84.51 | 81.71 5839 4349 67.82 72.61 8331 4183 6535 639 67.18 63.64 30.75 | 61.67 13.2
loo 0.05 | 83.13 | 80.15 58.73  44.92 67.44 65.53 8324 4153 6158 6242 6298 6507 29.63 | 60.26 14.55
loo 0.1 | 83.36 | 80.23 58.93 4357 67.85 69.71 82.85 40.13 56.79 63.13 6558 6566 3197 | 60.53 16.08
loo 02 | 81.22 | 77.83 59.21 51.57 67.97 65.66 80.69 42.52 58.19 61.76 61.15 6744 40.03 | 61.17 19.13
StAdv 0 8331 | 77.58 145 69.81 13.43 36.66 815 2056 49.89 7032 60.76 36.15 2484 | 4525 1.04

StAdv 0.05 | 82.14 | 77.17 2.06  73.02 24.94 455 78.62 22.09 4897 6999 6247 38.73 28.79 | 47.7 1.63
StAdv 0.1 | 79.08 | 72.79 1.86  70.19 35.87 4892 7452 2025 439 6329 5796 3521 2405 | 4573 155
StAdv 0.2 | 80.89 | 74.09 331 7549 30.42 51.21 77.61 1656 52.56 67.06 62.75 3628 2239 | 4748 2.98
ReColor | 0 91.34 | 81.53 0.03 0.41 79.08 4255 90.6 2239 252 6431 548  18.65 8.94 40.71 0

ReColor | 0.05 | 91.08 | 80.64 0.03 0.56 79.24 468 9045 293 2724 6403 5531 26,55 12.03 | 42.68 0

ReColor | 0.1 | 92.18 | 8433 0.18 1.61 82.93 53.66 91.11 29.66 40.79 66.04 5725 31.16 15.24 | 46.16 0

ReColor | 0.2 | 92.1 | 83.92 0.25 245 83.9 5452 91.54 3373 4326 67.57 5783 3794 1251 | 4745 0.1
Gabor 0 89.12 | 85.27 441 2.11 37.83 87.31 87.62 20.28 57.66 5233 3873 38.88 9.22 4347 0.1

Gabor 0.05 | 88.76 | 84.48 5.61 3.54 35.49 87.54 88 18.73 56.61 56.08 4321 37.45 1269 | 44.12 0.61
Gabor 0.1 | 87.92 | 84.1 836 4.79 41.81 85.66 84.92 2629 5429 5297 4517 452 11.08 | 4539 0.36
Gabor 0.2 | 87.97 | 8433 12.46 8.99 44.36 86.55 8527 292 574 5567 5141 4991 1325 | 4823 1.55
Snow 0 87.69 | 71.59  0.08 1.53 11.97 30.68 629 731 859 6624 70.78 11.82 9.91 2945  0.05
Snow 0.05 | 86.85 | 70.34  0.05 1.48 10.01 332 6471 752 915 6446 69.55 1141 8.94 29.24  0.03
Snow 0.1 | 86.04 | 70.96 0.18 1.86 10.57 2377 6143 848 749 6532 7034 15.21 7.71 28.62 0.13

Snow 0.2 | 87.62 | 68.89 0.15 1.61 11.97 2991 6438 7.06 803 66.09 718 12 9.96 2932 0.1
Pixel 0 88.64 | 67.24 0 0.59 34.96 3037 87.18 786 025 61.63 52.08 4938 2397 | 40.52 0
Pixel 0.05 | 89.07 | 68.99 0 112 40.66 29.38 8792 80.79 0.64 6232 4932 52.05 25.86 | 41.59 0
Pixel 0.1 89.2 | 70.73 0 1.04 43.49 3371 88.1 8255 079 6448 49.78 49.94 29.3 42.83 0
Pixel 02 | 90.7 | 67.41 0 1.02 46.45 3325 8925 8395 173 6377 50.8 52.89 31.24 | 4348 0

JPEG 0 88.43 | 85.63 1529 543 41.78 7735 86.85 2321 80.87 5381 4339 4479 1539 | 47.82 0.74
JPEG 0.05 | 87.31 | 84.54 2372 851 46.7 80.56 86.11 24.82 80.87 5439 4502 453 17.32 | 49.82  2.01
JPEG 0.1 | 86.75 | 84.05 2433 11.39 43.13 79.8 84.89 24.15 80.23 5279 4734 47.82 1636 | 49.69 2.7
JPEG 0.2 | 86.65 | 83.64 27.57 15.44 45.61 81.17 8474 26.78 80.64 57.68 49.99 5093 20.08 | 52.02 4.13
Elastic 0 89.66 | 77.48 0 0.82 12.25 21.81 88.05 16.84 5.71 78.6 6201 16.79 11.69 | 32.67 0

