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ABSTRACT

Errors in labels obtained via human annotation adversely affect a trained model’s
performance. Existing approaches propose ways to mitigate the effect of label
error on a model’s downstream accuracy, yet little is known about its impact on
amodel’s group-based disparity metrics'. Here we study the effect of label error
on a model’s group-based disparity metrics like group calibration. We empirically
characterize how varying levels of label error, in both training and test data, affect
these disparity metrics. We find that group calibration and other metrics are
sensitive to train-time and test-time label error—particularly for minority groups.
For the same level of label error, the percentage change in group calibration error
for the minority group is on average 1.5 times larger than the change for the
majority group. Towards mitigating the impact of training-time label error, we
present an approach to estimate how changing a single training input’s label affects
a model’s group disparity metric on a test set. We empirically assess the proposed
approach on a variety of datasets and find a 10-40% improvement, compared
to alternative approaches, in identifying training inputs that improve a model’s
disparity metric. The proposed approach can help surface training inputs that may
need to be corrected for improving a model’s group-based disparity metrics.

1 INTRODUCTION

Label error (noise) — mistakes associated with the label assigned to a data point — is a pervasive
problem in machine learning (Northcutt et al., 2021). For example, thirty percent of a random one
thousand samples from the Google Emotions dataset (Demszky et al., 2020) had label errors (Chen,
2022). Similarly, an analysis of the MS COCO dataset found that up to thirty seven percent (273,834
errors) of all annotations are erroneous (Murdoch, 2022). Yet, little is known about the effect of
label error on a model’s group-based disparity metrics like equal odds (Hardt et al., 2016), group
calibration (Pleiss et al., 2017), and false positive rate (Barocas et al., 2019).

It is now common practice to conduct ‘fairness’ audits (see: (Buolamwini and Gebru, 2018; Raji and
Buolamwini, 2019; Bakalar et al., 2021)) of a model’s predictions to identify data subgroups where
the model underperforms. Label error in the test data used to conduct a fairness audit renders the
results unreliable. Similarly, label error in the training data, especially if the error is systematically
more prevalent in certain groups, can lead to models that associate erroneous labels to such groups.
The reliability of a fairness audit rests on the assumption that labels are accurate; yet, the sensi-
tivity of a model’s disparity metrics to label error is still poorly understood. Towards such end, we ask:

what is the effect of label error on a model’s disparity metric?
We address the high-level question in a two-pronged manner via the following questions:
1. Research Question 1: What is the sensitivity of a model’s disparity metric to label errors in
training and test data? Does the effect of label error vary based on group size?

2. Research Question 2: How can a practitioner identify training points whose labels have the
most influence on a model’s group disparity metric?

! Group-based disparity metrics like subgroup calibration, false positive rate, false negative rate, equalized
odds, and equal opportunity are more often known, colloquially, as fairness metrics in the literature. We use the
term group-based disparity metrics in this work.
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Figure 1: A schematic of the test and train-time empirical sensitivity tests. Here we show the
model training and fairness audit pipeline. Our proposed sensitivity tests capture the effect of label
error, in both stages, on the disparity metric. In the Test-time sensitivity test, we flip the label of a
portion of the test data and then compare the corresponding disparity metric (group calibration for
example) for the flipped dataset to the metrics for a standard model where the test labels were not
flipped. In the Train-time sensitivity test, we flip the labels of a portion of the training set, and then
measure the change in disparity metric to a standard model.

In addressing these questions, we make two broad contributions: First, we conduct comprehensive
empirical sensitivity tests across several datasets and model classes to quantify the impact of labels
errors—for test and training data—on a series of disparity metrics. Second, we propose a method,
based on the influence function, to identify training points that have a high effect on a model’s test
disparity metric. We now discuss these contributions.

Empirical Sensitivity Tests. We assess the sensitivity of model disparity metrics to label errors with
a label flipping experiment. First, we iteratively flip the labels of samples in the test set, for a fixed
model, and then measure the corresponding change in the model disparity metric compared to an
unflipped test set. Second, we fix the test set for the fairness audit but flip the labels of a proportion of
the training samples. We then measure the change in the model disparity metrics for a model trained
on the data with flipped labels. We perform these tests across a datasets and model combinations.

Training Point Influence on Disparity Metric. We propose an approach, based on a modification
to the influence of a training example on a test example’s loss, to identify training points whose
labels have undue effects on any disparity metric of interest on the test set. We empirically assess the
proposed approach on a variety of datasets and find a 10-40% improvement, compared to alternative
approaches that focus solely on model’s loss, in identifying training inputs that improve a model’s
disparity metric.

2  SETUP & BACKGROUND

In this section, we discuss notation, and set the stage for our contributions by discussing the disparity
metrics that we focus on. We also provide an overview of the datasets and models used in the
experimental portions of the paper.

Overview of Notation. We consider prediction problems, i.e, settings where the task is to learn
amapping, 0 : X x A — Y, where X € R? is the feature space, ) € {0, 1} is the output space,
and A is a group identifier that partitions the population into disjoint sets e.g. race, gender. We can
represent the tuple (x;, a;, y;) as z;. Consequently, the n training points can be written as: {z; } ;.
Throughout this work, we will only consider learning via empirical risk minimization (ERM), which
corresponds to: 0 := arg mingcq % > €(2i,0). Similar to Koh and Liang (2017), we will assume
that the ERM objective is twice-differentiable and strictly convex in the parameters. We focus on
binary classification tasks, however, our analysis can be easily generalized.

Disparity Metrics. We define a group disparity metric to be a function, GD, that gives a performance
score given a model’s probabilistic predictions (6 outputs the probability of belonging to the positive
class) and ‘ground-truth’ labels. We consider the following metrics:



Dataset Classes n d Group Testacc. Source

CivilComments 2 1,820,000 768 Sex 97.4% Koh and Liang (2017)
ACSIncome 2 195,665 10  Sex, Race 74.5% Dingetal. (2021)
ACSEmployment 2 378,817 16 Sex, Race 73.2% Dingetal. (2021)
ACSPublic Coverage 2 138, 554 19  Sex, Race 72.9% Dingetal. (2021)

Credit Dataset 2 405, 032 6 Sex 67.4% De Montjoye et al. (2015)

Table 1: Dataset characteristics and the test accuracies that logistic regression achieves (with regular-
ization )\ selected by cross-validation). n is the training set size and d is the number of features.

