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1. Rationale of MS3D
The distance function from a set of interior points to the
surface is shown in Fig. 1a, to illustrate how the distance
increases as it approaches the geometric center. Using a dila-
tion operator that takes the maximum value of the distance
function within the neighborhood defined by a structuring
element, we demonstrate in Fig. 1b that the distance function
is expanded to larger values. Except, for the set of maximal
balls, the distance remains unchanged from the dilation in
Fig. 1c to reveal the skeleton. An alternative to using random
inner points is to form a 3D meshgrid that enforces a stricter
selection of skeletal points as illustrated in Fig. 1d.
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Figure 1. MorphoSkel3D for torus and box with k set to 20. First
three columns represent the process for random points, while last
column shows the outcome of inner points formed by a meshgrid.

2. Traditional Surface Reconstruction
Given that MorphoSkel3D relies on surface reconstruction
within its pipeline, we present a benchmark of different al-

gorithms to evaluate the influence on the skeletal quality.
Notably, reconstruction is challenging for the ShapeNet sub-
set with 2000 surface points. In Fig. 2a, the ball pivoting
algorithm (BPA) fails to correctly reconstruct the mesh as
the inner points remain on the surface. In contrast, Figs. 2b
and 2c illustrate how alpha shapes and Poisson both create
a closed surface to identify inner points for MS3D to skele-
tonize. In Tab. 1, the reconstruction results tend to show
lower Chamfer distances for Alpha and Poisson, and lower
Hausdorff distances for P2S and BPA.
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Figure 2. The skeletal spheres that are produced from the mesh by
three different traditional surface reconstruction algorithms.

Therefore, given our uncertainty about whether these
metrics fully capture skeletal quality, we also assessed in
the experiments how well the skeleton can guide sampling.
In Tab. 2, the classification performance of the learning-to-
sample [? ] method is reported for different skeletons.

Ratio DPC [? ] SA [? ] MS3D
8 89.1 89.1 89.5

16 88.8 88.8 88.9
32 87.5 87.4 87.8
64 82.8 82.9 85.5

Table 2. Object classification results on ModelNet40, OA (%).

CD-Recon HD-Recon CD-MAT HD-MAT
P2S BPA Alpha Poisson P2S BPA Alpha Poisson P2S BPA Alpha Poisson P2S BPA Alpha Poisson

Airplane 0.0363 0.0187 0.0158 0.0152 0.1266 0.0911 0.0882 0.0993 0.0611 0.0547 0.0431 0.0368 0.1721 0.1310 0.1435 0.1598
Chair 0.0441 0.0362 0.0365 0.0296 0.1618 0.1700 0.2415 0.2347 0.0974 0.0906 0.0756 0.0659 0.2151 0.2241 0.2906 0.3123
Table 0.0424 0.0369 0.0328 0.0366 0.1745 0.1647 0.2208 0.2205 0.0876 0.0745 0.0651 0.0823 0.2085 0.2192 0.2813 0.3107
Lamp 0.0335 0.0233 0.0215 0.0265 0.1382 0.1382 0.1491 0.1896 0.0884 0.0639 0.0575 0.0606 0.2003 0.2095 0.2230 0.2595
Guitar 0.0179 0.0140 0.0089 0.0085 0.0625 0.0486 0.0490 0.0553 0.0536 0.0351 0.0238 0.0259 0.1216 0.0864 0.0992 0.1046

Earphone 0.0399 0.0231 0.0166 0.0245 0.1125 0.1502 0.1859 0.1686 0.1638 0.1015 0.1014 0.0934 0.2130 0.2205 0.2712 0.2815
Mug 0.0417 0.0402 0.0434 0.0580 0.1419 0.1439 0.1122 0.3201 0.1179 0.1171 0.1122 0.1126 0.2158 0.2343 0.3354 0.4121
Rifle 0.0213 0.0133 0.0107 0.0097 0.0767 0.0571 0.0602 0.0584 0.0356 0.0353 0.0263 0.0250 0.0957 0.0736 0.0927 0.0873

Average 0.0372 0.0294 0.0272 0.0274 0.1424 0.1373 0.1796 0.1857 0.0828 0.0714 0.0608 0.0629 0.1898 0.1903 0.2365 0.2601

Table 1. Comparison of reconstruction error, for Point2Skeleton as reference and MorphoSkel3D under different surface reconstruction
modules, to the surface point cloud (Recon) and the ground truth skeleton (MAT), Chamfer (CD) and Hausdorff (HD) distances.