Elastic 0.05 | 88.99 | 75.67 0 0.74 11.11 19.06 8823 1534 5.17 79.21 5997 15.69 7.85 31.5
Elastic 0.1 | 89.43 | 77.48 0 112 10.14 25.07 8843 1243 553 7944 62.09 13.38 8.82 31.99
Elastic 0.2 | 88.36 | 74.14 0 0.66 12.33 2693 87.31 1513 3.13 77.25 5898 1475 1399 | 32.05
‘Wood 0 85.91 | 50.09 0 0.82 11.11 3587 8331 1113 12 60.94 78.83 1496 11.13 | 29.95
‘Wood 0.05 | 88.61 | 72.03 0.03 0.36 10.27 2943 86.11 843 4.1 67.69 8527 17.99 9.76 32.62 0

Wood 0.1 | 87.54 | 70.93 0.03 0.48 12.25 23.59 86.62 10.6 59 65.1 83.24  20.87 8 3224 0.03

‘Wood 0.2 | 87.77 | 73.89 0 222 10.14 3478 86.04 9.15 927 66.14 84.08 20.28 11.03 | 33.92 0
Glitch 0 88.51 | 36.41 0 0 6.7 18.47 8696 17.1 0 60 5093 8497 6.37 30.66 0
Glitch 0.05 | 87.97 | 6.62 0 0 42 2981 86.5 12.1 0 53.71 49.12 8191 2.96 27.24 0
Glitch 0.1 | 87.52 | 31.75 0 0.05 16.1 21.25 86.06 1921 0.05 62.62 55.01 86.24 6.04 32.03 0
Glitch 0.2 | 86.47 | 53.61 0 0.64 23.21 2451 8522 2555 135 61.15 5208 84.79 9.86 35.16 0
Kaleid- 0 88.1 73.5 0 0.31 7.03 28.66 8591 1883 222 6298 29.78 21.07 84.89 34.6 0
oscope
Kaleid- 0.05 | 8.9 | 71.03 0.03 0.64 6.24 29.15 8532 15.69 3.11 59.85 44.71 2349 8423 | 35.29 0
oscope
Kaleid-

0.1 | 87.64 | 74.14 0 0.56 9.15 2571 854 17.58 3.87 60.87 27.52 2581 85.15 | 34.65 0
oscope
Kaleid-

02 | 87.46 | 74.8 0 1.25 9.78 2436 86.06 20.87 349 6239 28.15 23.64 8517 35 0
oscope

Table 19: Intial Training Ablations- variation regularization on ImageNette. Accuracy of initially trained models on
ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks. Variation
regularization computed using single step optimization is also considered during initial training, with regularization strength
A. Results where regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green,
while results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect
to regularization strength are bolded.
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Train A | Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid Avg  Union
Attack -oscope

