
Supplementary Material

A Missing proofs

Proposition A.1. For any arbitrary non-negative real numbers a1, . . . , aT , we have

TX

t=1

at
1 + a1:t

 log(1 + a1:T).

Proof. For any a, b > 0, we have

a

b+ a
=

Z a

x=0

1

b+ a
dx 

Z a

x=0

1

b+ x
dx = log(b+ a)� log(b). (8)

The proof now follows from induction. The base case of t = 1 follows directly from (8) with a set
to a1 and b set to 1. Assuming that the inequality holds for T � 1, let us consider the induction step.

TX

t=1

at
1 + a1:t

=
aT

1 + a1:T
+

T�1X

t=1

at
1 + a1:t

 aT
1 + a1:T

+ log(1 + a1:T�1)  log(1 + a1:T),

where the last inequality again follows from (8) with a set to aT and b set to 1 + a1:T�1.

Proposition A.2. Consider any c 2 Rd
and r � 0 and let y = argminkxk1

r
2kxk

2 + hc, xi. Then,

if kck � r, we have y = �c
kck .

Proof. Consider f(x) = r
2kxk

2 + hc, xi. For any kxk  1, we have the following.

f(x) � r

2
kxk2 � kckkxk � min

kzk1

⇣r
2
kzk2 � kckkzk

⌘
,

since kck � r, it is an easy exercise to verify that the RHS is minimized at kzk = 1 and thus

f(x) � r

2
� kck.

On the other hand, substituting y = �c
kck , we have f(y) = r

2 � kck and the proposition follows.

Lemma A.3. Let c1, . . . , cn be independent random unit vectors in Rd
(distributed uniformly on the

sphere), for some parameters n, d, and let Z =
Pn

t=1 ct Then we have E[kZk] � ⌦(
p
n).

Proof. First, we note that since ct are independent, we have

E[kZk2] =
nX

t=1

kctk2 = n.

We also have

E[(kZk2)2] = E
⇥�X

i

kcik2 +
X

i 6=j

hci, cji
�2⇤  n2 +

X

i 6=j

E[hci, cji2]  2n2.

Thus by applying the Paley–Zygmund inequality to the random variable kZk2, we have Pr[kZk2 �
n/4] = ⌦(1), and thus Pr[kZk �

p
n/2] = ⌦(1). Thus the expected value is ⌦(

p
n).

12

B A sharper analysis of FTRL

Our goal in this section is to prove Theorem 3.1. As a first step, let us define t(x) = hct, xi +
rt
2 kxk2, (with the understanding that c0 = 0) so that by definition, we have

xt+1 = argmin
kxk1

 0:t(x).

Lemma B.1. Let t, xt be as defined above. Then for any m 2 [T] and any vector u with kuk  1,

we have

 0:m(xm+1) +
TX

t=m+1

 t(xt+1)  0:T (u).

When m = 0, the lemma is usually referred to as the FTL lemma (see e.g., [14]), and is proved by
induction. Our proof follows along the same lines.

Proof. From the definition of xT+1 (as the minimizer), we have

 0:T (u) � 0:T (xT+1).

Now, we can clearly write 0:T (xT+1) = T (xT+1) + 0:T�1(xT+1). Next, observe that from the
definition of xT , we have 0:T�1(xT+1) � 0:T�1(xT). Plugging this above,

 0:T (u) � T (xT+1) + 0:T�1(xT).

Once again, writing 0:T�1(xT) = T�1(xT)+ 0:T�2(xT) and now using the definition of xT�1,
we obtain

 0:T (u) � T (xT+1) + T�1(xT) + 0:T�2(xT�1).

Using the same reasoning again, and continuing until we reach the subscript 0:m in the last term of
the RHS, we obtain the desired inequality.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us focus on Part 2 for now (see Lemma B.4 for Part 1). Note that we can
rearrange the bound we wish to prove, i.e., (3), as follows. Let z be the unit vector in the direction
of �c1:S , so that �kc1:Sk =

PS
t=1hct, zi. Then (3) can be rewritten as

SX

t=1

hct, z � ui+
X

t>S

hct, xt � ui 
p
1 + �1:S

2
+

18 + 8 log(1 + �1:T)

↵
.

