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Abstract

Federated learning has a significant advantage in protecting data and informa-
tion privacy. Many scholars proposed various secure learning methods within the
framework of federated learning but the study on secure federated unsupervised
learning especially clustering is limited. We in this work propose a secure kernel-
ized factorization method for federated spectral clustering on distributed data. The
method is non-trivial because the kernel or similarity matrix for spectral clustering
is computed by data pairs, which violates the principle of privacy protection. Our
method implicitly constructs an approximation for the kernel matrix on distributed
data such that we can perform spectral clustering under the constraint of privacy
protection. We provide a convergence guarantee of the optimization algorithm,
reconstruction error bounds of the Gaussian kernel matrix, and the sufficient condi-
tion of correct clustering of our method. We also present guarantees of differential
privacy. Numerical results on synthetic and real datasets demonstrate that the
proposed method is efficient and accurate in comparison to baselines.

1 Introduction

In the era of big data, human beings can analyze massive data in various fields due to the improvement
of storage and computational capabilities of computing devices [Li et al., 2020b]. Some popular
fields such as artificial intelligence, machine learning, internet of things (IoT), and cloud computing
have seen explosive development over the past few years. Nevertheless, a side effect of this trend is
that individuals and organizations have more and more concerns about potential violation of privacy
[Kairouz et al., 2021]. As a result, it has become a challenge to mine valuable information from user
data but not to directly access it.

Federated learning [Kairouz et al., 2021; McMahan et al., 2017] can train a global model without
retrieving dispersed data [Yang et al., 2018]. This advantage has made it so popular that many scholars
have put much effort into the study of federated learning. For example, Yang et al. [2019] presented
the definitions of horizontal federated learning, vertical federated learning, and federated transfer
learning. Some privacy-preserving machine learning models were also presented. For instance, He
et al. [2020] developed a federated group knowledge transfer algorithm to train small CNNs on
edge devices. Chen et al. [2018] proposed a protocol to conduct privacy-preserving ridge regression
over high-dimensional data. Besides, Kim et al. [2018] proposed a block-chained federated learning
architecture that enables on-device learning without any central coordination.

Regardless of the great progress of federated learning, it can be found that most of the existing studies
are for supervised learning [Li et al., 2020a; Ghosh et al., 2020]. Note that collecting labeled data may
deserve very high cost in real situations [Li et al., 2020b] while unlabeled data are abundant. Thus, it
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is necessary and important to study federated learning for unsupervised learning [Zhang et al., 2020;
Tzinis et al., 2021; Zhuang et al., 2021; Dennis et al., 2021] such as clustering [Ng et al., 2001; Fan
and Chow, 2017; Fan et al., 2018, 2021; Fan, 2021; Cai et al., 2022; Fan et al., 2022]. For example, Li
et al. [2021] proposed a federated matrix factorization with a privacy guarantee for recommendation
systems. Wang and Chang [2022] proposed two federated matrix factorization algorithms that can be
used for federated clustering. Besides, there are some studies on federated spectral clustering. For
instance, Wang et al. [2020] presented a federated multi-view spectral clustering method under the
assumption that the data of each view are in one client. Hernández-Pereira et al. [2021] developed a
cooperative spectral clustering model to deal with distributed data but the model is linear. However,
the study on federated spectral clustering is still very limited and deserves more attention and effort.

In this paper, we propose a federated kernelized factorization method to reconstruct a similarity
matrix for secure spectral clustering on distributed data. Our contributions are as follows.

• We propose a federated spectral clustering algorithm and provide convergence guarantee for
the optimization.

• We further propose to add noise to the data or the learned factors to enhance the security of
clustering and provide guarantees of differential privacy.

• We provide upper bounds for the reconstruction error of the true similarity matrix and
theoretical guarantees for correct clustering.

We test our method on both synthetic data and real datasets in comparison to baselines, which verify
the effectiveness of our method.

Notations We use y, y, and Y to denote scalar, vector, and matrix, respectively. The element of
Y at row i and column j is denoted by yij . We use ∥ · ∥2 to denote the ℓ2 norm of a vector and
use Tr(·), ∥ · ∥F , and ∥ · ∥sp to denote the trace, Frobenius norm, and spectral norm of a matrix
respectively. The ℓ∞ norm and ℓ2,∞ norm of a matrix Y are defined as ∥Y ∥∞ = maxij |yij | and

∥Y ∥2,∞ = maxj
√∑

i y
2
ij respectively. K, K, K, and k denote the kernel matrix, kernel function,

number of clusters, and the number k in KNN, respectively. ϕ denotes the feature map induced by K.

2 Federated Spectral Clustering (FedSC)

Suppose we have n data points of dimension m distributing in P clients. For convenience, we denote
by X ∈ Rm×n the matrix composed of all the n data points and denote by Xp ∈ Rm×Np the matrix
composed of the Np data points in client cp, where Np ≥ 1, p = 1, . . . , P , and

∑P
p=1Np = n.

Without loss of generality, we let X = [X1,X2, . . . ,XP ], which means {Xp}Pp=1 are submatrices
of X . Our goal is to perform spectral clustering on these data to partition them into K groups, under
the constraint that the data in each client cannot leave the client itself and the privacy of the data
should be protected as much as possible, though there could be a central server conducting clustering.

The aforementioned task is non-trivial because in spectral clustering, the first step is constructing an
adjacency matrix A ∈ Rn×n, which has to evaluate the similarity between every data pair (xi,xj)
using a metric function M(·, ·) and hence violates the privacy constraint in the task. To solve the
problem, we present a federated spectral clustering model in this section.

2.1 Similarity Reconstruction via Feature Space Factorization

In spectral clustering, for M(·, ·), there are many choices such as k nearest neighbor similarity and
various kernel functions. Let K(·, ·) be a kernel function and we have

K(xi,xj) = ϕ(xi)
Tϕ(xj), (1)

where ϕ : Rm → Rm′
is a feature map induced by the kernel function2 and does not need to be

carried out explicitly. When it comes to federated spectral clustering, the central server has no access

2The most widely-used kernel is the Gaussian kernel K(xi,xj) = exp
(
− 1

2r2

∥∥xi − xj

∥∥2
2

)
, of which the

feature map ϕ is an infinite-order polynomial feature map and r is a hyperparameter controlling the smoothness.
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to the raw data distributed in clients and hence cannot compute K(xi,xj) using (1). However, if
the central server can learn an effective approximation (denoted by ϕ̂(xi)) for each ϕ(xi) without
accessing xi, K(xi,xj) can be estimated, i.e.,

K(xi,xj) ≃ ϕ̂(xi)
T
ϕ̂(xj). (2)

Thus, inspired by [Fan and Udell, 2019; Fan et al., 2021], we propose to approximate each ϕ(xi) by

ϕ̂(xi) = ϕ(Z)ci, (3)

where Z = [z1, z2, . . . ,zd] ∈ Rm×d, ϕ(Z) = [ϕ(z1), ϕ(z2) . . . , ϕ(zd)], and ci ∈ Rd. Both Z and
ci are learned from individual columns of X and they can be regarded as intermediate variables
avoiding the direct access of central server to xi (details of the learning will be introduced later). It
follows from (2) and (3) that

K(xi,xj) ≃ cTi ϕ(Z)⊤ϕ(Z)cj . (4)

Thus we can reconstruct the similarity between xi and xj via (4). For convenience, let Kxx =
K(X,X) = ϕ(X)⊤ϕ(X), Kzz = K(Z,Z) = ϕ(Z)⊤ϕ(Z) ∈ Rd×d, and C = [c1, c2, . . . , cn] ∈
Rd×n. Then we have

Kxx ≃ (ϕ(Z)C)T (ϕ(Z)C) = CTKzzC ≜ K̂xx. (5)

Now we use K̂xx as a reconstructed similarity matrix for spectral clustering.

In the form of federated learning, we expand (3) to

ϕ(Xp) ≃ ϕ(Z)Cp, p = 1, . . . , P. (6)

It indicates that Z is shared for all P clients and Cp is private for client cp. Note that (6) is a matrix
factorization problem in the feature space induced by a kernel on the data in client cp, p = 1, . . . , P .
Letting C = [C1, . . . ,CP ], we solve the following distributed optimization problem3

minimize
Z, C

F (Z,C) ≜
P∑

p=1

ωpfp(Z,Cp). (7)

In (7), fp is a local objective function for client cp and ω1, . . . , ωP are nonnegative weights for the
clients. In this work, we let

fp(Z,Cp) =
1

2
∥ϕ(Xp)− ϕ(Z)Cp∥2F +

λ

2
∥Cp∥2F

=
1

2
Tr(K(Xp,Xp))− Tr(CT

p K(Z,Xp)) +
1

2
Tr(CT

p K(Z,Z)Cp) +
λ

2
∥Cp∥2F ,

(8)

where λ ≥ 0 is a penalty parameter. To guarantee the privacy of information, problem (7) shall be
solved in the framework of federated learning.

2.2 FedSC by Similarity Reconstruction and Model Averaging

In this section, we develop a FedSC algorithm by similarity reconstruction and model averaging. As
a classic and popular framework, FederatedAveraging (or FedAvg) is first introduced in [McMahan et
al., 2017] for federated learning. In our work, the proposed FedSC is, therefore, built up based on
the backbone of FedAvg as in Figure 1. FedSC consists of two stages. The first stage, shown by the
left plot of Figure 1, is federated similarity reconstruction, which constructs a similarity matrix in
the manner of federated learning. The second stage, shown by the left plot of Figure 1, is using the
reconstructed similarity matrix to implement spectral clustering.

Stage I Federated Similarity Reconstruction

Step 1 : As the startup settings for our algorithm, the shared variable Z (i.e., the dictionary matrix
Z) and each local coefficient matrix Cp for p = 1, 2, · · · , P are initialized randomly in the central
server and each client, respectively.

3Note that we do not show the data Xp in the objective explicitly since it is absorbed into fp.
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Figure 1: Diagram of the proposed FedSC. Stage I (left plot): Federated Similarity Reconstruction
(Steps 1-5). Stage II (right plot): Spectral Clustering (Steps 6-8).

Step 2 : For each round s, where 1 ≤ s ≤ S, the previous shared variable Z will firstly be broadcast
to each participated client. After that, every client uses this received dictionary matrix Z to run its
own iterative updates of local variables in the Local Update Module (LUM) as:

Cs
p =argmin

Cp

fp(Z
s−1,Cp) = argmin

Cp

1

2

∥∥ϕ(Xp)− ϕ(Zs−1)Cp

∥∥2
F
+
λ

2
∥Cp∥2F (9)

Zs
p =argmin

Zp

fp(Zp,C
s
p) = argmin

Zp

1

2

∥∥ϕ(Xp)− ϕ(Zp)C
s
p

∥∥2
F
+
λ

2

∥∥Cs
p

∥∥2
F

(10)

Step 3 : Each client sends back its own dictionary matrix Zs
p , p = 1, 2, . . . , P , to the central server.

Step 4 : The central server collects all (or a subset As−1 of) these uploaded matrices {Zs
p}Pp=1 and

averages them into one new matrix Zs in Aggregation Module (AM), i.e.,

Zs =
1

|As−1|
∑

p∈As−1

Zs
p (11)

where |As−1| is the number of participated clients. In our study, we fix the number of participating
clients for each round s. Therefore, we use the notation P̄ instead of |As−1| in the sequel. This
aggregated dictionary matrix Zs will then be used to push the next round of federated iteration until
the tolerance condition is broken.

Step 5 : When Stage I comes to an end, the spectral clustering will start.

Stage II Spectral Clustering

Step 6 : Each client sends (ZS
p ,C

S
p ) back to the central server for the final aggregation of information.

Step 7 : The required similarity matrix is then constructed based on the obtained dictionary matrix
ZS and coefficient matrix CS in Spectral Clustering Module (SCM). Based on this approximated
similarity matrix, the standard spectral clustering is implemented as usual:

y = SpectralClustering(CTK(Z,Z)C,K). (12)

Step 8 : The central server broadcasts its clustering results to every corresponding client.
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2.3 Optimization Algorithm for Federated Similarity Reconstruction

As described in the above section, alternate updating of local variables is a key to solving the proposed
FedSC problem. In the following two parts, we discuss the optimization for Z and C, respectively.