ly 0 | 90.04 | 8395 757 5.27 3391 65.17 893 2899 6752 62.85 4922 45.78 12.76 | 46.03 051
ly 0.5 | 89.68 | 83.49 8.64 6.17 34.17 6459 8892 29.1 6841 64.59 5149 42.14 13.58 | 46.27 0.36
ly 1 89.45 | 829 1037 7.49 33.1 6795 8759 28.05 6938 6127 50.83 425 14.9 46.36  0.76
ly 2 | 89.76 | 83.36  10.6 6.73 35.01 63.03 88.46 29.17 68.79 62.83 S51.11 4222 12.87 | 46.18 0.61
loo 0 | 8451 | 81.71 5839 4349 67.82 72.61 83.31 41.83 6535 639 67.18 63.64 3075 | 61.67 132
loo 0.5 | 84.51 | 81.63 58.93 44.66 67.62 72.05 83.69 4331 62.62 6222 6454 6642 3271 61.7 1442
loo 1 83.97 | 81.22 59.01 44.87 66.6 719 8173 4352 6647 6326 6639 66.73 3399 | 62.14 1597
loo 2 85.2 | 83.36 5842 47.92 69.27 69.99 84.18 4397 7353 6433 667 62775 26.75 62.6 13.81
StAdv 8331 | 77.58 145 69.81 13.43 36.66 815 2056 4989 70.32 60.76 36.15 2484 | 4525 1.04
StAdv 0.5 84.1 | 7931 2.09 69.81 16.28 39.52  81.55 2395 5597 7149 62.6 4242 2795 | 47.75 1.5
StAdv 1 | 84.89 | 79.67 252 68.64 14.27 41.73 82.27 21.17 56.59 7149 63.64 37.81 24.03 | 4699 1.81
StAdv 2 | 83.62 | 7934 296 69.66 16.59 40.08 81.66 22.06 59.87 71.54 62.01 39.18 21.66 | 4722 1.68
ReColor | 0 | 91.34 | 81.53 0.03 0.41 79.08 4255 90.6 2239 252 6431 54.8 18.65 8.94 40.71 0
ReColor | 0.5 | 91.82 | 82.85 0.08 0.38 79.75 50.83 91.08 2283 2828 62.57 53.17 21.48 9.91 41.93 0
ReColor | 1 91.77 | 852 0.15 0.41 81.2 54.22 91.39 27.08 3832 64.82 55.08 23.06 10.65 44.3 0
ReColor | 2 | 92.31 | 85.53 0.28 0.54 80.99 52.69 91.67 2446 4438 64.82 52.61 2194 9.81 44.14  0.03
Gabor 89.12 | 85.27 441 2.11 37.83 87.31 87.62 20.28 57.66 52.33 38.73 38.88 9.22 4347 0.1
Gabor 0.5 | 8833 | 84.1 441 2.9 334 86.75 86.06 18.62 5429 53.68 3549 36.33 10.78 | 4224  0.13
Gabor 1 88.23 | 84.41 6.57 4.03 31.64 8543 87.24 18.09 57.12 534 40.2 38.09 11.11 | 43.11 0.71
Gabor 2 | 86.19 | 82.39 9.12 5.91 33.1 84.03 8438 17.68 63.16 4489 33.1 43.67 14.32 | 4298 0.84
Snow 87.69 | 71.59 0.08 1.53 11.97 30.68 629 731 859 6624 70.78 11.82 9.91 2945  0.05
Snow 0.5 | 88.46 | 76.46 0.03 1.12 13.22 3694 58.78 8.84 1096 6642 70.62 18.27 6.42 30.67 0.03
Snow 1 | 87.82 | 77.04 0.1 1.48 14.14 4321 59.06 8.64 1348 6522 68.89 17.76 7.67 31.39 0.08
Snow 2 | 8836 | 79.29 0.15 2.34 16.2 48.99 59.69 10.14 2148 68.13 70.24 19.03 9.58 33.77 0.1
Pixel 88.64 | 67.24 0 0.59 34.96 3037 87.18 786 025 61.63 52.08 49.38 2397 | 40.52 0
Pixel 0.5 | 89.81 | 75.54 0 0.43 38.8 31.06 87.67 80.48 1.1 63.67 49.58 50.01 23.26 41.8 0
Pixel 1 89.43 | 75.85 0 0.84 39.95 34.52 88 80.25 1.27 63.18 4927 4696 21.78 | 41.82 0
Pixel 2 | 87.62 | 75.62 0 1.27 39.03 3022 86.04 7786 2.88 61.15 52.08 493 24.1 41.63 0
JPEG 88.43 | 85.63 1529 543 41.78 7735 86.85 2321 80.87 53.81 43.39 4479 1539 | 4782 074
JPEG 0.5 | 89.02 | 86.17 17.89 6.52 43.29 79.01 87.52 24.56 81.15 55.62 4278 45.55 1592 | 48.83 1.3
JPEG 1 879 | 8489 1659 734 40.13 78.06 86.65 21.94 8038 55.57 4293 44.48 1577 | 47.89  1.66
JPEG 2 | 88.08 | 85.1 17.68 17.46 41.58 73.02 8629 2349 79.85 56.51 428 45.25 13.3 47.69 097
Elastic 0 | 89.66 | 77.48 0 0.82 12.25 21.81 88.05 1684 5.71 786  62.01 16.79 11.69 | 32.67 0
Elastic 0.5 | 90.68 | 81.61 0.03 1.66 14.11 35,57 89.63 18.27 11.87 80.64 60.61 1845 13.76 | 3552 0.03
Elastic 1 | 91.13 | 82.93 0 1.78 14.37 31.69 89.99 17.07 174 8148 651 21.53 10.96 | 36.19 0
Elastic 2 | 90.06 | 82.96 0.03 1.86 16.54 31.75  89.1 1722 2038 81.53 6461 18.88 1042 | 36.27 0
Wood 0 | 8591 | 50.09 0 0.82 11.11 3587 8331 11.13 1.2 60.94 78.83 14.96 11.13 | 29.95 0
Wood 0.5 | 88.03 | 74.22 0 0.97 11.77 41.02 85.68 9.81 6.57 6454 8176 18.24 11.01 33.8 0
Wood 1 88.82 | 78.68 0.03 0.69 14.06 4046 86.65 983 1149 66.7 8494 17.02 9.76 35.03 0
‘Wood 2 | 89.38 | 81.71 0.31 2.62 15.26 43.64 87.64 11.16 24.64 6899 84.84 17.81 12.56 37.6 0.18
Glitch 0 | 88.51 | 36.41 0 0 6.7 1847 8696 17.1 0 60 5093 8497 6.37 30.66 0
Glitch 0.5 | 90.01 | 74.73 0 0.54 14.96 24.38 8797 24.69 2.7 64.82 5292 86.98 8 36.89 0
Glitch 1 88.05 | 76.25 0.03 1.38 14.5 28.25 8573 253 341 62.17 531 84.69 8.79 36.97 0
Glitch 2 | 89.55 | 80.97 0.03 1.25 15.16 2589 879 2754 752 65.07 5205 8599 10.47 | 38.32 0
oKsilz}li- 0 88.1 73.5 0 0.31 7.03 28.66 8591 1883 222 6298 29.78 21.07 84.89 34.6 0
fsaclz;i— 05| 8.2 | 758 0.05 3.01 12.79 47.67 8245 19.8 1567 59.18 4148 29.71 81.32 | 39.08 0.05
OKis;(: 1 87.52 | 8048 0.03 2.52 20.89 45.89 86.04 23.85 27.57 6428 33.63 27.69 83.03 | 41.32 0
Kaleid-