As a first step, we observe that hc1:S , zi  hc1:S , xS+1i; indeed, kxS+1k  1 by definition. Thus, it
will suffice to prove that

SX

t=1

hct, xS+1 � ui+
X

t>S

hct, xt � ui 
p
1 + �1:S

2
+

18 + 8 log(1 + �1:T)

↵
. (9)

For proving this, we first appeal to Lemma B.1. Instantiating the lemma with m = S and plugging
in the definition of , we get

hc0:S , xS+1i+
r0:S
2

kxS+1k2 +
X

t>S

hct, xt+1i+
rt
2
kxt+1k2  hc0:T , ui+

r0:T
2

kuk2 .

Noting that c0 = 0 and rearranging, we get:
SX

t=1

hct,xS+1 � ui+
X

t>S

hct, xt � ui

 r0:S
2

(kuk2 � kxS+1k2) +
X

t>S

⇣rt
2
(kuk2 � kxt+1k2) + hct, xt � xt+1i

⌘

 r0:S
2

+
X

t>S

⇣rt
2
(kuk2 � kxt+1k2) + hct, xt � xt+1i

⌘
.

13

The LHS matches the quantity we wish to bound in (9), and thus let us analyze the RHS quantity,
which we denote by Q.

The next observation is that if t > S and
p
1 + �1:t � 4

↵ , then the vector xt+1 has norm exactly 1.
This can be shown as follows. If t > S, by the definition of S, we have kc1:tk > ↵

4 (1+ �1:t). Thus,
the vector �c1:t/

p
1 + �1:t has norm � 1. From the definition of xt+1 (see (2)), this means that the

global minimizer (without the constraint kxk  1) of the quadratic form is a point outside the ball,
and thus the minimizer of the constrained problem is its projection, which is thus a unit vector. See
Proposition A.2 for further details. We next have the following claim.

Claim. Let M be the smallest index > S for which
p
1 + �1:M � 4

↵ . Then
p
1 + �1:M�1  max

⇢p
1 + �1:S ,

4

↵

�
.

The claim follows by a simple case analysis. If M = S + 1, then clearly the LHS is
p
1 + �1:S .

Otherwise, from the definition of M , we have the desired bound.

Let us get back to bounding the quantity Q defined above. We split the sum into indices  M � 1
and � M . The nice consequence of the observation above is that for all t � M , as kxt+1k = 1, we
have kuk2 � kxt+1k2  0, thus the term disappears. Also, for t < M , we use the simple bound
rt
2 (kuk

2 � kxt+1k2)  rt
2 . This gives

Q  r0:M�1

2
+

TX

t=S+1

hct, xt � xt+1i.

Thus we only need to analyze the summation on the RHS. To bound the summation
PT

t=S+1hct, xt�
xt+1i consider two cases for M separately: either M = S + 1 or M > S + 1. If M = S + 1, then
by Proposition B.3,

PT
t=S+1hct, xt � xt+1i  8

↵ log(1 + �1:T). Alternatively, if M > S + 1, let
us break the summation into terms with t  M � 1 and terms with t � M . Proposition B.2 lets us
bound the sum of the terms corresponding to t  M � 1 by 4

p
�1:M�1 < 4r0:M�1  16

↵ , where
the last step is by definition of M and using the fact that M � 1 > S. Then Proposition B.3 lets us
bound the sum of the terms with t � M by 8

↵ log(1 + �1:T). Thus in all cases we have:

Q  r0:M�1

2
+

16

↵
+

8

↵
log(1 + �1:T) 

p
1 + �1:S

2
+

18

↵
+

8

↵
log(1 + �1:T),

where in the last step we used the claim and bounded the maximum with a sum.

B.1 Auxiliary lemmas

Proposition B.2. For any time step t  T , the iterates of the FTRL procedure satisfy:

kxt � xt+1k  2kctkp
1 + �1:t�1

.

Furthermore, in any time interval [A,B] with 1  A  B  T , we have

BX

t=A

hct, xt � xt+1i  4
�p
�1:B �p

�1:A�1

�
.

