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ABSTRACT

State-space models (SSMs) provide a standard methodology for time series analysis
and prediction. While recent works utilize nonlinear functions to parameterize
the transition and emission processes to enhance their expressivity, the form of
additive noise still limits their applicability in real-world scenarios. In this work,
we propose a general formulation of SSMs with a completely non-parametric
transition model and a flexible emission model which can account for sensor
distortion. Besides, to deal with more general scenarios (e.g., non-stationary time
series), we add a higher-level model to capture the time-varying characteristics
of the process. Interestingly, we find that even though the proposed model is
remarkably flexible, the latent processes are generally identifiable. Given this, we
further propose the corresponding estimation procedure and make use of it for the
forecasting task. Our model can recover the latent processes and their relations
from observed sequential data. Accordingly, the proposed procedure can also be
viewed as a method for causal representation learning. We argue that forecasting
can benefit from causal representation learning, since the estimated latent variables
are generally identifiable. Empirical comparisons on various datasets validate that
our model could not only reliably identify the latent processes from the observed
data, but also consistently outperform baselines in the forecasting task.

1 INTRODUCTION

Time series forecasting plays a crucial role in various automation and optimization of business
processes (Petropoulos et al., 2022; Benidis et al., 2020; Lim & Zohren, 2021). State-space models
(SSMs) (Durbin & Koopman, 2012) are among the most commonly-used generative forecasting
models, providing a unified methodology to model dynamic behaviors of time series. Formally, given
observations xt, they describe a dynamical system with latent processes zt as:

zt = fi(zt−1) + ϵt,︸ ︷︷ ︸
Transition

xt = g(zt) + ηt,︸ ︷︷ ︸
Emission

(1)

where ηt and ϵt denote the i.i.d. Gaussian measurement and process noise terms, and f(·) and g(·)
are the nonlinear transition model and the nonlinear emission model, respectively. The transition
model captures the latent dynamics underlying the observed data, while the emission model learns
the mapping from the latent processes to the observations. Recently, more expressive and scalable
deep learning architectures were leveraged for modeling nonlinear transition and emission models
effectively (Fraccaro et al., 2017; Castrejon et al., 2019; Saxena et al., 2021; Tang & Matteson, 2021).

However, these SSMs are not guaranteed to recover the underlying latent processes and their relations
from observations. Furthermore, stringent assumptions of additive noise terms in both transition
and emission models may not hold in practice. In particular, the additive noise terms cannot capture
nonlinear distortions in the observed or latent values of the variables, which might be necessarily
true in real-world applications (Zhang & Hyvarinen, 2012; Yao et al., 2021), like sensor distortion
and motion capture. If we directly apply SSMs with this constrained additive noise form, the
model misspecification can lead to biased estimations. Second, the identification of SSMs is a very
challenging task when both states and transition models are unknown. Most work so far has focused
on developing efficient estimation methods. We argue that this issue should not be ignored, and it
becomes more severe when nonlinear transition and emission models are implemented with deep
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learning techniques. As the parameter space has increased significantly, SSMs are prone to capture
spurious causal relations and strengths, and thus identifiability of SSMs is vital. Furthermore, the
transition model is usually assumed to be constant across the measured time period. This stationary
assumption hardly holds in many real-life problems due to the changes in dynamics. For example,
the unemployment rate tends to rise much faster at the start of a recession than it drops at the
beginning of a recovery (Lubik & Matthes, 2015). In this setting, SSMs should appropriately adapt
to the time-varying characteristics of the latent processes to be applicable in general non-stationary
scenarios.

Figure 1: Left: The proposed estimation framework mainly includes the learning of latent causal
model learning and prediction model. Right: Motivational examples demonstrate the benefit of latent
causal model learning for forecasting. (1). It provides compact representations for forecasting, as
vanilla predictors include complicated dependencies. (2). The prediction model is more robust to the
distribution shift (Red circles here indicate distribution change). (3). It gives a compact way to model
the change factors to address non-stationary forecasting issues.

In this work, in contrast to state-of-the-art approaches following the additive form of transi-
tion/emission models, we propose a general formulation of SSMs, called the Non-Parametric State-
Space Model (NPSSM) 1, In particular, we leverage the non-parametric functional causal model
(Pearl, 2009) for the transition process and the post-nonlinear model (Zhang & Hyvarinen, 2012)
to capture nonlinear distortion effects in the emission model. Besides, we add a higher level model
to NPSSM, called N-NPSSM, to capture the potential time-varying change property of the latent
processes for more general scenarios (e.g., non-stationary time series). Interestingly, although the
proposed NPSSM is remarkably flexible, the latent processes are generally identifiable. To this end,
we further develop a novel estimation framework built upon the structural variational autoencoder
(VAE) for the proposed NPSSMs. It allows us to recover latent processes and their time-delayed
causal relations from observed sequential data and use them to build the latent prediction model
simultaneously (illustrated in Figure 1(left)). Accordingly, the proposed procedure can be viewed as
a method for causal representation learning or latent causal model learning from time series data.

We argue that forecasting tasks can benefit from causal representation learning, as latent processes are
generally identifiable in NPSSM. As shown in Figure 1(right), first, it provides a compact structure
for forecasting, whereas vanilla predictors (bottom), which directly learn a mapping function in the
observation space, face the issue of complicated and spurious dependencies. Second, the predictions
following the correct causal factorization are expected to be more robust to distribution shifts that
happen to some of the modules in the system. If some local intervention exists on one mechanism, it
will not affect other modules, and those modules will still contribute generously to the final prediction.
Although formulating this problem and providing quantitative theoretical results seem challenging,
our empirical studies illustrate this well. Third, it gives a compact way to model the distribution
changes. In realistic situations, data distribution might change over time. Fortunately, given the
high-dimensional input, the changes often occur in a relatively small space in a causally-factorized
system, which is known as the minimal change principle (Ghassami et al., 2018; Huang et al., 2020)

1Here, the definition of “non-parametric” is not about the general form of mapping function but indicates the
functional causal model which takes the cause variables and errors as the input of a general function. Unlike the
additive noise form, there is no constraint for how the noise interacts with the cause variable. Formal definition
can be found in line 4 below Eq. (1.40) in (Pearl, 2009)
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or sparse mechanism shift (Schölkopf et al., 2021). We can thus capture the distribution changes with
low-dimensional change factors in a causal system instead of in the high-dimensional input space.

In summary, our main contributions are as follows:

• We propose a general formulation of SSMs, namely, NPSSM, together with its extension to allow
nonstationarity of the latent process over time, which provides a flexible form for the transition and
emission model that is expected to be widely applicable;

• We establish the identifiability of the time-lagged latent variables and their influencing strengths
for NPSSM under relatively mild conditions;

• Based on our identifiability analysis, we propose a new structural VAE for model estimation and
use it for forecasting tasks;

• Estimation of the proposed model can be seen as a way to learn the underlying temporal causal
processes, which further facilitates forecasting of the time series;

• We evaluate the proposed method on a number of synthetic and real-world datasets. Experimental
results demonstrate that latent causal dynamics could be reliably identified from observed data
under various settings and further verify that identifying and using the latent temporal causal
processes consistently improves the prediction performance.