1. Calibration: defined as P (§ = y|p = p),Vp € [0, 1]. In this work, we measure calibra-
tion with two different metrics: 1) Expected Calibration Error (ECE) (Naeini et al., 2015;
Pleiss et al., 2017), and 2) the Brier Score (Rufibach, 2010) (BS). If we group predic-
tions into M interval bins (each size 1/M) and calculate the accuracy of each bin. Let
B,, be the set of indices of samples whose prediction confidence falls into the interval

I, = [2=L ] Here the accuracy of B, is then: acc(By,) = \Bilml Yien, LU =
yi), where y; is the true label for sample x; derived from a model 6 with prediction
9; = O(x;). Similarly, we can define the average confidence within a bin B,, as:

conf(B,) = ﬁ Zie . Pi. ECE approximates a notion of miscalibration, so it is defined

as: GDece = Z%:l % conf(B,) — acc(Byy, )|, while the Brier Score is the mean squared

error between the labels and a models’ predicted probabilities: GDps = Y., (9 — yi)*
We report results for the ECE in the main text, and defer Brier Score results to the appendix.

2. (Generalized) False Positive Rate (FPR): is GDy,,, (8) = E[(x;) | y; = 0] (see Guo et al.
(2017)),

3. (Generalized) False Negative Rate (FNR): is GDy,(0) = E[(1 — 6(x;)) | y; = 1],
4. Error Rate (ER): is the GD,.(0) = 1 — acc(9).

We consider these metrics separately for each group, a;, in the data as opposed to relative differences.
We do this because we are primarily interested in the behavior of these metrics as more label error is
induced either in the test or training data.

Datasets. We consider datasets across different modalities: 4 tabular, and a text dataset. A description
of these datasets along with test accuracy is provided in Table 2. Each dataset contains annotations
with a group label for both training and test data, so we are able to manipulate these labels for our
empirical sensitivity tests. For the purposes of this work, we assume that the provided labels are
the ground-truth—a strong assumption that nevertheless does not impact the interpretation of our
findings.

Model. We consider three kinds of model classes in this work: 1) a logistic regression model, 2) a
Gradient-boosted Tree (GBT) classifier for the tabular datasets, and 3) a ResNet-18 model. These
three classes of models allow us to also test whether the sensitivity of a model’s disparity metric
depends on the amount of overparametrization and the model class (i.e. Logistic regression vs Neural
Networks). We refer readers to the Appendix for details of model training and hyper-parameters.

3 EMPIRICAL ASSESSMENT OF LABEL SENSITIVITY

In this section, we perform empirical sensitivity tests to quantify the impact of label error on test
group disparity metrics. We report here results on a logistic regression model for subgroup calibration
error (ECE) since these results demonstrate the critical empirical insights we observed from the tests.
In addition, we provide a high-level summary of results on other model classes.

We conduct tests on data from two different stages of the ML pipeline: 1) Test-time (test dataset)
and 2) Training-time (training data). We use as our primary experimental tool: label flipping, i.e.,
we flip the labels of a percentage of the samples, uniformly at random in either the test or training
set, and then measure the concomitant change in the model disparity metric. We assume that each
dataset’s labels are the ground truth and that flipping the label results in label error for the samples
whose labels have been overturned. Recent literature has termed this setting synthetic noise, i.e., the



label flipping simulates noise that might not be representative of real-world noise in labels (Arpit
etal., 2017; Zhang et al., 2021; Jiang et al., 2020).

3.1 SENSITIVITY TO TEST-TIME LABEL ERROR

Overview & Experimental Setup. The goal of the test-time empirical test is to measure the impact
of label error on the group calibration error of a fixed model. Consider the setting where a model
has been trained, and a fairness assessment is to be conducted on the model. What impact does label
error, in the test set used to conduct the audit, have on the calibration error on the test data? The
test-time empirical tests answer this question. Given a fixed model, we iteratively flip a percentage of
the labels, uniformly at random, ranging from zero to 30 percent in the test data. We then estimate the
model’s calibration using the modified dataset. Critically, we keep the model fixed while performing
these tests across each dataset.
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Figure 2: Test-time Label Flipping Results across 6 datasets. For each dataset, we plot the percent
change in calibration error versus the corresponding percentage change in label error. Here, we plot
the minority (smallest) group as well as the majority (largest) group. These two groups represent two
ends of the spectrum for the impact of label error. We observe that across all datasets, the minority
group incurs higher percentage change in group calibration compared to the majority group.

Results. In Figure 2, we report results of the label flipping experiments across 6 tasks. On the
horizontal axis, we have the percentage of labels flipped in the test dataset, while on the vertical
axis, we have the percentage change in the model’s calibration. For each dataset, we compute model
calibration for two demographic groups in the dataset, the majority and the minority—in size—groups.
We do this since these two groups constitute the two ends of the spectrum in the dataset. As shown,
we observe a more distinctive effect for the minority group across all datasets. This is to be expected
since flipping even a small number samples in the minority group can have a dramatic effect on test
and training accuracy within this group. For both groups, we observe a super-linear effect on the
calibration error. For example, for the Income prediction task on the Adult dataset, a 10 percent
label error induces a 20 percent change in the model’s test calibration error. These results suggest
that test-time label error has more pronounced effects for minority groups. Further, these results
imply that - for calibration error - one can expect a change at least as large as the percentage of label
error present in the test dataset. Similarly, we observe for other disparity metrics across all model
classes that increases in percentage of labels flipped disproportionately affects the minority group
(See Appendix E).