For a client cp, consider the corresponding local optimization problem
minimize

Z,C
fp(Z,C) (13)

where fp(Z,C) = 1
2 ∥ϕ(Xp)− ϕ(Z)C∥2F + λ

2 ∥C∥2F = 1
2Tr(K(Xp,Xp))−Tr(CTK(Z,Xp))+

1
2Tr(CTK(Z,Z)C)+ λ

2 ∥C∥2F . Let the derivative of fp(Z,C) w.r.t. C be zero, we get the following
one-step update for C:

Cs
p = (K(Zs−1,Zs−1) + λId)

−1K(Zs−1,Xp), p = 1, 2, . . . , P. (14)

The derivative of fp(Z,C) w.r.t. Z is
∂L
∂Z

=
1

σ2
(XpWZ −ZW̄Z) +

2

σ2
(ZQZ −ZQ̄Z), (15)

where the intermediate variables are detailed as
WZ = −CT ⊙K(Xp,Z) W̄Z = diag(1T

nWZ)
QZ = (0.5CCT )⊙K(Z,Z) Q̄Z = diag(1T

d QZ).

Here 1n and 1d are the column vectors with all elements of 1. Because of the kernel function, Z
cannot be updated like Cp. Here, we use the gradient method to update it. At local iteration t, by
setting Zs,0

p = Zs−1, the update scheme of Z is

Zs,t
p = Zs,t−1

p − ηt
∂fp
∂Z

(Zs,t−1
p ). (16)

where ηt is the step size and can be set as the reverse of the Lipschitz constant of gradient if possible.

We summarize the optimization details in Algorithm 1 (shown in Appendix A).

2.4 Convergence Analysis of The Proposed Algorithm

First of all, it is obvious that all local objective functions fp(·, ·) for p = 1, . . . , P are lower bounded.
To analyze the convergence of Algorithm 1, we make two assumptions. The first one is the Lipschitz
continuity of the gradient of the local objective functions.
Assumption 2.1. The gradients of all local objective functions fp(·, ·) for p = 1, . . . , P are Ls

Zp
-

Lipschitz continuous in Z, that is∥∥∇Zfp(Z
s,t,Cs

p)−∇Zfp(Z
s,t−1,Cs

p)
∥∥
F
≤ Ls

Zp

∥∥Zs,t −Zs,t−1
∥∥
F
. (17)

In addition, there exist some lower and upper bounds for Ls
Zp

, i.e., 0 < LZ ≤ Ls
Zp

≤ LZ hold for all
p = 1, . . . , P and s = 1, . . . , S.

The second assumption, similar to [Li et al., 2019; Lian et al., 2017], is as follows.
Assumption 2.2. The difference between the local gradient and the global gradient is bounded as

∥∇Zfp(Z,Cp)−∇ZF (Z,C)∥F ≤ ζ, ∀ p = 1, . . . , P. (18)

To build the convergence condition, we define the following iterative terms of Zs,t and Cs for all
t = 1, . . . , Q and s = 1, . . . , S:

TC(Z
s,0,Cs) =

P∑
p=1

ωp

∥∥Cs
p −Cs−1

p

∥∥2
F

TZ(Z
s,t,Cs) =

∥∥Zs,t −Zs,t−1
∥∥2
F

(19)

where the instantaneous average Zs,t is defined as

Zs,t =
1

P̄

∑
p∈As

Zs,t
p . (20)

Based on the above assumptions, we provide the following convergence guarantee for Algorithm 1.
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Theorem 2.3 (Convergence of Algorithm 1). Suppose Assumption 2.1 and Assumption 2.2 hold. Let
T = S(1 + Q) be the total number of global and local rounds. Then the sequence {(Zs,t,Cs)}
generated by Algorithm 1 with stepsize 1/Ls

Zp
and ωp =

Np

n satisfies

1

T

[
S∑

s=1

TC(Z
s,0,Cs) +

S∑
s=1

Q∑
t=1

TZ(Z
s,t,Cs)

]
≤ D

T
[F (Z1,0,C0)− f ] +

16ζ2ψD

P̄LZ

(21)

where ψ = 1 + (P̄+8)(Q−1)(2Q−1)

P̄−4(Q−1)2(1+L
2
Z/L2

Z)
and D = 2

γ
min

+λ + 4
LZ

.

The proof can be found in Appendix E. We see that when T → ∞, the algorithm converges to a finite
value, which is small if ζ is small and LZ is close to LZ .

3 Security-Enhanced FedSC

In order to enhance the security of FedSC, we present two noise-augmented variants of the proposed
algorithm in this section.

3.1 FedSC with Perturbed Data

We add random noise to the data in each client and then perform Algorithm 1 to reconstruct a
similarity matrix, which further improves the privacy of data. Specifically, the data X ∈ Rm×n is
perturbed by a noise matrix E ∈ Rm×n to form the noisy data matrix

X̃ = X +E, (22)

where Eij ∼ N (0, σ2). We then perform Algorithm 1 with a Gaussian kernel of parameter r on X̃
and obtain Z, C = [C1,C2, . . . ,CP ], and

K̂x̃x̃ = CTK(Z,Z)C. (23)

We have the following reconstruction (for the true similarity matrix Kxx = K(X,X)) error bound4.
Theorem 3.1 (Error bound of similarity matrix reconstruction). Suppose ∥X∥2,∞ = θ, ∥C∥2,∞ =

τC , and
∥∥∥ϕ(Z)C − ϕ(X̃)

∥∥∥
2,∞

≤ γ, where θ, τC , and γ are some nonnegative constants. Then with

the probability at least 1− n(n− 1)e−t, the reconstructed similarity matrix K̂x̃x̃ satisfies∥∥∥K̂x̃x̃ −Kxx

∥∥∥
∞

≤ 1

r2

[
(σξ +

√
2θ)2 − 2θ2

]
+ (

√
dτC + 1)γ (24)

where ξ =
√
(m+ 2

√
mt+ 2t).

Note that r is the hyperparameter of the Gaussian kernel. In our experiment, r was automatically
estimated as the mean of all pairwise distances between data points, i.e., r = 1

n2

∑
i,j ∥xi − xj∥2.

Assume |xik − xjk| = O(ε) for all i, j ∈ [n], k ∈ [m], then ∥xi − xj∥ = O(
√
mε), which

means r2 is linear with mε2. Thus, the reconstruction error ∥K̂x̃x̃ −Kxx∥∞ is upper bounded by
O(σ2/ε2 +

√
dγτC), where ϵ2/σ2 can be regarded as a signal-noise ratio. Therefore, the bound is

useful. In general, Theorem 3.1 indicates that when the added noise is small and the optimization
makes γ small, the reconstruction error for the true similarity matrix is less than a small constant with
high probability. This verified the effectiveness of our similarity reconstruction method.

It should be pointed out that K̂x̃x̃ is not guaranteed to be a sparse matrix and hence the corresponding
graph may not contain multiple connected components. We therefore use an extra KNN-based
operation to get a sparse similarity matrix, which may also reduce the computational cost of eigenvalue
decomposition when n is very large. Specifically, we let

K̂x̃x̃ = getSparseMatrixbyKNN(K̂x̃x̃, k) (25)

4We defer the proof for all theoretical results to the supplementary material.
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which only keeps the largest k connections from each point to other points. Finally, we perform
spectral clustering using K̂x̃x̃. The central server broadcasts the clustering results to each participating
client.

As mentioned before, one can choose to inject some noise into its raw data to avoid privacy leakage.
However, a question is how much noise we can add to the data to the largest extent for the guarantee
of correct clustering. We first present the following definitions.

Definition 3.2 (Local neighbor set). Suppose xi and xj are data points of X ∈ Rm×n with class
labels Li and Lj respectively, and let KNN(xi) be the set of the k-nearest neighbors of xi. We define

N
k,intra
i := {xj ∈ X|Li = Lj and xj ∈ KNN(xi)}. (26)

Definition 3.3 (Global neighbor set). Suppose xi and xj are data points of X ∈ Rm×n with class
labels Li and Lj respectively, and let KNN(xi) be the point set of k-nearest neighbors of xi. We
define

N
k,global
i := {xj ∈ X|xj ∈ KNN(xi)}. (27)

If we call the local neighbor of data point xi the intra-class neighbor of xi, another definition called
inter-class neighbor of xi can be further introduced as follows.

Definition 3.4 (Inter-class neighbor set). Suppose xi and xj are data points of data matrix X ∈
Rm×n with class labels, Li and Lj , respectively, and let KNN(xi) be the point set of k-nearest
neighbors of xi. We define

N
k,inter
i := {xj ∈ X|Li ̸= Lj and xj ∈ KNN(xi)}. (28)

Based on the above definitions, the following definition is presented to determine whether a data
point can be correctly clustered or not.

Definition 3.5 (Correct clustering). Suppose xi ∈ Rm and xj ∈ Rm are data points of data matrix
X ∈ Rm×n, xi is said to be correctly clustered with a tolerance of ϵ if

a. K̂ij ≥ maxk(K̂
inter
ik )− ϵ for any of xj ∈ N

k,intra
i ;

b. K̂ij ≤ mink(K̂
intra
ik ) + ϵ for any of xj ∈ N

k,inter
i .

Based on Definition 3.5, the following theorem gives the guarantee of our security-enhanced FedSC.

Theorem 3.6 (Guarantee of noisy spectral clustering). Let B(σ) = 1
r2

[
(σξ +

√
2θ)2 − 2θ2

]
+

(
√
dτC + 1)γ. Then with the probability of at least 1− n(n− 1)e−t, performing spectral clustering

using K̂x̃x̃ yields correct clustering results if

B(σ) ≤ ϵ

2
−max

i

1

4

[
max

k
(Kinter

ik )−min
k

(Kintra
ik )

]
(29)

where Kinter
ik = (Kxx)

inter
ik and Kintra

ik = (Kxx)
intra
ik .

Based on Theorem 3.1 and Theorem 3.6, we can get a bound on the variance of noise for FedSC with
perturbed data:

σ ≤ 1

ξ

[√
r2(B1 −B2) + 2θ2 −

√
2θ
]

(30)

where B1 = ϵ
2 −maxi

1
4

[
maxk(K

inter
ik )−mink(K

intra
ik )

]
and B2 = (

√
dτC + 1)γ. This bound

indicates that the intensity of noise should not be too strong otherwise it may seriously affect the
performance of federated spectral clustering. But, at least under this bound, one can choose to inject
as much noise as possible into the raw data to ensure data security and privacy.

Using Theorem 3.22 in [Dwork et al., 2014] and the post-processing property of differential privacy,
we have the following privacy guarantee for this enhanced FedSC algorithm.

Proposition 3.7. FedSC with perturbed data given by (22) is (ε, δ)-differentially private if σ ≥
2cτX/ε, where c2 > 2 ln(1.25/δ).

7



Based on this proposition and (30), we obtain the following privacy-utility trade-off:

2
√
2 ln 1.25/δτX/ε < σ ≤ 1

ξ

[√
r2(B1 −B2) + 2θ2 −

√
2θ
]
. (31)

This ensures both clustering performance and (ε, δ)-differential privacy. In particular, if we substitute
σ with the upper bound, we can get a strong level of privacy but the worst utility. By the way, B1−B2

is related to the property of the data. A larger B1 −B2 means a better property for clustering, which
further provides a larger upper bound for the noise level σ, yielding a stronger privacy guarantee.

3.2 FedSC with Perturbed Factors

In FedSC with perturbed factor, we added Gaussian noise to Z in every round of the optimization but
added Gaussian noise to C in the last round of the optimization. To be more specific, C̃ = C +EC ,
and Z̃ = Z + EZ , where the entries of EC and EZ are drawn from N (0, σ2

C) and N (0, σ2
Z)

respectively. Then we perform spectral clustering using the following reconstructed kernel matrix:

K̃xx = C̃TK(Z̃, Z̃)C̃. (32)

The following theorem shows the reconstruction error bound for the ground truth kernel matrix Kxx.
Theorem 3.8. Assume ∥ϕ(Z)C − ϕ(X)∥2,∞ ≤ γ, ∥C∥2,∞ ≤ τC . Then with probability at least
1− (n+ d)e−t, it holds that ∥∥∥K̃xx −Kxx

∥∥∥
∞

≤ γzc(γzc + 2) (33)

where γzc = γ +
√
d

(
σCξd + τC

√
2
(
1− exp

(
−σ2

Zξ2d
2r2

)))
and ξ2d = d+ 2

√
dt+ 2t.

We see that, given a fixed γ, the reconstruction error becomes smaller if σZ and σC are smaller.
Based on Theorem 3.8 and Definitions 3.2-3.5, we can obtain a bound similar to that in Theorem 3.6
to guarantee correct clustering, which will not be detailed here.
Theorem 3.9. In FedSC, assume max(p,j){∥xpj

∥, ∥x′
pj
∥} ≤ τX , max(i,j) ∥zi − xj∥∞ = Υ,

∥Zs
p∥sp ≤ τZ ∀s, and ∥CS∥2,∞ ≤ τC , we perturb {Zs

p}Pp=1, ∀s = 1, 2, . . . , S with noise drawn
from N (0, σ2

Z) with the parameter σZ ≥
√
(8S∆2(gZ) log(e+ (εZ/δZ))/ε2Z) where ∆(gZ) =

2
√
dτCτXηk

r2

{
1 + (τX + τZ)

(τX+Υ)
r2

}
and perturb {CS

p }Pp=1 with noise drawn from N (0, σ2
C) with

the parameter σC ≥ 2cλ−1
√
dτX(τX + Υ)/(r2εC) for c2 > 2 ln(1.25/δC). Then, FedSC is

(εC + εZ , δC + δZ)-differentially private.