2 PROBLEM FORMULATION

2.1 NPSSM: NON-PARAMETRIC STATE-SPACE MODEL AND IDENTIFIABILITY

To make SSMs in Eq. (1) flexible, we adopt the functional causal model (Pearl, 2009) to characterize
transition process. Specifically, each latent factor zit is represented with a general form of structural
causal model zit = fi({zj,t−τ |zj,t−τ ∈ Pa(zit)}, ϵit), where i, j denotes variable element index,
Pa(zit)} (parents) denotes the set of time-lagged variables that directly determine the latent factor zit,
and τ denotes the time lag index. In this way, noise ϵit together with parents of zit generate zit via
unknown function f(·). Formally, NPSSM can be formulated as

zit = fi({zj,t−τ |zj,t−τ ∈ Pa(zit)}, ϵit),︸ ︷︷ ︸
Structural causal latent transition

xt = g(zt, ηt) = g1(g2(zt) + ηt),︸ ︷︷ ︸
Post nonlinear emission

(2)

where ϵit are mutually independent (i.e. spatially and temporally independent) random noises sampled
from noise distribution p(ϵit). g1(·) is the invertible post-nonlinear distortion function, g2(·) is the
nonlinear mixing function and ηt are independent noises (detailed notations are given in Appendix
A1.1). To the best of our knowledge, this is the most general form of SSMs. In this transition
function, the effect zit is just a smooth function (it refers to condition 3 of Theorem 1, which is the
core condition to guarantee the identifiability of NPSSM) of its parents Pa(zit) and noise ϵit, and it
contains linear models, nonlinear models with additive noise, and even multiplicative noise models as
special cases. The Independent Noise condition and Conditional Independent condition (Pearl, 2009)
are widely satisfied in time series data. Furthermore, in the emission function, the post-nonlinear
transformation g1(·) can model sensor or measurement distortion that usually happens when the
underlying processes are measured with instruments (Zhang & Hyvarinen, 2012; Zhang & Hyvärinen,
2010).

Now, we define the identifiability of NPSSM in the function space. Since the conditional independence
relations fully capture time-delayed causal relations in the time-delayed causally sufficient system,
we can say that NPSSM is identifiable if the latent variables are identifiable.

Definition 1 (Identifiability of NPSSM). For a ground truth (f, g, p(ϵ)) and a learned (f̂, ĝ, p̂(ϵ))
models as defined in Eq. (2), if the joint distribution for observed variables pf,g,p(ϵ)(xt) and
pf̂,ĝ,p̂(ϵ)(xt) are matched almost everywhere, then we can say NPSSM are identifiable if observational
equivalence can always lead to identifiability of the latent variables up to permutation π and
component-wise invertible transformation T :

pĝ,f̂,p̂ϵ
(xt) = pg,f,pϵ

(xt) ⇒ g−1 = ĝ−1 ◦ T ◦ π. (3)

where g−1, ĝ−1 are invertible functions that maps xt to zt and ẑt, respectively.
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Here we present the identifiability result of the proposed model. W.l.o.g., we assume the maximum
time lag L = 1 in our analysis. Note that it is trivial to extend our analysis for long lag L > 1. We can
see that, somewhat surprisingly, although NPSSM is remarkably flexible, it is actually identifiable up
to relative minimum indeterminacies. Each latent process can be recovered up to its component-wise
invertible transformations. In many real-world time series applications, these indeterminacies may be
inconsequential.
Theorem 1. Suppose that we observe data sampled from a generative model defined according to 2
with parameters (f̂, ĝ, p̂(ϵ)). Assume the following holds:

1. The set {xt ∈ X |φηt
(xt) = 0} has measure zero, where φηt

is the characteristic function of
the density p(ηt) = pg(xt|zt). The post nonlinear functions g1, ĝ1 are invertible. The mixing
functions g2, ĝ2 are injective and differentiable almost everywhere.

2. The process noise terms ϵit are mutually independent.

3. Let ηkt ≜ log p(zkt|zt−1), ηkt is twice differentiable in zkt and is differentiable in zl,t−1, l =
1, 2, . . . , n. For each value of zt,v1t,

◦
v1t,v2t,

◦
v2t, . . . ,vnt,

◦
vnt as 2n vector functions in

z1,t−1, z2,t−1, . . . , zn,t−1, are linearly independent, with vkt and ◦
vkt defined below:

vk,t ≜
(

∂2ηkt

∂zk,t∂z1,t−1
, ∂2ηkt

∂zk,t∂z2,t−1
, ..., ∂2ηkt

∂zk,t∂zn,t−1

)⊺
, v̊k,t ≜

(
∂3ηkt

∂z2
k,t∂z1,t−1

, ∂3ηkt

∂z2
k,t∂z2,t−1

, ..., ∂3ηkt

∂z2
k,t∂zn,t−1

)⊺
.

then zt must be an invertible, component-wise transformation of a permuted version of ẑt.

The proofs are provided in Appendix A1.2. Theorem 1 indicates that we can find the underlying
causal latent processes from the observed data. The differentiability and linear independence in
condition 3 is the core condition to assure the identifiability of latent factors zt from observed xt.
It indicates that time-lagged variables must have a sufficiently complex and diverse effect on the
transition distributions in terms of the second- and third-order partial derivatives. From this condition,
we can find that the linear Gaussian SSM is unidentifiable since the second- and third-order partial
derivatives would be constant, which violates the linear independence assumption.

2.2 N-NPSSM: NON-STATIONARY NON-PARAMETRIC STATE SPACE MODEL

Considering that time series are non-stationary in many real situations, we now add a higher-level
model to NPSSM to allow it to capture the time-varying characteristics of the process. We propose
the Non-stationary Non-Parametric State Space Model(N-NPSSM), which is formulated as

xt = g1(g2(zt) + ηt),︸ ︷︷ ︸
Post Nonlinear emission

zit = fi({zj,t−τ |zj,t−τ ∈ Pa(zit)}, ct, ϵit)︸ ︷︷ ︸
Structural causal latent transition

, ct = fc({ct−τ}Lc
τ=1, ζt)︸ ︷︷ ︸

Time-varying change factors

, (4)

where ζt, similar to ϵit, are mutually independent (i.e., spatially and temporally independent) random
noises. fc(·) is the transition function for the time-varying change factors, which is also formulated in
a general form of a structural causal model. It includes the vanilla SSMs in Eq. (1) as a particular case
in which the time-varying change factors do not exist. It also includes the time-varying parameter
vector autoregressive model (Lubik & Matthes, 2015) as a special case, which allows the coefficients
or the variances of noises in the linear auto-regressive model to vary over time following a specified
law of motion. In contrast to explicitly specifying how time-varying change factors affect the transition
process, our model is quite general in that we use a low-dimensional vector ct to characterize the
time-varying information and use it as an input for the transition model. Establishing the theoretical
identifiability of this model is technically even more challenging, and our empirical results on various
simulated data sets strongly suggest that it is actually identifiable.