3.2 SENSITIVITY TO TRAINING LABEL ERROR

Overview & Experimental Setup. The goal of the training-time empirical tests is to measure the
impact of label error on a trained model. More specifically, given a training set in which a fraction of
the samples’ labels have been flipped, what effect does the label error have on the calibration error
compared to a model trained on data without label error? We simulate this setting by creating multiple



copies of each of the datasets where a percentage of the training labels have been flipped uniformly
at random. We then assess the model calibration of these different model using the same fixed test
dataset. Under similar experimental training conditions for these models, we are then able to quantify
the effect of training label error on a model’s test calibration error. We conduct this analysis across
all dataset-model task pairs.
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Figure 3: Training-time Label Flipping Results across 6 datasets. For each dataset, we plot the
percent change in calibration error versus the corresponding percentage change in label error for the
training set. Here, we plot the minority (smallest) group as well as the majority (largest) groups by
size. Similar to the test-time setting, we observe that across all datasets, the minority group incurs
higher percentage change in group calibration compared to the majority group. However, we observe
a larger magnitude change for the minority groups.

Results & Implications. We show the results of the training-time experiments in Figure 3. Similar
to the test-time experiments, we find minority groups are more sensitive to label error than larger
groups. Specifically, we find that even a 5 percent label error can induce significant changes in the
disparity metrics, of a model trained on such data, for these groups.

A conjecture for the higher sensitivity to extreme training-time error is that a model trained on
significant label error might have a more difficult time learning patterns in the minority class where
there are not enough samples to begin with. Consequently, the generalization performance of this
model worsens for inputs that belong to the minority group. Alternatively, in the majority group, the
proportion of corrupted labels due to label error is smaller. This might mean that uniform flipping
does not affect the proportion of true labels compared to the minority group. Even though the majority
group exhibits label error, there still exists enough samples with true labels such that a model can
learn the underlying signal for the majority class.

A second important finding is that overparameterization seems to confer more resilience to training
label error. We find that for the same levels of training label error, an overparametrized model is less
sensitive to such change compared to a model with a smaller number of parameters. Recent work
suggests that models that learn functions that are more aligned with the underlying target function of
the data generation process are more resilient to training label error (Li et al., 2021). It might be that
compared to linear and tree-based models, an overparametrized deep net is more capable of learning
an aligned function.

4 INFLUENCE OF TRAINING LABEL ON TEST DISPARITY METRIC

In this section, we present an approach for estimating the ‘influence’ of perturbing a training point’s
label on a disparity metric of interest. The approach is based on a modification to the influence
functions method of Koh and Liang (2017). First, we discuss the results of Koh and Liang (2017), and
then present extensions that we derive in this work. We consider two primary effects: 1) up-weighting
a training point, and 2) perturbing the training label.



Upweighting a training point. Let HA,Zi be the ERM solution when a model is trained on all data
points, {z; ;":1, except z;. The influence, Z,;, params, Of datapoint, 2;, on the model parameters is

then defined as the change: é,zi — 6. This measure indicates how much the parameters change when
the model is ‘refit’ on all training data points except z;. Koh and Liang (2017) give a closed-form
estimate of this quantity as:

dé.. ., _ 5
Tupparams & =2 = —H;'Vol(z,6), (1)
e=0

where H is the hessian, i.c., H; & LS V2/(z;, 6).

n

The loss on a test example, £(z¢, ), is a function of the model parameters, so using the chain-rule,

we can estimate the influence, Z;, 10ss(2i, 2¢), of a training point, z;, on £(z;, 6) as:

et dl(2¢,0c, 2, . 3 .
Iup,loss(zia Zt) d:f % = 7v9€(zt7 Q)THG” IVQK(ZZ', 9) )
e=0

Perturbing a training point’s label. A second notion of influence that Koh and Liang (2017) study
is how perturbing a training point leads to changes in the model parameters. Specifically, given a
training input, z;, that is a tuple (z;, y;), how would the perturbation, z; — z; 5, which is defined as
(z4,9:) = (x4,y; + 0), change the model’s predictions? Koh and Liang (2017) give a closed-form
estimate of this quantity as:

Ipert,loss,y(zj7 Zt) ~ —Vef(zt, éZj‘g,fzj)THéilvyva‘g(zp é) (3)

Adapting influence functions to group disparity metrics. We now propose modifications that
allow us to compute the influence of a training point on a test group disparity metric. We note that our
discussion here is brief, so we refer readers to Section D of the appendix for a careful walk through.

Let S; be a set of test examples. We can then denote GD(S;, 6) as the group disparity metric of
interest, e.g., the estimated ECE for the set S; given parameter setting 6.

Influence of upweighting a training point on a test group disparity metric. A group disparity
metric on the test set is a function of the model parameters; consequently, we can apply the chain rule
t0 Zyp, params (from Equation 1) to estimate the influence, Z,p, gisparity, Of up-weighting a training
point on the disparity metric as follows:

def ng(Szh ée z,-) MNT dée 25
Tup.dispari ; = — 7 i = — D » Zi
up7d15par1ty(zza St) de o Vgg (St, 9) de EZO,
= —VoGD(S;,0) " H; 'Vol(z,0). (4)

We now have a closed-form expression for a training point’s influence on a test group disparity metric.

Influence of perturbing a training point’s label on a test group disparity metric. We now consider
the influence of a training label perturbation on a group disparity metric of interest. To do this, we
simply consider the group disparity metric function as the quantity of interest instead of the test loss.
Consequently, the closed-form expression for the influence of a modification to the training label on
disparity for a given test set is:

Ipert,disparity,y(zj7 Sf) ~ _VOQD(Stv é)THé_lvyvgé(Zﬁ é) ®)

With Equations 12 and 13, we have the key quantities of interest that allows us to rank training points,
in terms of influence, on the test group disparity metric. We can then use these quantities to prioritize
samples that should be more carefully inspected.



S5 IDENTIFYING AND CORRECTING TRAINING LABEL ERROR

In this section, we empirically assess the modified influence expressions for calibration across these
datasets for prioritizing mislabelled samples. We find a 10-40 percent improvement, compared to
alternative approaches that estimate influence on test loss (Kong et al., 2021) and other uncertainty
estimation based approaches. In addition, we propose an approach to automatically correct the labels
identified by our proposed approach.

