
A A Note on Applications and Future Work

The applications of HRRs may not be immediate, given the approach has been out-of-vogue amongst
most machine learning practitioners for many years. Long term we believe improvements in neuro-
symbolic learning are important for better generalization of ML methods to novel inputs and situations,
as argued by [3]. In the short term future, we do believe HRRs may have considerable opportunity to
provide enhancements. Transformers via their Òquery, key, valueÓ Multi-Headed Attention (MHA)
are a natural place to explore HRRs due to the match of logical design, while potentially avoiding
MHAÕs high costs and are supported by similarly motivated analysis by Schlag et al.[4] through the
lens of an associative memory. Similar recent works on TPR augmented RNNs for natural language
processing (NLP) [5, 6] show value to endowing modern designs with classic symbolic-connectionist
ideas. The same inspiration and other neuro-symbolic work on question-answering with TPRs [6]
leads us to believe HRRs maybe have similar potential for such systems, and in particular as a way to
extract, or augment the knowledge base of an a queryable system in a way that current methods do
not yet allow. Broadly we believe many NLP applications of HRRs may exist given the common
need to perform binding of subjects to their associated nouns, entity resolution, and the large variety
of binding like problems that occur across NLP tasks. Ultimately, we hope that the most interesting
work will come from taking new perspectives on how loss functions and problems may be modeled,
as we have done in ¤ 4, to enable new kinds of tasks and applications.

B Understanding Compositional Representations with HRR

In this section, we provide an illustrative example of how a compositional representation can be
constructed with holographic reduced representations. As shown in Fig. 3, a dog is represented a
combination of the different parts of its body. The representation is in the form of a tree and consists
of a two-level hierarchy where theheadpart is further represented as a combination ofeyes, nose
andmouth. Our objective is to create design a dense vector representation that can represent this
hierarchy. There are multiple ways in which a representation can be constructed, such as a binary
format, or concatenating individual attribute vectors representations. HRRs allow us construct a
dense representation that can be decomposed while maintaining the vector dimension sized constant.

Figure 3: Example representation ofdogas a combination of different parts. The representation is a
two level hierarchy where itsheadcan be subdivided into components.

Fig. 4 shows how HRR can be utilized. As described in ¤1, each attribute is represented as combination
of two vectors: a key (k) and attribute vector. Thek is used to retrieve the original attribute vector.

In the given example, the trace fordog (Þnal dense representation) is computed by adding all
key ! attribute pairs. We ask the query:Do dogs have legs?and retrieve the attribute forlegsby

16

Figure 4: Following is the vector representation of adogusing HRR. There are three types of vector
representations, namely, theKey / Cuevector, theattribute or property vector andtrace / derived
vector. Trace vectors can be added to form a combined vector representation. The diagram shows
how a two-level hierarchy is represented with HRR.It is important to note that the dimension
size of the representation remains constant. To query the vector, the inverse of the key for a given
attribute is utilized (with the unbind operator). In this example, we ask the question:Does a dog
have legs?

computingl ! Dog wherel is the key for the attributelegsandDog is the trace vector representing
the concept. A simple yes/no response can then be obtained by comparing to the property, via
legs! l ! Dog Because the! operation is associative and communicative, we can also ask if dogs
have eyes by checkingeyes! e ! Dog , though a stronger response will be obtained by using the
full structure of the encoding and checkingeyes! h ! e ! Dog .

The reader may then ask, why should the HRR operation allow us to answer queries likelegs! l !
Dog in a Þxed dimensional space? As an example we will reproduce the excellent illustrative worked
example by Plate[1], followed by a new derivation showing the same nature when distractor terms
are included in the statement.

Consider ad = 3 dimensional space, where we wish to computec ! (c ! x), we will get the result
that:

c ! (c ! x) =

!

"
"
"
"
"
#

x0
$
c2

0 + c2
1 + c2

2

%
+ x1c0c2 + x2c0c1 + x1c0c1
+ x2c1c2 + x1c1c2 + x2c0c2

x1
$
c2

0 + c2
1 + c2

2

%
+ x0c0c1 + x2c0c2 + x0c0c2
+ x2c1c2 + x0c1c2 + x2c0c1

x2
$
c2

0 + c2
1 + c2

2

%
+ x0c0c1 + x1c1c2 + x0c1c2
+ x1c0c2 + x0c0c2 + x1c0c1

&

'
'
'
'
'
(

(10)

There are two simpliÞcations that can be done to this resulting matrix by exploiting the fact that all
elements in the matrix are sampled according to the distributionx " N (0, 1

d). First there is the pattern
xi á

) d" 1
j =0 c2

j on the left hand side. The sum of squared normals will in expectation be equal to 1, but
we will subtract that value in our change of variable to create! =

$
c2

0 + c2
1 + á á á+ c2

d

%
1, which

will then have the distribution! " N
$
0, 2

n

%
. Second, the right-hand side will haved(d # 1) products

17

of the formxi cj ck , $j %= k. Summing all of these into a new variable" i products" i " N
$
0, d" 1

d2

%
.