3 ESTIMATION FRAMEWORK

Given our identifiability results, we propose the estimation procedures of NPSSM in Eq. (2) and
N-NPSSM in Eq. 4). Since NPSSM is a special case of N-NPSSM, below, we consider only the
estimation framework of N-NPSSM, and its properly constrained version will apply to NPSSM. The
model architecture is shown in Fig. 2(a). Here xt and x̂t are the observed and reconstructed variables.
The overall framework is a structural variational auto-encoder with two essential components: the
latent causal model and the latent prediction model. The implementation details are in Appendix A3.
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Figure 2: Fig (a) demonstrates the overview of our structural VAE framework. It mainly includes the
latent causal model and latent prediction model. In latent causal model, it recovers latent process via
minimizing reconstruction error and the regularization between factorized posterior q(ẑ1:T ), q(ĉ1:T )
and transition prior p(ẑ1:T ), p(ĉ1:T ), which implicitly models the temporal dynamics. Fig (b) shows
the transition prior model, representing the latent causal processes ẑt and ĉt.

VAE To facilitate our implementation, we adopt the Variational Auto-Encoder (Hsu et al., 2017),
which implicitly implies that the measurement noise is additive. This is a particular case of the post-
nonlinear mixing procedure given in Eq. (2). It is challenging to model the temporal dependencies
among observed and latent variables, especially for the design of the encoder/decoder. An alternative
is to follow dynamic VAE (Girin et al., 2020) to encode the latent sequential information in the
encoder explicitly. To make the estimation more efficient, inspired by (Klindt et al., 2020; Yao
et al., 2022), we use the transition prior p(ẑT |ẑ1:T−1, ĉT )p(ẑ1:T−1) and p(ĉT |ĉ1:T−1)p(ĉ1:T−1) to
encode temporal information and approximate the joint probability of posterior on z1:T and c1:T
with factorized form. Specifically, the encoder for z1:T is defined as

∏T
t=1 q(ẑt|xt), and similarly the

encoder for c1:T is defined as
∏T

t=1 qc(ĉt|{ẑt−τ}Lc
τ=0).

Transition Prior Model An alternative to uncovering the latent transition is to leverage the forward
prediction function. However, forward prediction cannot model latent processes in the general form
of the structural causal model. Thus, we follow the idea in (Yao et al., 2021; 2022) to obtain transition
priors by learning inverse latent transition functions f−1. Particularly, they are implemented by a set
of separate MLP Networks {ri} (to satisfy the independent noise condition in Thm 1), which take the
estimated latent causal variables and time-varying change factors as input and output the noise terms,
i.e. ϵ̂it = ri(ẑit, ĉt, {ẑt−τ}Lτ=1). By applying the change of variables formula to the transformation,
the transition probability can be formulated as:

pz
(
ẑit|{ẑt−τ}Lτ=1, ĉt

)
= pϵi

(
ri(ẑit, ĉt, {ẑt−τ}Lτ=1)

) ∣∣∣∣ ∂ri∂ẑit

∣∣∣∣ . (5)

Because of the mutually independent noise assumption, the Jacobian is a lower-triangular. We can
efficiently calculate its determinant as the product of each element. By applying the independent
noise assumption, the transition probability can be formulated as:

log pz(ẑt|{ẑt−τ}Lτ=1, ĉt) =

n∑
i=1

log p(ϵ̂it) +

n∑
i=1

log

∣∣∣∣ ∂ri∂ẑit

∣∣∣∣ . (6)

To fit the estimated noises terms, we model each noise distribution p(ϵ̂it) as a transformation from
the standard normal noise N (0, 1) through function s(·), which can be formulated as p(ϵ̂it) =

pN (0,1)

(
s−1(ϵ̂it)

) ∣∣∣∂s−1(ϵ̂it)
∂ϵ̂it

∣∣∣. Fortunately, we do not need to explicitly estimate the term
∣∣∣∂s−1(ϵ̂it)

∂ϵ̂it

∣∣∣,
since inverse causal transition functions {ri} could compensate it. Similarly, we define the transition
probability of change factors ct as log pc(ĉt|ĉt−1) =

∑n
i=1 log p(ζ̂it) +

∑n
i=1 log

∣∣∣ ∂ui

∂ĉit

∣∣∣, where ui

denotes the inverse change transition function.
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Latent Prediction Model In contrast to vanilla prediction models p(xt|{xt−τ}Lτ=1), which calcu-
late the prediction loss in input space, we propose to recover the latent variables {ẑt}Tt=1 and then
train the latent prediction models p(ẑt|{ẑt−τ}Lτ=1). Note that although we do not explicitly involve
the change factor ct in the predictor, it had to be inferred from the latent variables {ẑt−τ}Lτ=0 as
well, like the definition of encoder qc(ĉt|{ẑt−τ}Lτ=0). Specifically, we use the LSTM network to
implement the latent predictor ppred(ẑt|ϵ̂t, {ẑt−τ}Lτ=1). The noise ϵ̂t is generated from the inverse
latent transition function ri(ẑit, ĉt, {ẑt−τ}Lτ=1) in the training phase, while it is sampled from the
standard normal distribution N (0, 1) in the forecasting phase.

This way, the prediction procedure decouples the forecasting task into three steps: (1). The encoder
recovers the latent causal representation from the observed data; (2). Next-step prediction is gener-
ated via the latent prediction model in the latent space; (3) prediction results are transformed into
observation space by the decoder.

Optimization By taking into account the above two components, we jointly train the latent causal
model and the latent prediction model with the following augmented ELBO objective LELBO:

LELBO =
1

T

T∑
t=1

log pz(xt|zt) +
σ

T

T∑
t=1

log ppred(ẑt|ϵ̂t, {ẑt−τ}Lτ=1)

− βDKL(qz(ẑ1:T |x̂1:T )|p(ẑ1:T ))− γDKL(qc(ĉ1:T |ẑ1:T )|p(ĉ1:T )), (7)

where pz(xt|zt) and ppred(ẑt|ϵ̂t, {ẑt−τ}Lτ=1) denote the decoder distribution and prediction distribu-
tion, in which we use MSE loss for the likelihood.