oscope 2 | 8041 | 71.54 0.84 5.78 19.06 54.55 762 25.02 2441 5256 27.82 3541 7549 | 39.06 0.46

Table 20: Intial Training Ablations- Uniform regularization on ImageNette. Accuracy of initially trained models
on ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks.
Uniform regularization (with ¢ = 2) is also considered during initial training, with regularization strength A. Results where
regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green, while results where
regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to regularization
strength are bolded.
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Train A | Clean Uy loo StAdv ReColor Gabor Snow Pixel JPEG Elastic Wood Glitch Kaleid- Avg  Union
Attack oscope

ly 0 | 90.04 | 8395 757 5.27 3391 65.17 893 2899 6752 62.85 4922 4578 12.76 | 46.03  0.51
ly 0.1 | 89.35 | 83.13  12.84 6.22 35.59 72.05 87.82 2945 7136 6222 50.14 45.02 16.18 | 47.67 1.07
ly 0.2 | 89.38 | 83.54 15.82 7.54 38.04 7343 8841 306 722 60.13 50.62 46.14 15.64 | 48.51 1.35
ly 0.5 | 87.03 | 81.89 22.09 1231 40.36 74.09 84.15 3498 72,79 60.13 5149 522 18.45 | 5041 2.96
loo 0 | 84.51 | 81.71 5839 4349 67.82 72.61 8331 41.83 6535 639 67.18 63.64 30.75 | 61.67 132
loo 0.1 | 839 | 82.09 57.86 47.77 68.38 734 8296 4492 7455 6321 6441 63.18 3636 | 6326 17.04
loo 0.2 | 84.25 | 82.39 58.39 49.38 68.59 76.33 829 4545 7646 64.56 66.19 6336 3144 | 63.79 16.25
loo 0.5 | 83.87 | 82.22 5842 47.87 68.23 75.69 8278 46.24 7753 62.14 6487 625 35.31 | 63.65 17.66
StAdv 0 | 8331 | 7758 145 69.81 13.43 36.66 815 2056 4989 70.32 60.76 36.15 2484 | 4525 1.04
StAdv 0.1 | 8234 | 77.76 ~ 4.18 66.45 16.54 5791 79.52 22.14 6043 68.56 6229 40.59 2346 | 4832 2.78
StAdv 0.2 | 83.11 | 79.21 6.5 67.64 18.7 4532 80.03 26.34 64.84 7027 6194 50.14 3037 | 50.11 3.34
StAdv 0.5 | 83.13 | 80.03 935 68.25 18.34 57.63 8028 27.44 68.08 069.78 60.05 494 32.66 | 51.77 5.22
ReColor | 0 | 91.34 | 81.53 0.03 0.41 79.08 4255 906 2239 252 6431 548 18.65 8.94 40.71 0
ReColor | 0.1 | 90.83 | 8497 0.38 0.92 79.69 57.17  90.62 2994 4841 60.94 53.02 3381 8.54 45.7 0.05
ReColor | 0.2 | 90.8 | 85.73 1.2 1.17 78.98 6288 90.5 27.87 5534 60.74 49.07 3157 1429 | 46.61 0.18
ReColor | 0.5 | 89.15 | 852 5.81 2.75 77.81 7126 88.46 31.34 65.07 59.77 5241 4127 1539 | 4971 0.33
Gabor 0 | 89.12 | 85.27 441 2.11 37.83 87.31 87.62 2028 57.66 52.33 38.73 38.88 9.22 43.47 0.1
Gabor 0.1 | 87.29 | 83.77 1126 553 38.22 85.58 8454 20.64 66.11 48.82 37.02 4196 15.06 | 4487 0.76
Gabor 0.2 | 86.22 | 82.88 1297 647 37.27 84.69 83.92 2245 67.77 4846 3631 41.15 19.01 | 4528 1.04
