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A ADDITIONAL RESULTS

A.1 ABLATION STUDY FOR ↵ AND �

Figure 10 shows the results of PII when varying the values of ↵ and �, which determine the intervals
from which the ColorShift constants are randomly drawn. Based on this and similar experiments,
we permanently fix these parameters to ↵ = � = 1.0 for all other PII experiments, and find that
these values indeed transfer well to other models.
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Figure 10: Effect of ↵ and � on the quality of the images generated by PII from a naturally-trained
ResNet-50 for the Tench class.

A.2 INSENSITIVITY TO TV REGULARIZATION

Figure 11 shows additional results on the effect of ColorShift on the sensitivity to the weight of TV
regularization when inverting a robust model, complementing Figure 4. As in the earlier figure, we
observe that certain values of �TV may produce noisy or blurred images when not using ColorShift,
whereas the ColorShift results are quite stable.
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Figure 11: Effect of TV with and without ColorShift. With ColorShift it is clear that there is no need
for hyper-parameter tuning for parameters such as TV. Images from the robust ResNet-50.
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A.3 EFFECT OF CENTERING

Here are more examples on the effect of centering. Figures 12, and 13 show the effect of centering

on inverting a robust, and natural model, respectively.

Cen Not Cen Cen Not Cen Cen Not Cen Cen Not Cen

Gold Finch Box Turtle Harvestman Black Widow

Black Grouse Mergus Serrator Border Terrier Tiger Beetle

Rhinoceros Beetle Fly Fox Squirrel Damselfly

Cricket Upright Piano Windsor Tie Volcano

Figure 12: Effect of using centering vs not using centering for a robust ResNet-50.

Cen Not Cen Cen Not Cen Cen Not Cen Cen Not Cen

Bustard Otterhound Fly Macaque

Clog Combination Lock Coffeepot Espresso Maker

iPod Italian Greyhound Angora Rabbit Agama

Shower Curtain TV Iron Mower

Figure 13: Effect of using centering vs not using centering for a naturally-trained ResNet-50.
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A.4 EFFECT OF ENSEMBLING SIZE

Figure 14 gives additional results to those in figure 5 for the effect of ensembling size on inversion.
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Figure 14: Effect of ensemble size when inverting a robust ResNet-50. Even small values of e give
reasonably good results, but increasing e tends to give slight improvement.
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A.5 EFFECT OF USING OTHER AUGMENTATIONS

We used 4 random augmentations other than ColorShift to make comparisons. We used augmenta-
tions used in Chen et al. (2020) with modifications. We use PyTorch (Paszke et al., 2019) notion to
describe this part. We used RandomHorizontalFlip with 0.5 probability. We used RandomResized-

Crop with scale [0.7, 1.], and ratio [0.75, and 1.33]. With applied ColorJitter with 0.8 probability,
and brightness, contrast, saturation, and hue of (0.4, 0.4, 0.4, 0.1), respectively. We used Ran-

domGrayscale with 0.2 probability. For this experiment, we do apply data normalization before
feeding the input to the network. This is different than the regular experiment setting that we use for
the robust model that we use as explained in D The reason is that not having data normalization is
similar to using ColorShift (it changes the data distribution which the model expects as an input).
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Figure 15: Effect of various alternative augmentations on inverting a robust ResNet-50 model.
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Figure 16: Effect of using different augmentations on inverting a naturally-trained ResNet-50.
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A.6 PII ON ADDITIONAL NETWORKS
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Figure 17: PII applied to various vision models for the Volcano class.
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Figure 17 shows the results of Plug-In Inversion on various CNN, ViT, and MLP networks, adding
to those shown in figure 7. See section B for model details.

B MODELS

In our experiments, we use publicly available pre-trained models from various sources. The follow-
ing tables list the models used from each source, along with references to where they are introduced
in the literature.