Theorem 3.9 shows that our FedSC with perturbed factors can protect the data privacy provided that
the noises added to C and Z are sufficiently large. Similarly to (31), we can also get a privacy-utility
trade-off using Theorem 3.8 and Theorem 3.9, which is detailed in Appendix B.

4 Related Work

It should be pointed out that the study on federated spectral clustering in literature is very limited.
Besides our work, the only work that aims to address the problem is [Hernández-Pereira et al., 2021].
More introduction and discussion about the related work (federated matrix factorization/clustering
[Yang et al., 2021; Ghosh et al., 2020; Dennis et al., 2021; Wang and Chang, 2022] and spectral
clustering [Von Luxburg, 2007; Hernández-Pereira et al., 2021]) are in the supplementary material.

5 Experiments

5.1 Performance on similarity reconstruction

Taking the COIL20 dataset [Nene et al., 1996] as an example, we first obtain the similarity matrix
from vanilla spectral clustering based on the same kernel function. Then, we use the proposed method
to derive the estimated similarity matrix K̂x̃x̃ which is actually an approximation of ground truth. To

8



make it clearer, we also give the corresponding sparse similarity matrices by KNN sparsification (25).
Figure 2 shows the similarity matrices constructed by different methods. We see that the proposed
method can be able to successfully reconstruct the similarity matrix in the federated scenarios.
The reconstruction errors on synthetic data, iris, banknote authentication, and COIL20 are in the
supplementary material.

5.2 Clustering performance of FedSC

In this subsection, we check the clustering performance of the proposed security-enhanced FedSC
method on both synthetic and real-world datasets. The synthetic dataset is generated from concentric
circles. The details are in the supplementary. This synthetic dataset is visualized in Figure 3(a). Here,
we continue to adopt the aforementioned COIL20 as an example of real-world datasets.

(a) (b) (c) (d)

Figure 2: Visualization of similarity matrices: (a)
similarity matrix of vanilla spectral clustering; (b)
approximated similarity matrix of the proposed
method; (c)(d) the corresponding sparse similarity
matrices generated by KNN sparsification.

Taking the synthetic dataset as an example, the
first group of cases helps illustrate the effective-
ness of the proposed FedSC method. we first
apply the vanilla spectral clustering method to
the clean data. The predictive result is shown
in Figure 3(b). It is clear that the vanilla spec-
tral clustering method correctly clusters the data
points lying in concentric circles. We then use
the proposed FedSC method to cluster the data.
One can find in Figure 3(c) that almost all of
the data points also have been grouped correctly.
However, when we inject some volume of noise
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(c) FedSC
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(f) FedSC

Figure 3: FedSC on concentric circles: (a) ground truth; (b) cluster assignment generated by vanilla
SC; (c) cluster assignment generated by FedSC; (d) Noisy ground truth; (e) cluster assignment
generated by vanilla SC on noisy data; (f) cluster assignment generated by FedSC on noisy data.

into the raw data, things may change a lot. Figure 3(d) is actually the ground truth Figure 3(a) adding
some Gaussian noise. When focusing on this noisy data of concentric circles, we see from Figure 3(e)
that the vanilla SC failed to cluster the data points while the proposed FedSC method is still able to
correctly cluster the data to some extent as in Figure 3(f). As we know, the similarity graph directly
constructed from raw data could be very sensitive to each data point. When we add too much noise,
the similarity graph may fail to model the local neighborhood relationships which may be the reason
why data points in Figure 3(e) are not separable for vanilla SC. Instead, FedSC is based on matrix
factorization in the high-dimensional feature space and has a potential denoising effect. Therefore, it
is possible for our method to achieve a better performance.The visualization of COIL20 can be found
in the supplementary material.
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5.3 Comparison with baselines

We compare our method with the clustering method DSC proposed by [Hernández-Pereira et al.,
2021]. Because the existing literature on federated spectral clustering is rare, we here select both
classic K-means and spectral clustering as the baselines. Two metrics including accuracy and NMI
are adopted to evaluate the clustering results on four datasets including iris [Dua and Graff, 2017],
COIL20 [Nene et al., 1996], banknote authentication [Dua and Graff, 2017], and USPS [Hull, 1994].
The details are in the supplementary material. Besides the clean data, we also consider adding noise
to them to test the performance of methods under the condition of privacy protection. We directly
inject Gaussian noise with zero mean and variance σ2 to the raw matrix X ∈ Rm×n as X̃ = X +E
where E is a Gaussian noise matrix, each element Ei,j of which is i.i.d. with N (0, σ2).

Table 1 shows the clustering accuracy. Our FedSC almost always achieves comparable clustering
results to vanilla SC. It even outperformed vanilla SC in some cases and K-means in most cases
since FedSC has a potential denoising effect by approximating a similarity matrix. More importantly,
FedSC significantly outperformed DSC in almost all cases. The reason is that DSC performs spectral
clustering on each local dataset, which may lead to very unstable and inaccurate results.

Table 1: Comparison of clustering accuracy (X and X̃ denote the raw data and corrupted data
respectively). The results of NMI are in Section D.4.

Kmeans SC DSC FedSC

X

Iris 0.8933± 0.0000 0.9000± 0.0000 0.5480± 0.0679 0.9000± 0.0031
COIL20 0.6113± 0.0534 0.8025± 0.0009 0.1009± 0.0100 0.7828± 0.0231

Bank 0.6122± 0.0000 0.5918± 0.0000 0.5582± 0.0045 0.7672± 0.1457
USPS 0.6704± 0.0047 0.6635± 0.0000 0.1686± 0.0014 0.6596± 0.0021
ORL 0.6325± 0.0270 0.7865± 0.0106 0.1653± 0.0073 0.7235± 0.0170

X̃ with 0.1σ

Iris 0.8940± 0.0152 0.9120± 0.0332 0.4533± 0.0658 0.8993± 0.0299
COIL20 0.6283± 0.0484 0.8024± 0.0020 0.0995± 0.0122 0.7790± 0.0213

Bank 0.6067± 0.0022 0.6067± 0.0944 0.5558± 0.0023 0.7168± 0.1068
USPS 0.6732± 0.0035 0.6647± 0.0016 0.1690± 0.0007 0.6643± 0.0022
ORL 0.6195± 0.0329 0.7810± 0.0065 0.1600± 0.0089 0.7323± 0.0250

X̃ with 0.3σ

Iris 0.8420± 0.0274 0.8327± 0.0267 0.4533± 0.0674 0.8427± 0.0404
COIL20 0.6422± 0.0366 0.7997± 0.0029 0.0981± 0.0084 0.7793± 0.0240

Bank 0.6020± 0.0038 0.5859± 0.0105 0.5588± 0.0074 0.6046± 0.0064
USPS 0.6704± 0.0063 0.6720± 0.0044 0.1673± 0.0019 0.6884± 0.0509
ORL 0.6098± 0.0167 0.7885± 0.0047 0.1665± 0.0057 0.7417± 0.0280

X̃ with 0.5σ

Iris 0.7740± 0.0252 0.7313± 0.0494 0.3833± 0.0204 0.7540± 0.0336
COIL20 0.6389± 0.0296 0.7950± 0.0080 0.1033± 0.0167 0.7403± 0.0294

Bank 0.6051± 0.0076 0.5923± 0.0094 0.5566± 0.0030 0.6086± 0.0073
USPS 0.6699± 0.0031 0.7843± 0.0030 0.1683± 0.0017 0.7778± 0.0062
ORL 0.5983± 0.0295 0.7930± 0.0172 0.1615± 0.0096 0.7107± 0.0345

X̃ with 0.7σ

Iris 0.6500± 0.0420 0.6087± 0.0468 0.3927± 0.0349 0.6120± 0.0455
COIL20 0.6220± 0.0627 0.7662± 0.0172 0.0893± 0.0055 0.6803± 0.0198

Bank 0.6100± 0.0112 0.6046± 0.0144 0.5566± 0.0035 0.6106± 0.0107
USPS 0.6638± 0.0044 0.7747± 0.0040 0.1675± 0.0004 0.7587± 0.0117
ORL 0.5723± 0.0360 0.7860± 0.0093 0.1613± 0.0066 0.6910± 0.0232

5.4 More numerical result

The tSNE visualization, clustering results in terms of NMI, the performance of FedSC with perturbed
factors, etc, are in the supplementary material.

6 Conclusion

This paper has proposed a secure kernelized factorization method for federated spectral clustering on
distributed data. We provide theoretical guarantees for optimization convergence, correct clustering,
and differential privacy. The numerical experiments on synthetic and real image datasets verified the
effectiveness of our method. To the best knowledge of the authors, this is the work that successfully
addresses the problem of federated spectral clustering. One limitation of this work is that we haven’t
tested our FedSC on very large datasets, though the moderate-size datasets are sufficient to justify
the effectiveness of our FedSC. Note that for large-scale datasets, the bottleneck of clustering is the
eigenvalue decomposition of the Laplacian matrix, not our FedSC algorithm.
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A Framework of the Proposed Algorithm

In the beginning, Z and Cp for p = 1, 2, . . . , P are initialized randomly in the central server and
clients, respectively. Then, Z is broadcast to every participating client and helps do the alternate
updating of Zp and Cp based on the update schemes (16) and (14). Afterward, the obtained matrix
Zp is sent back to the central server and aggregated for the next round of training. When the tolerance
condition is broken, both ZS

p and CS
p are sent back to the central server for the subsequent clustering

task.

Algorithm 1 Proposed Federated Similarity Reconstruction
Input: Distributed data {Xp, : p ∈ P := {1, 2, . . . , P}}, clients weights {ωp : p ∈ P}.

1: Initialize Z0 at server side and {C0
p}Pp=1 at client sides.

2: Randomly choose A0 ⊆ P with |As| = P̄ .
3: for round s = 1 to S do
4: Server side: compute Zs−1 = 1

P̄

∑
p∈As−1 Zs−1

p .
5: Broadcast Zs−1 to clients cp, p ∈ As.
6: Client side:
7: for client p = 1 to P̄ in parallel do
8: set Zs,0

p = Zs−1

9: update local variable Cs
p :

10: Cs
p = (K(Zs,0,Zs,0) + λId)

−1K(Zs,0,Xp)
11: update local variable Zs

p :
12: for t = 1 to Q do
13: Zs,t

p = Zs,t−1
p − ηs∇Zfp(Z

s,t−1
p )

14: end for
15: denote Zs

p = Zs,Q
p

16: if client p ∈ As−1 then
17: upload Zs

p to the server.
18: end if
19: end for
20: Randomly choose As ⊆ P with |As| = P̄ .
21: end for
Output: Z,Cp, p = 1, 2, . . . , P

B More theoretical results about FedSC with perturbed factors

Based on Theorem 3.8 and Theorem 3.6, we can get a bound on the variance of noise for FedSC with
perturbed factors:

γzc(σZ , σC) ≤ −1 + 2
√
1 +B1 (34)

where B1 = ϵ
2 − maxi

1
4

[
maxk(K

inter
ik )−mink(K

intra
ik )

]
and γzc(σZ , σC) is exactly the γzc

in Theorem 3.8 and is clearly a non-decreasing function with respect to σZ and σC , respectively.
Therefore, it is a valid upper bound on both σZ and σC .

Proof. By Theorems 3.8 and 3.6, we have

γzc(γzc + 2) ≤ B1 (35)

That is, we need to solve a quadratic equation γ2zc + 2γzc −B1 = 0 with both γzc ≥ 0 and B1 ≥ 0.
Since the discriminant ∆ = 4 + 4B1 ≥ 0, we have two roots −1 ± 2

√
1 +B1 for this equation.

Thus, it has 0 ≤ γzc ≤ −1 + 2
√
1 +B1 as desired.

This bound indicates that the intensity of noise should not be too strong otherwise it may seriously
affect the performance of federated spectral clustering. But, at least under this bound, one can choose
to inject as much noise as possible into the raw data to ensure data security and privacy.
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Based on Theorem 3.9 and (34), we obtain the following privacy-utility trade-off:
γzc(σZ , σC) ≤ −1 + 2

√
1 +B1

σZ ≥
√
(8S∆2(gZ) log(e+ (εZ/δZ))/ε2Z)

σC ≥ 2cλ−1
√
dτX(τX +Υ)/(r2εC)

(36)

This ensures both clustering performance and (ε, δ)-differential privacy. In particular, if we increase
the intensity of either σZ or σC to reach the upper bound of γzc, we can get a strong level of privacy
but the worst utility. By the way, B1 is related to the property of the data. A larger B1 means a better
property for clustering, which further provides a larger upper bound for the noise level, yielding a
stronger privacy guarantee.

