
FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving

A HEAD GROUP FUSION FOR
GROUPED-QUERY ATTENTION

Grouped-Query Attention (GQA) (Ainslie et al., 2023) al-
lows multiple query heads to share the same key-value (KV)
heads. A straightforward implementation that assigns dis-
tinct GPU threadblocks to each query head leaves much of
the potential KV-Cache reuse underutilized when the query
length is short. To address this limitation, FlashInfer offers a
head-group fusion strategy: different KV heads are mapped
to individual threadblocks, while query heads are fused with
the query length dimension. This fusion scheme is illus-
trated in Figure 11, which shows how the fused row index
relates to the original row index and the head indices. By
merging the query-head dimension with the row dimension
in the threadblock mapping, a single shared-memory load
of the KV-Cache suffices for all query heads in the group,
leading to better memory reuse and improved throughput
for GQA operations.

Head Group
Fusion

GQA group size () = 5

=3

Fused query(output) length

Fused row index to row index:

Fused row index to Q/O head index:

0

1

2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Row
Index

Fused Row
Index

Figure 11. FlashInfer’s head-group fusion of query heads with the
query length dimension in GQA.

We prefer head-group fusion primarily for short query
lengths. When the query length is sufficiently large, the
query dimension itself yields enough workload to effec-
tively utilize the KV-Cache, making head-group fusion less
critical. Similar ideas have also been explored in other
frameworks, such as XQA (NVIDIA, 2024b) in TensorRT-
LLM (NVIDIA, 2023a).

B OVERHEAD OF SPARSE GATHERING

In Section 3.2.1, we detailed the design of FlashInfer’s
sparse loading module, which transfers sparse rows from
global memory into contiguous shared memory. Here, we
measure the performance overhead associated with sparse
gathering in FlashInfer for both decode and prefill kernels.

Figure 12 compares achieved throughput in both prefill and

(32, 1024) (16, 2048) (8, 4096) (4, 8192) (2, 16384) (1, 32768)
(Batch Size, Sequence Length)

0
100
200
300
400
500
600
700

Ac
hie

ve
d

TF
LO

Ps
/s

26
5 30

1 32
4 33
7 34
4

34
7

27
7 31

8 34
2 35
8 36
6

37
0

FA2 Template (H100 SXM5)

(32, 1024) (16, 2048) (8, 4096) (4, 8192) (2, 16384) (1, 32768)
(Batch Size, Sequence Length)

0
100
200
300
400
500
600
700

Ac
hie

ve
d

TF
LO

Ps
/s

34
3

41
8 46

9 50
2 52

3 53
2

40
6

49
1 54

9 58
7 61

3 62
7

FA3 Template (H100 SXM5)

FlashInfer (vector-sparse) FlashInfer (dense)

(32, 1024) (16, 2048) (8, 4096) (4, 8192) (2, 16384) (1, 32768)
(Batch Size, Sequence Length)

0

25

50

75

100

Ba
nd

wi
dt

h
Ut

iliz
at

io
n

(%
)

84 85 83 83 83 8385 84 85 84 84 84

Decode Attention on Sparse/Dense KV (H100 SXM5)

FlashInfer (vector-sparse) FlashInfer (dense)

Figure 12. Top: Achieved TFLOPs/s for (causal) prefill attention
kernels on FA2/FA3 templates with both dense/sparse KV-Cache.
Bottom: Achieved bandwidth utilization for decode attention
kernels for both dense/sparse KV-Cache. We use PageAttention
with page size 1 (vector-sparse) for sparse KV-Cache. The x-axis
shows various batch sizes and sequence lengths.

decode kernels for sparse and dense (contiguous) KV-Cache.
For the prefill kernels, we measure the causal attention sce-
nario, which is common in LLM serving. For contiguous
KV-Cache, We use the variable-length RaggedTensor prefill
attention API8. For sparse KV-Cache, we use the PagedKV-
Cache prefill attention API9.

The number of query heads and KV heads are both fixed
at 32, head dimension is set to 128. We vary batch size
and sequence length to measure the achieved throughput.
For decode kernels, the performance gap between sparse
and dense KV-Cache is negligible (within 1%). For prefill
kernels, there is approximately a 10% performance gap.

Note that dense attention in the FA3 template uses TMA
instructions (Tensor Memory Access) for key/value loading,
which is unavailable for sparse gathering because Hopper
Architecture’s TMA only supports fixed-stride accesses,
whereas sparse gathering requires arbitrary row indices.
Consequently, sparse gathering on FA3 relies on Ampere-
style asynchronous copy instructions and manual pointer
arithmetic. This approach consumes more registers and
necessitates smaller KV-tile size to avoid register spilling,
leading to a slightly larger performance gap. By contrast,
in the FA2 template (where both sparse and dense use Am-
pere’s async-copy), the gap is smaller because the same tile
size is used.

