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A ADDITIONAL RESULTS

A.1 ABLATION STUDY FOR « AND f3

Figure[10|shows the results of PII when varying the values of «w and 3, which determine the intervals
from which the ColorShift constants are randomly drawn. Based on this and similar experiments,
we permanently fix these parameters to « = § = 1.0 for all other PII experiments, and find that
these values indeed transfer well to other models.

a=28.0

Figure 10: Effect of « and $ on the quality of the images generated by PII from a naturally-trained
ResNet-50 for the Tench class.

A.2 INSENSITIVITY TO TV REGULARIZATION

Figure [IT] shows additional results on the effect of ColorShift on the sensitivity to the weight of TV
regularization when inverting a robust model, complementing Figure[d As in the earlier figure, we
observe that certain values of A7y may produce noisy or blurred images when not using ColorShift,
whereas the ColorShift results are quite stable.
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Figure 11: Effect of TV with and without ColorShift. With ColorShift it is clear that there is no need
for hyper-parameter tuning for parameters such as TV. Images from the robust ResNet-50.
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A.3 EFFECT OF CENTERING

Here are more examples on the effect of centering. Figures[12] and [I3]show the effect of centering
on inverting a robust, and natural model, respectively.
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Figure 12: Effect of using centering vs not using centering for a robust ResNet-50.
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Figure 13: Effect of using centering vs not using centering for a naturally-trained ResNet-50.
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A.4 EFFECT OF ENSEMBLING SIZE

Figure[14] gives additional results to those in figure[5]for the effect of ensembling size on inversion.

-

Figure 14: Effect of ensemble size when inverting a robust ResNet-50. Even small values of e give
reasonably good results, but increasing e tends to give slight improvement.
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A.5 EFFECT OF USING OTHER AUGMENTATIONS

We used 4 random augmentations other than ColorShift to make comparisons. We used augmenta-
tions used in [Chen et al. (2020) with modifications. We use PyTorch (Paszke et al.| 2019) notion to
describe this part. We used RandomHorizontalFlip with 0.5 probability. We used RandomResized-
Crop with scale [0.7, 1.], and ratio [0.75, and 1.33]. With applied ColorJitter with 0.8 probability,
and brightness, contrast, saturation, and hue of (0.4, 0.4, 0.4, 0.1), respectively. We used Ran-
domGrayscale with 0.2 probability. For this experiment, we do apply data normalization before
feeding the input to the network. This is different than the regular experiment setting that we use for
the robust model that we use as explained in [D] The reason is that not having data normalization is
similar to using ColorShift (it changes the data distribution which the model expects as an input).

Cro

o sv 1
p Y T J'-.ﬂn.‘. ’\ 4

No Aug

Gray olor Jitter ColorShift

target=140

target=295

target=350

Figure 15: Effect of various alternative augmentations on inverting a robust ResNet-50 model.

No Aug Flip Crop Gray Color Jitter ColorShift

target=400 target=240

target=460

Figure 16: Effect of using different augmentations on inverting a naturally-trained ResNet-50.
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A.6 PII ON ADDITIONAL NETWORKS

7
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Figure 17: PII applied to various vision models for the Volcano class.
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Figure 17| shows the results of Plug-In Inversion on various CNN, ViT, and MLP networks, adding

to those shown in figure[/| See section |B|for model details.

B MODELS

In our experiments, we use publicly available pre-trained models from various sources. The follow-
ing tables list the models used from each source, along with references to where they are introduced

in the literature.

