Supplementary Material

A Missing proofs

Proposition A.1. For any arbitrary non-negative real numbers aq, . .. ,ar , we have

<log(l+a
Zl+a1t 8 7).

t=1
Proof. For any a,b > 0, we have

a a 1 a 1
b+a /m:o bralt S /IZO 51 500 =log(b +a) —log(b) (8)

The proof now follows from induction. The base case of ¢ = 1 follows directly from (8) with a set
to a; and b set to 1. Assuming that the inequality holds for 7" — 1, let us consider the induction step.

T T-1
a ar a ar
§ = -|-§ < + log(1 + ar1.7—1) <log(1l+ ai.7),
~l1l+a l+ar “1+an — 1+anr &l 17-1) < log 17)
where the last inequality again follows from (8) with a set to a7 and bsetto 1 4+ ay.7—1. O

Proposition A.2. Consider any c € R and r > 0 and let y = argmin|, < 2lz)|? + (c, x). Then,
if |||l > r, we have y = el

Proof. Consider f(z) = %|z||* + (¢, z). For any ||z| < 1, we have the following.

T T
@) 2 5llzl* = llefllll = min <§|\le2 - HCIIIIZII),

llzl1<1

since ||¢|| > r, it is an easy exercise to verify that the RHS is minimized at ||z|| = 1 and thus

r
Fa)> &~ el

On the other hand, substituting y = . we have f (y) = £ — ||c|| and the proposition follows. [J

Lemma A.3. Letcy,. . ., ¢, be independent random unit vectors in R? (distributed uniformly on the

sphere), for some parameters n,d, and let Z = Y"}'_, ¢; Then we have E[|| Z||] > Q(y/n).

Proof. First, we note that since c; are independent, we have
E[| Z||*) Z llea® =

‘We also have

E[(I1Z1I) leczll +Y (eie)] <n®+ ) Elfei,¢;)?] < 20,

i#] i#]

Thus by applying the Paley—Zygmund inequality to the random variable || Z ||2, we have Pr[||Z ||2
n/4] = Q(1), and thus Pr[|| Z|| > v/n/2] = Q(1). Thus the expected value is Q(\/n).
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B A sharper analysis of FTRL

Our goal in this section is to prove Theorem 3.1. As a first step, let us define :(z) = (¢, x) +
= |z||?, (with the understanding that ¢o = 0) so that by definition, we have

Tyy1 = argmin o, ().
flzf|<1

Lemma B.1. Let v;, x; be as defined above. Then for any m € [T| and any vector v with ||u|| < 1,
we have

T
Yo (@mi1) + > Cr(ze41) < Your(u).

t=m-+1

When m = 0, the lemma is usually referred to as the FTL lemma (see e.g., [14]), and is proved by
induction. Our proof follows along the same lines.

Proof. From the definition of x7; (as the minimizer), we have

Yo.r(u) > Yo.r(7r41)-
Now, we can clearly write ¥o.7(z1+1) = Yr(xr41) + Yo.7—1(x741). Next, observe that from the
definition of z7, we have ¥o.7—1(z74+1) > Yo.7—1(21). Plugging this above,
Yo (u) > Yr(rryr) + Yor—1(xr).

Once again, writing 1g.7—1(x1) = Y7r_1(x1) +%0.7—2(27) and now using the definition of x7_1,
we obtain

Yo7 (u) > r(xre1) +Yr_1(xr) + Yo.r—2(rr-1).
Using the same reasoning again, and continuing until we reach the subscript 0:m in the last term of
the RHS, we obtain the desired inequality. O

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let us focus on Part 2 for now (see Lemma B.4 for Part 1). Note that we can

rearrange the bound we wish to prove, i.e., (3), as follows. Let z be the unit vector in the direction
of —cy.5, so that — ||¢1.5]| = Zle (ct, z). Then (3) can be rewritten as

s
1+ 18 + 8log(1 + o1.
Z<Ct72*U>+Z<Ct,It7u> S \/715+ g( 1.T)
2 o
t=1 t>8
As a first step, we observe that (c1.s,2) < (c1.5,Zs+1); indeed, [|zs4+1| < 1 by definition. Thus, it
will suffice to prove that

5
I+o01.s | 18+ 8log(l+ o1
Z<Ct,xs+1 —u) +Z<Ct;$t —u) \/7 n gOE lT). ©)

IN

t=1 t>S

For proving this, we first appeal to Lemma B.1. Instantiating the lemma with m = S and plugging
in the definition of 1, we get

T0:8 r To.T
(o5, w511) + == llzsta | + Z(ct,xtH) + 5 llze|® < (o, u) + = [lull.
2 2 2
t>5

Noting that ¢y = 0 and rearranging, we get:

s

> levwsir —u)+ Y (e, xp — u)

t=1 t>S

To:s 2 2 Tt 2 2
< Sl = Nlosall®) + - (5 Uhull® = e l) + (oo, 20 = wesa))

t>S

T0:5 Tt 2 2
< D53 (Sl = e ) + fers e = wesa) ) -
t>S
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The LHS matches the quantity we wish to bound in (9), and thus let us analyze the RHS quantity,
which we denote by Q.