8https://docs.flashinfer.ai/api/
prefill.html#flashinfer.prefill.
BatchPrefillWithRaggedKVCacheWrapper

9https://docs.flashinfer.ai/api/
prefill.html#flashinfer.prefill.
BatchPrefillWithPagedKVCacheWrapper

https://docs.flashinfer.ai/api/prefill.html#flashinfer.prefill.BatchPrefillWithRaggedKVCacheWrapper
https://docs.flashinfer.ai/api/prefill.html#flashinfer.prefill.BatchPrefillWithRaggedKVCacheWrapper
https://docs.flashinfer.ai/api/prefill.html#flashinfer.prefill.BatchPrefillWithRaggedKVCacheWrapper
https://docs.flashinfer.ai/api/prefill.html#flashinfer.prefill.BatchPrefillWithPagedKVCacheWrapper
https://docs.flashinfer.ai/api/prefill.html#flashinfer.prefill.BatchPrefillWithPagedKVCacheWrapper
https://docs.flashinfer.ai/api/prefill.html#flashinfer.prefill.BatchPrefillWithPagedKVCacheWrapper

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving

When the block column size in a block-sparse matrix is
large (e.g., 128 or greater), TMA can be used for sparse
gathering since each TMA instruction operates within a
single block with fixed stride. We leave this optimization
for future work. However, increasing the block column size
reduces the flexibility of the block-sparse format, which
might not be suitable for all use cases.

C THE CHOICE OF BACKEND

For NVIDIA GPUs, we build FlashInfer on top of CUDA/-
CUTLASS (Thakkar et al., 2023) instead of Triton (Tillet
et al., 2019) for the following reasons:

1. Advanced NVIDIA GPU Features. CUTLASS
supports specialized GPU capabilities such as warp-
specialization (NVIDIA, 2024a) and TMA instruc-
tions (NVIDIA, 2022), which are experimental or un-
supported in Triton at this moment.

2. Fine-Grained Kernel Optimization. While Triton
provides tile-level abstractions, CUDA/CUTLASS af-
fords finer control over thread-level registers. This flex-
ibility simplifies incorporating low-level optimizations
(e.g., PTX intrinsics) directly into our JIT templates,
which is more challenging in Triton.

Our load-balancing scheduler design (Section 3.3.1) is
largely backend-agnostic, allowing us to potentially inte-
grate Triton in future versions of FlashInfer and to adapt our
approach to other hardware platforms.

D MEMORY MANAGEMENT

FlashInfer manages a page-locked (pinned) host buffer and
a device workspace buffer to store scheduler metadata and
split-k partial outputs. We divide the device workspace
buffer into sections, each corresponding to an array of either
scheduler metadata or partial split-k outputs. For each plan
call in the scheduler, we compute the scheduler metadata on
the pinned host buffer and then issue a cudaMemcpyAsync
to transfer this data into the corresponding sections of the
device workspace buffer.

D.1 CUDAGraph-Compatible Workspace Layout

Once a kernel is captured by CUDA Graph, its arguments
(pointers and scalars) become fixed, implying that each
section of the device workspace buffer must maintain a
consistent address for the entire captured graph’s lifetime.
Therefore, we allocate the workspace buffer to its maximum
required capacity for each section, based on upper-bound
estimations of scheduler metadata and partial outputs.

D.2 Split-K Writethrough Optimizations

In FlashInfer’s load-balancing scheduler (Section 3.3.1),
KV-splitting is only applied to requests that have large KV
lengths. Requests with short KV lengths do not require split-
ting and hence have no reduction step from partial output.
To save both computation and workspace memory, these
small requests can write their partial outputs directly to the
final output buffer (bypassing the device workspace buffer).
This approach reduces both the required workspace size and
the computational load within the contraction kernel.

D.3 Workspace Buffer Size Estimation

The workspace buffer size depends on two main factors:
(1) the required space for scheduler metadata, and (2) the
required space for storing partial split-k outputs.

Scheduler Metadata. The maximum size of each meta-
data section is derived from the largest possible number of
concurrent requests and the maximum accumulated request
length. Users must provide these upper bounds during the
scheduler’s first planning stage.