4 RELATED WORK

Identifiability of State-Space Models It is well-known that the linear state space model with
additive Gaussian noise is unidentifiable (Arun & Kung, 1990), thus can not recover the latent
process. Under specific structural constraints on the transition matrix, (Xu, 2002) find it identifiable.
(Zhang & Hyvärinen, 2011) further consider the linear non-Gaussian setting and prove that when
the emission matrix is of full column rank and the transition matrix is of full rank, the model is fully
identifiable. In the non-stationary environment, (Huang et al., 2019) prove that the time-varying
linear causal model is identifiable if the additive noise is a stationary zero-mean white noise process.
For the vector autoregressive model with the latent process, (Jalali & Sanghavi, 2011) show that
if the interactions between observed variables are sparse an, interactions between latent variables
and observed variables are sufficient, the transition matrix can be identified. (Geiger et al., 2015)
find that if the additional genericity assumptions hold and the exogenous noises are independent
non-Gaussian, then the transition matrix is uniquely identifiable. In contrast, our work considers a
remarkably flexible state space model, which does not require constraints like linear transition or
additive noise. Even so, we find that the latent process is generally identifiable.

Deep State-Space Models To leverage advances in deep learning, (Chung et al., 2015; Fraccaro
et al., 2016; Karl et al., 2016; Krishnan et al., 2017) draw connections between the state space models
and RNN and propose the dynamic VAE framework to model temporal data. For (Chung et al., 2015),
they associate the latent variables in the state space model with the deterministic hidden states of
RNN. As such, the transition model is nonlinearly determined by the RNN and the observation model.
These works propose different variants of deep learning architectures to parameterize transition and
emission models to enhance expressiveness. These models vary in how they define the generative and
inference model and how they combine the latent dynamic variables with RNN to model temporal
dependencies (Girin et al., 2020). Meanwhile, the training paradigm of these works is similar to
the VAE methodology. Inference networks define a variational approximation to the intractable
posterior distribution of the latent variables. Approximation inference is applied, which may lead to
sub-optimal performance. To address it, (Fraccaro et al., 2017; Rangapuram et al., 2018; Becker et al.,
2019) take advantage of Kalman filters/smoothers to estimate the exact posterior distribution. For
(Fraccaro et al., 2017), they use the standard Gaussian linear dynamical system to model the latent
temporal process. The hidden states of RNN are used to predict the parameters of this dynamical
system to enable closed-form Bayesian inference. However, these methods require expensive matrix
inversion operation and the linear transition model limits the expressiveness. An alternative (Zheng
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et al., 2017) is to use variational sequential Monte Carlo to draw samples from the posterior directly.
Recently, (Klushyn et al., 2021) propose a constraint optimization framework to obtain accurate
predictions of the dynamical system. They achieve it by combining amortized variational inference
with classic Bayesian filtering/smoothing to model dynamics. These works present different methods
to infer the latent variables more accurately. Besides, some work leverage neural SDE to model the
transition process (Yildiz et al., 2019). While these works enhance the expressivity of the transition
model with deep architectures, they are still constrained by the additive noise form, which can be
treated as special cases of our work.
Time-Varying State-Space Models In many real situations, the temporal process may vary over
time. This inspired the early efforts to allow the parameters of vector autoregressive models to change
over time (Sodsri, 2003; Luo, 2005), which consider the effect of time variation in coefficients and
the variance of noises. These works can be treated as special cases of the state space models, which
directly learn the transition in observation space. Time-varying linear state space models (Luttinen
et al., 2014; Holmes et al., 2012) make one step further, as it is more powerful and general than
vector autoregressive models. A similar research topic is the switching-regime state space models
(Ghahramani & Hinton, 1996; 2000; Glaser et al., 2020), which assumes the transition lies in a set of
linear dynamical models and model the transition process with hidden Markov models. Thus, these
models cannot capture the continuous change over time. Recently, some deep state space models
have implicitly considered the time-varying characteristic of data. Both of these works (Rangapuram
et al., 2018; Fraccaro et al., 2017) consider the Gaussian linear dynamical systems in the latent space.
In (Rangapuram et al., 2018), the transition/emission matrices and two noise covariance matrices
are predicted by RNN at each step. In (Fraccaro et al., 2017), they assume the transition/emission
matrices are a weighted average of a set of base matrices, where the RNN model predicts the weights
at each step. Note that all these existing works require specifying how time-varying change factors
affect the transition process, which may not be applicable in practice without prior knowledge. In
contrast, our model is flexible since we consider a more general transition model, and the time-varying
change factors are treated as the input for the transition process.

5 EXPERIMENTS

To show the efficacy of N-NPSSM for identifying latent processes and forecasting, we apply it to
various synthetic and real-world datasets with one-step-ahead forecasting tasks.

Evaluation Metrics To evaluate the identifiability of the learned latent variables, we report Mean
Correlation Coefficient (MCC), which is a standard metric in ICA literature for continuous variables
(details are given in Appendix A2.2). MCC reaches 1 when latent variables are identifiable up to
componentwise invertible transformation and permutation. To evaluate the forecasting performance,
we report the Mean Absolute Error (MAE) and ρ-risk, which quantifies the accuracy of a quantile ρ
of the predictive distribution. Formally, they are defined as:

MAE =
∑
i,t

|xit − x̂it|, Rρ-loss =
∑
i,t

(x̂ρ
it − xit)(ρIx̂ρit>xit − (1− ρ)Ix̂ρit≤xit), (8)

where x̂ρit is the empirical ρ-quantile of the prediction distribution and I is the indicator function. For
the probabilistic forecasting models, forecast distribution is estimated by 50 trials of sampling, and
x̂it is calculated by the predicted median value.

Baselines We compare NPSSM with typical deep forecasting models and deep state-space models:
(1) LSTM(Hochreiter & Schmidhuber, 1997) which is a baseline for the deterministic deep forecasting
model; (2) DeepAR(Salinas et al., 2020) which is an encoder-based probabilistic deep forecasting
model; (3) VRNN(Chung et al., 2015) and (4) KVAE(Fraccaro et al., 2017) which are deep state
space models. Note that KVAE implicitly considers time-varying change factors by formulating the
transition matrix as a weighted average of a set of base matrices and using an RNN to predict the
combination weights at each step.

5.1 SYNTHETIC EXPERIMENTS

We generate synthetic datasets that satisfy the identifiability conditions in the theorems. In particular,
we consider four representative simulation settings to validate the identifiability and forecasting
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performance under fixed causal dynamics (Synthetic1), fixed causal dynamics with distribution shift
(Synthetic2), time-varying causal dynamics with inter-dependent change factors (Synthetic3) and
time-varying causal dynamics with changing causal strengths (Synthetic4) (more details of data
generation are given in Appendix A2.1.1). For all the synthetic datasets, we set latent size n = 8, and
the maximum latent process lag is set to L = 2. For time-varying settings, the dimension of change
variables is set to 4. The emission function g(·) is a random three-layer MLP with LeakyReLU units.