C More discussion on the privacy-utility trade-off of FedSC

Although theoretical results are presented in our study to ensure the security of FedSC, we still provide
here some insight into methods of using Secure Aggregation or other cryptographic techniques to
handle pair-wise client functions (i.e., kernel function in our study). Even though the communication
cost will be high, it might be an alternative to reduce the DP noise levels. Specifically, it can be
performed as follows.

• Step 1: ZS
p is posted to the central server;

• Step 2: Central server aggregates ZS
p to get the global ZS ;

• Step 3: Central server computes KZZ = K(ZS ,ZS) and broadcast it to clients;
• Step 4: For client p and ci ∈ Cp, if cj ∈ Cp, then client p directly calculate
K̂ij = ciKZZcj ; if cj ∈ Cp′ , then client p firstly encrypts and transfers its ci to
client p′, and then client p′ also encrypts its cj and use the cipher text to compute
enc(K̂ij) = enc(cTi )enc(KZZ)enc(cj); Client p′ transfers the result enc(K̂ij) back to
client p; Client p decrypts enc(K̂ij) to get K̂ij .

• Step 5: Each client p sends its estimated results K̂ij back to the central server without
sending its own Cp;

• Step 6: Central Server checks whether these posted results from clients are compatible with
each other in case of injection attacks and then performs spectral clustering.

This alternative does not send clients’ C to the central server and gives an extra cross-validation
process in the central server which may be useful to enhance security.

D More details and results of the experiments

It should be pointed out that in Table 2 of the main paper, the signal-noise ratio is as high as 12dB,
which means the noise is tiny. The parameter d in our FedSC was automatically determined and has a
much larger value than that in the noiseless case. That is why the performance of FedSC in the noisy
case is even better than that in the noiseless case of some datasets. In this appendix, we increase the
noise level (σe = βσ, where σ denotes the standard deviation of the clean data) and consider one
more real dataset.

D.1 Dataset description

Synthetic data The synthetic data is generated from concentric circles. For θi ∈ [0, 2π], i =
1, 2, . . . , 1258, all the points of this synthetic dataset X ∈ R2×1258 are generated by

xi = (xi1, xi2) :

{
xi1 = r cos(θi) + ei1
xi2 = r sin(θi) + ei2

(37)

where θ0 = 0, θ1258 = 2π, and the remaining θi are evenly spaced points between θ0 and θ1258.
The additive noise ei1 and ei2 are drawn from N (0, σ2

e). We let σe = 0.1σx, where σx denotes
the standard deviation of the data without the additive noise e. In our experiment, we set the
hyperparameter r in (37) to 2 and 4.
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Figure 4: Synthetic dataset of 2 concentric circles: (a) ground truth; (b) noisy data perturbed by
Gaussian noise with mean zero and standard deviation 0.2std(X).

Real-world data Both iris and banknote authentication are from the UCI machine learning library.
COIL20 is an image dataset from Columbia Imaging and Vision Laboratory. USPS is a dataset for
handwritten text recognition research. The details of the mentioned datasets are shown in Table 2.

Table 2: Summary of four real-world datasets

# of clusters # of attributes # of instances
Iris 3 4 150
COIL20 20 20×20 1440
Bank 2 5 1372
USPS 10 16×16 9298
ORL 40 92×112 400

The visualizations (by t-SNE [Van der Maaten and Hinton, 2008]) of three real-world datasets are
shown in Figure 5.
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Figure 5: t-SNE visualization of some real-world datasets

D.2 Evaluation metrics

We use two metrics to evaluate the clustering performance of our method: accuracy and normalized
mutual information (NMI). Between them, accuracy is affected by the misclassification rate of cluster
assignment. The smaller the misclassification rate, the greater the accuracy. In this study, given data
matrix X ∈ Rm×n with n sample points of m features, let Li and Lri for i = 1, 2, . . . , n be the
true labels and predictive labels, respectively, the accuracy of predictive cluster assignment Lr is
computed by

accuracy =
1

n
card({i|Li = Lri, i = 1, . . . , n}). (38)

NMI is a normalized version of mutual information that measures the agreement of two cluster
assignments without considering their permutations.

NMI =
2I(L;Lr)

H(L) +H(Lr)
(39)
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where I(L;Lr) is the mutual information between L and Lr, and H(L) and H(Lr) are the entropy
of L and Lr, respectively.

D.3 Parameter settings

In our experiments, we set some hyperparameters including λC , d, r, and k for implementing the
proposed FedSC. Among them, λC as the penalty parameter of the regularization term is set to
1e− 2. k is the hyperparameter of the KNN-based operation on the similarity matrix. We set k to
max(ceil(log(n)), 1) based on [Von Luxburg, 2007]. The details of methods to set the remaining
two parameters are as follows.

Setting of hyparameter r The hyperparameter r controls the smoothness of Gaussian kernel
function. Due to the distinct characteristics of the datasets, we adopt the following adaptive method
to determine the value of r:

r = c ∗Mean(Re(
√
D)) (40)

where c = 1 and D is the distance matrix of data points, of which its element

Dij = ∥xi − xj∥22, for i, j = 1, 2, . . . , n. (41)

In reality, the global D cannot be obtained because FedSC does not allow data transmission. Then
we compute Dp for each client cp, p = 1, . . . , P and then determine r as follows

r =
c

P

P∑
p=1

Mean(Re(
√
Dp)), (42)

where c can be tuned.

Setting of hyparameter d The hyperparameter d controls the complexity of the approximation
ϕ(X) ≃ ϕ(Z)C. We adaptively determine the value of d for each dataset:

d = inf
k

{
k ∈ N|

k∑
i=1

si ≥ tol for k ≤ n

}
(43)

where si denotes the i-th largest eigenvalue of the kernel matrix Kxx, i = 1, . . . , n. In our experiment,
we set the threshold tol to 0.99.

It is worth noting that we use the same r in the vanilla SC and our FedSC for a fair comparison,
though D cannot be obtained in our FedSC. In addition, the setting of d relies on Kxx that is also
not obtainable in our FedSC. We use this setting for convenience and in reality we need to determine
d by other methods such as letting d = γm, where γ is a hyperparameter.

D.4 Clustering results

NMI results The average results of 10 repeated trials are reported in Table 1 (ACC) and Table 3
(NMI). Note that for the USPS dataset, only 5 trials are performed to save time due to its large number
of sample points. We see that our FedSC outperformed Kmeans and DSC significantly in almost all
cases and has at least comparable performance as SC in most cases.

Influence of d The clustering accuracies with different d are reported in Table 4.

Results of FedSC with perturbed factors The results on COIL20 are reported in Table 5, where
σZ = αzstd(Zp) and σC = αcstd(C). Through this experiment, it can be observed that perturbing
factors can have a more significant impact on the accuracy of clustering results than perturbing raw
data. That is, perturbing factors are more sensitive and can achieve a specified level of differential
privacy with weaker noise. Furthermore, it can be seen from Table 5 that the clustering performance
is more sensitive to σC than σZ .

Malicious attack on C Due to the kernel trick, the optimization problem is nonlinear and nonconvex.
Hence, it is very difficult for potential attackers to recover the data X from the uploaded factors
Z,C, especially when X or Z,C are perturbed by noise. Nevertheless, the attacker may perform
K-means on the {Cp}Pp=1 to obtain clustering results. However, we find that the clustering accuracy
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Table 3: Comparison with existing clustering methods (NMI)

NMI
Kmeans SC DSC FedSC

X0

Iris 0.6356± 0.0000 0.6647± 0.0000 0.2516± 0.0707 0.6708± 0.0139
COIL20 0.7658± 0.0143 0.8809± 0.0006 0.1259± 0.0225 0.8613± 0.0144

Bank 0.1480± 0.0000 0.1228± 0.0000 0.0122± 0.0160 0.4901± 0.3050
USPS 0.6125± 0.0026 0.8083± 0.0000 0.0064± 0.0016 0.7972± 0.0121
ORL 0.8343± 0.0136 0.8980± 0.0045 0.3970± 0.0045 0.8525± 0.0097

Xn with 0.1σ

Iris 0.6267± 0.0305 0.6878± 0.0764 0.1458± 0.0794 0.6666± 0.0600
COIL20 0.7721± 0.0122 0.8805± 0.0012 0.1214± 0.0254 0.8529± 0.0209

Bank 0.1383± 0.0039 0.1314± 0.2010 0.0039± 0.0081 0.3853± 0.2390
USPS 0.6147± 0.0022 0.8097± 0.0016 0.0076± 0.0010 0.7920± 0.0133
ORL 0.8280± 0.0153 0.8948± 0.0019 0.3944± 0.0074 0.8554± 0.0104

Xn with 0.3σ

Iris 0.5292± 0.0528 0.5072± 0.0442 0.1403± 0.0792 0.5385± 0.0594
COIL20 0.7745± 0.0185 0.8767± 0.0014 0.1174± 0.0224 0.8477± 0.0188

Bank 0.1327± 0.0062 0.1031± 0.0211 0.0135± 0.0253 0.1489± 0.0151
USPS 0.6112± 0.0052 0.7927± 0.0123 0.0070± 0.0016 0.7837± 0.0091
ORL 0.8136± 0.0067 0.8974± 0.0047 0.3987± 0.0069 0.8578± 0.0147

Xn with 0.5σ

Iris 0.4316± 0.0310 0.3912± 0.0426 0.0710± 0.0421 0.4046± 0.0388
COIL20 0.7676± 0.0148 0.8721± 0.0061 0.1238± 0.0286 0.8293± 0.0168

Bank 0.1408± 0.0133 0.1189± 0.0175 0.0059± 0.0109 0.1521± 0.0113
USPS 0.6088± 0.0036 0.8049± 0.0164 0.0059± 0.0028 0.7951± 0.0127
ORL 0.8058± 0.0150 0.8970± 0.0063 0.3977± 0.0095 0.8381± 0.0133

Xn with 0.7σ

Iris 0.3025± 0.0407 0.2755± 0.0381 0.0715± 0.0459 0.2773± 0.0408
COIL20 0.7589± 0.0234 0.8564± 0.0141 0.1032± 0.0127 0.7772± 0.0196

Bank 0.1506± 0.0208 0.1420± 0.0262 0.0074± 0.0114 0.1577± 0.0196
USPS 0.6007± 0.0051 0.8004± 0.0110 0.0042± 0.0009 0.7636± 0.0184
ORL 0.7877± 0.0165 0.8944± 0.0043 0.3946± 0.0056 0.8236± 0.0102

Table 4: Accurcy of the proposed algorithm on COIL20 (K = 20)

Clean data

d 7K 8K 9K 194 (SVD) 10K 11K 12K
Trial 1 0.7806 0.7882 0.7951 0.7944 0.7778 0.7979 0.7694
Trial 2 0.8035 0.7431 0.7819 0.8007 0.7812 0.8049 0.7792
Trial 3 0.7562 0.7896 0.7569 0.8097 0.7708 0.7569 0.7764
Trial 4 0.7444 0.7771 0.7771 0.7889 0.7854 0.7903 0.7958
Trial 5 0.7965 0.7361 0.8014 0.7833 0.7632 0.7264 0.7694
Mean 0.7762 0.7668 0.7825 0.7954 0.7757 0.7753 0.7781

Noisy data

d 10K 20K 30K 749 (SVD) 40K 50K 60K
Trial 1 0.7708 0.7722 0.7764 0.8201 0.7000 0.7306 0.8139
Trial 2 0.7743 0.7889 0.7646 0.7882 0.7694 0.7451 0.7299
Trial 3 0.7375 0.7743 0.7167 0.7493 0.7792 0.7965 0.7299
Trial 4 0.7965 0.7688 0.8014 0.7736 0.7903 0.7382 0.7674
Trial 5 0.7493 0.7507 0.7576 0.7000 0.7792 0.8076 0.8194
Mean 0.7657 0.7710 0.7633 0.7662 0.7636 0.7636 0.7721

on C is lower than those of Kmeans, SC, and FedSC reported in Table 1. For instance, the clustering
accuracy on Iris is reported in Table.

Influence of P Table 7 compares the clustering performance between using a single client (P = 1)
and using multiple ones (P = 8). It is clear that the operation of splitting data across multiple clients
may lead to an accuracy loss of clustering, which implies that our method is valid.