Proof. Let us first show the first part. Define t(x) = hct, xi+ rt
2 kxk

2. We will invoke [20, Lemma
7], using �1 = 0:t�1 and �2 = 0:t. We have that �1 is 1-strongly convex with respect to the norm
given by kxk2t�1 = r0:t�1kxk2 and t = �2 � �1 is convex and 2kctk Lipschitz. Then, since
xt = argmin�1 and xt+1 = argmin�2, [20, Lemma 7] implies:

kxt � xt+1k  2kctk
r0:t�1

=
2 kctkp

1 + �1:t�1
.

We can then use this to show the “furthermore” part as follows. For any t in the range, we have

hct, xt � xt+1i  kctk kxt � xt+1k  2�tp
1 + �1:t�1

 2�tp
�1:t

 2

Z �1:t

�1:t�1

dy
p
y
,

14

where in the third inequality, we used the fact that �t  1, and in the last inequality, we upper
bounded the term via an integral over an interval of length �t. Summing this over t in the interval
[A,B] thus gives

BX

t=A

hct, xt � xt+1i  2

Z �1:B

�1:A�1

dy
p
y
= 4

�p
�1:B �p

�1:A�1

�
.

Proposition B.3. Let S be an index such that for all t > S, kc1:tk � ↵
4 (1 + c1:t), and let t > S be

an index for which the iterates xt and xt+1 of the FTRL procedure are both unit vectors. Then,

kxt � xt+1k  8kctk
↵(1 + �1:t)

.

Furthermore, let M > S be an index such that kxtk = 1 for all t � M . Then,

TX

t=M

hct, xt � xt+1i 
8

↵
log(1 + �1:T).

Proof. For simplicity, let us denote gt = c1:t�1 and gt+1 = c1:t. If the iterates of FTRL are unit
vectors, we have

xt = � gt
kgtk

; xt+1 = � gt+1

kgt+1k
.

Thus their difference can be bounded as

xt+1 � xt =

✓
gt
kgtk

� gt
kgt+1k

◆
+

✓
gt

kgt+1k
� gt+1

kgt+1k

◆
.

The second term clearly has norm  kctk
kgt+1k . Let us bound the first term:

kgtk
����

1

kgtk
� 1

kgt+1k

���� =
| kgt+1k � kgtk |

kgt+1k
 kctk

kgt+1k
.

Note that in the last step, we used the triangle inequality. Combining the two, we get

kxt+1 � xtk  2 kctk
kc1:tk

 8 kctk
↵(1 + �1:t)

,

as desired. Let us now show the “furthermore” part. From our assumptions about M , we can appeal
to the first part of the proposition, and as before, we have for any t � M ,

hct, xt � xt+1i  kctk kxt � xt+1k  8�t
↵(1 + �1:t)

 8

↵

Z 1+�1:t

1+�1:t�1

dy

y
.

Now, summing this inequality over t 2 [M,T] gives us
TX

t=M

hct, xt � xt+1i 
8

↵

Z 1+�1:M

1+�1:M�1

dy

y
 8

↵
log(1 + �1:T).

The next lemma is a consequence of the standard FTRL analysis. We include its proof for complete-
ness. This is also Part (1) of Theorem 3.1.
Lemma B.4. For the FTRL algorithm described earlier, for all N 2 [T] and for any vector u with

kuk  1, we have

NX

t=1

hct, xt � ui  4.5
p
1 + �1:N .

Proof. Suppose we use Lemma B.1 with m = 0 and T = N , then we get:
NX

t=0

 t(xt+1)  0:N (u).

15

Plugging in the value of t,
NX

t=1

hct, xt � ui 
NX

t=0

rt
2
(kuk2 � kxt+1k2) +

NX

t=1

hct, xt � xt+1i.

Now, we use the naive bound of r0:N for the first summation on the RHS, and use Proposition B.2
to bound the second summation by r0:N . This completes the proof.

C Switch-once dynamic regret

Theorem 3.3. Let � � 1 be a given parameter, and (zt)Tt=1 be any sequence of cost values satisfying

z2t  4�t. Let (qt)Tt=1 be a valid-in-hindsight sequence. The points pt produced by Aogd then satisfy:

TX

t=1

zt(pt � qt)  � (1 + 3 log(1 + �1:T)) .