Inserting! i and" i we get:

c ! (c ! x) =

*
x0(1 + !) + " 0
x1(1 + !) + " 1
x2(1 + !) + " 2

+

= (1 + !)÷x + ÷" (11)

Since both! i and" i have a mean of zero, we get the Þnal result thatE[c ! (c ! x)] = x , allowing
us to recover a noisy approximation of the original bound value. The communicative and associative
properties of the HRRÕs construction then extend this to the more complex statements that are possible,
and accumulate the noise of the resulting variables.

To demonstrate this, we will perform another example withc ! (c ! x + a ! b). This will be
performed withd = 2 in order to avoid visual clutter, and results in the equation:

c ! (c ! x + a ! b) =

*
c0 (a0 b0 + a1 b1 + c0 x 0 + c1 x 1) " c1 (a0 b1 + a1 b0 + c0 x 1 + c1 x 0)

(c0 " c1)(c0 + c1)
c0 (a0 b1 + a1 b0 + c0 x 1 + c1 x 0) " c1 (a0 b0 + a1 b1 + c0 x 0 + c1 x 1)

(c0 " c1)(c0 + c1)

+

=

!

#
a0 b0 c0 " a0 b1 c1 " a1 b0 c1 + a1 b1 c0 + c2

0 x 0 " c2
1 x 0

c2
0 " c2

1
" a0 b0 c1 + a0 b1 c0 + a1 b0 c0 " a1 b1 c1 + c2

0 x 1 " c2
1 x 1

c2
0 " c2

1

&

(
(12)

Notice that the red highlighted portion of the equation is the product of independent random vari-
ables, meaning two important properties will apply:E[XY] = E[X] áE[Y] and Var(XY) =$
#2

X + µ2
X

% $
#2

Y + µ2
Y

%
µ2

X µ2
Y . Because these random variables have a meanµ = 0 , the products

result in a new random variable with the same mean and reduced variance as the original independent
components. The Þrst property gives

E[XY] = E[X] áE[Y] = 0 á0 = 0

and the second property gives:

Var(XY) =
$
#2

X + µ2
X

% $
#2

Y + µ2
Y

%
µ2

X µ2
Y =

, -
1
d

. 2

+ 0

/ , -
1
d

. 2

+ 0

/

0 =
1
d4

That reduces each product ofai bj ck into a new random variable with a mean of zero, and then the
sum of these random variables, due the the linearity of expectation, will be a new random variable
with an expected value of zero. So in expectation, the highlighted red terms will not be present (but
their variance due to noise will cause errors, though the variance is harder to quantify due to reuse of
random variate across the products). Thus we get the expected result of:

!

#
c2

0 x 0 " c2
1 x 0

c2
0 " c2

1
c2

0 x 1 " c2
1 x 1

c2
0 " c2

1

&

(=
0
x0
x1

1
(13)

Which recovers the originalx value that was bound withc, even though additional terms (e.g.,a ! b
are present in the summation.

C Implementation

Our implementation for all experiments is included in the appendix, and is based off original XML
projects from the authors of AttentionXML and XML-CNN, and as such contain signiÞcant code
that is speciÞc to the data loaders, their original training pipelines, and other features extraneous to
the task of understanding just the code for an HRR. As such we take a moment to demonstrate the
PyTorch code one could write (as of 1.8.1 which added revamped support for complex numbers and
ffts) to implement our HRR approach.

18

First are the operations for binding, the inverse and approximate inverse functions, and our projection
step. This can be accomplished in just 10 lines of Python code, as the below block shows. The use of
thereal andnan_to_numfunctions are defensive guards against numerical errors accumulating in the
fft functions that could cause small complex values to occur in the results of computations.