Alias Name Paper
AlexNet alexnet Krizhevsky et al. (2012)

DenseNet densenet121 Huang et al. (2017)
GoogLeNet googlenet Szegedy et al. (2015)

MobileNet v2 mobilenet v2 Sandler et al. (2018)
MobileNet-v2 mobilenet v2 Sandler et al. (2018)

MobileNet v3-l mobilenet v3 large Howard et al. (2019)
MobileNet v3-s mobilenet v3 small Howard et al. (2019)
MNasNet 0-5 mnasnet0 5 Tan et al. (2019)
MNasNet 1-0 mnasnet1 0 Tan et al. (2019)

ResNet 18 resnet18 He et al. (2016)
ResNet-18 resnet18 He et al. (2016)
ResNet 34 resnet34 He et al. (2016)
ResNet 50 resnet50 He et al. (2016)

ResNet 101 resnet101 He et al. (2016)
ResNet-101 resnet101 He et al. (2016)
ResNet 152 resnet152 He et al. (2016)
ResNext 50 resnext50 32x4d Xie et al. (2017)

ResNext 101 resnext101 32x8d Xie et al. (2017)
WResNet 50 wide resnet50 2 Zagoruyko & Komodakis (2016)

WResNet 101 wide resnet101 2 Zagoruyko & Komodakis (2016)
W-ResNet-101-2 wide resnet101 2 Zagoruyko & Komodakis (2016)
ShuffleNet v2-0-5 shufflenet v2 x0 5 Ma et al. (2018)
ShuffleNet v2-1-0 shufflenet v2 x1 0 Ma et al. (2018)

ShuffleNet v2 shufflenet v2 x1 0 Ma et al. (2018)
SqueezeNet squeezenet1 0 Iandola et al. (2016)
VGG11-bn vgg11 bn Simonyan & Zisserman (2014)
VGG13-bn vgg13 bn Simonyan & Zisserman (2014)
VGG16-bn vgg16 bn Simonyan & Zisserman (2014)
VGG19-bn vgg19 bn Simonyan & Zisserman (2014)

Figure 18: Pre-trained models from TorchVision: https://github.com/pytorch/vision.

Alias Name Paper
ViT B16 B 16 imagenet1k Dosovitskiy et al. (2021)
ViT B32 B 32 imagenet1k Dosovitskiy et al. (2021)
ViT B-32 B 32 imagenet1k Dosovitskiy et al. (2021)
ViT L16 L 16 imagenet1k Dosovitskiy et al. (2021)
ViT L32 L 32 imagenet1k Dosovitskiy et al. (2021)

Figure 19: Pre-trained models used from : https://github.com/lukemelas/PyTorch-Pretrained-ViT.
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Alias Name Paper
DeiT p16-224 deit base patch16 224 Touvron et al. (2021c)
DeiT P16 224 deit base patch16 224 Touvron et al. (2021c)

Deit-D p16-384 deit base distilled patch16 384 Touvron et al. (2021c)
Deit Dist P16 384 deit base distilled patch16 384 Touvron et al. (2021c)

deit p16-384 deit base patch16 384 Touvron et al. (2021c)
Deit-D-t p16-224 deit tiny distilled patch16 224 Touvron et al. (2021c)
Deit-D-s p16-224 deit small distilled patch16 224 Touvron et al. (2021c)
Deit-D p16-224 deit base distilled patch16 224 Touvron et al. (2021c)

Figure 20: Pre-trained models from Touvron et al. (2021b) .

Alias Name Paper
CoaT-m coat lite mini Xu et al. (2021)
CoaT-s coat lite small Xu et al. (2021)
CoaT-t coat lite tiny Xu et al. (2021)
ConViT convit base d’Ascoli et al. (2021)

ConViT-s convit small d’Ascoli et al. (2021)
ConViT-t convit tiny d’Ascoli et al. (2021)

ConViT tiny convit tiny d’Ascoli et al. (2021)
Mixer 24-224 mixer 24 224 Tolstikhin et al. (2021)

Mixer b16-224 mixer b16 224 Tolstikhin et al. (2021)
Mixer b16 224 mixer b16 224 Tolstikhin et al. (2021)