Proof. The proof is analogous to that of OGD (e.g., [30]), but we need fresh ideas specific to our
setup. First, observe that since q is a valid-in-hindsight sequence, we have qt 2 Dt for all t.

Thus, we have
(pt+1 � qt)

2  (pt � ⌘tzt � qt)
2 (since projection only shrinks distances)

= (pt � qt)
2 � 2⌘tzt(pt � qt) + ⌘2t z

2
t .

=) zt(pt � qt) 
(pt � qt)2 � (pt+1 � qt)2

2⌘t
+
⌘t
2
z2t . (10)

We now need to sum (10) over t. Note that the second term is easier to bound:
TX

t=1

⌘t
2
z2t  �

2

TX

t=1

4�t
1 + �1:t

 2� log(1 + �1:T), (11)

where the last inequality uses Proposition A.1. Suppose S is the time step at which the switch occurs
in the sequence q, and let � be q1 (i.e., the value in the non-zero segment). We split the first term as:

TX

t=1

(pt � qt)2 � (pt+1 � qt)2

2⌘t
=
X

tS

(pt � �)2 � (pt+1 � �)2

2⌘t
+
X

t>S

p2t � p2t+1

2⌘t
. (12)

Next, by setting ⌘0 = �, writing
(pt � �)2 � (pt+1 � �)2

2⌘t
=

(pt � �)2

2⌘t�1
� (pt+1 � �)2

2⌘t
+

(pt � �)2

2

✓
1

⌘t
� 1

⌘t�1

◆
,

and noting that 1
⌘t
� 1

⌘t�1
= �t

� , we can make the summation telescope. Doing a similar manipulation
for the sum over t > S, the RHS of (12) simplifies to:

(p1 � �)2

2⌘0
� (pS+1 � �)2

2⌘S
+

p2S+1

2⌘S
�

p2T+1

2⌘T
+
X

tS

(pt � �)2�t
2�

+
X

t>S

p2t�t
2�

 1

2⌘0
+

|DS |2

2⌘S
+

TX

t=1

|Dt|2�t
2�

, (13)

where |Dt| is the length/diameter of the domain at time t, i.e., |Dt|2 = min(1, �2

1+�1:t
). The inequal-

ity holds because for all t, both pt and qt are in Dt. Plugging in the values of |Dt| and ⌘t, the first
two terms in (13) are at most �/2 (because � � 1). Thus plugging this back into (12), we get

TX

t=1

(pt � qt)2 � (pt+1 � qt)2

2⌘t
 �

1 +

TX

t=1

�t
2(1 + �1:t)

!
.

Finally, using Proposition A.1, the RHS above can be upper bounded by �
�
1 + 1

2 log(1 + �1:T)
�
.

Plugging this back into (10), summing over t, and using (11), we getX

t

zt(pt � qt)  � (1 + 3 log(1 + �1:T)) .

16

D Proofs for Section 4

Theorem 4.1. For any B,

E[RAhints,↵(~c)] 
78 + 38 log(1 + kck21:T)

↵
+ 40

sX

t2B
kctk2 +

20

↵

sX

t2B
khtk2

q
log(1 + kck21:T)

= O

 p
|B| log T
↵

!
, and E[QAhints,↵(~c)]  20

q
kck21:T .

Proof. In the proof of Theorem 3.4, we exploited the fact that Lemma 3.5 actually bounds the
expected regret when B = ;. However, when B 6= ;, we have a more complicated relationship:
TX

t=1

E[hct, x̂t � ui] =
TX

t=1

pthct,�ht � xti+ hct, xt � ui


X

t/2B

pt(�↵kctk2 � hct, xti) + hct, xt � ui+
X

t2B
pthct,�ht � xti+ hct, xt � ui

=
TX

t=1

pt(�↵kctk2 � hct, xti) + hct, xt � ui+
X

t2B
�pt(hct, hti � ↵kctk2)


TX

t=1

pt(�↵kctk2 � hct, xti) + hct, xt � ui+
X

t2B
|Dt�1|(kctkkhtk+ ↵kctk2),

where |Dt�1| = 10
↵
p

1+kck2
1:t�1

, and the last line follows from the restrictions on pt in Algorithm 2.