Table 1: Identifiability and forecasting performance for the four synthetic datasets (more empirical
results can be found in A2.3). Note: “N/A” indicates the deterministic model LSTM is not applicable
to output predictive distribution

Method Synthetic 1 Synthetic 3

MCC MAE R0.9-loss MCC MAE R0.9-loss

LSTM 0.110±0.02 0.416±0.03 N/A 0.140±0.02 0.583±0.03 N/A
KVAE 0.406±0.02 0.404±0.01 2.237±0.05 0.513±0.05 0.455±0.02 6.446±0.04
VRNN 0.520±0.08 0.515±0.02 4.341±0.06 0.555±0.03 0.543±0.01 3.578±0.03
DeepAR 0.267±0.03 0.087±0.03 0.353±0.03 0.432±0.02 0.095±0.02 0.606±0.02
N-NPSSM 0.987±0.01 0.054±0.01 0.220±0.03 0.998±0.01 0.057±0.01 0.363±0.01

Method Synthetic 2 Synthetic 4

MCC MAE R0.9-loss MCC MAE R0.9-loss

LSTM 0.199±0.02 0.498±0.08 N/A 0.227±0.02 0.641±0.02 N/A
KVAE 0.407±0.02 0.479±0.05 25.94±0.61 0.478±0.03 0.480±0.01 2.090±0.02
VRNN 0.491±0.08 0.637±0.06 28.58±0.83 0.397±0.03 0.498±0.02 1.167±0.01
DeepAR 0.297±0.01 0.133±0.03 3.284±0.04 0.351±0.03 0.087±0.01 0.179±0.01
N-NPSSM 0.995±0.01 0.069±0.01 1.866±0.02 0.992±0.01 0.081±0.01 0.169±0.02

As shown in Table 1, N-NPSSM can successfully recover the latent processes under different
settings, as indicated by the highest MCC (close to 1). In contrast, the baseline models, includ-
ing the deep forecasting model and deep state-space models, cannot recover the latent processes.
Besides, our method gives the best forecasting accuracy, as indicated by the lowest MAE and R0.9-
loss. In Figure 4, each left sub-figure shows the MCC correlation matrix of each factor, while
each right sub-figure shows the scatter plot of recovered factors and truth factors. We can find
that the time-delayed causal relationships are successfully recovered, as indicated by high MCC
for the causally-related factors. Besides, the latent causal variables are estimated up to permu-
tation and componentwise invertible transformation (more empirical results are given in A2.3).

0K 25K 50K 75K 100K
Steps

0.00

0.25

0.50

0.75

1.00

M
CC

Violation of assumptions

Dependent noise
Generalized Gaussian noise
(beta=1.5)
Gaussian noise (beta=2.0)
Generalized Gaussian noise
(beta=2.5)

Figure 3: MCC trajectories of NPSSM for temporal
data with clear assumption violations.

To investigate the consequence of the viola-
tion of the critical assumptions. We create an-
other two datasets: (1) with dependent process
noise terms, and (2) with additive Gaussian
noise terms, in which (1) violates the mutually
independent noise condition, and (2) violates
the linear independence condition. From Fig-
ure 3, we can find that violating the indepen-
dent noise condition deteriorates the identifia-
bility results significantly. Additionally, when the latent processes follow a linear, additive Gaussian
temporal model (thus, the linear independence condition is violated), the identifiability results are also
distorted. However, if the noise terms are slightly non-Gaussian (we change the shape parameter β of
the generalized Gaussian noise distribution from β = 2.0 to β = 1.5 or β = 2.5, we can observe the
final MCC scores are increased significantly, and the underlying latent processes become immediately
identifiable.

5.2 REAL DATA EXPERIMENTS

We evaluate N-NPSSM on three real-world datasets: Economics, Bitcoin and FRED. Economics and
Fred contain a set of macroeconomic indicators, while Bitcoin includes the potential influencers of
the bitcoin price (The detailed data descriptions and preprocess are given in Appendix A2.1.2). As
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(b) Synthetic2 (Fixed causal dynamics with distribu-
tion shift)
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(c) Synthetic3 (Time-varying causal dynamics with
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Figure 4: MCC for causally-related factors and scatter plots between estimated factors and true
factors on four synthetic datasets.

shown in Table 2, N-NPSSM outperforms all competitors in terms of both MAE and R0.9-loss, which
verifies the effectiveness of N-NPSSM (more qualitative experiments are given in Appendix A2.3).

Table 2: Forecasting performance on three real-world datasets

Method Economics Bitcoin FRED

MAE R0.9-loss MAE R0.9-loss MAE R0.9-loss

LSTM 0.717±0.04 1.672±0.18 0.747±0.04 0.433±0.07 0.632±0.05 1.052 ±0.09
KVAE 0.618±0.01 1.363±0.10 0.551±0.01 0.290±0.03 0.619±0.03 0.883±0.04
VRNN 0.786±0.12 1.534±0.07 0.759±0.06 0.222±0.01 0.728±0.01 1.045±0.08
DeepAR 0.741±0.08 1.288±0.12 1.465±0.01 0.317±0.05 0.752±0.05 0.654±0.04
N-NPSSM 0.603±0.05 1.190±0.11 0.403±0.01 0.143±0.01 0.484±0.03 0.580±0.05

6 CONCLUSION AND FUTURE WORK

In this work, we propose a general formulation of state-space models called NPSSM, which includes
a completely non-parametric transition model and a flexible emission model. We prove that even
though our model is flexible, it is generally identifiable. Moreover, we further propose N-NPSSM to
capture the possible time-varying change property of the latent processes. Given this, we develop
the estimation procedure based on VAE and make use of it for forecasting tasks. Empirical studies
on both synthetic and real-world datasets validate that our model could not only identify the latent
process but also outperform baselines in the forecasting task. While we do not establish theories
with time-varying change factors, we have demonstrated through experiments the possibilities of
generalizing our identifiability results to this setting. Extending our theories to address the issue
of a completely non-parametric emission model will also be one line of our future work. Another
interesting direction is to apply this framework to other time series analysis intelligence tasks, like
anomaly detection and change point detection, which is also interesting directions.
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REPRODUCIBILITY STATEMENT

Our code for NPSSM is attached as supplementary material. The implementation details can be
found in A3. For theoretical results, the assumptions and complete proof of the claims are in A1.2.
For synthetic experiments, the data generation process is described in A2.1.1.
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A1 IDENTIFIABILITY THEORY

A1.1 NOTATIONS

We summarize the notations used throughout the paper in Table A1.