Gabor 05| 87.29 | 84.13 19.87 9.48 41.35 854 85.07 268 7228 5279 4229 46.19 19.9 48.8 1.99
Snow 0 | 87.69 | 71.59 0.08 1.53 11.97 30.68 629 7.31 859 6624 70.78 11.82 9.91 2945  0.05
Snow 0.1 | 87.69 | 80.25 1.35 5.81 16.41 60.87 57.02 10.09 3824 65.17 7177 22.62 10.85 36.7 0.38
Snow 02| 86.8 | 80.36 1.94 23.82 3345 61.55 58.19 1197 4777 67.16 71.54 25.68 15.9 41.61  1.66
Snow 0.5 | 85.04 | 8046 431 1534 21.55 66.65 55.82 14.04 56.33 653 69.48  32.51 13.61 | 41.28 2.6
Pixel 0 | 88.64 | 67.24 0 0.59 34.96 3037 87.18 78.6 025 61.63 52.08 4938 2397 | 40.52 0
Pixel 0.1 | 88.15 | 76.99 0.03 0.59 41.5 42.04 852 7725 856 56.64 46.88 4392 28.2 42.32 0
Pixel 0.2 | 88.89 | 80.99 0.03 1.4 46.7 4423 87.64 78.73 20.18 614  46.85 49.12 2637 453 0
Pixel 05| 86.6 | 82.14 143 6.62 46.73 5345 8497 7735 4499 59.08 4828 5373  28.66 | 48.95 0.38
JPEG 0 | 8843 | 85.63 1529 543 41.78 77.35 86.85 23.21 80.87 53.81 4339 4479 15.39 | 47.82 0.74
JPEG 0.1 | 88.18 | 84.79 20.33 9.2 42.34 80.54 8545 2336 80.18 57.38 46.55 46.78 17.96 | 49.57 222
JPEG 0.2 | 8892 | 86.04 2331 8128 46.88 80.61 87.36 26.73 81.68 5722 47.18 4894 1636 | 50.88 1.86
JPEG 0.5 | 87.18 | 8441 265 12.46 44.94 79.36  85.07 2836 80.54 56.59 47.77 5271 19.01 | 5148 3.06
Elastic 0 | 89.66 | 77.48 0 0.82 12.25 21.81 88.05 1684 5.71 78.6  62.01 16.79 11.69 | 32.67 0
Elastic 0.1 | 88.59 | 82.65 0.46 4.31 17.83 4553 8744 188 3585 79.85 64.23 27.11 11.11 39.6 0.08
Elastic 0.2 | 89.35 | 84.03 1.66 5.55 20.64 53.22 88 2245 50.75 80.15 6229 31.75 8.1 4238 023
Elastic 0.5 | 82.17 | 77.61 6.9 62.17 63.8 5544 7832 29.61 55.75 7322 6336 36.66 19.52 | 51.86 4.15
Wood 0 | 8591 | 50.09 0 0.82 11.11 3587 8331 11.13 1.2 60.94 78.83 14.96 11.13 | 29.95 0
Wood 0.1 | 88.1 | 80.71 0.87 6.68 14.19 46.55 86.22 11.85 333 66.68 82.88  30.8 8.1 39.07 0.33
Wood 0.2 | 88.99 | 83.03 2.14 7.67 17.17 4525 8698 1396 4522 6833 83.67 30.29 14.19 | 4149 1.15
Wood 0.5 | 88.13 | 83.92 553 13.66 24.87 64.15 86.68 18.83 6041 6994 8298 399 1577 | 4722 199
Glitch 0 | 88.51 | 36.41 0 0 6.7 1847 8696 17.1 0 60 5093 84.97 6.37 30.66 0
Glitch 0.1 | 87.41 | 80.08 1.32 4.56 27.77 48.15 85.1 2693 46.19 6145 4856 82.47 12.36 | 43.75 033
Glitch 0.2 | 86.93 | 83.54 4.54 8.31 24.08 47.34 8573 3294 5361 6229 5236 83.21 17.4 46.28 1.27
Glitch 0.5 | 87.16 | 84.38 13.73 14.96 28.94 62.11 84.89 359 6792 06092 5146 828 2048 | 50.71 2.8
OK::S:_ 0 88.1 73.5 0 0.31 7.03 28.66 8591 1883 222 6298 29.78 21.07 84.89 34.6 0
fsaclz;i— 0.1 | 84.05 | 7225 0.1 2.98 14.27 40.74 80.87 147 1429 5539 4642 21.15 7496 | 36.51 0.1
Kaleid-