The first sum in the above expression is already controlled by Lemma 3.5. For the second sum,

X

t2B
|Dt�1|(kctkkhtk+ ↵kctk2)  2

X

t2B
|Dt|(kctkkhtk+ ↵kctk2)

 2
X

t2B

10kctk2q
1 +

P
⌧2B,⌧t kc⌧k2

+ |Dt|kctkkhtk

 40

sX

t2B
kctk2 + 2

X

t2B
|Dt|kctkkhtk

(by Cauchy–Schwarz)  40

sX

t2B
kctk2 + 2

sX

t2B
khtk2

sX

t2B
kctk2|Dt|2

 40

sX

t2B
kctk2 +

20

↵

sX

t2B
khtk2

q
log(1 + kck21:T).

Theorem 4.2. Set ↵ = 1
4 . Then

E[RAhints,↵(~c)]  312 + 152 log(1 + kck21:T) + 80

✓
1 +

q
log(1 + kck21:T)

◆sX

t2B
kct � htk2

= O

0

@log(T) +

vuut
TX

t=1

kct � htk2 log(T)

1

A , and E[QAhints,↵(~c)]  20
q

kck21:T .

Proof. The idea is to get a bound in terms of kct � htk2. Since ↵ = 1
4 , t 2 B is equivalent to

hct, hti  kctk2

4 . Thus if t 2 B:

kct � htk2 =kctk2 � 2hct, hti+ khtk2 � kctk2

2
+ khtk2.

17

Therefore, we have:

40

sX

t2B
kctk2 + 80

sX

t2B
khtk2 log(1 + kck21:T)  80(1 +

q
log(1 + kck21:T))

sX

t2B
kct � htk2.

Now, by Theorem 4.1 we have:

E[RA,↵(~c)] 
78 + 38 log(1 + kck21:T)

↵
+ 40

sX

t2B
kctk2 +

20

↵

sX

t2B
khtk2

q
log(1 + kck21:T)

 78 + 38 log(1 + kck21:T)
↵

+ 80

✓
1 +

q
log(1 + kck21:T)

◆sX

t2B
kct � htk2.

E Proofs for Section 5

Theorem 5.2. Let A be any deterministic algorithm for OLO with hints that makes at most C
p
T <

T/2 queries, for some parameter C > 0. Then there is a sequence cost vectors ct and hints ht of

unit length such that (a) ht = ct whenever A makes a hint query, and (b) the regret of A on this

input sequence is at least

p
T

2(1+C) .

Proof. The main limitation of a deterministic algorithm A is that even if it adapts to the costs seen
so far, the adversary always knows if A is going to make a hint query in the next step, and in steps
where a query will not be made, the adversary knows which xt will be played by A.

Using this intuition, we define the following four-dimensional instance. For convenience, let e0 be
a unit vector in R4, and let S be the space orthogonal to e0. The adversary constructs the instance
iteratively, doing the following for t = 1, 2, . . . :

1. If the algorithm makes a hint query at time t, set ht = ct = e0.
2. If the algorithm does not make a hint query, then if xt is the point that will be played by

the algorithm, set ct to be a unit vector in S that is orthogonal to xt and to c1 + · · ·+ ct�1.
(Note that since S is a three-dimensional subspace of R4, this is always feasible.)

For convenience, define It to be the set of indices  t in which the algorithm has asked for a hint.
Then we first observe that for all t,

������

X

j2[t]\It

cj

������

2

= t� |It|. (14)

This is easy to see, because ct is always orthogonal to e0, and thus is also orthogonal toP
j2[t�1]\It�1

cj . The equality (14) then follows from the Pythagoras theorem.

Thus, suppose the algorithm makes K queries in total (over the course of the T steps). By assump-
tion K  C

p
T < T/2. Then we have that

������

X

j2[T]

cj

������

2

= K2 +

������

X

j2[T]\IT

cj

������

2

= K2 + T �K.

Thus the optimal vector in hindsight (say u) achieves
P

j2[T]hcj , ui = �
p
T �K +K2.