A1.2 PROOF OF IDENTIFIABILITY THEORY

Before the proof, we first produce Lemma 1, which presents the identifiability of latent variables in
fixed latent dynamics. This result will be used in the proof of Theorem 1.
Lemma 1. (Theorem 1 in (Yao et al., 2022)) The fixed latent causal dynamics takes on the following
form:

xt = g(zt) zit = fi({zj,t−1|zj,t−1 ∈ Pa(zit)}, ϵit). (9)

Let ηkt ≜ log p(zkt|zt−1), ηk(t) is twice differentiable in zkt and is differentiable in zl,t−1, l =
1, 2, . . . , n. Suppose there exists an invertible function ĝ that maps xt to ẑt, i.e., ẑt = ĝ(xt), such
that the components of ẑt are mutually independent conditional on ẑt−1. Let

vk,t ≜
( ∂2ηkt
∂zk,t∂z1,t−1

,
∂2ηkt

∂zk,t∂z2,t−1
, ...,

∂2ηkt
∂zk,t∂zn,t−1

)⊺
,

v̊k,t ≜
( ∂3ηkt
∂z2k,t∂z1,t−1

,
∂3ηkt

∂z2k,t∂z2,t−1
, ...,

∂3ηkt
∂z2k,t∂zn,t−1

)⊺
.

If for each value of zt, v1,t, v̊1,t,v2,t, v̊2,t, ...,vn,t, v̊n,t, as 2n vector functions in z1,t−1, z2,t−1, ...,
zn,t−1, are linearly independent, then zt must be an invertible, component-wise transformation of a
permuted version of ẑt.
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Table A1: Notations.

Index
t Time index
i, j, k Variable element (channel) index
τ Time lag index
L Maximum time lag for latent variable
Lc Maximum time lag for time-varying change factors

Variable
xt Observation data
x̂t Reconstructed observation
zt latent variable
ẑt estimated latent variable
ct time-varying change variable
ĉt estimated time-varying change variable
Pa(zit), {zt−τ} Set of direct cause nodes/parents of node zit
ηt measurement noise term
ϵit Process noise term
ζt noise term for time-varying change factor

Function and Hyperparameter
p Distribution function (e.g., pϵit is the distribution of ϵit.)
g Arbitrary nonlinear and invertible mixing function
fi Nonlinear transition function for zit
fc Nonlinear transition function for ct
h Post nonlinear distortion function
ri Learned inverse transition function for residual ϵ̂i
ui Learned inverse change transition function for residual ζ̂i
β, γ, σ Weights in the augmented ELBO objective
n Latent size
π Permutation operation
T Component-wise invertible nonlinearities

Second, we consider the additive noise model, in which g1 is the identity mapping. To identify
the noise-free distribution g(zt) from noisy data with assumption 1, we follow the idea of using
convolution theorem to decouple measurement error (Khemakhem et al., 2020). Since the volume
of a matrix volA is defined as the product of the singular values of A. We could obtain that
volA = |detA| when A is invertible. We use volA in the change of variables formula to replace the
absolute determinant of the Jacobian (Ben-Israel, 1999). Suppose the joint distribution for observed
variables pf,g,p(ϵ)(xt|zt−1) and pf̂,ĝ,p̂(ϵ)(xt|ẑt−1) are matched almost everywhere. Then:∫

Z
pf,p(ϵ)(zt|zt−1)pg(xt|zt)dzt =

∫
Z
pf̂,p̂(ϵ)(zt|ẑt−1)pĝ(xt|zt)dzt, (10)∫

Z
pf,p(ϵ)(zt|zt−1)pηt

(xt − g(zt))dzt =

∫
Z
pf̂,p̂(ϵ)(zt|ẑt−1)pηt

(xt − ĝ(zt))dzt. (11)

According to the Jacobian matrix of the mapping from x̄t = g(zt) and x̄t = ĝ(zt), we have∫
X
pf,p(ϵ)(g

−1(x̄t)|zt−1)volJg−1(x̄t)pηt
(xt − x̄t)dx̄t

=

∫
X
pf̂,p̂(ϵ)(ĝ

−1(x̄t)|ẑt−1)volJg−1(x̄t)pηt
(xt − x̄t))dx̄t. (12)

Let us assume p̄f,p(ϵ),g,zt−1
(xt) = pf,p(ϵ)(g

−1(xt)|zt−1)volJg−1IX (xt), and then we have∫
X
p̄f,p(ϵ),g,zt−1

(x̄t)pηt(xt − x̄t)dx̄t =

∫
X
p̄f̂,p̂(ϵ),ĝ,ẑt−1

(x̄t)pηt(xt − x̄t))dx̄t. (13)
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According to the convolution theorem (Katznelson, 2004) that the convolution in one domain (e.g.,
time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). We
could obtain that,

(p̄f,p(ϵ),g,zt−1
⋆ pηt)(xt) = (p̄f̂,p̂(ϵ),ĝ,ẑt−1

⋆ pηt)(xt), (14)

F [p̄f,p(ϵ),g,zt−1
](ω)φηt

(ω) = F [p̄f̂,p̂(ϵ),ĝ,ẑt−1
](ω)φηt

(ω), (15)

where ⋆ denotes the convolution operator and F [·] denotes the Fourier transform. We can find
φηt

= F [pηt
] by the definition of characteristic function in Assumption 1. Then, we can remove

φηt
(ω) the term from both sides, as it is non-zero almost everywhere. We have,

F [p̄f,p(ϵ),g,zt−1
](ω) = F [p̄f̂,p̂(ϵ),ĝ,ẑt−1

](ω), (16)

p̄f,p(ϵ),g,zt−1
(xt) = p̄f̂,p̂(ϵ),ĝ,ẑt−1

(xt). (17)

Thus, we can conclude that if the distributions are the same with additive noise, the noise-free
distributions are still the same. Combined with the results from Lemma 1 that the latent variables are
identifiable up to permutation and component-wise invertible transformation.

Lastly, we consider the effect of post non-linear function g1(·). Let us denote x̃t = g2(zt) + ηt, then
the learned post non-linear function xt = ĝ1(x̃t) can be written as xt = (g1 ◦ (g1)−1 ◦ ĝ1)(x̃t). We
can further assume that ĝ1 = g1 ◦ ((g1)−1 ◦ ĝ1) = g1 ◦ g3, in which g3 represents the indeterminancy
on the space of x̃t. Following the proof of Theorem 1 of (Klindt et al., 2020), we have that g3
can only be a bijection if both g2, ĝ1 are injective functions. Thus, we can treat it as adding a
component-wise invertible nonlinear function g3

−1 on xt, which does not affect the identifiability
of zt up to permutation and component-wise invertible transformation. Therefore, NPSSM in 9 is
identifiable.

A2 EXPERIMENT DETAILS

A2.1 DATASETS

A2.1.1 SYNTHETIC DATASET GENERATION

To evaluate the identifiability and forecasting capability of our model under different scenarios, we
generate the synthetic data with 1) fixed causal dynamics; 2) fixed causal dynamics with distribution
shift; 3) time-varying causal dynamics with changing noise variances and 4) time-varying causal
dynamics with changing causal strengths. We use the first 80% data for training and the rest 20% for
evaluation.