1 def binding (x, y):
2 return torch . real(ifft(torch . multiply(fft(x), fft(y))))
3 def approx_transpose (x):
4 x = torch . flip(x, dims =[- 1])
5 return torch . roll(x, 1, dims =-1)
6 unbind = lambda x, y: binding(s, approx_transpose(y))
7 def projection (x):
8 f = torch . abs(fft(x)) + 1e-5
9 p = torch . real(ifft(fft(x) / f))

10 return torch . nan_to_num(p) #defensive call

The loss is also easy to implement, and below we show a slice of how most of our models implemented
the loss approach. Theinference function takes in ap_or_mvariable that is either the present
vectorp or the missing vectorm , extracts the target vector from the prediction (i.e.,p# ! ös or
m # ! ös), and then L2 normalizes the result so that the down-stream dot product becomes equivalent
to the cosine distance. Theinference function is then used for computingJ_p andJ_n, but using
the abs function instead of the true angular distance as a micro optimization. We obtain the same
results regardless of that implementation choice, but the abs calls are just a bit faster to run and avoid
add inverse cosine calls.

1 def inference (s, batch_size, p_or_m):
2 vec = p_or_m. unsqueeze(0) . expand(batch_size, self . label_size) #make

shapes work!!

3 y = unbind(s, vec) #(batch, dims), extracting the target values from
prediction!!

4 y = y / (torch . norm(y, dim =-1, keepdim =True) + 1e-8) #normalize so that
results will be cosine scores!!

5 return y
6

7 convolve = inference(s, target . size(0), p)
8 cosine = torch . matmul(pos_classes, convolve . unsqueeze(1) . transpose(- 1,

- 2)) . squeeze(- 1) #compute dot products!!

9 J_p = torch . mean(torch . sum(1 - torch . abs(cosine), dim =-1))
10

11 convolve = inference(s, target . size(0), m)
12 cosine = torch . matmul(pos_classes, convolve . unsqueeze(1) . transpose(- 1,

- 2)) . squeeze(- 1) #compute dot products!!

13 J_n = torch . mean(torch . sum(torch . abs(cosine), dim =-1))
14

15 loss = J_n + J_p # Total Loss.

As seen in the implementation above,J_p andJ_n are the positive and negative losses. Thecosine
value can be positive or negative value ranging from1 to # 1. While inferring if anunbind vector is
related to a label vector, we compute thecosine distance. Hence, while computing the loss, we take
the absolute value of the cosine in order to maintain the positive loss minimizing towards0.

D Binding Capacity and VSA Selection

HRRs are but one of many possible vector symbolic architectures (VSAs) that one could select. For
the purposes of our work, we had four desiderata.

1. The VSA vectors should naturally exist in the reals, since most deep learning applications
are using real-valued vectors.

19

2. The VSA should be composed entirely of differentiable operations, so that learning may be
possible.

3. The VSA should be of minimal additional overhead.

4. The VSA should be as effective as possible at the binding operation.

The Þrst two of these items are binary requirements that a VSA either has or not. This excludes
many VSAs that operate in the complex domain or discrete spaces, leaving us with three potential
candidates: HRRs, continuous Multiply-Add-Permute (MAP-C, distinguishing from its binary
alternative)[49][50], and the most recently developed Vector-derived Transformation Binding (VTB).
Of these three the MAP-C option is least desirable because it requires a clipping operation to project
vectors values into the range of[# 1, 1], which results in sub-gradients and zero-gradient values that
will make optimization more challenging.

In evaluating the overhead of each method, HRRs and MAP-C are satisÞcing, they are both composed
of operations well deÞned and optimized by existing deep learning systems. The VTB approach
requires a sparse block-diagonal Kronecker product that we found is not well optimized in current
tools, often requiring10& the memory to back-propagate through compared to the HRRs and MAP-C,
making it less desirable. We stress we do not believe this to be a fundamental limitation of VTB, but
a limitation of current tooling. We are conÞdent a custom implementation will work without memory
overheads, but wish to constrain ourselves to already existing functions of PyTorch due to simplicity
and expediency.

D.1 Capacity For Error Free Retrieval

The last question, VSA effectiveness, then becomes part of the decision process in selecting a Þnal
VSA to use. To help elucidate how we came to chose the HRR, we will discuss experimental results
on the capacity of the VSAs with respect to problems of the form:

S =
n2

i =1

bind(x i , y i)

This form of S is the same that we rely on to develop our loss framework in ¤ 4, and does not
capture all the ways that a VSA may be used. This analysis is thus not conclusive to holistic VSA
effectiveness, but it does capture the common form of capacity that we will discuss that inßuenced
our selection.