Let us next look at the cost of the algorithm. In every step where it makes a hint query, the best cost
that A can achieve is �1 (by playing �e0). In the other steps, the construction ensures that the cost
is 0. Thus the regret is at least

�K +
p
T �K +K2 =

T �K

K +
p
T �K +K2

>
T/2

K +
p
T

�
p
T

2(1 + C)
.

18

F Proofs for Section 6

In order to prove Theorems 6.1 and 6.2, we first provide the following technical statement that allows
us to unify much the analysis:

Lemma F.1. Suppose that Aunc is an unconstrained online linear optimization algorithm that out-

puts wt 2 Rd
in response to costs c1, . . . , ct�1 2 Rd

satisfying kc⌧k  1 for all ⌧ and guarantees

for some constants A and B for all u 2 Rd
:

RAunc
(u,~c)  ✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1),

where ✏ is an arbitrary user-specified constant. Further, suppose Aunc-1D is an unconstrained online

linear optimization algorithm that outputs yt 2 R in response to g1, . . . , gt�1 2 R satisfying |g⌧ | 
1 for all ⌧ and guarantees for all y? 2 R:

TX

t=1

gt(yt � y?)  ✏+A|y?|

vuut
TX

t=1

g2t log(|y?|T/✏+ 1) +B|y?| log(|y?|T/✏+ 1).

Finally, suppose also that E
hPT

t=1 t|hct, hti|
i

� M
p
1 + kck21:T � N and

E
⇥P

t2B t|hct, hti|
⇤

 H and E
hPT

t=1 thct, hti2
i

 F
p

1 + kck21:T for some constant

M,N,H, F . Then both the deterministic and randomized version of Algorithm 4 guarantee:

E [RAunc
(u,~c)]  2✏+Bkuk log(kukT/✏+ 1) +

4Akuk(H +N)
p

log(kukT/✏+ 1)

M

+
2ABkuk

p
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M

+
2A3Fkuk

q
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M2
.

Proof of Lemma F.1. Some algebraic manipulation of the regret definition yields:

E[RAunc(u,~c)]  E
"
inf
y?

TX

t=1

hct, wt � ui � y?

TX

t=1

thht, cti �
TX

t=1

thht, cti(yt � y?)

#

 E
"
inf
y?�0

TX

t=1

hct, wt � ui � y?

TX

t=1

t|hht, cti|+ 2y?
X

t2B
t|hht, cti|�

TX

t=1

thht, cti(yt � y?)

#
.

Now using the hypothesized bounds we have

E [RAunc(u,~c)]  E
"
inf
y?�0

TX

t=1

hct, wt � ui � y?M
q

1 + kck21:T + 2y?H + y?N �
TX

t=1

thht, cti(yt � y?)

#

 inf
y?�0

E

2

42✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)

� y?M
q
1 + kck21:T + 2y?H + y?N +Ay?

vuut
tX

t=1

g2t log(y?T/✏+ 1) +By? log(y?T/✏+ 1)

3

5

19

using Jensen inequality,

 inf
y?�0

2✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)� y?M
q
1 + kck21:T

+ 2y?H + y?N +Ay?

vuutE
"

tX

t=1

thct, hti2
#
log(y?T/✏+ 1) +By? log(y?T/✏+ 1)

 inf
y?�0

2✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)� y?M
q
1 + kck21:T

+ 2y?H + y?N +Ay?

r
F
q

1 + kck21:T log(y?T/✏+ 1) +By? log(y?T/✏+ 1)

with a little rearrangement,

 inf
y?�0

2✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)� y?
2
M
q
kck21:T

+ 2y?H + y?N +By? log(y?T/✏+ 1)

+Ay?

r
F
q
1 + kck21:T log(y?T/✏+ 1)� y?

2
M
q

1 + kck21:T

 inf
y?�0

2✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)� y?
2
M
q
kck21:T

+ 2y?H + y?N +By? log(y?T/✏+ 1) + sup
X

Ay?
p
FX log(y?T/✏+ 1)� y?

2
MX

 inf
y?�0

2✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)� y?
2
M
q
kck21:T

+ 2y?H + y?N +By? log(y?T/✏+ 1) +
y?A2F log(y?T/✏+ 1)

2M
.