Stationary Causal Dynamics For the fixed causal dynamics, we generate 100,000 data points
based on the following equation:

zk,t = qk({zt−τ}) +
1

bk({zt−τ})
ϵk,t. (18)

Here, ϵk,t is the process noise, which are sampled from i.i.d. Gaussian distribution (σ = 0.1).
ϵ1,t, ϵ2,t, .., ϵn,t are mutually independent and independent of zt−1. The process noise terms are
coupled with the history information through multiplication with the average value of all the time-
lagged latent variables. We set the latent size n = 8 and the lag number of the process L = 2. We
apply a 2-layer MLP with LeakyReLU as the state transition function. The emission function is a
random three-layer MLP with LeakyReLU units.

Stationary Causal Dynamics with Distribution Shift We follow the same way as the setting of
fix causal dynamics and generate 80,000 data point for the training set. To simulate distribution shift
in test phase, we vary the values of the first layer of the MLP in the test set and generate 20,000
samples. The entries of the kernel matrix of the first layer are uniformly distributed between [-1,1].

Time-Varying Causal Dynamics with Changing Causal Strengths For the time-varying causal
dynamics with changing causal strengths, we generate 100,000 data points based on the following
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equation:

ck,t = ck,t−1 + ζk,t

zk,t = qk({zt−τ}, ct) +
1

bk({zt−τ})
ϵk,t, (19)

where the noises ζkt are sampled from i.i.d. Laplace distribution (σ = 1). We take the change factor
ct as an input for the latent transition function for zt.

Time-Varying Causal Dynamics with Inter-Dependent Change Factors For the time-varying
causal dynamics with inter-dependent change factors, instead of consider the independent sources
using temporal dependencies, here we consider the inter-dependence across different variable index.
Formally we generate 100,000 data points based on the following equation:

ct = Cct−1 + ζk,t

zk,t = qk({zt−τ}) +
1

bk({zt−τ}, ct)
ϵk,t, (20)

where C is the transition matrix for change factors.The noises ζkt are sampled from i.i.d. Laplace
distribution (σ = 1). In the latent transition process for zt, noise terms are coupled with the history
information and change factors through multiplication with the average value of all the time-lagged
latent variables zt−τ and current time-varying change factor ct.

A2.1.2 REAL-WORLD DATASET

Three real-world datasets are used to evaluate the forecasting performance of the proposed model.
We use the first 80% data for training and the rest 20% for evaluation.

Economics The economics dataset was used in (Huang et al., 2019). We investigate the time-lagged
causal relationships about 10 macro-economic variables ranging from CPI, inflation to unemployment
rate with monthly data from 1965 to 2017 in the USA2. The data are normalized by subtracting the
mean and dividing them by the standard deviation.

Bitcoin The bitcoin dataset was used in (Godahewa et al., 2021). We investigate the time-lagged
causal relationships about 16 daily time series 3, which have potential influences on the bitcoin price.
Specifically, it includes hash rate, block size, mining difficulty, public opinion etc. The data are
normalized by subtracting the mean and dividing them by the standard deviation.

FRED The FRED dataset was used in (Godahewa et al., 2021). We investigate the time-lagged
causal relationships about 107 monthly time series 4. It contains a set of macro-economic indicators
from the Federal Reserve bank. The data are normalized by subtracting the mean and dividing them
by the standard deviation.

A2.2 EVALUATION METRIC

Mean Correlation Coefficient (MCC) MCC is a standard metric for evaluating the recovery
of latent factors in ICA literature. It first computes the absolute values of the Spearman’s rank
correlation coefficients between every ground-truth factor against every estimated latent factor. The
possible permutation is adjusted by solving a linear sum assignment problem in polynomial time on
the computed correlation matrix. The nonlinear transformation is adjusted by applying a nonlinear
regression on the recovered factors.

A2.3 ADDITIONAL EXPERIMENTAL RESULTS

In Figure A1, we show the recovered causal relationships from NPSSM and KVAE in terms of MCC
and causal-related factors in Synthetic3 dataset. Compared to KVAE, we can find that NPSSM has a

2Downloaded from https://www.theglobaleconomy.com/
3Downloaded from https://zenodo.org/record/5122101#.YzPm7exBz0o
4Downloaded from https://zenodo.org/record/4654833#.YzPo1exBz0o

16



Under review as a conference paper at ICLR 2023

Table A2: Comparison between N-NPSSM and NPSSM for MCC scores and forecasting performance
on synthetic datasets

Method Synthetic 1 Synthetic 3

MCC MAE R0.9-loss MCC MAE R0.9-loss

NPSSM 0.984±0.01 0.073±0.01 0.288±0.02 0.933±0.02 0.061±0.01 0.384±0.01
N-NPSSM 0.987±0.01 0.054±0.01 0.220±0.03 0.998±0.01 0.057±0.01 0.363±0.01

Method Synthetic 2 Synthetic 4

MCC MAE R0.9-loss MCC MAE R0.9-loss

NPSSM 0.996±0.01 0.080±0.01 2.178±0.02 0.946±0.02 0.095±0.02 0.196±0.01
N-NPSSM 0.995±0.01 0.069±0.01 1.866±0.02 0.992±0.01 0.081±0.01 0.169±0.02

Table A3: Model size (Total parameters) of different methods in synthetic experiments.

LSTM KVAE VRNN DeepAR NPSSM N-NPSSM

Model Size 1k 72.3k 56.2k 46.3k 78.2k 117k

better latent causal variables recovery, which are estimated up to permutation and componentwise
invertible transformation.

0 1 2 3 4 5 6 7
Estimated latents 

0
1

2
3

4
5

6
7

Tr
ue

 la
te

nt
s 

0.96 0.17 0.13 0.12 0.07 0.05 0.18 0.05

0.42 0.15 0.32 0.14 0.20 0.02 0.98 0.02

0.07 0.02 0.63 0.84 0.07 0.25 0.00 0.10

0.20 0.99 0.19 0.23 0.35 0.46 0.16 0.16

0.12 0.44 0.82 0.33 0.50 0.10 0.22 0.49

0.11 0.11 0.44 0.19 0.84 0.16 0.18 0.11

0.11 0.21 0.45 0.16 0.16 0.22 0.08 1.00

0.07 0.25 0.23 0.27 0.11 0.98 0.08 0.20

MCC=0.927

True latents

Esti
ma

ted
 lat

ent
s

(a) NPSSM

0 1 2 3 4 5 6 7
Estimated latents 

0
1

2
3

4
5

6
7

Tr
ue

 la
te

nt
s 

0.51 0.40 0.32 0.25 0.43 0.14 0.33 0.32

0.70 0.47 0.72 0.23 0.56 0.56 0.36 0.51

0.14 0.18 0.03 0.37 0.11 0.31 0.27 0.17

0.42 0.61 0.51 0.62 0.57 0.58 0.62 0.51

0.39 0.35 0.15 0.26 0.24 0.33 0.28 0.59

0.03 0.10 0.10 0.10 0.15 0.25 0.10 0.14

0.14 0.20 0.11 0.20 0.01 0.06 0.16 0.41

0.40 0.49 0.34 0.45 0.41 0.07 0.47 0.33

MCC=0.459

True latents

Esti
ma

ted
 lat

ent
s

(b) KVAE

Figure A1: MCC for causally-related factors and scatter plots between estimated factors and true
factors on two synthetic datasets for NPSSM.