Alias Name Paper
AlexNet alexnet Krizhevsky et al. (2012)
DenseNet densenet121 Huang et al.|(2017)
GoogleNet googlenet Szegedy et al.|(2015)
MobileNet v2 mobilenet_v2 Sandler et al. (2018)

MobileNet-v2
MobileNet v3-1
MobileNet v3-s

MNasNet 0-5

MNasNet 1-0

ResNet 18
ResNet-18
ResNet 34
ResNet 50
ResNet 101
ResNet-101
ResNet 152
ResNext 50

ResNext 101

WResNet 50

WResNet 101

W-ResNet-101-2

ShuffleNet v2-0-5
ShuffleNet v2-1-0

ShuffleNet v2

SqueezeNet
VGG11-bn
VGG13-bn
VGG16-bn
VGG19-bn

mobilenet_v2
mobilenet_v3_large
mobilenet_v3_small
mnasnet0_5
mnasnet1_0
resnetl8
resnetl8
resnet34
resnet50
resnet101
resnet101
resnet152
resnext50_32x4d
resnext101_32x8d
wide_resnet50_2
wide_resnet101_2
wide_resnet101_2
shufflenet_v2_x0_5
shufflenet_v2_x1_0
shufflenet_v2_x1_0
squeezenetl 0
vggll_bn
vggl3_bn
vggl6_bn
vggl19_bn

Sandler et al. (2018)
Howard et al.|(2019)
Howard et al.|(2019)

Tan et al. (2019)

Tan et al. (2019)

He et al.[(2016)

He et al.| (2016)

He et al.|(2016)

He et al.|(2016)

He et al./ (2016)

He et al.|(2016)

He et al.|(2016)

Xie et al. (2017)

Xie et al. (2017)
Zagoruyko & Komodakis| (2016)
Zagoruyko & Komodakis| (2016)
Zagoruyko & Komodakis| (2016)

Ma et al. (2018))

Ma et al. (2018)

Ma et al. (2018)

Tandola et al.|(2016)
Simonyan & Zisserman (2014)
Simonyan & Zisserman|(2014)
Simonyan & Zisserman|(2014)
Simonyan & Zisserman (2014)

Figure 18: Pre-trained models from TorchVision: https://github.com/pytorch/vision.

Alias Name Paper
ViT B16 B_16_imagenetlk Dosovitskiy et al.|(2021))
ViT B32 B_32_imagenetlk Dosovitskiy et al.[(2021)
ViT B-32 B_32_imagenetlk Dosovitskiy et al.|(2021)
ViT L16 L_16_imagenetlk Dosovitskiy et al.|(2021)
ViT L32 L_32_imagenetlk Dosovitskiy et al.[(2021)

Figure 19: Pre-trained models used from : https://github.com/lukemelas/PyTorch-Pretrained-ViT.


https://github.com/pytorch/vision
https://github.com/lukemelas/PyTorch-Pretrained-ViT
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Alias

Name

DeiT pl16-224
DeiT P16 224
Deit-D p16-384
Deit Dist P16 384
deit p16-384
Deit-D-t p16-224
Deit-D-s p16-224
Deit-D p16-224

deit_base_patch16_224

deit_base_patch16_224
deit_base_distilled_patch16_384
deit_base_distilled_patch16_384

deit_base_patch16_384
deit_tiny_distilled_patch16_224
deit_small_distilled_patch16_224
deit_base_distilled_patch16_224

Paper
Touvron et al. (2021c)
Touvron et al. (2021c¢)
Touvron et al. (2021c¢)
Touvron et al. (2021c¢)
Touvron et al. (2021c¢)
Touvron et al. (2021c¢)
Touvron et al. (2021c¢)
Touvron et al. (2021c¢)

Figure 20: Pre-trained models from Touvron et al. (2021b) .

Alias Name Paper
CoaT-m coat_lite_mini Xu et al. (2021)
CoaT-s coat_lite_small Xu et al. (2021)
CoaT-t coat_lite_tiny Xu et al. (2021)
ConViT convit_base d’Ascoli et al. (2021)

ConViT-s convit_small d’Ascoli et al. (2021)
ConViT-t convit_tiny d’ Ascoli et al. (2021])
ConViT tiny convit_tiny d’ Ascoli et al. (2021)