Now, we set

y? =
2Akuk

p
log(kukT/✏+ 1)

M
.

This yields

E[RAunc(u,~c)]

 2✏+Bkuk log(kukT/✏+ 1) + 2y?H + y?N +By? log(y?T/✏+ 1) +
y?A2F log(y?T/✏+ 1)

2M

 2✏+Bkuk log(kukT/✏+ 1) +
4Akuk(H +N)

p
log(kukT/✏+ 1)

M

+
2ABkuk

p
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M

+
2A3Fkuk

q
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M2
.

Now, to prove Theorem 6.1, it suffices to instantiate the Lemma. We restate the Theorem below for
convenience:

20

Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

2✏+ Õ

0

@
kuk
p
log(kukT/✏)

h
K + log(kukT/✏) log log(Tkuk/✏)

K +
pP

t2B khtk2 log(T)
i

↵

1

A ,

with expected query cost at most 2K
p
kck21:T .

Proof. Define

pt = min

1,

K

↵
p
1 + kck21:t

!
,

so that in the randomized version of Algorithm 4, at round t, we ask for a hint with probability pt�1.
Clearly, the expected query cost is:

E
"

TX

t=1

thct, hti
#
=

TX

t=1

↵pt�1kctk2  K
TX

t=1

kctk2p
kck21:t

 2K
q
kck21:T .

Now, to bound the regret we consider two cases. First, if 1 + kck21:T  K2

↵2 , then we have:

E[RAunc(u,~c)]  E
"

TX

t=1

hct, wt � ui �
TX

t=1

thct, htiyt

#
 E

"
TX

t=1

hct, wt � ui+
TX

t=1

gt(yt � 0)

#

 2✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1)

 2✏+
AkukK

p
log(kukT/✏+ 1)

↵
+Bkuk log(kukT/✏+ 1),

and so the result follows. Thus, we may assume 1 + kck21:T > K2

↵2 . In this case, we will calculate
values for M , H , and F to use in tandem with Lemma F.1. First,

E
"

TX

t=1

thct, hti2
#


TX

t=1

pt�1kctk2  K

↵

TX

t=1

kctk2p
kck21:t

 2K

↵

q
1 + kck21:T .

So that we may take F = 2K
↵ . Next, note that pT = K

↵
p

1+kck2
1:T

by our casework assumption.

Therefore:

�↵pT kck21:T  ↵� ↵pT (1 + kck21:T)  ↵�K
q
kck21:T ,

so that we may take M = K and N = ↵. Finally,

X

t2B
pt|hct, hti|  K

X

t2B

kctkkhtk
↵
p
kctk21:t

 K

↵

sX

t2B

kctk2
kctk21:t

X

t2B
khtk2  K

↵

sX

t2B
khtk2 log(1 + kck21:T),

so that we may take H = K
↵

qP
t2B khtk2 log(1 + kck21:T). Then Lemma F.1 implies

21

E[RAunc(u,~c)]  2✏+Bkuk log(kukT/✏+ 1) +
4Akuk(H + ↵)

p
log(kukT/✏+ 1)

M

+
2ABkuk

p
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M

+
2A3Fkuk

q
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M2

 2✏+Bkuk log(kukT/✏+ 1) +
4Akuk

q
log(kukT/✏+ 1)

P
t2B khtk2 log(1 + kck21:T)

↵

+
4Akuk↵

p
log(kukT/✏+ 1)

K

+
2ABkuk

p
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(K✏) + 1)

K

+
2A3kuk

q
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(K✏) + 1)

K↵
.

Simplifying the expression yields

E[RAunc(u,~c)]

 2✏+ Õ

0

@
kuk(log(kukT/✏)3/2 log log(Tkuk/✏)

K +
q

log(kukT/✏)
P

t2B khtk2 log(1 + kck21:T))
↵

1

A .

F.1 Deterministic version

Before providing the proof of Theorem 6.2, we need the following auxiliary statement.

Lemma F.2. Suppose B = ;. Then for all t, the deterministic version of Algorithm 4 guarantees:

q
kck21:T�1 �K � 1� K

2↵


TX

t=1

thct, hti  K
q
1 + kck21:T�1.