To estimate the capacity, aftern pairs of items are bound together we attempt to unbindyi which
should returnunbind(S,y i) = öx i ' x i . There will then be a pool ofn random distractor vectors
z1, . . . , zn , sampled in the same manner used to construct thex i andy i values of the VSA being
tested. If there exists anyzj such thatcos-sim(öx i , x i) < cos-sim(öx i , z j), then thatj Õth item is
considered to be incorrectly retrieved. So our capacity will be the value ofn such that no more thant
retrieval errors occur.

Figure 5 shows the capacity of each method given a threshold of no more than 3% error, as estimated
by 10 trials of randomly selecting alln pairs and distractor items, withn tested at values of

(
2

j
.

We can see that the naive HRR actually has the worst performance, in part due to its numerical
instability/approximation error. It is also important to note that the HRRÕs original theory developed
by Plate[1] states that the capacity should grow linearly with the dimension size. We Þnd for naive
HRRs this is not the case.

Because HRRs did best satisfying all requirements but the capacity issue, we chose to attempt to
improve the HRRs so that they would be more effective4. As we discussed in ¤ 3.1 this can be done
with our projection operation, which restores the theoretically expected behavior of linear capacity
improvement with dimension sized, and brings HRRs to parity with the best performing (in terms
of capacity) VSA the VTB. Since the HRR required signiÞcantly less memory than VTB, and was
slightly faster in our testing, our improved HRR became the most logical choice to move forward
with.

4This work in fact started before the VTB method was published, but was reconsidered when we learned of
it.

20

26 28 210 212

23

24

25

26

27

28

Embedding Sized

C
ap

ac
ity

n

HRR
HRR w/ Proj
VTB
MAP-C

Figure 5: Capacity based on the ability to representn items bound together and, compared ton false
distractors, correctly identify the true item as the most-similar. As the dimension of the embedding
spaced increases, most VSAs capacity increases linearly.

For further ediÞcation about the capacity of each evaluated approach, we show in Figure 6 the
probability of a retrieval error occurring as the number ofn items increases, with the standard
deviation over 10 trials shown in the highlighted region. As can be seen, our improved HRRs and
VTB have statistically indistinguishable performance, which was quite surprising, and may lead to
further theory work around the limits of binding capacity in a Þxed-length representation.

In all cases we can see that while capacity at a thresholdt does increase linearly with dimension
d for the non-HRR approaches5. It is also worth noting that capacity is a fairly hard limit, with
error increasing slowly until the capacity is reached, at which point the probability of error begins to
increase rapidly with expanded set size. There are also other forms of VSA capacity that are beyond
our current scope, especially when discussing mechanisms like RNNs built from VSA [51]. Our
results should not be taken as conclusive holistic descriptions of HRRs vs other VSAs, but are limited
to the form of capacity we have discussed in this section and is most relevant to our application.

In relation to our results in storing tens to hundreds of thousands of vectors, we note that our results
in ¤ 5 are based on learning to extract the correct objects, and the penalty term is based on a single
averaged representation of all other concepts, which thus down weights any false-positive response
due to noise of a single item. The capacity results we discuss in this section are with respect toanyof
the originalz i distractors having a higher response, which requiresn brute force evaluations and is a
harder scenario than what we required.

D.2 Capacity For Average Response Range

The capacity question we have just walked through is for error free recognition of the true item as
more similar than a set ofn distractors. However, our use of the HRR operations poses a mixed
representation. InJp we perform extraction of the classes present, butJn relies on the average
response value being accurate.Jp requires on average less than 76 explicit items to be retrieved in all
our datasets, butJn is representing the average response over tens to hundreds of thousands of items.
So whileJn requires a ÒlargerÓ capacity in some sense, it only requires the average response to be
stable.

We can explore this in our data by looking at Figure 7, where we plot the mean and standard deviation
of individual responses. The solid lines correspond to the same results as presented in Figure 1, but

5It is possible naive HRRs would increase linearly given even larger values ofd, but experimentation past
that point is unreasonable.