Partial Outputs. The size of partial outputs depends on
both the problem dimensions (i.e., the number of heads and
the head dimension) and the number of CTAs per kernel
launch. In our load-balancing algorithm 3.3.1, only requests
deemed “long” – those whose KV length exceeds the total
KV length divided by the number of CTAs – are split. Ac-
cording to the Writethrough Optimizations in Section D.2,
only these split requests produce outputs in the workspace
buffer. Because the number of splits cannot exceed the total
number of CTAs, and each split yields at most two tiles that
must be merged, there are at most 2×#CTA partial outputs.
Each tile produces a partial output of size Tq ·Hqo · (D+1),
where Tq is the query tile size, Hqo is the number of heads,
and D+1 is the head dimension and LSE dimension. There-
fore, the upper bound for the total partial output size is:

2#CTA × Tq ×Hqo × (D + 1).

By default, the total number of CTAs is set to k × #SM,
where #SM denotes the number of streaming multiproces-
sors on the GPU and k is chosen to maximize CTA-level
occupancy. For tensor-core based microkernels with high
register usage, k typically does not exceed 2 on Ampere,
and it is often 1 on Hopper (one CTA per SM, also referred
to as a persistent kernel).

E OVERLAP OF ATTENTION WITH OTHER
OPERATIONS

Nanoflow (Zhu et al., 2024a) overlaps GEMM, attention,
and inter-device communication in separate CUDA streams,

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving

assigning a fixed number of SMs to each operation. In Flash-
Infer, this SM number can be provided by the user through
the plan functions, and the FlashInfer load-balancing sched-
uler will allocate tiles accordingly.

F FP8–FP16 MIXED-PRECISION
ATTENTION

Recent LLMs frequently adopt fp8 KV-Cache to reduce
memory bandwidth and storage costs (Micikevicius et al.,
2022). In FlashInfer, we implement mixed-precision atten-
tion kernels wherein the query and output remain in fp16,
while the KV-Cache is stored in fp8. We leverage the fast
numerical array converter and fragment shuffler proposed
by Gupta (2024) to accelerate dequantization and handle
bitwidth mismatches efficiently. This design allows for re-
duced memory footprints and higher bandwidth utilization
without significantly compromising numerical accuracy.

G ADDITIONAL EVALUATION

In this section, we present additional evaluation results to
further validate the performance, scalability, and robustness
of FlashInfer across diverse experimental conditions.

G.1 Comparison with FlexAttention

We compare FlashInfer and FlexAttention (He et al.,
2024) on different attention variants using the Atten-
tionGym (PyTorch-Labs, 2024) benchmark on NVIDIA
H100 80GB SXM. We evaluated with batch size 16, number
of heads 16 and head dim 128, the CUDA version and the
Triton version were fixed to 12.4 and 3.2, respectivelyre-
spectively. Tables 1 to 4 show the performance of FlashInfer
and FlexAttention in TFLOPS/s, where higher numbers
mean better performance. Across all four scenarios and a
range of sequence lengths, FlashInfer consistently outper-
forms FlexAttention, with especially large gains at longer
sequence lengths. The better performance is mainly due to
the usage of Hopper microarchitecture’s advanced features
(such as warp specialization and TMA), and CUTLASS’s
fine-grained resource control (at register-level rather than
tile-level) over Triton. Note that these gaps will be alleviated
once Triton fully supports these features.

G.2 Evaluation of Shared-Prefix Attention Kernels

We measure shared-prefix attention kernels with suffix
length 128. Table 5 shows the kernel latency under differ-
ent shared prefix lengths, scenarios and batch sizes, where
numbers are in microseconds (us), and “composable” means
composable format while “single” means single format. The
composable format benefits long prefixes (e.g., 32k) and
large batch sizes (e.g., 64). However, these speedups do

Table 1. Causal Attention
Seq Length FlexAttention FlashInfer

512 209.11 250.454
1024 294.53 406.554
2048 376.90 487.236
4096 421.00 548.388
8192 441.26 587.903
16384 453.57 612.259

Table 2. Attention with Logits SoftCap

Seq Length FlexAttention FlashInfer

512 241.51 336.487
1024 327.50 409.534
2048 379.57 468.769
4096 403.39 489.667
8192 407.82 515.573
16384 409.89 520.935

not always yield proportional end-to-end gains because real-
world shared prefix sizes tend to be smaller.

G.3 Ablation Study on Variable Sequence Length and
load-balancing scheduler

We conduct ablations on the effect of load-balancing sched-
uler (Section 3.3.1). Table 6 and 7 show the results for
Llama 3.1-8B-Instruct running on an NVIDIA H100 SXM5
GPU with SGLang (Zheng et al., 2023b) + FlashInfer (with
and without load-balancing scheduler). We evaluate the
inter-token latency (ITL, ms) and time-to-first-token (TTFT,
ms) with three datasets: ShareGPT, variable sequence length
with input lengths sampled from U(512, 2048) and out-
put fixed at 256, and variable sequence length with input
lengths sampled from U(4096, 16384) and output fixed at
256. “RR” in the tables means request rate.