5.1 IDENTIFYING LABEL ERROR

Overview & Experimental Question. We are interested in surfacing training points whose change
in label will induce a concomitant change in a test disparity metric like group calibration. Specifically,
we ask: When the training points are ranked by influence on test calibration, are the most highly
influential training points most likely to have the wrong labels? We conduct our experiments to
directly measure a method’s ability to answer this question.

Experimental Setup. For each dataset, we randomly flip the labels of 10 percent of the training
samples. We then train our standard logistic regression classifier on this modified dataset. In this task,
we have direct access to the ground-truth and knowledge of the exact samples whose labels were
flipped. This allows us to directly compare the performance of our proposed methods to each of the
baselines on this task. We then rank training points using a number of baseline approaches as well
as the modified influence approaches. For the top 50 examples, we consider what fraction of these
examples had flipped labels in the training set.

Approaches & Baselines. We consider the following methods:

 IF-Calib: The closed-form approximation to the influence of a training point on the test
calibration;

 IF-Calib-Label: The closed-form approximation to the influence of a training point’s label
on the test calibration;

* Loss: A baseline method which is the training loss evaluated at each data point in the
training set. The intuition is that, presumably, more difficult training samples will have
higher training loss;

* Uncertainty Estimation Based Approaches: We also consider methods two uncertainty

estimation algorithms: 1) an approach htat estimate a sample’s uncertainty based on a K-fold
validation score, and 2) a logit-based approach (Wu and Klabjan, 2021).
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Figure 4: Empirical Results for Training Point Ranking Across 6 datasets. For the top 50 most
influential examples, we show the proportion of samples whose labels were flipped in the training
data. Confidence intervals is computed for N=>5 different models.

Results: Prioritizing Samples. In Figure 4, we show the performance of the two approximations
that we consider in this work as well as two baselines. We plot the fraction of inputs, out of the



top ranked 50 ranked training points, whose labels were flipped in the training set. The higher this
proportion, then the more effective an approach is in identifying the samples that likely have wrong
labels. In practice, the goal is to surface these training samples and have a domain expert inspect
them. If a larger proportion of the items to be inspected are mislabeled, then a higher proportion of
training set mistakes, i.e. label error, can be fixed. Across the different datasets, we find a 10-40
percent improvement, compared to baseline approaches, in identifying critical training data points
whose labels need to be reexamined.

We find the loss baseline to be ineffective for ranking in our experiments. A possible reason is that
modern machine learning models can typically be trained to ‘memorize’ the training data; resulting
in settings where a model has low loss even on outliers or mislabeled examples. In such a case,
ranking by training loss for a sample is an ineffective ranking strategy. We defer the results of the
uncertainty-based baselines to Appendix (Section F). We find that these baselines also underperform
our proposed approaches. For example, the 5-fold cross validation setting underperforms the standard
influence functions approach by 50 percent.

5.2 CORRECTING LABEL ERROR

We take label error identification one step further to automatically relabelling inputs that have
identified as critical. We restrict our focus to binary classification where the label set is {0, 1}, and
the corresponding relabelling function is simply 1 — y;, where y; is the predicted label.

Setup & Experiment: We consider the logistic regression model across all tasks for a setting with 20
percent training label error. We consider ECE (calibration) as the disparity function of interest. We
then rank the top 20 percent of training points by label-disparity influence, our proposed approach.
For these points, we apply the relabelling function, and then fine-tune the model for an additional
epoch with the modified labels.

Results: First, we observe an average improvement of 8.7 percent improvement in group calibration
across all groups, with larger (12.5 percent) improvement coming from the smallest group. As
expected, we also observe an approximately 7 percent decrease in the average loss for the overall
training set. These results point to increasing promise of automatic relabeling.

6 RELATED WORK

We discuss directly related work here, and defer a longer discussion to Section A of the Appendix.

Impact of Label Error/Noise on Model Accuracy. Learning under label error falls under the
category more commonly known as learning under noise Frénay and Verleysen (2013); Natarajan
et al. (2013); Bootkrajang and Kaban (2012). Noise in learning can come from different components
of the underlying data generation process, which include the input features and the labels. In this
work, we focus exclusively on categorization mistakes associated with the label in both the test
and training data. Previous work focused primarily on the effect of label error in the training data;
however, we advance this line of work to investigate the effect of label error in the test data used to
conduct a fairness audit on the reliability of the audit. Model resilience to training label error has been
studied for both synthetic (Arpit et al., 2017; Zhang et al., 2021; Rolnick et al., 2017) and real-world
noise settings (Jiang et al., 2020). Along these lines, a major line of inquiry is the development of
mitigation strategies; these seek to produce accurate models and learning algorithms that are resilient
to training label error. These strategies can be in the form of model regularization (Srivastava et al.,
2014; Zhang et al., 2017), bootstrap (Reed et al., 2014), knowledge distillation (Jiang et al., 2020),
instance weighting (Ren et al., 2018; Jiang and Nachum, 2020), robust loss functions (Ma et al.,
2020; Ghosh et al., 2017), or trusted data (Hendrycks et al., 2018). In contrast to this line of work,
instead of making the model resilient to label error, we take the approach of finding the ‘problematic’
training points, whose careful relabeling will most likely improve a model’s disparity metric.

Impact of Label Error on Model ‘Fairness’. This work contributes to the burgeoning area that
studies the impact of label error on a model’s ‘fairness’ (termed ‘group-based disparity’ in this paper)
metrics. Fogliato et al. (2020) studied a setting in which the labels used for model training are a noisy
proxy for the true label of interest, e.g., predicting rearrest as a proxy for rearrest. Wang et al. (2021)
introduce a method to account for group-dependent label noise by using new surrogate loss functions



that weight group-based disparity metrics. Similarly, Konstantinov and Lampert (2021) study the
effect of adversarial data corruptions on fair learning in a PAC model and prove impossibility theorems
under the adversarial model. Jiang and Nachum (2020) propose a re-weighting scheme that is able to
correct for label noise. They then show that training a classifier on the re-weighted objective recovers
models with group-disparity properties similar to a model trained on the unobserved noiseless labels.