Mixer b16-224-mill mixer b16 224 miil Tolstikhin et al. (2021)
Mixer l16-224 mixer l16 224 Tolstikhin et al. (2021)
PiT-D b-224 pit b distilled 224 Heo et al. (2021)
PiT Dist 224 pit b distilled 224 Heo et al. (2021)

PiT s-224 pit s 224 Heo et al. (2021)
PiT-D s-224 pit s distilled 224 Heo et al. (2021)
PiT-D t-224 pit ti distilled 224 Heo et al. (2021)

ResMLP 12-224 resmlp 12 224 Touvron et al. (2021a)
ResMLP-D 12-224 resmlp 12 distilled 224 Touvron et al. (2021a)

ResMLP 24-224 resmlp 24 224 Touvron et al. (2021a)
ResMLP-D 24-224 resmlp 24 distilled 224 Touvron et al. (2021a)

ResMLP 36-224 resmlp 36 224 Touvron et al. (2021a)
ResMLP-D 36-224 resmlp 36 distilled 224 Touvron et al. (2021a)
ResMLP 36 Dist resmlp 36 distilled 224 Touvron et al. (2021a)

ResMLP b-24-224 resmlp big 24 224 Touvron et al. (2021a)
ResMLP b-24-224-1k resmlp big 24 224 in22ft1k Touvron et al. (2021a)
ResMLP-D b-24-224 resmlp big 24 distilled 224 Touvron et al. (2021a)

Swin w7-224 swin base patch4 window7 224 Liu et al. (2021b)
Swin l-w7-224 swin large patch4 window7 224 Liu et al. (2021b)

Swin l-w12-384 swin large patch4 window12 384 Liu et al. (2021b)
Swin w12-384 swin base patch4 window12 384 Liu et al. (2021b)
Swin P4 W12 swin base patch4 window12 384 Liu et al. (2021b)

Swin s-w7-224 swin small patch4 window7 224 Liu et al. (2021b)
Swin t-w7-224 swin tiny patch4 window7 224 Liu et al. (2021b)
Twin pcpvt-b twins pcpvt base Chu et al. (2021)
Twin PCPVT twins pcpvt base Chu et al. (2021)
Twins pcpvt-l twins pcpvt large Chu et al. (2021)
Twins pcpvt-s twins pcpvt small Chu et al. (2021)
Twins svt-b twins svt base Chu et al. (2021)
Twins svt-l twins svt large Chu et al. (2021)
Twins svt-s twins svt small Chu et al. (2021)

Figure 21: Pre-trained models used from: Wightman (2019)
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C EVERY CLASS OF IMAGENET DATASET INVERTED

Figure 22: Inversion of first 500 classes of ImageNet for the Robust Model.
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Figure 23: Inversion of second 500 classes of ImageNet for the Robust Model.
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D ADDITIONAL EXPERIMENTAL SETTING

D.1 ROBUST MODELS

We use a robust RestNet-50 (He et al., 2016) model free-trained (Shafahi et al., 2019) on the Ima-
geNet dataset (Deng et al., 2009). The setting we use for inverting robust models is very similar to
that of PII explained in section 4 except for some differences. Throughout the paper, we use center-
ing for robust models unless otherwise is mentioned (like when we are examining the effect of zoom
and centering themselves). We use 0.0005 to scale total variation in the loss function. Also, we do
not apply the data normalization layer before feeding the input to the network. In PII experiment
setting, we apply a random ColorShift at each optimization step to each element in the ensemble. In
the robust setting, we do not update the ColorShift variables µ, and � for a fixed patch size, and we
update these variables for the ensemble when we use a new patch size. Although using ColorShift
would alleviate the need for using TV as discussed in section 3.2, and illustrated in figure 4 in the
robust, and natural setting, we keep TV in our robust setting to make this setting more similar to that
of previous inversion methods and to emphasize that it is a toy example for our ablation studies.
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E OPTIMIZATION ALGORITHM