More results on MNIST and CIFAR10 We have already included datasets of high-dimensional
images in Table 1 like USPS and COIL20 with sizes 16× 16 and 20× 20, respectively. Nevertheless,
to further improve the experiment, we added the results of MNIST (28× 28) and CIFAR10(32× 32)
in Table 8.
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Table 5: Clustering accuracy (average over 10 trials) of FedSC with perturbed factors on COIL20.

αc

0 0.05 0.1 0.15
Mean±Std Mean±Std Mean±Std Mean±Std

αz

0 0.7831±0.0268 0.6573±0.0291 0.6012±0.0391 0.4835±0.0526
0.05 0.7824±0.0126 0.6573±0.0243 0.6165± 0.0286 0.4998±0.0567
0.1 0.7817±0.0299 0.6625±0.0258 0.6453±0.0186 0.5508±0.0415
0.15 0.7881±0.0223 0.6526±0.0258 0.6219±0.0467 0.5901±0.0326

Table 6: Clustering accuracy among different ways

Kmeans SC DSC FedSC Attack on C
Iris 0.8920± 0.0028 0.9000± 0.0000 0.5493± 0.1263 0.9027± 0.0064 0.6360± 0.1557

E Proof for theorem on the convergence of FedSC algorithm

We derive the objective descent with respect to Cs and Zs,t, respectively.

Objective descent with w.r.t. C: Based on the update scheme (14) of C, we have

∇Cfp(Z
s,0,Cs

p) = (K(Zs,0,Zs,0) + λId)C
s
p −K(Zs,0,Xp) = 0 (44)

where Zs,0 = Zs−1 = 1
P̄

∑
p∈As−1 Zs−1,Q

p .

According to the proposed FedSC problem 7, we have

fp(Z
s,0,Cs

p)− fp(Z
s,0,Cs−1

p )

=

[
1

2

∥∥ϕ(Xp)− ϕ(Zs,0)Cs
p

∥∥2
F
+
λ

2

∥∥Cs
p

∥∥2
F

]
−
[
1

2

∥∥ϕ(Xp)− ϕ(Zs,0)Cs−1
p

∥∥2
F
+
λ

2

∥∥Cs−1
p

∥∥2
F

]
=− Tr((Cs

p −Cs−1
p )TK(Zs,0,Xp)) +

λ

2
Tr(Cs

p(C
s
p)

T −Cs−1
p (Cs−1

p )T )

+
1

2
Tr(
[
Cs

p(C
s
p)

T −Cs−1
p (Cs−1

p )T
]
K(Zs,0,Zs,0))

=− Tr((Cs
p −Cs−1

p )T (K(Zs,0,Zs,0) + λId)C
s
p)

+
1

2
Tr(
[
Cs

p(C
s
p)

T −Cs−1
p (Cs−1

p )T
] [

K(Zs,0,Zs,0) + λId
]
)

=− 1

2
Tr([Cs

p −Cs−1
p ]T [K(Zs,0,Zs,0) + λId][C

s
p −Cs−1

p ])︸ ︷︷ ︸
T.1

≤− 1

2
(γsmin + λ)

∥∥Cs
p −Cs−1

p

∥∥2
F

(45)

where γsmin = γmin(K(Zs,0,Zs,0)).

Summing it up from p = 1 to P , we have

F (Zs,0,Cs)− F (Zs,0,Cs−1) ≤ −1

2
(γsmin + λ)

P∑
p=1

ωp

∥∥Cs
p −Cs−1

p

∥∥2
F

(46)

Objective descent with w.r.t. Z: According to Assumption 2.1, it implies

F (Zs,t,Cs)− F (Zs,t−1,Cs) ≤ ⟨∇ZF (Z
s,t−1,Cs),Zs,t −Zs,t−1⟩︸ ︷︷ ︸

T.2

+
Ls
Z

2

∥∥Zs,t −Zs,t−1
∥∥2
F

(47)
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Table 7: Clustering accuracy between using a single client and using multiple clients

Iris COIL20 Bank ORL
P = 1 0.9007± 0.0086 0.8073± 0.0089 0.7536± 0.1271 0.7937± 0.0084
P = 8 0.8993± 0.0165 0.8003± 0.0049 0.6821± 0.1405 0.7112± 0.0258

Table 8: Clustering accuracy on MNIST and CIFAR10

Kmeans SC DSC FedSC

X
MNIST 0.5448± 0.0257 0.6265± 0.0439 0.1292± 0.0144 0.6139± 0.0464

CIFAR10 0.2171± 0.0132 0.2182± 0.0133 0.1235± 0.0062 0.2134± 0.0131

X with 0.3σ
MNIST 0.5402± 0.0225 0.5755± 0.0366 0.1337± 0.0191 0.5606± 0.0457

CIFAR10 0.2209± 0.0154 0.2198± 0.0172 0.1194± 0.0051 0.2187± 0.0125

X with 0.7σ
MNIST 0.5374± 0.0555 0.5711± 0.0329 0.1340± 0.0135 0.5029± 0.0264

CIFAR10 0.2202± 0.0147 0.2205± 0.0084 0.1209± 0.0045 0.2134± 0.0152

Now, we give a bound on T.2.
Lemma E.1. For any s and t, it holds that

⟨∇ZF (Z
s,t−1,Cs),Zs,t −Zs,t−1⟩ = −Ls

Z

∥∥Zs,t −Zs,t−1
∥∥2
F

+ ⟨∇ZF (Z
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Proof. Based on the update schemes of Z, we have

Zs,t
p = Zs,t−1

p − 1

Ls
Z

∇Zfp(Z
s,t−1
p ,Cs

p)
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Then, consider the following terms
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Based on Lemma 1, we continue to do the following derivation.
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≤− Ls
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where we used the fact that ⟨x,y⟩ ≤ ∥x∥22 + ∥y∥22 ,∀c > 0.

Now, we give a bound on T.3.

Lemma E.2. For any s and t, it holds that

∥∥∥∥∥∥∇ZF (Z
s,t−1,Cs)− 1

P̄

∑
p∈As

∇Zfp(Z
s,t−1
p ,Cs

p)

∥∥∥∥∥∥
2

F

≤16ζ2

P̄
+ 2(1 +

8

P̄
)

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F

(52)

Proof. For any s and t, it holds that
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where we used the fact that ∥
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where we used the fact that ∇Zfp(·,Cs
p) is Ls

Zp
-Lipschitz continuous.
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Secondly, we give a bound on T.5:
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Thirdly, we give a bound on T.6:
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Here, it is the second time that we use the facts that ∥
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2 and that
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-Lipschitz continuous.

Based on the bound of T.6, we derive the bound on T.5.
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Fourthly, based on the bounds of T.4 and T.5, we continue to derive the final required bound.∥∥∥∥∥∥∇ZF (Z
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Based on Lemma 2, we continue to do the following derivation.
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≤− Ls
Z

4

∥∥Zs,t −Zs,t−1
∥∥2
F

+
1

Ls
Z

[
16ζ2

P̄
+ 2(1 +

8

P̄
)

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F

]
︸ ︷︷ ︸

Bound of T.3

=− Ls
Z

4

∥∥Zs,t −Zs,t−1
∥∥2
F
+

16ζ2

P̄Ls
Z

+
2

Ls
Z

(1 +
8

P̄
)

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F

(59)

Then, summing it up from t = 1 to Q yields

F (Zs,Q,Cs)− F (Zs,0,Cs)

≤− Ls
Z

4

Q∑
t=1

∥∥Zs,t −Zs,t−1
∥∥2
F
+

16Qζ2

P̄Ls
Z

+
2

Ls
Z

(1 +
8

P̄
)

Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F︸ ︷︷ ︸

T.7

(60)

Now, we give a bound on T.7.
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Lemma E.3. For any s, it holds that

∥∥Zs,t −Zs,t
p

∥∥2
F

≤ 4t

(Ls
Z)

2P̄

t−1∑
j=0

(Ls
Zp

)2
∥∥Zs,j −Zs,j

p

∥∥2
F
+

8t2ζ2

(Ls
Z)

2P̄

+
4t

(Ls
Z)

2P̄

t−1∑
j=0

P∑
p′=1

ωp′(Ls
Zp′

)2
∥∥∥Zs,j −Zs,j

p′

∥∥∥2
F

(61)

Proof. Based on the update schemes of C and Z, we have

Zs,t
p = Zs,t−1

p − 1

Ls
Z

∇Zfp(Z
s,t−1
p ,Cs

p)

⇐⇒ Zs,t = Zs,t−1 − 1

P̄Ls
Z

∑
p∈As

∇Zfp(Z
s,t−1
p ,Cs

p)
(62)

Consequently, we have

Zs,t
p = Zs,0

p − 1

Ls
Z

t−1∑
j=0

∇Zfp(Z
s,j
p ,Cs

p)

⇐⇒ Zs,t = Zs,0 − 1

P̄Ls
Z

t−1∑
j=0

∑
p∈As

∇Zfp(Z
s,j
p ,Cs

p)

(63)

where Zs,0
p = Zs,0 = Zs−1.
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Based on the above identities,

∥∥Zs,t −Zs,t
p

∥∥2
F

=

∥∥∥∥∥∥
Zs,0 − 1

P̄Ls
Z

t−1∑
j=0

∑
p∈As

∇Zfp(Z
s,j
p ,Cs

p)

−

Zs,0
p − 1

Ls
Z

t−1∑
j=0

∇Zfp(Z
s,j
p ,Cs

p)

∥∥∥∥∥∥
2

F

=
1

(Ls
Z)

2

∥∥∥∥∥∥ 1P̄
t−1∑
j=0

∑
p∈As

∇Zfp(Z
s,j
p ,Cs

p)−
t−1∑
j=0

∇Zfp(Z
s,j
p ,Cs

p)

∥∥∥∥∥∥
2

F

≤ t

(Ls
Z)

2

t−1∑
j=0

∥∥∥∥∥∥ 1P̄
∑
p∈As

∇Zfp(Z
s,j
p ,Cs

p)−∇Zfp(Z
s,j
p ,Cs

p)

∥∥∥∥∥∥
2

F

=
t

(Ls
Z)

2P̄ 2

t−1∑
j=0

∥∥∥∥∥∥
∑

p′∈As

[
∇Zfp′(Zs,j

p′ ,C
s
p′)−∇Zfp(Z

s,j
p ,Cs

p)
]∥∥∥∥∥∥

2

F

≤ t

(Ls
Z)

2P̄

t−1∑
j=0

∑
p′∈As

∥∥∥∇Zfp′(Zs,j
p′ ,C

s
p′)−∇Zfp(Z

s,j
p ,Cs

p)
∥∥∥2
F

=
t

(Ls
Z)

2P̄

t−1∑
j=0

P∑
p′=1

ωp′

∥∥∥∇Zfp′(Zs,j
p′ ,C

s
p′)−∇Zfp(Z

s,j
p ,Cs

p)
∥∥∥2
F︸ ︷︷ ︸

T.6

≤ t

(Ls
Z)

2P̄

t−1∑
j=0

P∑
p′=1

ωp′

[
4(Ls

Zp
)2
∥∥Zs,j −Zs,j

p

∥∥2
F
+ 4(Ls

Zp′
)2
∥∥∥Zs,j −Zs,j

p′

∥∥∥2
F
+ 8ζ2

]
︸ ︷︷ ︸

Bound of T.6

=
4t

(Ls
Z)

2P̄

t−1∑
j=0

(Ls
Zp

)2
∥∥Zs,j −Zs,j

p

∥∥2
F
+

8t2ζ2

(Ls
Z)

2m

+
4t

(Ls
Z)

2P̄

t−1∑
j=0

P∑
p′=1

ωp′(Ls
Zp′

)2
∥∥∥Zs,j −Zs,j

p′

∥∥∥2
F

(64)

Based on Lemma 3, we give a bound on T.7.