Influence Functions & Their Uses. Influence functions originate from robust statistics where it is
used as a tool to identify outliers Cook and Weisberg (1982); Cook (1986); Hampel (1974). Koh and
Liang (2017) introduced influence functions for modern machine learning models, and used them
for various model debugging tasks. Most similar to our work, Kong et al. (2021) propose RDIA, a
relabelling scheme based on the influence function that is able to provably correct for label error in
the training data. RDIA identifies training samples whose change in label has a high influence on the
test loss for a validation set; however, we focus on identifying training samples whose change in label
has a high influence on a group-disparity metric on a test/audit set. We compare to their approach
in Section 5. In recent work, De-Arteaga et al. (2021) study expert consistency in data labeling and
use influence functions to estimate the impact of labelers on a model’s predictions. Along similar
direction, Brunet et al. (2019) adapt the influence function approach to measure how removing a
small part of a training corpus, in a word embedding task, affects test bias as measured by the word
embedding association test Caliskan et al. (2017). Feldman and Zhang (2020) use influence functions
to estimate how likely a training point is to have been memorized by a model. More generally,
influence functions are gaining widespread use as a tool for debugging model predictions Barshan
et al. (2020); Han et al. (2020); Yeh et al. (2018); Pruthi et al. (2020).

7 CONCLUSION

In this work, we study the effect of label error, both in the training and test set, on a model’s disparity
metric. Fairness audits are typically used to help surface disparate performance across groups in
the data. However, if either the test data used to perform a fairness assessment or the training data
used to fit the model contains label error, then it is unclear whether the conclusions of such a fairness
assessment are reliable. Given the widespread presence of label error in the ML labeling pipeline,
understanding the downstream effects of label error on a model’s disparity metric is important. In
this paper, we sought to address two key questions: 1) What is the impact of label error on a model’s
group disparity metric, especially for smaller groups in the data; and 2) How can a practitioner
identify training samples whose labels would also lead to a significant change in the test disparity
metric of interest?

To address the first question, we conducted empirical sensitivity tests. First, we flip the labels in
the test set, to simulate label error, then measure the corresponding change to the disparity metric.
Second, we fix a test set, but instead iteratively simulate varying levels of label error in the training
set. We then measure the change in disparity metric, e.g., group calibration error for models trained
on these ‘contaminated’ datasets compared to a model derived from data without label error.

We find that disparity metrics are, indeed, sensitive to test and training time label error. In addition,
for the same level of label error, the percentage change in group calibration error for the minority
group is on average 1.5 times larger than the change for the majority group. A possible explanation
for the training-time results is that label error affects the ability of the model to easily learn patterns
for the minority group even at lower fractions of label error in the training data.

Second, we present an approach for estimating the ‘influence’ of perturbing a training point’s label
on a disparity metric of interest. We empirically assess the proposed approach on a variety of datasets
and find a 10-40% improvement, compared to alternative approaches, in identifying training inputs
that improve a model’s disparity metric.

Our findings come with certain limitations. In this work, we focused on the influence of label error on
disparity metrics. However, other components of the ML pipeline can also impact downstream model
performance. The proposed empirical tests simulate the impact of label error; however, it might be
the case that real-world label error is less pernicious to model learning dynamics than the synthetic
flipping results suggest.

Ultimately, we see our work as helping to provide insight and as an additional tool for practitioners
seeking to address the challenge of label error particularly in relation to a disparity metric of interest.
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A  ADDITIONAL RELATED WORK

‘We discuss here additional literature.

Low Performance Subgroup Identification We use influence functions to identify training points
that have the most effect on the model’s disparity metric; however, there are other approaches for
surfacing training points that need to be prioritized. For example, Kim et al. (2019) propose an
algorithm to identify groups in the data where a model has high test errors, and to ‘boost’ the model
performance for these groups. Similarly, Creager et al. (2021) propose a two-stage scheme to identify
critical subgroups in the data when demographic labels are not known ahead of time. Our approach
differs from the aforementioned since we focus principally on the effect to the model’s disparity
metric instead of the test loss.

Label Flipping. We use labeling flipping as a primary tool in our empirical tests to measure the
sensitivity of a model’s disparity metrics to label error. Label flipping has also previously been used
for alternative purposes Arpit et al. (2017); Zhang et al. (2021). In now seminal work, Zhang et al.
(2021) used label flipping and shuffling to show that deep neural networks easily memorize data with
random labels. More generally, label flipping can also constitute an ‘adversarial attack” against an ML
model, for which there are increasingly new methods to help defend against such attacks Rosenfeld
et al. (2020).

Explainability Increasingly, ‘explanations’ derived from a trained model can point to the reason
why an input has been misclassified. Ultimately, one holy grail use-case for explanations has been
help identify and suggest potential fixes for model performance disparities. Towards this end, Pradhan
et al. (2021) propose an approach that intervenes on the training data and measures the changes to
downstream performance on the basis of these changes.

B ADDITIONAL DISCUSSION OF INFLUENCE FUNCTIONS

For completeness, we recap a non-rigorous derivation of the influence of a training point on the
parameters of a model following Koh and Liang (2017). We first recall the notation and setup from
the paper.

Overview of Notation We will consider prediction problems, i.e, settings where the task to to learn a
mapping, h, from an input space X € R to an output space ) € R*. We follow the notation of Koh
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and Liang (2017) in this work, so we consider the training points to be: z1, ..., z,, where each z; is a
tuple (z;,y;) € X x Y. Given a function family, ©, the learning task to learn a particular parameter
setting 6 € ©. Throughout this work, we will only consider learning via empirical risk minimization

(ERM), which corresponds to: 6 := argmingcg £ Y7 £(2;,0). Similar to Koh and Liang (2017),
we will assume that the ERM solution is twice-differentiable and strictly convex in the parameters.

Upweighting a training point Let é,zi be the ERM solution when a model is trained on all data
points except z;. The influence, Zyp, params, of datapoint, z;, is then defined as the change: 0_., — 6.