Method Ratio Mean Air Bag Cap Car Cha Ear Gui Kni Lam Lap Mot Mug Pis Roc Ska Tab
1 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

FPS [? ]

16 80.1 80.1 67.8 66.0 65.7 88.0 64.8 88.3 79.9 76.4 95.4 51.1 89.6 78.2 45.6 74.4 77.3
32 79.6 78.9 77.5 74.3 63.1 87.8 58.5 88.5 82.7 76.3 95.3 60.6 85.4 80.6 48.3 70.6 75.8
64 77.3 75.3 69.6 57.6 56.2 85.8 60.2 86.8 80.8 72.5 94.6 60.3 77.1 81.1 50.9 67.6 75.1

128 70.1 73.3 74.8 50.8 46.4 77.3 46.5 89.1 82.9 72.9 94.4 47.3 86.5 71.4 48.0 57.8 61.2
16 79.4 76.8 74.2 70.2 63.9 85.3 66.4 87.9 82.4 77.2 94.2 57.4 82.2 77.3 52.6 65.8 78.7
32 77.5 73.0 74.5 47.5 64.8 82.5 59.7 88.6 80.9 77.9 95.1 52.7 74.8 73.4 45.0 63.8 76.6
64 76.9 72.3 69.5 48.8 55.8 84.7 66.2 87.8 78.2 76.3 92.4 49.0 81.3 80.4 48.1 65.5 75.5MS3D

128 73.3 68.0 70.8 40.7 53.1 76.9 65.4 87.8 80.9 75.5 93.4 40.9 83.3 77.5 47.4 65.6 72.6

Table 3. Weakly supervised part segmentation results on different sampling ratios, mIoU (%).

3. Weakly Supervised Part Segmentation

Dataset MorphoSkel3D demonstrated effective point sam-
pling across intricate regions and, therefore, we transfer the
learned sampling networks initially trained for classification
to perform weakly supervised segmentation on ShapeNet
in this section. The ShapeNet dataset includes 16 object
categories with a total of 50 classes to train a single model
for coarse-level segmentation, six of these categories also
represented in ModelNet. In specific, the ShapeNet part
segmentation dataset contains 2048 points per object where
each is labeled with an annotated ground truth. To enhance
segmentation performance with prior knowledge, we lever-
age the pre-trained sampling network from ModelNet to
the downstream task of ShapeNet. The sampling network
of ModelNet serves as a backbone to train a segmentation
model on ShapeNet. It’s important to note that a sampled
subset is thus provided to learn segmentation, making the
segmentation task weakly supervised since not all points and
labels are used. The idea is that a pre-trained sampling net-
work of ModelNet selects a representative subset of points
and could be transferred to ShapeNet with the same goal.

Metric The evaluation scheme for part segmentation aligns
with state-of-the-art, where the intersection over union (IoU)
for a shape is derived from the average IoUs of its parts.
For each category, the IoU is in turn calculated as the av-
erage of all shape IoUs within the category. Finally, the
overall instance average mIoU is determined by averaging
the IoUs of all instances in the test set. For a fair compari-
son, we employ no data augmentation techniques to follow
the standard setting for part segmentation. Therefore, the
fully supervised segmentation results in the upper part of
Tab. 3 are identical to those reported in PointNet [? ]. With
an instance-averaged mIoU of 83.7%, an upper bound is
established to benchmark weakly supervised methods. In
our goal to reduce the annotation effort and effectively learn
from a limited set of partially labeled points, we compare
the sampling of the classic FPS with MS3D. Both methods
are evaluated across the four sampling ratios to reduce the
original set into subsets of 128, 64, 32, and 16 points.

Results In Tab. 3, the performance of FPS is compared
against MS3D across 16 categories, with six of these cate-
gories underlined as they are also found in ModelNet. To pro-
vide more insight in the effectiveness of MS3D, we should
focus on, but not limit the analysis to the six categories that
occur in ModelNet. At the highest sampling ratio of 128,
MS3D indicates an improvement in overall mIoU that sur-
passes FPS by over 3% with 73.3% compared to 70.1%. For
instance, the gap in the table category is evident based on
the sampling strategy used by MS3D. It namely targets the
corner areas where there’s a transition in label between the
surface and legs of a table. A segmented example of the
table and guitar category is shown in Fig. 3 to compare pre-
diction and ground truth. For the three other sampling ratios,
the overall mIoU slightly differs in the favor of FPS. We
illustrated that our method focused its sampling in learned
regions for classification and, therefore, assume that it fails
to cover the entire object as effectively as FPS to learn seg-
mentation. On the other hand, MS3D distributes its few
sampled points in different parts. This observation suggests
that our proposed method efficiently identifies points in each
part to annotate and learn a segmentation. Consequently, the
study of objects in a fine-grained segmentation setting arises
as an interesting task.

(a) Prediction (b) Ground truth

Figure 3. Segmentation model trained with 16 labeled points,
sampled through MorphoSkel3D. The prediction for a guitar and
table is displayed on the left, while the ground truth is on the right.
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