Mixer 24-224
Mixer b16-224
Mixer b16 224
Mixer b16-224-mill
Mixer 116-224
PiT-D b-224
PiT Dist 224
PiT s-224
PiT-D s-224
PiT-D t-224
ResMLP 12-224
ResMLP-D 12-224
ResMLP 24-224
ResMLP-D 24-224
ResMLP 36-224
ResMLP-D 36-224
ResMLP 36 Dist
ResMLP b-24-224
ResMLP b-24-224-1k
ResMLP-D b-24-224
Swin w7-224
Swin 1-w7-224
Swin 1-w12-384
Swin w12-384
Swin P4 W12
Swin s-w7-224
Swin t-w7-224
Twin pcpvt-b
Twin PCPVT
Twins pcpvt-1
Twins pcpvt-s
Twins svt-b
Twins svt-1
Twins svt-s

mixer_24_224
mixer_b16_224
mixer_b16_224
mixer_-b16_224_miil
mixer_116_224
pit_b_distilled_224
pit_b_distilled_224
pit_s_224
pit_s_distilled_224
pit_ti_distilled_224
resmlp_12_224
resmlp_12_distilled_224
resmlp_24_224
resmlp_24 _distilled_224
resmlp_-36_224
resmlp_36_distilled_224
resmlp_36_distilled_224
resmlp_big_24_224
resmlp_big_24_224_in22ft1k
resmlp_big_24_distilled_224
swin_base_patch4_window7_224
swin_large_patch4_window7_224
swin_large_patch4_window12_384
swin_base_patch4_window12_384
swin_base_patch4_window12_384
swin_small_patch4_window7_224
swin_tiny_patch4_window7_224
twins_pcpvt_base
twins_pcpvt_base
twins_pcpvt_large
twins_pcpvt_small
twins_svt_base
twins_svt_large
twins_svt_small

Tolstikhin et al. (2021)
Tolstikhin et al. (2021)
Tolstikhin et al. (2021)
Tolstikhin et al. (2021)
Tolstikhin et al. (2021)
Heo et al.|(2021)
Heo et al.| (2021)
Heo et al.|(2021)
Heo et al.| (2021)
Heo et al.|(2021)
Touvron et al.[(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Touvron et al.|(2021a)
Liu et al.|(2021D)
Liu et al.|(2021Db)
Liu et al.|(2021D)
Liu et al.|(2021D)
Liu et al.|(2021Db)
Liu et al.|(2021D)
Liu et al.|(2021D)
Chu et al.|(2021)
Chu et al.|(2021)
Chu et al.| (2021)
Chu et al.|(2021)
Chu et al.|(2021)
Chu et al.| (2021))
Chu et al.|(2021)

Figure 21: Pre-trained models used from: (Wightman|(2019)
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Figure 22: Inversion of first 500 classes of ImageNet for the Robust Model.
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Figure 23: Inversion of second 500 classes of ImageNet for the Robust Model.
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D ADDITIONAL EXPERIMENTAL SETTING

D.1 ROBUST MODELS

We use a robust RestNet-50 (He et al., [2016) model free-trained (Shafahi et al., 2019) on the Ima-
geNet dataset (Deng et al., 2009). The setting we use for inverting robust models is very similar to
that of PII explained in section 4] except for some differences. Throughout the paper, we use center-
ing for robust models unless otherwise is mentioned (like when we are examining the effect of zoom
and centering themselves). We use 0.0005 to scale total variation in the loss function. Also, we do
not apply the data normalization layer before feeding the input to the network. In PII experiment
setting, we apply a random ColorShift at each optimization step to each element in the ensemble. In
the robust setting, we do not update the ColorShift variables i, and o for a fixed patch size, and we
update these variables for the ensemble when we use a new patch size. Although using ColorShift
would alleviate the need for using TV as discussed in section [3.2] and illustrated in figure 4] in the
robust, and natural setting, we keep TV in our robust setting to make this setting more similar to that
of previous inversion methods and to emphasize that it is a toy example for our ablation studies.
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E OPTIMIZATION ALGORITHM