We can define the empirical risk as:

n

Since we assumed that the ERM solution is twice-differentiable and strictly convex in the parameters,
we can specify the hessian as:

def 1
Hy = — > Vi(z:,0) = V?R(0)
i=1

To start, let:

Oc, », = argmin R(0) + €l(z;,0).
0cO

Then we can define the parameter change to be: A, = éQ 2 — 6. Since 6 does not depend on €, we
have that: ~
dfe, .,  dAc

de de

‘We know that HAE, »; 1s a solution, i.e., minimizer, so we will form the first-order optimality conditions
and form a Taylor expansion of that expression.

To do this we have that:

Vo(R(0) + €l(z;,0)) =0,
VR(0) + eVi(z;,0) = 0.
The Taylor expansion of the above expression is then:

[V(R(0) + eVL(2:,0)] + [VX(R(0) + eV3£(2;,0)A.] ~ 0.

Above, we only keep the first two terms of the Taylor Expansion.

We will now solve for A, in the above equation and then differentiate by € to obtain the final
expression.

Solving for A, results in:

A~ —[V2(R(0) + eV20(z,0)] L [V(R(0) + eVE(z,0)).

If we look at the expression for A, we find that V(R(é) is zero, since we know that § minimizes

the empirical risk R. In looking at the term [V2(R(0) + €V2((z;, 0)], we find that it is equivalent
to [Hy + €V2{(z;,0)]. We can further make the assumption that the contribution of the eV2/(z;,0)

term is small, so we have [Hj + eV?((z;,0)] ~ H;.
With the above assumptions and substitutions, we arrive at the new expression for A, which is now:
-1
Ac~ —H Vi(z;,0)e.
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Let’s differentiate the above expression by ¢, and we have that:

dif = —H; 'V{(z;,0).
Now recall that: R
dbe, ., dA.
Tde  de’
which means:
% = dcié = —H,'Vi(z,0).

As discussed in the main draft, Z,,, params 1S defined to be the influence of estimate for training point
Zi, SO :

qer e, 2
Iup,paraxms - d€ - _Hé VK(Z“ 9)
As we have seen, we obtain the influence of a training point on a the loss of a test simply by applying
the chain rule to the loss-derivative quantity of interest. We will now extend this notion of influence.

Upweighting a training point Let 9721 be the ERM solution when a model is trained on all data

points except z;. The influence, Z,,, params, of datapoint, z;, is then defined as the change: 9_ ’ — 0.
This measure indicates how much the parameters change when the model is ‘refit’ on all tralnlng
data points except z;. One approach to estimate this quantity is to train two copies of the model: one
with all data points, and another on all data points except z; and then compare these two parameter
settings. Such approach is time and compute prohibitive especially if one is interested in computing
the influence of all training points—computing the influence of n training points will require refiting
the model n times. For model classes that require significant compute to estimate, such a procedure
is infeasible. To circumvent the retraining challenge, Koh and Liang (2017) give a closed-form
approximation to the influence quantity as:

def dae, z;

Iu arams —
b,p d€

= —H, 'Vgl(z;,0), (6)
where H is the hessian of the loss and defined as: H *f1 Zl ! V20(z;,0). Equation | gives a
closed-form approximation of the influence of a tralmng p01nt z; on the model parameters. Recall
that this quantity tells us how the model parameters change when the training point is upweighted by
a small amount (say €). Upweighting a training point by —% is equivalent to removing this training
point from the dataset.

Given a closed-form approximation to Z,,, params, W€ can estimate the influence of a training point on
functions of the parameters. For example, Koh and Liang (2017) show, using a chain-rule argument,
that the influence, Zyp 10ss (23, 2¢), of a training point, z;, on the test loss for a test example has the
following closed-form expression:

of dl(z 79A6 2
Iup,loss (Zi7 Zt) d:f %

e=0

- db, .,
= —Vol(z,0)" d’ez ,
e=0

= —Vol(z,0)TH Vgl(2;,0). (7)

As we have seen, we obtain the influence of a training point on a the loss of a test simply by applying
the chain rule to the loss-derivative quantity of interest. We will now extend this notion of influence.
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Perturbing a training point A second notion of influence that Koh and Liang (2017) study is how
perturbing a training point leads to changes in the model parameters. Specifically, given a training
input, z;, that is a tuple (z;, y;), then how would the perturbation, z; — z; s, which is defined as
(zi,yi) = (x; + 9, y;), change the model’s predictions? The key issue here is how an infinitesimal

change in the input example changes the model parameters and predictions. Let ée,zi‘ be the
ERM solution to the following minimization problem:

5375

1 n
arg min — Zé(zi, 0) + el(zj5,0) — €l(z;,0).
9€o P

As shown, éez P is the ERM solution obtained when an infinitesimal mass, ¢, is shifted from z;
ie. (z;,y;) to zjs, i.e. (x; + d,y;). Similarly, Koh and Liang (2017) show that the closed-form
approximation for such training point perturbation on the parameters is:

dbec.z; 5,—2,
Iup,paraIIIS(Zj76) — Iup,params(zj') = % )
e=0
~ —H; Vo Voll(z, )] ®)

With a closed-form expression for the influence of perturbing a training point, we can also obtain
similar forms for functions of the parameters. Consequently, to obtain the influence of perturbing
a training point on the model’s prediction (i.e. a model with parameters 9), we differentiate with
respect to &, and apply the chain rule to obtain:

def A
Ipcrt,loss(zja Zt) = vtsg(ztv 02]‘,51_?7‘)
§=0

~ =Vol(21,02, 5 2,) H; 'V, Vol(2),0). 9)

We now have closed-form expressions for estimating the influence of a training point and a modifica-
tion to this training point on the loss of a new test example respectively. Shortly, we will make simple
modifications to these equations to obtain the influence of the training point on the calibration for a
test point.

