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1. Introduction
Inverse problems in signal and image processing

are encountered in several scientific domains such
as biology, medical imaging, chemistry, and audio
signal processing. They require a variety of tasks to
be tackled, such as compressed sensing, matrix fac-
torization, deconvolution, and source separation. In
these contexts, we assume that we have one (or sev-
eral) observation(s) of the object(s) of interest and
we want to recover the unknown object(s) from its
observation(s) [1].
Firstly, it is clear that themodelling of the forward

process is very important, and thus the physics in-
duced by the system must be well understood. Sec-
ondly, inverting the problem and solving this in-
verse problem is complicatedbecauseusually it is ill-
posed. Consequently, we need to use both the infor-
mation about the direct model as well as the object
of interest [2]. Once the forward model is derived,
the inverse problem is formulated as anoptimization
problem (see (2)) which is then solved by a numeri-
cal procedure adapted to the shape of the functional
to be minimized [3, 4].
In our recent works, we tackled several inverse

problems such as deconvolution [5, 6] or robust Prin-
cipal Component Analysis [7], for which we pro-
posed innovative unrolling strategies that combined
physics knowledge and learning. While the formal-
ization of the forward problem is derived in Sec-
tion 2, the unrolling strategies are developed in Sec-
tion 3 together with some numerical experiments.
Conclusions are finally drawn in Section 4.

2. On solving inverse problems
Solving inverse problems in signal and image pro-

cessing consists in recovering an estimate x̂ ∈ RN

of some unknown signal x ∈ RN from its observa-
tion y ∈ RM . The image formation model (or direct
model) can be written as

y = N (Ax), (1)

where A ∈ RM×N represents the forward linear op-
erator (e.g., a blur or a sensing matrix) andN repre-
sents the noise (e.g., additive Gaussian or Poisson).
A classical approach to solve the associated in-

verse problem is to solve the following optimization

problem [2]

x̂ ∈
{
arg min
x∈RN

F(x) := Dy(Ax) + λR(x)

}
, (2)

where the Dy(.) term measures the discrepancy be-
tween the model and the data (the ℓ2-norm is a nat-
ural choice for additive Gaussian noise) and R is a
regularization term introducing prior knowledge on
the targeted solution. To ensure a good balance be-
tween the data fidelity and regularization terms, we
use a regularization parameter λ > 0.
Several algorithms [3, 4] have been proposed in

the literature to solve Problem (2) depending on the
mathematical properties (e.g., convexity and differ-
entiability, among others) of the function F . All of
them introduce additional hyperparameters (such as
the step sizes) that need to be fixed along with the
regularization hyperparameter λ, and they play a
prominent role in obtaining a good estimate. To au-
tomate the determination of these hyperparameters
while computing an estimate of the signal x̂, one can
leverage algorithm unrolling [8].

3. Deep unrolling for image processing
Recently, unrolled (or unfolded) neural networks

have been proposed to combine optimization and
learning [8]. They integrate information about the
directmodel within the network architecture, which
make them interpretable. In an unrolled network,
the iterations of an iterative algorithm are trans-
formed into neural network layers. The result-
ing network can then be trained and the unknown
hyperparameters can be learnt, while information
about the direct model is integrated into the weight
matrices and the a priori into activation functions.

3.1 Unrolling for regularization parameter estimation
Context and method Let’s first consider a decon-
volution problem associated with an additive white
Gaussian noise and where the signal is expressed in
a wavelet basis. The direct model reads

y = HW ∗x+ ϵ, (3)

whereH represents a blur operator (here a Gaussian
kernel),W ∗ (resp.W ) defines an orthogonal wavelet
synthesis (resp. analysis) operator and ϵ ∈ RM cor-
responds to a zero-mean Gaussian white noise of
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variance σ2. To solve the related inverse problem,
we will compute

x̂ ∈
{
arg min

x∈RN
F(x) :=

1

2
∥HW ∗x− y∥22 + λ∥x∥1

}
,

using an unrolled version of FISTA [9] where the reg-
ularization parameter λ is learnt. More precisely,
from themaximuma posteriori (MAP) estimator, we
obtained that λ ∝ σ2/µ, with µ being the scale pa-
rameter of the a priori. Consequently, instead of
learning λ directly, we proposed to learn the param-
eters (θ1, θ2, ϑ1, ϑ2) of linear rectification functions
rσ(s; θ) = θ1s + θ2 and rµ(u;ϑ) = ϑ1u + ϑ2 such
that rσ(σ̂y; θ) and rµ(µ̂y;ϑ) improves the initial esti-
mates σ̂y and µ̂y of σ and µ. This allows us to seek
λ as rσ(σ̂y; θ)

2/rµ(µ̂y;ϑ) and use known (or at least
easily accessible) information.
Numerical results In Figure 1, we show that the
proposed deep unrolled network reaches the per-
formance one would obtain through a costly a grid
search procedure over λ values. It is worthmention-
ing that the resulting network is fully interpretable,
and the training is performed on a small dataset (<
50 images) thanks to the physics-informed network
which takes 30 minutes to train on a laptop. This
results in an inference time of a couple of seconds
for each online run versusminutes for an equivalent
quality grid-search iterative algorithm.

Fig. 1: SNR performances along with λ.

3.2 Unrolling to mitigate model uncertainties
Context and method We now consider a deconvo-
lution problem associated to Poisson noise. The di-
rect model is given by (1), whereN stands for a Pois-
son noise model. The data fidelity term in (2) should
be defined (from the MAP) as the Kullback-Leibler
divergence [10, 11], which is difficult to optimize. We
propose to consider instead a second-order Taylor
approximation of Dy, and to define

Dy(Ax) ≈ ∥Ax− c∥2w :=

M∑
m=1

wm ([Ax]m − cm)
2
. (4)

In the case of Poisson noise, we can theoretically
derive that wm = 1

ym
and c = y. For more com-

plex noises, such theoretical results may be difficult

or even impossible to derive. Thus, we propose to
learn the weights w ∈ RM . To do so, we define a
weight estimation module and sequentially cascade
it together with an unrolled algorithm to reconstruct
the image.
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Fig. 2: The learnt w.

Numerical results
Looking at the
visual results in
Figure 3, we can see
that the weighted
least square (WLS)
approach (aver-
age PSNR of 27.71 dB)
leads to better results
than the standard
least square (LS)
approach (average
PSNR of 26.91 dB). In addition, the learnt weights
(see Figure 2) are in line with the theoretical val-
ues derived for Poisson noise. We would like to
underline here that these results can naturally be
extended to more complex and general noises.
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Fig. 3: Comparison (with zooms) of visual perfor-
mance of one image in the test set.

4. Conclusion
Algorithm unrolling is a powerful tool to solve

inverse problems in signal and image processing,
particularly because it results in fully interpretable
physics-informed networks. Unrolled architectures
can be derived for various tasks, and they can be
used for learning unknown quantities and mitigat-
ing errors on the model.
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