Lemma E.4. For any s, it holds that

Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F
≤ 8Q(Q− 1)(2Q− 1)ζ2

P̄ − 4(Q− 1)2(1 + L
2

Z/L
2
Z)

(65)
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Proof. Based on Lemma 3, we have

Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F

≤
Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2

4(t− 1)

(Ls
Z)

2P̄

t−2∑
j=0

(Ls
Zp

)2

∥∥∥∥∥∥Zs,j −Zs,j
p

∥∥∥∥2F +
8(t− 1)2ζ2

(Ls
Z)

2P̄

+
4(t− 1)

(Ls
Z)

2P̄

t−2∑
j=0

P∑
p′=1

ωp′(Ls
Zp′

)2
∥∥∥Zs,j −Zs,j

p′

∥∥∥2
F


=

Q∑
t=1

4(t− 1)

P̄

P∑
p=1

ωp(L
s
Zp

)2
(
Ls
Zp

Ls
Z

)2 t−2∑
j=0

∥∥Zs,j −Zs,j
p

∥∥2
F
+

Q∑
t=1

8(t− 1)2ζ2

P̄

+

Q∑
t=1

4(t− 1)

P̄

t−2∑
j=0

P∑
p′=1

ωp′(Ls
Zp′

)2
∥∥∥Zs,j −Zs,j

p′

∥∥∥2
F

≤
Q∑
t=1

4(t− 1)

P̄

P∑
p=1

ωp(L
s
Zp

)2
(
LZ

LZ

)2 t−2∑
j=0

∥∥Zs,j −Zs,j
p

∥∥2
F
+

Q∑
t=1

8(t− 1)2ζ2

P̄

+

Q∑
t=1

4(t− 1)

P̄

t−2∑
j=0

P∑
p′=1

ωp′(Ls
Zp′

)2
∥∥∥Zs,j −Zs,j

p′

∥∥∥2
F

=

Q∑
t=1

4(t− 1)

P̄
(1 +

L
2

Z

L2
Z

)

t−2∑
j=0

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,j −Zs,j

p

∥∥2
F
+

8Q(Q− 1)(2Q− 1)ζ2

P̄

≤4(Q− 1)2

P̄
(1 +

L
2

Z

L2
Z

)

Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F
+

8Q(Q− 1)(2Q− 1)ζ2

P̄

(66)

Here, we used the inequality as

Q∑
t=1

4(t− 1)

P̄

t−2∑
j=0

∥∥Zs,j −Zs,j
p

∥∥2
F
≤ 4(Q− 1)2

P̄

Q∑
t=1

∥∥Zs,t−1 −Zs,t−1
p

∥∥2
F

(67)

Rearranging the above inequality, we have

Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F
≤ 8Q(Q− 1)(2Q− 1)ζ2

P̄ − 4(Q− 1)2(1 + L
2

Z/L
2
Z)

(68)
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Based on Lemma 4, we continue to do the following derivation:

F (Zs,Q,Cs)− F (Zs,0,Cs)

≤− Ls
Z

4

Q∑
t=1

∥∥Zs,t −Zs,t−1
∥∥2
F
+

16Qζ2

P̄Ls
Z

+
2

Ls
Z

(1 +
8

P̄
)

Q∑
t=1

P∑
p=1

ωp(L
s
Zp

)2
∥∥Zs,t−1 −Zs,t−1

p

∥∥2
F︸ ︷︷ ︸

T.7

≤− Ls
Z

4

Q∑
t=1

∥∥Zs,t −Zs,t−1
∥∥2
F
+

16Qζ2

P̄Ls
Z

+
2

Ls
Z

(1 +
8

P̄
)

8Q(Q− 1)(2Q− 1)ζ2

P̄ − 4(Q− 1)2(1 + L
2

Z/L
2
Z)︸ ︷︷ ︸

Bound of T.7

≤− Ls
Z

4

Q∑
t=1

∥∥Zs,t −Zs,t−1
∥∥2
F
+

16Qζ2ψ

P̄Ls
Z

(69)

where ψ = 1 + (P̄+8)(Q−1)(2Q−1)

P̄−4(Q−1)2(1+L
2
Z/L2

Z)
.

Then, combining (46) and (69) yields

1

2
(γsmin + λ)

P∑
p=1

ωp

∥∥Cs
p −Cs−1

p

∥∥2
F
+
Ls
Z

4

Q∑
t=1

∥∥Zs,t −Zs,t−1
∥∥2
F

≤[F (Zs,0,Cs−1)− F (Zs,Q,Cs)] +
16Qζ2ψ

P̄Ls
Z

(70)

Derivation of the main result: Based on (70), we derive the convergence in terms of the iterative
terms, TC(Zs,0,Cs) and TZ(Zs,t,Cs) for s = 1, 2, . . . , S.

TC(Z
s,0,Cs) ≤ 2

γsmin + λ
[F (Zs,0,Cs−1)− F (Zs,Q,Cs)] +

32Qζ2ψ

(γsmin + λ)P̄Ls
Z

(71)

Then, summing it up from s = 1 to S yields
S∑

s=1

TC(Z
s,0,Cs) ≤ 2

γ
min

+ λ
[F (Z1,0,C0)− f ] +

32SQζ2ψ

(γ
min

+ λ)P̄LZ

(72)

Similarly, we have
Q∑
t=1

TZ(Z
s,t,Cs) ≤ 4

Ls
Z

[F (Zs,0,Cs−1)− F (Zs,Q,Cs)] +
64Qζ2ψ

P̄ (Ls
Z)

2
(73)

Then, summing it up from s = 1 to S yields
S∑

s=1

Q∑
t=1

TZ(Z
s,t,Cs) ≤ 4

LZ

[F (Z1,0,C0)− f ] +
64SQζ2ψ

P̄L2
Z

(74)

Lastly, combining (72) and (74) and dividing two sides of it by T = S(1 +Q) yields

1

T

[
S∑

s=1

TC(Z
s,0,Cs) +

S∑
s=1

Q∑
t=1

TZ(Z
s,t,Cs)

]
≤ D

T
[F (Z1,0,C0)− f ] +

16ζ2ψD

P̄LZ

(75)

where D = 2
γ
min

+λ + 4
LZ

.
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F Proof for theorem on error bound on noisy similarity matrix

Proof. It follows from the triangle inequality of matrix norm that∥∥∥K̂x̃x̃ −Kxx

∥∥∥
∞

=
∥∥∥K̂x̃x̃ −Kx̃x̃ +Kx̃x̃ −Kxx

∥∥∥
∞

≤
∥∥∥K̂x̃x̃ −Kx̃x̃

∥∥∥
∞

+ ∥Kx̃x̃ −Kxx∥∞ .
(76)

Since X̃ = X +E and ϕ(X̃) = ϕ(Z)C, we have
K̂x̃x̃ = (ϕ(Z)C)T (ϕ(Z)C) = CTK(Z,Z)C

Kx̃x̃ = ϕ(X̃)Tϕ(X̃) = K(X̃, X̃)

Kxx = ϕ(X)Tϕ(X) = K(X,X)

(77)

where E is a Gaussian noise matrix, of which Ei,j ∼ N (0, σ2). Hence, we obtain∥∥∥K̂x̃x̃ −Kxx

∥∥∥
∞

≤
∥∥∥CTK(Z,Z)C −K(X̃, X̃)

∥∥∥
∞

+
∥∥∥K(X̃, X̃)−K(X,X)

∥∥∥
∞
. (78)

Denote by xi (or ei) the i-th column of X ∈ Rm×n (or E ∈ Rm×n), i = 1, . . . , n, we first derive
the upper bound of the second term of the RHS of (78) as follows:

∥Kx̃x̃ −Kxx∥∞ =
∥∥∥K(X̃, X̃)−K(X,X)

∥∥∥
∞

= max
i,j

|K(x̃i, x̃j)−K(xi,xj)|

= max
i,j

∣∣∣∣∣exp
(
−
∥(xi + ei)− (xj + ej)∥22

2r2

)
− exp

(
−
∥xi − xj∥22

2r2

)∣∣∣∣∣
≤ max

i,j

1

2r2

∣∣∣−∥(xi + ei)− (xj + ej)∥22 + ∥xi − xj∥22
∣∣∣

= max
i,j

1

2r2

∣∣∣∥(xi − xj) + (ei − ej)∥22 − ∥xi − xj∥22
∣∣∣

= max
i,j

1

2r2

∣∣∣∥ei − ej∥22 + 2⟨xi − xj , ei − ej⟩
∣∣∣

≤ max
i,j

1

2r2

(
∥ei − ej∥22 + 2|⟨xi − xj , ei − ej⟩|

)
≤ max

i,j

1

2r2

(
∥ei − ej∥22 + 2 ∥xi − xj∥2 ∥ei − ej∥2

)
,

(79)

where for the first inequality we have used the fact that the exponential function is locally Lipschitz
continuous, i.e.,

|ex − ey| < |x− y| for x, y < 0.

Now, let us figure out the upper bound of ∥ei − ej∥22. Note that

∥ei − ej∥22 =

m∑
l=1

(eli − elj)
2 = 2σ2

m∑
l=1

(
eli − elj√

2σ

)2

(80)

where eli represents the l-th element of the column vector ei, k = 1, . . . ,m. It is clear that for
l = 1, . . . ,m,

E[eli − elj ] = 0,

var[eli − elj ] = 2σ2.
(81)

Hence, eli−elj√
2σ

is a standard Gaussian random variable drawn from N (0, 1). Based on this, we can
define a random variable as

Q =

m∑
l=1

(
eli − elj√

2σ

)2

, (82)

28



which is distributed according to the Chi-squared distribution with m degrees of freedom.

From Laurent and Massart [2000], we know that for any positive t, the Chi-squared variable Q with
m degrees of freedom satisfies

P(Q > m+ 2
√
mt+ 2t) ≤ 1− e−t. (83)

Hence, a bound on ∥ei − ej∥22 with probability 1− e−t is

∥ei − ej∥22 = 2σ2Q ≤ 2σ2(m+ 2
√
mt+ 2t). (84)

Using union bound for (84), we have

max
i,j

∥ei − ej∥22 = 2σ2Q ≤ 2σ2(m+ 2
√
mt+ 2t). (85)

holds with probability at least 1 − n(n − 1)e−t. Assume ∥xi∥2 ≤ θ, then ∥xi − xi∥2 ≤ 2θ. For
convenience, let ξ =

√
m+ 2

√
mt+ 2t. It follows from (79) and (85) that, with probability at least

1− n(n− 1)e−t,

∥Kx̃x̃ −Kxx∥∞ ≤ 1

2r2

[
2σ2ξ2 + 2 ∥xi − xj∥2

√
2σξ

]
≤ 1

r2

[
σ2ξ2 + 2

√
2σξθ

]
=

1

r2

[
(σξ +

√
2θ)2 − 2θ2

]
.

(86)

Now, we figure out the upper bound of the first term of the RHS of (78). We have∥∥∥K̂x̃x̃ −Kx̃x̃

∥∥∥
∞

=
∥∥∥CTK(Z,Z)C −K(X̃, X̃)

∥∥∥
∞

=
∥∥∥(ϕ(Z)C)T (ϕ(Z)C)− ϕ(X̃)Tϕ(X̃)

∥∥∥
∞

=
∥∥∥(ϕ(Z)C)T (ϕ(Z)C)− (ϕ(Z)C)Tϕ(X̃) + (ϕ(Z)C)Tϕ(X̃)− ϕ(X̃)Tϕ(X̃)

∥∥∥
∞

=
∥∥∥(ϕ(Z)C)T (ϕ(Z)C − ϕ(X̃)) + (ϕ(Z)C − ϕ(X̃))Tϕ(X̃)

∥∥∥
∞

≤
∥∥∥(ϕ(Z)C)T (ϕ(Z)C − ϕ(X̃))

∥∥∥
∞

+
∥∥∥(ϕ(Z)C − ϕ(X̃))Tϕ(X̃)

∥∥∥
∞

≤ ∥(ϕ(Z)C)∥2,∞ ·
∥∥∥ϕ(Z)C − ϕ(X̃)

∥∥∥
2,∞

+
∥∥∥ϕ(Z)C − ϕ(X̃)

∥∥∥
2,∞

·
∥∥∥ϕ(X̃)

∥∥∥
2,∞

= (∥(ϕ(Z)C)∥2,∞ +
∥∥∥ϕ(X̃)

∥∥∥
2,∞

)
∥∥∥ϕ(Z)C − ϕ(X̃)

∥∥∥
2,∞

(87)
where ∥·∥2,∞ is a norm such that ∥X∥2,∞ = maxi ∥X:,i∥2 for a real matrix X . Here we can just

assume that
∥∥∥ϕ(Z)C − ϕ(X̃)

∥∥∥
2,∞

≤ γ, γ is some constant; this relies on the optimization.

Moreover, assume ∥C∥2 ≤ τC , we have∥∥∥ϕ(X̃)
∥∥∥
2,∞

= 1

∥ϕ(Z)C∥2,∞ ≤ ∥ϕ(Z)∥F max
j

∥C:,j∥ ≤
√
dτC

(88)

Hence, we can continue to do the derivation of the preceding inequality.∥∥∥K̂x̃x̃ −Kx̃x̃

∥∥∥
∞

≤
(
∥ϕ(Z)C∥2,∞ +

∥∥∥ϕ(X̃)
∥∥∥
2,∞

)∥∥∥ϕ(Z)C − ϕ(X̃)
∥∥∥
2,∞

≤ (
√
dτC + 1)γ

(89)

29



As a result, the overall bound is∥∥∥K̂x̃x̃ −Kxx

∥∥∥
∞

≤
∥∥∥K̂x̃x̃ −Kx̃x̃

∥∥∥
∞

+ ∥Kx̃x̃ −Kxx∥∞

≤ 1

r2

[
(σξ +

√
2θ)2 − 2θ2

]
+ (

√
dτC + 1)γ

(90)

where ξ =
√
(m+ 2

√
mt+ 2t).