G.4 vLLM Integration Evaluation

We integrate FlashInfer to vLLM and compare with the
default backend with a fixed request rate of 16, reporting
throughput (tokens/s), inter-token latency (ITL, ms), and
time-to-first-token (TTFT, ms) in Table 8. FlashInfer re-
duces ITL by aroudn 13% using fp8 KV-cache, but heavy
Python overhead in our vLLM integration (e.g. array opera-
tions) at host side causes minor regressions with bf16. Our
future optimizations will address these in C++ and move
the scheduler to device.

G.5 Fine-Grained Block-Sparsity Evaluation

FlashInfer supports fine-grained block-sparse matrices,
which is useful in many KV-Cache pruning algorithms. We

FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving

Table 3. ALiBi Bias (Press et al., 2022)

Seq Length FlexAttention FlashInfer

512 253.22 403.899
1024 344.70 500.220
2048 406.14 535.498
4096 426.13 561.324
8192 436.35 573.493
16384 434.86 578.005

Table 4. Sliding Window (window size = 1024)

Seq Length FlexAttention FlashInfer

512 206.51 236.363
1024 292.25 374.108
2048 350.91 381.464
4096 368.45 384.998
8192 373.25 384.514
16384 367.91 380.506

measure the kernel performance on Quest (Tang et al., 2024),
a state-of-the-art long-context modeling algorithm, which
uses fine-grained sparsity in KV-Cache. We compared the
batch decoding attention kernel in Quest using FlashInfer
and compared its performance to PyTorch SDPA and Flex-
Attention on an NVIDIA H100 SXM5 GPU with the config-
uration (block size 16, num_qo_heads 32, num_kv_heads
32, head_dim 128). All latency values reported are in mi-
croseconds (us).

As shown in Table 9 to 11, FlashInfer demonstrates a con-
siderable performance advantage, achieving up to a 20x
speedup for long sequence lengths. Currently FlexAttention
relies on large block templates, while FlashInfer employs
a sparse-row gathering strategy to leverage dense tensor
cores for small block sizes. This design choice supports
fine-grained KV-cache pruning.

Table 5. Latency of Shared-Prefix Attention Kernels
Shared
Prefix
Length

Composable
(BS=16)

Single
(BS=16)

Composable
(BS=64)

Single
(BS=64)

1024 45.17 46.52 87.86 130.49
8192 88.67 226.57 125.76 931.75
32768 217.42 945.67 254.54 4090

Table 6. Load-balancing Scheduler Ablation Study (ITL)

Scenario
w/

Load-
Balancing

w/o
Load-

Balancing
Triton

ShareGPT (RR=16) 8.96 9.16 9.36
U(512, 2048) (RR=8) 8.21 8.42 8.49
U(4096, 16384) (RR=1) 8.63 13.89 11.08

Table 7. Load-balancing Scheduler Ablation Study (TTFT)

Scenario
w/

Load-
Balancing

w/o
Load-

Balancing
Triton

ShareGPT (RR=16) 39.05 39.42 52.92
U(512, 2048) (RR=8) 66.78 67.38 68.48
U(4096, 16384) (RR=1) 411.02 421.60 566.30

Table 8. vLLM Integration Evaluation

Backend Throughput
Median

ITL
Median
TTFT

Default (bf16) 6062.89 10.42 35.85
FlashInfer (bf16) 6065.41 10.63 36.60
Default (e4m3) 6015.86 12.56 39.74
FlashInfer (e4m3) 6020.32 10.92 37.93

Table 9. FlashInfer Fine-Grained Sparsity Latency (us)
page_budget

seq_len 64 128 256 512

4096 20.299 30.361 44.383 44.430
8192 22.273 28.603 44.928 68.194
16384 20.485 28.678 44.677 68.700
32768 22.371 28.700 44.988 68.478

Table 10. PyTorch SDPA Fine-Grained Sparsity Latency (us)
page_budget

seq_len 64 128 256 512

4096 287.684 288.904 287.715 287.807
8192 474.631 474.508 474.683 473.070
16384 857.319 857.570 857.094 857.728
32768 1711.955 1711.621 1713.093 1711.709

Table 11. FlexAttention Fine-Grained Sparsity Latency (us)
page_budget

seq_len 64 128 256 512

4096 1100.349 1097.356 1073.753 1071.797
8192 1092.695 1099.100 1078.081 1074.886
16384 1109.817 1101.535 1077.639 1076.859
32768 1169.109 1187.395 1176.332 1174.502