Algorithm 1: Optimization procedure for Plug-In Inversion
Input: Model f , class y, final resolution R, ColorShift parameters ↵,�, ‘ensemble’ size e,

randomly initialized x 2 I3⇥R/8⇥R/8

for s = 1, . . . , 7 do
Upsample x to resolution (2s+1)R

16 ⇥ (2s+1)R
16

Pad x with random noise to resolution (s+1)R
8 ⇥ (s+1)R

8
for i = 1, . . . , 400 do

x0 = Jitter(x)
for n = 1, . . . , e do

Draw µ ⇠ U(�↵,↵)3, � ⇠ exp(U(��,�))3
xn = ColorShiftµ,�(x0)

L =
1

e

eX

n=1

NLL(f(xn), y)

x Adami(x,rxL)
return x

F CIFAR-100 RESULTS

In Figure 24, we use PII to invert ViT models trained on ImageNet and fine-tuned on CIFAR-100.
Similarly, Figure 25 shows inversion results from models fine-tuned on CIFAR-10. We emphasize
that these were produced using identical settings to the ImageNet results in section 5.
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Figure 24: Inverting different CIFAR-100 model and class combinations using PII.
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Figure 25: Inverting different CIFAR-10 model and class combinations using PII.

G ADDITIONAL BASELINE COMPARISONS

Figures 26 and 27 depict images inverted from various models using the DeepInversion and Deep-
Dream methods as outlined by Yin et al. (2020). More specifically, we use DeepInversion with the
prescribed regularization weights for CNNs, and use the same procedure minus the feature regular-
izer for all other models (in which BatchNorm is not used), keeping the same weights on the remain-
ing terms3. We see less consistent performance across models using this method than when using
PII, illustrating the need for model-specific tuning when using regularization-based approaches.
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Figure 26: Inverting different model and class combinations for different classes using DeepInver-
sion (top row) / DeepDream (other rows). Cross-reference figure 8.

3This is is the implementation of DeepDream (Mordvintsev et al., 2015) considered by Yin et al. (2020).
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MobileNet-v2 ResNet-18 ResNet-101 W- ResNet-101-2 ShuffleNet-v2

VGG16-bn ViT B-32 DeiT P16 224 Deit Dist P16 384 ConViT tiny

Mixer b16 224 PiT Dist 224 ResMLP 36 Dist Swin P4 W12 Twin PCPVT

Figure 27: Images inverted from the Volcano class for various Convolutional, Transformer, and
MLP-based networks using DeepInversion (CNN models) / DeepDream (non-CNN models). Cross-
reference figure 7.

H QUANTITATIVE RESULTS

To quantitatively evaluate our method, we invert a pre-trained ViT model to produce one image per
class using PII, and do the same using DeepDream (i.e., DeepInversion minus feature regularization,
which is not available for this model). We then use a variety of pre-trained CNN, ViT, and MLP
models to classify these images. We find that every model achieves strictly higher top-1 and top-5
accuracy on the PII-generated image set (excepting the ‘teacher’ model, which perfectly classifies
both). We compile these results in figure 29. Additionally, we compute the Inception score (Sali-
mans et al., 2016) for both sets of images, which also favors PII over DeepDream, with scores of
28.17± 7.21 and 2.72± 0.23, respectively.

We also perform the same evaluation for images generated from a pre-trained ResMLP model. These
results are more mixed; DeepDream images are classified much better by a small number of models,
but the majority of models classify PII images better, and the average accuracy across models is
approximately equal for both methods. Inception score, however, once again clearly favors PII over
DeepDream, with scores of 6.79± 2.18 and 3.27± 0.47, respectively.
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(a)

(b)

Figure 28: Top-1 (a) and top-5 (b) classification accuracy of various CNN, ViT, and MLP models
evaluated on images generated from ViT B-32 using PII and DeepDream.
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(a)

(b)

Figure 29: Top-1 (a) and top-5 (b) classification accuracy of various CNN, ViT, and MLP models
evaluated on images generated from ResMLP 36-224 using PII and DeepDream.
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