G Proof for Theorem 3.6

Proof. For a data matrix X ∈ Rm×n, it is perturbed by a Gaussian noise matrix E ∈ Rm×n with
N (0, σ2) to form the noisy data matrix X̃ = X + E. Let Kxx = K(X,X) be the ground truth
and K̂x̃x̃ = CTK(Z,Z)C be the approximated similarity matrix by FedKMF algorithm 1. Then,
consider any two data points in X , xi and xj , with the identical label, we know that

Kiu ≤ Kij (91)

where Kiu = maxk((Kxx)
inter
ik ) and Kij = (Kxx)ij .

After running FedKMF (Algorithm 1) on the noisy matrix X̃ , if the approximated similarity matrix
satisfies

∥∥∥K̂x̃x̃ −Kxx

∥∥∥ < B(σ), then consider two points in X̃ , x̃i and x̃j , that are actually xi and
xj perturbed by some noise, we have

K̂iu − K̂ij = K̂iu −Kiu +Kiu − K̂ij +Kij −Kij

= (K̂iu −Kiu) + (Kij − K̂ij) + (Kiu −Kij)

≤ |K̂iu −Kiu|+ |Kij − K̂ij |+ (Kiu −Kij)

≤ B(σ) +B(σ) + (Kiu −Kij)

= 2B(σ) + (Kiu −Kij)

(92)

where K̂iu = maxk((K̂x̃x̃)
inter
ik ) and K̂ij = (K̂x̃x̃)ij .

Based on Definition 3.5, x̃i and x̃j can be correctly clustered only if the following inequality holds
with some tolerance ϵ > 0.

K̂iu − K̂ij ≤ ϵ (93)

Thus, combining inequalities (92) and (93), the bound function B(σ) satisfies

B(σ) ≤ 1

2
[ϵ− (Kiu −Kij)] (94)

Similarly, if we consider any two data points in X , xi and xj , with different labels, we know that

Kij ≤ Kiv (95)

where Kiv = mink((Kxx)
intra
ik ).

After running FedKMF algorithm 1 on the noisy matrix X̃ , we have

K̂ij − K̂iv = K̂ij −Kij +Kij − K̂iv +Kiv −Kiv

= (K̂ij −Kij) + (Kiv − K̂iv) + (Kij −Kiv)

≤ |K̂ij −Kij |+ |Kiv − K̂iv|+ (Kij −Kiv)

≤ B(σ) +B(σ) + (Kij −Kiv)

= 2B(σ) + (Kij −Kiv)

(96)

where K̂iu = maxk((K̂x̃x̃)
intra
ik ).
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Based on Definition 3.5, x̃i and x̃j can be correctly clustered only if the following inequality holds
with some tolerance ϵ > 0.

K̂ij − K̂iv ≤ ϵ (97)

Thus, combining inequalities (96) and (97), the bound function B(σ) satisfies

B(σ) ≤ 1

2
[ϵ− (Kij −Kiv)] (98)

Then, with two upper bounds on B(σ), (94) and (98), we have

B(σ) ≤ 1

2
min
i
{ϵ− (Kiu −Kij), ϵ− (Kij −Kiv)}. (99)

where ϵ is the parameter of tolerance.

Alternatively, a slightly looser version is like

B(σ) ≤ min
i

1

4
[2ϵ− (Kiu −Kiv)]

or B(σ) ≤ ϵ

2
−max

i

1

4
(Kiu −Kiv).

(100)

where Kiu = maxk((Kxx)
inter
ik ) and Kiv = mink((Kxx)

intra
ik ).

H Proof for Proposition 3.7

Proof. The ℓ2-sensitivity [Dwork et al., 2014] of a function f : N|X | → Rk is:
∆2(f) = max

x∼y
∥f(x)− f(y)∥2,

where x ∼ y denotes that x and y are neighboring datasets. In our case, the function is f(x) = x.
Then

∥f(x)− f(y)∥2 = ∥x− y∥2 ≤ 2τX .
It means ∆2(f) ≤ 2τX . Now using Theorem 3.22 in [Dwork et al., 2014] and Lemma H.1, we get
the desired result.

Lemma H.1 (Post-Processing [Dwork et al., 2014]). Let M : N|X | → R be a randomized algorithm
that is (ε, δ)-differentially private. Let h : R → R′ be an arbitrary randomized mapping. Then
h ◦M : N|X | → R′ is (ε, δ)− differentially private.

I Proof for Theorem 3.8

Proof. Based on the assumptions ∥C∥2,∞ ≤ τC , ∥ϕ(Z)C − ϕ(X)∥2,∞ ≤ γ, C̃ = C +EC for the
entry (EC)ij ∼ N (0, σ2

C), and Z̃ = Z +EZ for the entry (EZ)ij ∼ N (0, σ2
Z), we obtain∥∥∥K̃xx −Kxx

∥∥∥
∞

=
∥∥∥C̃TK(Z̃, Z̃)C̃ −K(X,X)

∥∥∥
∞

=
∥∥∥(ϕ(Z̃)C̃)T (ϕ(Z̃)C̃)− ϕT (X)ϕ(X)

∥∥∥
∞

=
∥∥∥(ϕ(Z̃)C̃)T (ϕ(Z̃)C̃)− (ϕ(Z̃)C̃)Tϕ(X) + (ϕ(Z̃)C̃)Tϕ(X)− ϕT (X)ϕ(X)

∥∥∥
∞

=
∥∥∥(ϕ(Z̃)C̃)T (ϕ(Z̃)C̃)− ϕ(X)) + (ϕ(Z̃)C̃ − ϕ(X))Tϕ(X)

∥∥∥
∞

≤
∥∥∥ϕ(Z̃)C̃

∥∥∥
2,∞

∥∥∥ϕ(Z̃)C̃ − ϕ(X)
∥∥∥
2,∞

+
∥∥∥ϕ(Z̃)C̃ − ϕ(X)

∥∥∥
2,∞

∥ϕ(X)∥2,∞

≤
(∥∥∥ϕ(Z̃)C̃

∥∥∥
2,∞

+ ∥ϕ(X)∥2,∞

)∥∥∥ϕ(Z̃)C̃ − ϕ(X)
∥∥∥
2,∞︸ ︷︷ ︸

T.1
(101)
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where ∥ϕ(X)∥2,∞ = 1. An upper bound on
∥∥∥ϕ(Z̃)C̃

∥∥∥
2,∞

can be obtained only if we derive the

upper bound on
∥∥∥ϕ(Z̃)C̃ − ϕ(X)

∥∥∥
2,∞

. That is, if
∥∥∥ϕ(Z̃)C̃ − ϕ(X)

∥∥∥
2,∞

≤ γzc, it implies that∥∥∥ϕ(Z̃)C̃
∥∥∥
2,∞

≤
∥∥∥ϕ(Z̃)C̃ − ϕ(X)

∥∥∥
2,∞

+ ∥ϕ(X)∥2,∞ = γzc + 1 (102)

which consequently gives ∥∥∥K̃xx −Kxx

∥∥∥
∞

≤ γzc(γzc + 2) (103)

Hence, we derive the upper bound on
∥∥∥ϕ(Z̃)C̃ − ϕ(X)

∥∥∥
2,∞

for the remaining proof.∥∥∥ϕ(Z̃)C̃ − ϕ(X)
∥∥∥
2,∞

=
∥∥∥ϕ(Z̃)C̃ − ϕ(Z)C + ϕ(Z)C − ϕ(X)

∥∥∥
2,∞

≤
∥∥∥ϕ(Z̃)C̃ − ϕ(Z)C

∥∥∥
2,∞︸ ︷︷ ︸

T.2

+ ∥ϕ(Z)C − ϕ(X)∥2,∞
(104)

where the second term ∥ϕ(Z)C − ϕ(X)∥2,∞ ≤ γ is the assumption. Next, we derive the upper
bound on T.2.∥∥∥ϕ(Z̃)C̃ − ϕ(Z)C

∥∥∥
2,∞

=
∥∥∥ϕ(Z̃)C̃ − ϕ(Z̃)C + ϕ(Z̃)C − ϕ(Z)C

∥∥∥
2,∞

=
∥∥∥ϕ(Z̃)(C̃ −C) + (ϕ(Z̃)− ϕ(Z))C

∥∥∥
2,∞

≤
∥∥∥ϕ(Z̃)(C̃ −C)

∥∥∥
2,∞

+
∥∥∥(ϕ(Z̃)− ϕ(Z))C

∥∥∥
2,∞

≤
√
d ∥EC∥2,∞ +

∥∥∥ϕ(Z̃)− ϕ(Z)
∥∥∥
F
∥C∥2,∞

≤ σCξd
√
d+ τC

∥∥∥ϕ(Z̃)− ϕ(Z)
∥∥∥
F︸ ︷︷ ︸

T.3

(105)

where we used 1
σ2
C
∥EC∥22,∞ ≤ ξ2d = d+ 2

√
dt+ 2t with probability at least 1− ne−t [Laurent and

Massart, 2000] since it is the fact that 1
σ2
C
∥EC∥22,∞ ∼ χ2

d where the entry (EC)ij ∼ N (0, σ2
C). For

T.3, we have∥∥∥ϕ(Z̃)− ϕ(Z)
∥∥∥2
F
= Tr((ϕ(Z̃)− ϕ(Z))T (ϕ(Z̃)− ϕ(Z)))

= Tr(ϕT (Z̃)ϕ(Z̃)− ϕT (Z̃)ϕ(Z)− ϕT (Z)ϕ(Z̃) + ϕT (Z)ϕ(Z))

= 2d− 2Tr(ϕT (Z̃)ϕ(Z))︸ ︷︷ ︸
T.4

(106)

For T.4, we can obtain

Tr(ϕT (Z̃)ϕ(Z)) =

d∑
j=1

ϕT (z̃j)ϕ(zj) =

d∑
j=1

exp

(
−∥zj + (EZ):,j − zj∥22

2r2

)

=

d∑
j=1

exp

(
−∥(EZ):,j∥22

2r2

)

≥ d exp

(
−σ

2
Zξ

2
d

2r2

)
(107)

where we use 1
σ2
Z
∥(EZ):,j∥22 ≤ ξ2d = d+ 2

√
dt+ 2t with probability at least 1− de−t [Laurent and

Massart, 2000] since it is the fact that 1
σ2
Z
∥(EZ):,j∥22 ∼ χ2

d where the entry (EZ)ij ∼ N (0, σ2
Z).
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Hence, we can go back to give an upper bound on
∥∥∥ϕ(Z̃)C̃ − ϕ(X)

∥∥∥
2,∞

:

∥∥∥ϕ(Z̃)C̃ − ϕ(X)
∥∥∥
2,∞

≤ γ + σCξd
√
d+ τC

√
2d

(
1− exp

(
−
σ2
Zξ

2
d

2r2

))
(108)

Finally, we have ∥∥∥K̃xx −Kxx

∥∥∥
∞

≤ γzc(γzc + 2) (109)

where

γzc = γ +
√
d

(
σCξd + τC

√
2

(
1− exp

(
−
σ2
Zξ

2
d

2r2

)))
. (110)

J Proof for Theorem 3.9

Lemma J.1. Assume Υ = maxzj ,x′ ∥zj − x′∥2 and ∥x− x′∥2 ≤ 2τX , let {CS
p }Pp=1 be perturbed

by noise drawn from N (0, σ2) with the parameter σ ≥ 2cλ−1
√
dτX(τX+Υ)
r2ε for c2 > 2 ln(1.25/δ).

Then, the Gaussian Mechanism that adds noise to {CS
p }Pp=1 is (ε, δ)-differentially private.

Lemma J.2. Assume max(p,j){∥xpj
∥2, ∥x′

pj
∥2} ≤ τX , max(i,j) ∥zi − xj∥∞ = Υ,

∥Zs
p∥sp ≤ τZ ∀s, and ∥CS∥2,∞ ≤ τC , let {Zs

p}Pp=1 for s = 1, · · · , S be perturbed by
noise drawn from N (0, σ2) with variance (8S∆2(gZ) log(e + (ε/δ))/ε2) where ∆(gZ) =
2
√
dτCτXηk

r2

{
1 + (τX + τZ)

(τX+Υ)
r2

}
. Then, the Gaussian Mechanism that adds noise to {Zs

p}Pp=1

for s = 1, · · · , S is (ε, δ)-differentially private.