21

24 26 28 210

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=25 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(a) d = 25

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=64 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(b) d = 64

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=121 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(c) d = 121

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=256 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(d) d = 256

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=484 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(e) d = 484

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=1024 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(f) d = 1024

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=2025 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(g) d = 2025

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=4096 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(h) d = 4096

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P
(R

et
rie

va
lE

rr
or

)

d=8100 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(i) d = 8100

Figure 6: Probability of a retrieval error (y-axis) when, givenn (x-axis) pairs of objects bound
together andn distractor items, the unbound concept vector is more similar to a distractor than the
true original object. The values ofd are prefect squares due to a technical requirement of the VTB
approach.

we are looking at only the improved HRR, and showing the standard deviation of the individual
responses that form the average.

Given this results there are multiple ways we could look at when the HRR response begins to ÒfailÓ.
If we look at when do the mean and standard deviation of the responses start to overlap for the
present/absent cases, that starts aroundn = 512 items. If we look at when the standard deviation
starts to approach the other itemÕs mean, that occurs aroundn = 1 , 536. If we look at when the
mean response begins to deviate away from the target value of 1/0, that does not start to occur
until aroundn = 2 16 = 65, 536(and is still very close, but larger values ofn are computationally
expensive)! This stability of the average for largen is an important component of our loss component

Jn = cos
3

m ! ös,
4

cp $Y p cp

5
is implicitly working over an average response of all the negative

labels.

This shows that the distributional average around the desired response value for present/absent items
is very stable, but the tails of the distribution do begin to grow as you try to pack more and more
into the single representation. This validates further why we need to use a normalized response via

22

23 25 27 29 211 213 215

23

22
21

0
21
22

23

Number of Vector Pairsn

Q
ue

ry
R

es
po

ns
e

d=256 Dimensions

Present
Absent

Figure 7: Distribution of the response to queries of the formq 4 n
i =1 ai ! bi for cases whereq is

present or absent from the summation. The standard deviation of responses is shown in the shaded
region, y-axis is symlog scale and x-axis is log scale.

the cosine similarity when extracting the present terms, but also how theJn term can function well
despite the large symbolic query space.

E Datasets

All datasets and their source are given in Table 6.

Table 6:Dataset Statisticsfrom Bhatia et al.[44]. The table describes the statistics of each dataset
utilized for experiments and includes the number of features per sample, number of labels in each
input sample, the diversity of the dataset represented through the average number of points per label
and average number of labels in each sample.

Dataset Features Labels Avg. Samples per Label Avg. Labels per Point

Mediamill [52] 120 101 1902.15 4.38
Bibtex [53] 1836 159 111.71 2.40

Delicious [54] 500 983 311.61 19.03
EURLex-4K [55] 5000 3993 25.73 5.31
Wiki10-31K [56] 101938 30938 8.52 18.64

Ama13K [57] 203882 13330 448.57 5.04
Delicious-200K [58] 782585 205443 2.29 75.54
Amazon-670K [55] 135909 670091 3.99 5.45

F Additional Metrics

Next there is the DCG@k and PSDCG@k scores, which differ only by the inclusion of thepl term
being absent / present respectively. PSDCG is shown below.

PSDCG@k :=
2

l $ rankk (öy)

y l

pl log(l + 1)

23

As recommended we use the normalized versions of each giving us nDCG@k and PSnDCG@k,
resulting in eq. (14) and eq. (15).

nDCG@k :=
DCG@k

4 min(k, %y %0)
l =1

1
log(l +1)

(14)

PSnDCG@k :=
PSDCG@k

4 k
l =1

1
log(l +1)

(15)

Across all experiments we see that results across different values ofk tend to be consistent. The
pairings of Precision@k and nDCG@k and PSprec@k and PSnDCG@k are highly correlated in all
our results, and equivalent fork = 1 . For this reason we will show most results atk = 1 for brevity,
with larger tables of results in the appendix.

G Computer Resources

Training was done primarily on a shared compute environment, but in general we had access to only
one or two compute nodes at any given time. The main compute node used had a Tesla V100 with 32
GB of RAM, which could barely Þt the Amazon-670K experiments during training. Going through
all datasets to obtain results took approximately 2-weeks of compute time per model tested, and we
have three models under evaluation. Combined with other experiments that did not pan out, we did
not have the capacity to perform the 25+ runs that we would prefer to provide robust measures of
variance in our results. We do report that spot checking smaller datasets like Bibtex that had large
effect sizes consistently returned those large effect sizes.

H Inference for XML with HRR

We take a moment to be more explicit about how inference is done with HRRs to perform XML
prediction, and also discuss further potential advantages that could be achieved given more software
engineering effort.