Perturbing a training point’s label We are also interested in how a modification to the training
label influences the parameters and the test loss. In this case, we are interested in how the perturbation,
(24,9:) = (x;,y;+0) changes the model’s predictions. An analogous calculation to that of Equation 8
results in:

Iup,params,y(zj,é) - Iup,params,y(zj) ~ *Hé_l[vyvee(zﬁ é)]5 (10)

In Equation 10, the inner gradient is taken with respect to the label, y, as opposed to the the input,
x, as was done in Equation 8. Consequently, the closed-form expression for the influence of a
modification to the training label on the loss of a new test example is:

Ipert,loss,y(zj7 Zt) ~ —V()K(Zt, ézj,g,—zjv)THé_lvyveg(zjv é) (11)

We now have all the closed-form expressions we need for estimating influence with respect to a
disparity metric of interest.

Adapting influence functions to group disparity metrics. We now propose modifications that
allow us to compute the influence of a training point on a test group disparity metric. Let .S; be a set

of test examples. We can then denote GD(S;, é) as the group disparity metric of interest, e.g., the
estimated ECE for the set .S; given parameter setting 6.
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Influence of upweighting a training point on a test group disparity metric. A group disparity
metric on the test set is a function of the model parameters; consequently, we can apply the chain rule
t0 Zyp, params (from Equation 1) to estimate the influence, Z,p, gisparity, Of up-weighting a training
point on the disparity metric as follows:

- dGD(S,, 0. -.) . db.. .,
Iu ispari 7 (g L s = — D 9 T8z
p,disp ty(Z ,St) dE o V(—)g (St7 ) de 6203
= —VoGD(S;,0) " H; 'Vol(2:,0). (12)

We now have a closed-form expression for a training point’s influence on a test group disparity metric.

Influence of perturbing a training point’s label on a test group disparity metric. We now consider
the influence of a training label perturbation on a group disparity metric of interest. To do this, we
simply consider the group disparity metric function as the quantity of interest instead of the test loss.
Consequently, the closed-form expression for the influence of a modification to the training label on
disparity for a given test set is:

Ipert,disparity,y(zja St) ~ —VegD(Su é)THé_lvyVQE(Z.ﬁ é) (13)

With Equations 12 and 13, we have the key quantities of interest that allows us to rank training points,
in terms of influence, on the test group disparity metric. We can then use these quantities to prioritize
samples that should be more carefully inspected.

C APPENDIX: DATASETS, MODELS, & EXPERIMENTAL DETAILS

We provide additional details about the datasets, models, and general experimental details. We follow
the discussion in the background section of the paper and provide additional details where necessary.
We plan to release opensource code that can be used to replicate all of or analyses.

C.1 DATASETS

‘We start with a discussion of the datasets used in this work.

Text Toxicity Classification we use a publicly available dataset from JIGSAW called the unintended
bias in toxicity classification dataset. The TC dataset contains a subset of comments from the ‘Civil
Comments’ platform that have been annotated by human raters for level of toxic severity. For example,
a comment can be tagged as ‘benign’, ‘obscene’, ‘threat’, ‘insult’, or ‘sexually explicit’ among several
categories. A given text is then indicated as ‘toxic’ or ‘not toxic’ on the basis of these tags. The task
here is a binary classification one, which is to categorize an input text as either toxic or not.

To obtain the toxicity labels, each comment was shown to up to 10 annotators. Annotators were asked
to:“Rate the toxicity of this comment": Very Toxic, Toxic, Hard to Say, and Not Toxic. These ratings
were then aggregated with the target value representing the fraction of annotations that annotations
fell within the former two categories.

To collect the identity labels, annotators were asked to indicate all identities that were mentioned
in the comment. An example question that was asked as part of this annotation effort was:*“What
genders are mentioned in the comment?": Male, Female, Transgender, Other Gender, and No gender
mentioned. We consider the Gender variable to be the sensitive attribute of interest.

For the dataset, we taken of the raw sentence text and convert them into embedding vectors using
the XLM-R models obtaining a vector, for each sentence, that is 768 dimensional. We then further
reduce the input dimension of this vector from 768 to 50 via a random projection. We make this
reduction to make computing the hessian of the loss function of the logistic regression model trained
on this data easy to compute. The 50-dimensional embedding is then used as input for our analyses.

Adult Census Dataset we use a series of tabular datasets more broadly called the ‘Adult Dataset’.
Specifically, we consider a recently revamped version of the dataset introduced by Ding et al. (2021),
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which is derived from the broader US Census. We consider the following tasks among the compilation
of datasets available in this database:

1. ACSIncome Prediction, where the task is to predict whether an individual has an income
above 50000 USD;

2. ACSIncome Prediction (25k) where the task is to predict whether an individual has an
income above 25000 USD;

3. ACSEmployment Prediction, where the task is to predict whether the adult individual is
employed; and

4. ACSPublic Coverage: where the task is to predict whether a low-income individual has
coverage from public health insurance.

The adult dataset comes annotated with race categories, which we take as the key demographic
variable in our analyses. We restrict our analyses to data from year 2018 for the state of California
across all datasets.

Credit Dataset : a dataset of financial transactions that consists of aggregate demographic and
credit information for customers of a large commercial bank. For each customer, information includes
their gender, marital status, educational level, employment status, income, age, and asset. Using this
information, the bank estimates probability of default on loan for each customer (a scalar between 0
and 1). We consider the prediction of the default probability as our primary focus. The dataset comes
with gender as a sensitive attribute for two categories: Male and Female. While this dataset is not
publicly available—it is hosted by the first author’s institution, it has been used as part of previous
work studying financial well-being classification.

C.2 MODELS

Models For the logistic regression model. All but one of the datasets we consider are tabular, and
mostly low-dimensional. We implement the logistic regression model in PyTorch. We tuned the batch
size using the validation set in the range [16, 32, 64, 128] across all datasets, but did not observe
substantial across differences, so we set default batch size to be: 128. We use the SGD plain optimizer
with a default learning rate of 0.001, we train the all models for 20 epochs. For the Resnet-18 and
GBT models, we keep the default parameter settings.