By Lemma J.2, the mechanism that adds Gaussian noise to Zs
p for s = 1, · · · , S with variance

(8S∆2(gZ) log(e+ (εZ/δZ))/ε
2
Z) satisfies (εZ , δZ)-differential privacy under S-fold adaptive com-

position for any εZ > 0 and δZ ∈ (0, 1]. By Lemma J.1, the Gaussian Mechanism that injects
noise to CS

p with parameter σ ≥ 2cλ−1
√
dτX(τX + Υ)/(r2εC) is (εC , δC)-differentially private.

Therefore, by Theorem 3.16 of [Dwork et al., 2014], the proposed algorithm that adds Gaussian noise
to Zs

p for s = 1, · · · , S and CS
p is (εC + εZ , δC + δZ)-differentially private. This finished the proof.

K Proof for Lemma J.1

Proof. In our FedSC, for each column of C, we have

c = gC(x) = GK(Z,x) = G


exp

(
−∥z1−x∥2

2

2r2

)
...

exp
(
−∥zd−x∥2

2

2r2

)
 , (111)

where G = (K(Z,Z) + λId)
−1. We have

∥gC(x)− gC(x
′)∥2 ≤ ∥G∥sp∥K(Z,x)−K(Z,x′)∥2, (112)

where ∥ · ∥sp denotes the spectral norm of matrix. Since exp(z) is locally Lipschitz continuous when
z < 0, we have (

exp

(
−∥zj − x∥22

2r2

)
− exp

(
−∥zj − x∥22

2r2

))2

≤
∣∣∣∣ 1

2r2
(
∥zj − x∥2 − ∥zj − x′∥22

)∣∣∣∣2
=

∣∣∣∣ 1

2r2
(
∥x− x′∥22 + 2 ⟨zj − x′,x′ − x′⟩

)∣∣∣∣2
≤
∣∣∣∣ 1

2r2
(
∥x− x′∥22 + 2∥zj − x′∥2∥x− x′∥2

)∣∣∣∣2 .
(113)
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Let Υ = maxzj ,x′ ∥zj − x′∥2 and ∥x− x′∥2 ≤ 2τX . Then the ℓ2-sensitivity of g is

△2(gC) ≤ sup
x,x′

∥G∥σ

√√√√ d∑
j=1

∣∣∣∣ 1

2r2
(∥x− x′∥22 + 2∥zj − x′∥2∥x′ − x′∥2)

∣∣∣∣2

≤∥G∥σ

√√√√ d∑
j=1

∣∣∣∣ 1

2r2
(4τ2X + 4ΥτX)

∣∣∣∣2

=∥G∥σ
2
√
dτX(τX +Υ)

r2

≤2λ−1
√
dτX(τX +Υ)

r2
.

(114)

Then according to Theorem 3.22 in [Dwork et al., 2014], for c2 > 2 ln(1.25/δ) the Gaussian
Mechanism with parameter σ ≥ 2cλ−1

√
dτX(τX+Υ)
r2ε is (ε, δ)-differentially private. This finished the

proof.

L Proof for Lemma J.2

Proof. Proof Sketch The (ϵ, δ)-differential privacy of the proposed algorithm can be achieved by
injecting noise into Z for each local update and into C at the final round. To prove this, we first
compute the sensitivity of Z and C for determining the differential privacy of them. Then, we use
the adaptive composition [Kairouz et al., 2015] to get the superposition of them which will give the
final theoretical result.

Now, the formal proof is as follows.

In our FedSC, consider one-step update of Z at client of p

Zs,t
p = Zs,t−1

p − ηt
∂f

∂Z
(Zs,t−1

p ) (115)

where the derivative is given by
∂f

∂Z
(Zs,t−1

p ) =
1

r2
(XpWZ −ZW̄Z) +

2

r2
(ZQZ −ZQ̄Z) (116)

and Xp = [xp1
, · · · ,xpj−1,xpj

,xpj+1, · · · ,xpNp
].

For the simplicity of the proof, we omit the pair of iteration parameters (s, t) and instead denote two
adjacent local updates by k and k − 1 for nonnegative k ≥ 1. Thus, we have the equivalent version
of a one-step update of Zp at client p

Zk
p = Zk−1

p − ηk

{
1

r2
(XpWZ −Zk−1

p W̄Z) +
2

r2
(Zk−1

p QZ −Zk−1
p Q̄Z)

}
(117)

where Xp = [xp1
, · · · ,xpj−1,xpj

,xpj+1, · · · ,xpNp
].

To compute the sensitivity of Zp, we give the counterpart of the above update as

(Zk
p )

′ = Zk−1
p − ηk

{
1

r2
(X ′

pW
′
Z −Zk−1

p W̄ ′
Z) +

2

r2
(Zk−1

p QZ −Zk−1
p Q̄Z)

}
(118)

where X ′
p = [xp1 , · · · ,xpj−1,x

′
pj
,xpj+1, · · · ,xpNp

].

Next, let’s start to derive the upper bound on ∥Zk
p − (Zk

p )
′∥F term by term.∥∥Zk

p − (Zk
p )

′∥∥
F
=
∥∥∥−ηk

r2
{(

XpWZ −Zk−1
p W̄Z

)
−
(
X ′

pW
′
Z −Zk−1

p W̄ ′
Z

)}∥∥∥
F

=
ηk
r2
∥∥(XpWZ −X ′

pW
′
Z

)
−Zk−1

p

(
W̄Z − W̄ ′

Z

)∥∥
F

≤ ηk
r2

∥∥XpWZ −X ′
pW

′
Z

∥∥
F︸ ︷︷ ︸

T.1

+
∥∥Zk−1

p

(
W̄Z − W̄ ′

Z

)∥∥
F︸ ︷︷ ︸

T.2


(119)
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For T.1, we have∥∥XpWZ −X ′
pW

′
Z

∥∥
F
=
∥∥XpWZ −X ′

pWZ +X ′
pWZ −X ′

pW
′
Z

∥∥
F

≤
∥∥(Xp −X ′

p

)
WZ

∥∥
F︸ ︷︷ ︸

T.3

+
∥∥X ′

p (WZ −W ′
Z)
∥∥
F︸ ︷︷ ︸

T.4

(120)

For T.3, we have

∥∥(Xp −X ′
p

)
WZ

∥∥
F
=
∥∥∥(xpj

− x′
pj
)(−cTj ⊙K(xpj

,Zk−1
p ))

∥∥∥
F

≤
∥∥∥xpj

− x′
pj

∥∥∥
2

∥∥cTj ⊙K(xpj
,Zk−1

p )
∥∥
2

=
∥∥∥xpj

− x′
pj

∥∥∥
2

√
(cj ⊙ cj)T (K(Zk−1

p ,xpj
)⊙K(Zk−1

p ,xpj
))

≤
∥∥∥xpj − x′

pj

∥∥∥
2

√
∥cj ⊙ cj∥2

∥∥K(Zk−1
p ,xpj )⊙K(Zk−1

p ,xpj )
∥∥
2

=
∥∥∥xpj

− x′
pj

∥∥∥
2

∥∥cpj

∥∥
4

∥∥K(Zk−1
p ,xpj

)
∥∥
4

≤
∥∥∥xpj

− x′
pj

∥∥∥
2

∥∥cpj

∥∥
2

∥∥K(Zk−1
p ,xpj

)
∥∥
2

≤
∥∥∥xpj

− x′
pj

∥∥∥
2
∥C∥2,∞

∥∥K(Zk−1
p ,xpj

)
∥∥
2

(121)

Here, we use ∥a⊙ b∥2 =

√
(a⊙ a)

T
(b⊙ b) for a, b ∈ Rd for the second equality; Cauchy-

Schwarz inequality for the second inequality;
√

∥a⊙ a∥2 = ∥a∥4 for a ∈ Rd for the third inequality.

Let ∆Z,x = K(Z,x)−K(Z,x′), then we have for T.4,

∥∥X ′
p (WZ −W ′

Z)
∥∥
F
=
∥∥∥x′

pj

{
−cTj ⊙

(
K(xpj

,Zk−1
p )−K(x′

pj
,Zk−1

p )
)}∥∥∥

F

≤
∥∥∥x′

pj

∥∥∥
2

∥∥∥cTj ⊙
(
K(xpj

,Zk−1
p )−K(x′

pj
,Zk−1

p )
)∥∥∥

2

=
∥∥∥x′

pj

∥∥∥
2

√
(cj ⊙ cj)

T
(
△Zk−1

p ,xpj
⊙△Zk−1

p ,xpj

)
≤
∥∥∥x′

pj

∥∥∥
2
∥C∥2,∞

∥∥∥△Zk−1
p ,xpj

∥∥∥
2

(122)

Therefore, assume max{∥xpj∥2, ∥x′
pj
∥2} ≤ τX , which means ∥x − x′∥2 ≤ 2τX , we can get an

upper bound on T.1.∥∥XpWZ −X ′
pW

′
Z

∥∥
F
≤
∥∥(Xp −X ′

p

)
WZ

∥∥
F︸ ︷︷ ︸

T.5

+
∥∥X ′

p (WZ −W ′
Z)
∥∥
F︸ ︷︷ ︸

T.6

≤
∥∥∥xpj

− x′
pj

∥∥∥
2
∥C∥2,∞

∥∥K(Zk−1
p ,xpj

)
∥∥
2
+
∥∥∥x′

pj

∥∥∥
2
∥C∥2,∞

∥∥∥△Zk−1
p ,xpj

∥∥∥
2

= ∥C∥2,∞
(∥∥∥xpj

− x′
pj

∥∥∥
2

∥∥K(Zk−1
p ,xpj

)
∥∥
2
+
∥∥∥x′

pj

∥∥∥
2

∥∥∥△Zk−1
p ,xpj

∥∥∥
2

)
≤ 2

√
dτCτX

(
1 +

τX(τX +Υ)

r2

)
(123)

Here, we also used the fact that
∥∥K(Zk−1

p ,xpj )
∥∥
2
≤

√
d and the derived bound 2

√
dτX(τX+Υ)

r2 on∥∥∥△Zk−1
p ,xpj

∥∥∥
2

given by K, and ∥C∥2,∞ ≤ τC given in Proof F.
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Assume ∥Zk
p∥sp ≤ τZ ∀k, we have for T.2∥∥Zk−1

p

(
W̄Z − W̄ ′

Z

)∥∥
F
=
∥∥Zk−1

p

(
diag(1T

nWZ)− diag(1T
nW

′
Z)
)∥∥

F

=
∥∥Zk−1

p diag(1T
n (WZ −W ′

Z))
∥∥
F

≤
∥∥Zk−1

p

∥∥
sp

∥∥diag(1T
n (WZ −W ′

Z))
∥∥
F

=
∥∥Zk−1

p

∥∥
sp

∥∥1T
n (WZ −W ′

Z)
∥∥
2

≤
∥∥Zk−1

p

∥∥
sp

∥∥∥cTj ⊙
(
K(xpj

,Zk−1
p )−K(x′

pj
,Zk−1

p )
)∥∥∥

2

≤
∥∥Zk−1

p

∥∥
sp

∥C∥2,∞
∥∥∥△Zk−1

p ,xpj

∥∥∥
2

≤ 2
√
dτZτCτX(τX +Υ)

r2

(124)

Thus, we get the upper bounds on T.1 and T.2, respectively, and finally give an upper bound on∥∥Zk
p − (Zk

p )
′
∥∥
F

.

∥∥Zk
p − (Zk

p )
′∥∥

F
≤ ηk
r2

∥∥XpWZ −X ′
pW

′
Z

∥∥
F︸ ︷︷ ︸

T.1

+
∥∥Zk−1

p

(
W̄Z − W̄ ′

Z

)∥∥
F︸ ︷︷ ︸

T.2


≤ ηk
r2

{
2
√
dτCτX

(
1 +

τX(τX +Υ)

r2

)
+

2
√
dτZτCτX(τX +Υ)

r2

}

=
2
√
dτCτXηk
r2

{
1 + (τX + τZ)

(τX +Υ)

r2

}
(125)

Therefore, if we define Zp = gZ(Xp), the ℓ2-sensitivity of gZ is

△2(gZ) = sup
Xp,X′

p

∥gZ(Xp)− gZ(X
′
p)∥2

= sup
Xp,X′

p

∥∥Zk
p − (Zk

p )
′∥∥

F

≤ 2
√
dτCτXηk
r2

{
1 + (τX + τZ)

(τX +Υ)

r2

} (126)

By Theorem 4.3 of [Kairouz et al., 2015], the mechanism that adds Gaussian noise to Zs
p for

s = 1, · · · , S with variance (8S∆2(gZ) log(e+(εZ/δZ))/ε
2
Z) satisfies (εZ , δZ)-differential privacy

under S-fold adaptive composition for any εZ > 0 and δZ ∈ (0, 1]. This finished the proof.
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