Given a networkÕs predictionös = f (x), inference can be done by simply iterating though all class
HRR vectorsc1, c2, . . . , cL , and selectingarg maxi c!

i p# ! ös to determine that classi is the top
prediction of the network. To select the top-k predictions, as is common in XML scenarios, one
simply selects the top-k largest dot products to be the predicted set. Or one can use a threshold of
c!

i p# ! ös > 0.5 to select the set of likely present classes. While this isnot a calibrated probability,
this works out by the math of HRRs that a value being present should produce a dot product of' 1
and non-present values should produce a dot product of' 0.

The above describes how inference is currently done in our code. We note that it could be further
accelerated. This is because the inference formulationarg maxi c!

i (p# ! ös) is now aMaximum
Inner-Product Search(MIPS) problem, for which many algorithms have been designed to accelerate
such queries [32, 59, 60]. We have not incorporated these tools due to current freely available
software not being well designed for our use case. This appears to be a purely software engineering
problem, and beyond our current capacity to implement. For example, the MLPACK3 library6 has
MIPS algorithms that can perform the exact search for the top-k items in expectedO(log n) time
after building the index at costO(n logn). Our setup would allow such a construction, but the library
is based on CPU only calculations. For the scale of datasets that are publicly available that we tested,
the constant-factor speedup of a GPU is still faster than theO(log n) search. If we had access to
private XML corpora with 100 million classes[33, 39], we would expect this result to change.

The only software we are aware of with GPU support forapproximateMIPS search is the FAISS
library7. While broadly useful, the library does not support the functionality we need to avoid
signiÞcant overheads that make it slower than a brute force search in this case. First, the FAISS
library requires keeping its own copy of all vectorsc1, . . . cL in GPU memory. This is a non-trivial

6https://www .mlpack.org/
7https://github .com/facebookresearch/faiss/wiki

24

https://www.mlpack.org/
https://github.com/facebookresearch/faiss/wiki

cost that can make it difÞcult for us to Þt the model in memory at the same time, which is the case
where such MIPS searches would prove advantageous. Our implementation does not require storing
the symbolsci in memory, because they can be re-constructed as needed based on a random seed.
This makes the brute force search faster because it requires no additional memory accesses once
p# ! ös has been computed and stored in GPU memory. This makes our brute force considerably
faster, and causes the FAISS implementation to have signiÞcant overhead for unneeded memory use
in its normal index structure combined with explicitly storing allci .

I HRR Model Runtime with XML-CNN

In ¤5.4, we measured the performance of the baseline FFN (FC) and HRR-FFN (HRR-FC) and
showed how its execution time decreases as the number of labels increase. The cost of a single
forward pass through the network is lower than baseline because the size of the output layer is smaller.
Similarly, we analyze the impact of output layer size reduction on the XML-CNN architecture [61].
We observe in table 7 that execution time reduces across larger datasets, but initially the optimization
time is higher (amazoncat-12k). The optimization time accounts for both: (a) the time taken to
compute the loss and (b) the time taken to calculate the gradients and update the network.

Table 7:Model Execution & Optimization Time . Compare execution and optimization time for
XML-CNN [61] and HRR-CNN. Execution time is the average time (seconds) to perform a forward
pass and inference through the model for1 epoch of training. It corresponds to the throughput of the
model. Similarly, optimization time includes the time to compute the loss and optimize the model.
As observed, overallTrain time reduces as the number of labels in the dataset increases.

Dataset Model Execution Time Optimization Time

EURLex-4K CNN 0.466 2.306
HRR-CNN 0.467 3.657

Wiki10-31K CNN 0.630 2.665
HRR-CNN 0.712 3.286

AmazonCat-12K CNN 16.722 83.305
HRR-CNN 16.178 117.098

Amazon-670K CNN 239.48 734.694
HRR-CNN 122.665 301.376

Figure 8: Difference between the precision @ k for HRR-FC trained whenp & m vectors are updated.
Positive values indicate a preference for Þxed values, negative a preference for learned values.

25

	Introduction
	Related Work
	Holographic Reduced Representation
	Dense Label Representations
	Experiments & Analysis
	Conclusion
	A Note on Applications and Future Work
	Understanding Compositional Representations with HRR
	Implementation
	Binding Capacity and VSA Selection
	Datasets
	Additional Metrics
	Computer Resources
	Inference for XML with HRR
	HRR Model Runtime with XML-CNN