oscope 02 ] 69.17 | 62.19 127 10.11 18.7 5572 66.14 17.81 3057 4178 21.68 3236 66.8 3543 0.66
OK:::I:):;)(Z 05| 7195 | 66.85 7.82 28.54 2191 58.5 68.64 2492 4744 47777 3832 43.62 65.04 | 43.28 6.01

Table 21: Intial Training Ablations- Gaussian regularization on ImageNette. Accuracy of initially trained models
on ImageNette trained using different attacks as indicated in “Train Attack” column measured across different attacks.
Gaussian regularization (with o = 0.2) is also considered during initial training, with regularization strength A. Results
where regularization improves over no regularization (A = 0) by at least 1% accuracy are highlighted in green, while
results where regularization incurs at least a 1% drop in accuracy are highlighted in red. Best performing with respect to

regularization strength are bolded.
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Figure 6: Change in robust accuracy after fine-tuning with models initally trained with adversarial /> regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Figure 7: Change in robust accuracy after fine-tuning with models initally trained with variation regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Figure 8: Change in robust accuracy after fine-tuning with models initally trained with uniform regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Figure 9: Change in robust accuracy after fine-tuning with models initally trained with Gaussian regularization
different initial attack and new attack pairs. We fine-tune models on Imagenette across 144 pairs of initial attack and new
attack. The initial attack corresponds to the row of each grid and new attack corresponds to each column. Values represent
differences between the accuracy measured on a model fine-tuned with and without regularization in initial training. Gains
in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are highlighted in red.
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Random noise regularization in fine-tuning hurts overall robustness. Unlike adversarial ¢, regularization which can
improve performance when used in both initial training and regularization, we find that uniform and Gaussian regularization
generally hurts average, union, initial attack, and new attack accuracies when incorporated in fine-tuning. This suggests that
while random noise based regularization may help with initial training (and unforeseen robustness), they do not necessarily
help with continual adaptive robustness through fine-tuning.
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Figure 10: Change in robust accuracy after fine-tuning with adversarial /> regularization. We fine-tune models on
Imagenette across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new
attack corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with
and without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1%

are highlighted in red.
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Figure 11: Change in robust accuracy after fine-tuning with variation regularization. We fine-tune models on Imagenette
across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new attack
corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with and
without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are
highlighted in red.
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Figure 12: Change in robust accuracy after fine-tuning with uniform regularization. We fine-tune models on Imagenette
across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new attack
corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with and
without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1% are
highlighted in red.
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Figure 13: Change in robust accuracy after fine-tuning with Gaussian regularization. We fine-tune models on
Imagenette across 144 pairs of initial attack and new attack. The initial attack corresponds to the row of each grid and new
attack corresponds to each column. Values represent differences between the accuracy measured on a model fine-tuned with
and without regularization. Gains in accuracy of at least 1% are highlighted in green, while drops in accuracy of at least 1%
are highlighted in red.
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