In table A2, we show the performance of N-NPSSM and NPSSM on synthetic datasets. We can find
that N-NPSSM achieve comparable performance with NPSSM on fix causal dynamics settings, while
N-NPSSM have a higher MCC score on time-varying causal dynamics settings.

Figure A2 present some showcases for different models in Economics dataset for qualitative evaluation.
We can observe that N-NPSSM can predict well under various temporal data characteristics.

In Table A3, we report the total number of parameters of different methods in our synthetic exper-
iments. Compared to baselines models, the proposed NPSSM and N-NPSSM requires more extra
parameters. This is because these two methods have extra transition prior models. Compared to
NPSSM, N-NPSSM has more parameters since it needs to explicitly model the encoder for ĉ1:T
conditioned on {ẑt−τ}Lc

τ=0.

To visualize nonlinear relations, we use LassoNet (Lemhadri et al., 2021) as a post-processing tool
to remove weak edges and generate the sparse causal relation graph from the results on economics
dataset. This method prunes input nodes by jointly feeding the first hidden layer and the residual layer
through a hierarchical threshold-based optimizer. We first fit the LassoNet on the emission model,
which receives latent variables and outputs the observation variables at the same time step. As shown
in Figure A3, we can find that industry production and business confidence survey are simultaneously
correlated, as both of them are effected by latent factor ‘1’. Additionally, foreign exchange reserves,
CPI and money supply are simultaneously correlated, as all of them effected by latent factor ‘4’.
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Figure A2: The observations of each model on economics dataset
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 Unemployment rate 

 Foreign exchange reserves

 Industrial production

 Business confidence survey

 Consumer Price Index (CPI)

 Money supply (broad money)

 Inflation monthly

Figure A3: The causal relation between latent variables and observed variables. The blue circles
with number indicate latent factors, while the green circles indicate the observed variables. Note that
latent factors ‘0’, ‘2’ and ‘5’ has been removed by the pruning step when constructing this relation
graph. It means these factors do not demonstrate strong causal strengths.

In Figure A4, we use LassoNet again to extract the sparse time-lagged causal relation in latent
space. We can observe that most of the latent factors are effected by their time-lagged parents node.
Meanwhile, our model can also recover the cross relations between latent variables.
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Figure A4: The time-lagged causal relations graph for latent variables. The blue circles indicate the
time-lagged source latent factors, while the green circles indicate the target latent factors.

A3 IMPLEMENTATION DETAILS

A3.1 NETWORK ARCHITECTURE

We summarize our network architecture in Table A4.

A3.2 TRAINING DETAILS

The models were implemented by PyTorch 1.9.0. The VAE network is trained using AdamW
optimizer and early stops if ELBO loss does not decrease. The maximum epochs is 200 for synthetic
datasets and 700 for real-world datasets. A mini-batch size of 64 are used. We have used three random
seeds in each experiment and reported the mean performance with standard deviation averaged across
random seeds.

The hyperparameters of N-NPSSM include [β, γ, σ], which represent the weights for transition prior
for latent variable z, change factor z and auxiliary predictor. Since the objective of transition prior
does not consider the initial time-lagged variables, we follow the conventional VAE and use the
standard normal distribution N (0, 1) as the prior distribution for these initial latent variable instead.
Therefore, we augment the hyperparameters to [β, βinit, γ, γinit, σ]. We performed a grid search to
select these hyperparameters, which are lr ∈ [1e− 3, 5e− 3, 2e− 2], β ∈ [8e− 3, 1e− 2, 2e− 2],
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Table A4: Architecture details. BS: batch size, T: length of time series, i dim: input dimension,
z dim: latent dimension, c dim: time-varying change factor dimension, LeakyReLU: Leaky Rectified
Linear Unit.

Configuration Description Output

1. MLP-Encoder Encoder Network
Input: x1:T Observed time series BS × T × x dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × z dim

2. MLP-Decoder Decoder Network
Input: ẑ1:T Sampled latent variables BS × T × z dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense i dim neurons, reconstructed x̂1:T BS × T × i dim

3. Inference Network for z1:T Inference Network
Input Temporal embeddings BS × T × z dim
Bottleneck Compute mean and variance of posterior µz

1:T , σ
z
1:T

Reparameterization Sampling ẑ1:T

4. Inference Network for c1:T Inference Network
Input Temporal embeddings BS × T × c dim
Bottleneck Compute mean and variance of posterior µc

1:T , σ
c
1:T

Reparameterization Sampling ĉ1:T

5. Transition Prior for z1:T Nonlinear Transition Prior Network
Input Sampled latent variable sequence ẑ1:T and ĉ1:T BS × T × z dim
InverseTransition Compute estimated residuals ϵ̂it BS × T × z dim
JacobianCompute Compute log (|det (J)|) BS

6. Transition Prior for c1:T Nonlinear Transition Prior Network
Input Sampled latent variable sequence ĉ1:T BS × T × c dim
InverseTransition Compute estimated residuals ζ̂it BS × T × c dim
JacobianCompute Compute log (|det (J)|) BS

7. Auxiliary Predictor Prediction Network
Input Sampled latent variable sequence ẑ1:T BS × T × z dim
LSTMInference Use past {ẑt−τ} to predict ẑt BS × T × z dim

βinit ∈ [5e− 4, 2e− 3], γ ∈ [1e− 4, 5e− 3, 1e− 2, 2e− 2], γinit ∈ [3e− 3, 5e− 3, 2e− 2], and
σ ∈ [0.1, 0.5, 1]. To facilitate comparison, the training parameters of baselines, e.g. optimizer, batch
size, as well as the encoder and decoder architecture are identical to N-NPSSM. For all experiments,
we use z ∈ R8 and c ∈ R4 and set the maximum time lag L = 2 by the rule of thumb. For the
initialization of VAE, we follow the instruction of β-VAE (Higgins et al., 2016) and adopt the He
initialization. For the rest of modules/networks, we adopt the uniform initialization.

Training Stability We have used several standard tricks to improve training stability: (1) we
use AdamW optimizer as a regularizer to prevent training from being interrupted by overflow or
underflow of variance terms of VAE; (2) For the experiments on synthetic datasets, we separate
the learning procedure into two phases. We focus on the reconstruction task first and uncover the
latent process, then we learn the latent predictor. This allows the model to first find the identifiable
latent representations, and then learn how to utilize them for the forecasting task. For the real-world
datasets, we jointly learn these two components.

Computation Hardware We use Nvidia A100 GPU to run our experiments.
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