C.3 ADDITIONAL DIscUSSION ON ECE

The principal metric that we consider in this work is group calibration. We also consider other
group-based metrics such as true-positive and false negative rates. Let §; = h(z;) be the output of
a trained model of interest for input x;. The output can either be an output probability for a binary
prediction or a class prediction in a multi-class setting. We denote the ground-truth confidence or
probability of correctness as p;. We say h is calibrated if p; represents a true probability. As an
example, if given 100 predictions with confidence 0.95, then if h is calibrated, 95 of these predictions
should be correct given ground-truth labels.

Several recent works have also studied model calibration and found that modern neural network
models are uncalibrated. Guo et al. (2017) found that a simple temperature based Platt-scaling post
processing was the most effective technique. While the literature abound with disparity metrics,
several of which provide conflicting and often counter-intuitive insights simultaneously, group
calibration has emerged as a useful metric in practice Pleiss et al. (2017).

There are a variety of metrics for quantifying a model’s level of calibration. In this work, we measure
calibration with using the metric: Expected Calibration Error (ECE) Naeini et al. (2015). A calibration
metric summarizes the difference between the empirical distribution of a model’s prediction and the
ground-truth probabilities for a perfectly calibrated classifier. Here, perfect calibration is defined as:

P(y=vylp=p),vpc[0,1].
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In practice, the quantity above is impossible to compute, so previous literature made empirical
approximations. We follow binning the approach by Guo et al. (2017). To estimate the accuracy
empirically, we group predictions into M interval bins (each of size 1/M) and calculate the accuracy
of each bin. Across all experiments, we take M = 10—recent work Kiippers et al. (2020) found
this default setting effective across a range of datasets. We discuss this choice in more detail in the
appendix. Let B,, be the set of indices of samples whose prediction confidence falls into the interval
I, = [, 1], Here the accuracy of By, is then:

1 .
aCC(Bm) = |B | Z ]l(yl = yi)7
™l ieB,
where g;, and y; are the predicted and true class labels for data sample .

The ECE is the absolute difference in expectation between confidence and accuracy. We can define
the average confidence within a bin B,, as:

conf(By,) = 1 Z Di,
| B i€Bm
where p; is the confidence for sample . Consequently, a perfectly calibrated model will have accuracy
and confidence equal for all bins.

A notion of miscalibration is then which is the difference in expectation between confidence and
accuracy.

The ECE approximates the above notion of miscalibration, and is defined as:

M
Z %konf(Bm) —ace(Bp)|-
n
m=1

We use ECE as the primary metric of miscalibration in this work. As we will see, we will compare
ECE metrics across various data groups to help identify input groups where a model is miscalibrated.

Throughout all of our experiments, we use a logistic regression model. All but one of the datasets we
consider are tabular, and mostly low-dimensional, so we did not observe substantial accuracy gains
for more sophisticated models. In addition, as we will see, our proposed influence function approach
requires Hessian-vector products, which are more easily tractable for lower-dimensional models; in
the case of the logistic regression model, the hessian of the loss has a simple closed-form expression
that is easy to work with and compute. Lastly, a point we will return to in the discussion section is
that influence function approaches have been shown to be challenging to work with for modern deep
learning models.

For the TC dataset, we obtain embedding vectors, 768 dimensional, for all samples using the XLLM-
R, a state of the art multi-lingual model Conneau et al. (2019). We then further reduce the input
dimension of this vector from 768 to 50 via a random projection. We make this reduction to make
computing the hessian of the loss function of the logistic regression model trained on this data easy to
compute. The 50-dimensional embedding is then used as input for our analyses. Across all datasets,
we take 70 percent of each dataset for training and model validation, while we keep 30 percent as a
holdout set for computing the disparity metrics. For the 70 percent portion, we reserve 20 percent as
validation set. We refer to the Appendix for additional details.

Compute. All of the experiments in the paper we performed on a cluster with a single Tesla T4
GPU.

D INFLUENCE FUNCTION IMPLEMENTATION

We perform our influence function experiments only on the logistic regression model class. We
make this choice for scalability reasons—computing inverse hessian-vector products for the logistic
regression model is straightforward and does not incur approximation challenges.

We present additional results here:
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Approach Adult Credit Toxic

[F-Disparity 0.47 0.51 0.45
IF-Disparity-label ~ 0.71 0.69 0.82
IF-Norm 0.24 0.3 0.27
Loss 0.11 0.21 0.15

Table 2: Additional influence function metrics across datasets.
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Figure 5: Label Flipping Results for Logistic Regression Model Class. For each dataset, we plot
the percent change in disparity metric versus the corresponding percentage change in label error for
the test & training set. Here, we plot the minority (smallest) group as well as the majority (largest)

groups by size.
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Figure 6: Label Flipping Results for Resnet-18 Model Class. For each dataset, we plot the percent
change in disparity metric versus the corresponding percentage change in label error for the test &
training set. Here, we plot the minority (smallest) group as well as the majority (largest) groups by
size.
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Figure 7: Label Flipping Results for Gradient Boosted Regression Model Class. For each dataset,
we plot the percent change in disparity metric versus the corresponding percentage change in label
error for the test & training set. Here, we plot the minority (smallest) group as well as the majority
(largest) groups by size.
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Figure 8: Training Label Flipping Results for Resnet-18 Model Class.
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F BENCHMARKING UNCERTAINTY ESTIMATION

In this section, we benchmark two kinds of uncertainty estimation algorithms: 1) that estimates the
uncertainty in a sample’s label based on a k-fold (5, and 1) cross validation score and 2) a logit based
uncertainty estimation algorithm due to Wu and Klabjan (2021). We test these three variants under
the sample setup as described in the main draft in Figure 4.

H Method Adult (Income 25k)  Adult (Income)  Adult (Employment)  Adult PC  Credit Dataset H

Logit 0.15 (0.05) 0.17 (0.09) 0.24 (0.09) 027(0.01)  0.21(0.04)
CV(&=1) 0.21 (0.01) 0.23 (0.05) 0.25 (0.07) 031(0.11) _ 0.19 (0.)
CV (k=5 0.09 (0.06) 0.11 (0.09) 0.17 (0.1) 0.23 (0.14) _ 0.085 (0.02)
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