Algorithm 1: Optimization procedure for Plug-In Inversion

Input: Model f, class y, final resolution R, ColorShift parameters «, 3, ‘ensemble’ size e,
randomly initialized x € Z3* /8% /8
fors=1,...,7do

Upsample x to resolution

(25?1) « (25+1)R

Pad x with random noise to resolution
for:=1,...,400 do
x' = Jitter(x)
forn=1,...,edo
Draw st ~ U(—a, a)?, o ~ exp(U (=B, §))*
x,, = ColorShift, ,(x’)

(s+1)R (s+1)R
8

£=- ZNLL £(xa),5)

X <—Adam1(x VL)
return x

F CIFAR-100 RESULTS

In Figure 24] we use PII to invert ViT models trained on ImageNet and fine-tuned on CIFAR-100.
Similarly, Figure 23] shows inversion results from models fine-tuned on CIFAR-10. We emphasize
that these were produced using identical settings to the ImageNet results in section 5]

Apple Castle Dolphin  Maple Road ea Seal Train

ViT L-16

ViT B-32

ViT T-16  ViT S-32

Figure 24: Inverting different CIFAR-100 model and class combinations using PII.
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Horse Ship Truck

ViT B-16 ViT B-32 ViTL-16 ViT L-32

Figure 25: Inverting different CIFAR-10 model and class combinations using PII.

G ADDITIONAL BASELINE COMPARISONS

Figures 26| and [27| depict images inverted from various models using the DeepInversion and Deep-
Dream methods as outlined by (2020). More specifically, we use Deeplnversion with the
prescribed regularization weights for CNNs, and use the same procedure minus the feature regular-
izer for all other models (in which BatchNorm is not used), keeping the same weights on the remain-
ing term We see less consistent performance across models using this method than when using
P11, illustrating the need for model-specific tuning when using regularization-based approaches.

Garbage Ocean CRT

Barn )
Liner Screen

Truck Warplane

5 B = \ t“ .
% ¢ 4 oy i
e (S SR

Figure 26: Inverting different model and class combinations for different classes using Deeplnver-
sion (top row) / DeepDream (other rows). Cross-reference ﬁgure

Goblet

ViT B-32 ResNet-101

ResMLP 36 DeiT Dist

3This is is the implementation of DeepDream (IMordvintsev etal., |2015[) considered by (2020).
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W- ResNet-101-2  ShuffleNet-v2

Mixer b16 224 PiT Dist 224 ResMLP 36 Dist

Figure 27: Images inverted from the Volcano class for various Convolutional, Transformer, and
MLP-based networks using Deeplnversion (CNN models) / DeepDream (non-CNN models). Cross-
reference figure|7}

H QUANTITATIVE RESULTS

To quantitatively evaluate our method, we invert a pre-trained ViT model to produce one image per
class using PII, and do the same using DeepDream (i.e., DeepInversion minus feature regularization,
which is not available for this model). We then use a variety of pre-trained CNN, ViT, and MLP
models to classify these images. We find that every model achieves strictly higher top-1 and top-5
accuracy on the PII-generated image set (excepting the ‘teacher’ model, which perfectly classifies
both). We compile these results in figure Additionally, we compute the Inception score (Sali-
for both sets of images, which also favors PII over DeepDream, with scores of
28.17 £ 7.21 and 2.72 £ 0.23, respectively.

We also perform the same evaluation for images generated from a pre-trained ResMLP model. These
results are more mixed; DeepDream images are classified much better by a small number of models,
but the majority of models classify PII images better, and the average accuracy across models is
approximately equal for both methods. Inception score, however, once again clearly favors PII over
DeepDream, with scores of 6.79 + 2.18 and 3.27 £ 0.47, respectively.
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Figure 28: Top-1 (a) and top-5 (b) classification accuracy of various CNN, ViT, and MLP models

evaluated on images generated from ViT B-32 using PII and DeepDream.
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Figure 29: Top-1 (a) and top-5 (b) classification accuracy of various CNN, ViT, and MLP models

evaluated on images generated from ResMLP 36-224 using PII and DeepDream.
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