Proof. Define Zt = 1+
PT

t=1 thct, hti with Z0 = 1. We will instead prove the equivalent bound:

K
q
kck21:T�1 �K � K

2↵
 ZT  1 +K

q
1 + kck21:T�1.

The upper bound is immediate from the definition of ZT and the fact that hct, hti  1. For the lower
bound, we will prove a slightly different statement that we will later show implies the desired result:

for all t � 0, Zt � K
q
1 + kck21:t �K

X

t0t|
p

kck2
1:t0

1
2↵

kct0k2

2
p
kck21:t0

.

We proceed by induction. The base case for t = 0 is clear from definition of Zt. Suppose the
statement holds for some t. Then consider two cases, either Zt < K

p
1 + kck21:t or not. If Zt �

K
p
1 + kck21:t, then Zt+1 = Zt � K

p
1 + kck21:t � K

q
1 + kck21:t+1 �K and so the statement

holds. Alternatively, suppose Zt < K
p
1 + kck21:t. Then:

22

Zt+1 = Zt + hct+1, ht+1i

� K
q
1 + kck21:t �K �

X

t0t|
p

kck2
1:t K

2↵

kct0k2

2
p

kck21:t0
+ ↵kct+1k2

� K
q
1 + kck21:t+1 �

Kkct+1k2

2
p
1 + kck21:t

�K �
X

t0t|
p

kck2
1:t K

2↵

kct0k2

2
p
kck21:t0

+ ↵kct+1k2

� K
q
1 + kck21:t+1 �

Kkct+1k2

2
q
kck21:t+1

�K �
X

t0t|
p

kck2
1:t0

K
2↵

kct0k2

2
p
kck21:t0

+ ↵kct+1k2

�
q
1 + kck21:t+1 �K �

X

t0t+1|
p

kck2
1:t0

K
2↵

kct0k2

2
p
kck21:t0

,

so that the induction is complete.

Finally, observe that if ⌧ is the largest index such that
p

kck21:t  K
2↵ , then

X

t0t+1|
p

kck2
1:t0

K
2↵

kct0k2

2
p
kck21:t0


⌧X

t0=1

kct0k2

2
p
kck21:t0


q

kck21:⌧  K

2↵
.

Now we can prove Theorem 6.2:

Theorem 6.2. If B = ;, then the deterministic version of Algorithm 4 guarantees:

TX

t=1

hct, xt � ui  2✏+O

kuk
p
log(kukT/✏+ 1)

↵
+

kuk log3/2(kukT/✏) log log(kukT/✏)
K

!
,

with a query cost at most 2K
p
kck21:T .

Proof. From Lemma F.2 we have that the query cost is at most K
p

kck21:T . To bound the regret,
we will appeal to Lemma F.1, which requires finding values for M,N,H, F . First, again by Lemma
F.2, we have:

K
q
1 + kck21:T � 3K � 1� K

2↵
 K

q
kck21:T�1 �K � 1� K

2↵


TX

t=1

thct, hti.

So that we may set M = K and N = 3K + 1 + K
2↵ . Next, since B = ;, H = 0. Finally, since all

hints are ↵-good, we have

TX

t=1

thct, hti2 
TX

t=1

thct, hti  K
q
kck21:T ,

so that we may take F = K. Therefore, noticing that the expected regret is the actual regret since
the algorithm is deterministic, we have

23

RAunc(u,~c)  2✏+Bkuk log(kukT/✏+ 1) +
4Akuk(H +N)

p
log(kukT/✏+ 1)

M

+
2ABkuk

p
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M

+
2A3Fkuk

q
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(M✏) + 1)

M2

 2✏+Bkuk log(kukT/✏+ 1) + 4Akuk
✓
4

↵
+

1

K

◆p
log(kukT/✏+ 1)

+
2ABkuk

p
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(K✏) + 1)

K

+
2A3kuk

q
log(kukT/✏+ 1) log(2AkukT

p
log(kukT/✏+ 1)/(K✏) + 1)

K

 2✏+O

kuk
p
log(kukT/✏+ 1)

↵
+

kuk log3/2(kukT/✏) log log(kukT/✏)
K

!
.

24