The next observation is that if ¢t > S and /1 + 01.; > %, then the vector x4y has norm exactly 1.
This can be shown as follows. If ¢ > 5, by the definition of S, we have ||cy.¢|| > § (1 +1.¢). Thus,

the vector —cy.1/v/1 + 01.¢ has norm > 1. From the definition of ;1 (see (2)), this means that the
global minimizer (without the constraint ||z|| < 1) of the quadratic form is a point outside the ball,
and thus the minimizer of the constrained problem is its projection, which is thus a unit vector. See
Proposition A.2 for further details. We next have the following claim.

Claim. Let M be the smallest index > S for which /T + 01,37 > 2. Then

4
V1+toi—1 < max{\/l + 015, }
(6%

The claim follows by a simple case analysis. If M = S + 1, then clearly the LHS is /1 + 01.5.
Otherwise, from the definition of M, we have the desired bound.

Let us get back to bounding the quantity Q defined above. We split the sum into indices < M — 1
and > M. The nice consequence of the observation above is that for all ¢ > M, as ||z41|| = 1, we
have ||u||> — ||z;41]|> < 0, thus the term disappears. Also, for ¢ < M, we use the simple bound
2l = loes|?) < % This gives

T
To:M—1
Q S T =+ Z <Ct7l‘t — It+1>-
t=S+1

Thus we only need to analyze the summation on the RHS. To bound the summation ZtT: se1ice, Te—
x¢41) consider two cases for M separately: either M = S+1or M > S+ 1. If M = S + 1, then
by Proposition B.3, ZtT:s+1<Cta T — Tip1) < glog(l + o1.7). Alternatively, if M > S + 1, let
us break the summation into terms with ¢ < M — 1 and terms with ¢ > M. Proposition B.2 lets us
bound the sum of the terms corresponding to ¢ < M — 1by 4,/01.-1 < 4ro.pm—1 < %, where
the last step is by definition of M and using the fact that A/ — 1 > S. Then Proposition B.3 lets us
bound the sum of the terms with ¢ > M by % log(1 + o1.7). Thus in all cases we have:

\/1 +01:8 18

ro.nr_ 8
M1 +E+Elog(1+01:T),

16 8
O< —/—/— 4+ — 4+ —log(1 ) <
S +a+a0g( +o1.7) < 5

where in the last step we used the claim and bounded the maximum with a sum. O

B.1 Auxiliary lemmas

Proposition B.2. For any time step t < T, the iterates of the FTRL procedure satisfy:

PR | 1
Vi+oii-
Furthermore, in any time interval [A, Bl with1 < A < B < T, we have
B
> e wr — ai41) <4(VorE — Vora1) -
t=A

Proof. Let us first show the first part. Define ¢, (z) = (¢;, z) + % [|z]|2. We will invoke [20, Lemma
7], using ¢1 = Yg.+—1 and ¢ = 1g.;. We have that ¢ is 1-strongly convex with respect to the norm
given by ||z]|? | = ro.4_1]|2]|*> and ¥y = ¢ — ¢; is convex and 2||c;|| Lipschitz. Then, since
x; = argmin ¢ and ;41 = argmin ¢, [20, Lemma 7] implies:

el _ 2er

roi—1 I+ 011
We can then use this to show the “furthermore” part as follows. For any ¢ in the range, we have

20 20 Tt dy
— < — < < <2 —
<Ct’xt xt+1> = ||ct|| ||xt xt+1|| = m = m = s \/277

|7t — 241 <
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where in the third inequality, we used the fact that o, < 1, and in the last inequality, we upper
bounded the term via an integral over an interval of length ;. Summing this over ¢ in the interval
[A, B] thus gives

B o1LB g
ay
Z<Ct,xt —Tpp1) <2

AVO1:B — +\/0O1: 1 O
t=A 01:A—1 f ( o A )

G+ 1), and lett > S be
an index for which the iterates xy and x,11 of the FTRL procedure are both unit vectors. Then,
8|
a(l+o01.4)
Furthermore, let M > S be an index such that ||x;|| = 1 for all t > M. Then,
T

8
(e, 2t — xp41) < S log(1 + o1.7).
t=M

|zt — ]| <

Proof. For simplicity, let us denote g; = c1.4—1 and g;4+1 = c1.4. If the iterates of FTRL are unit
vectors, we have

o gt . - gi+1
Tt = =775 Tt+1 = — .
gel llge+all
Thus their difference can be bounded as
Tep1 — < gt gt ) n ( 9t gt+1 )
||9t|| lge+1ll H9t+1H llge+1
The second term clearly has norm < ”g ct ik Let us bound the first term:
IIgtII‘ B ’ _ Ugesdl = llgell T - Meell
[gell ||9t+1H llge-+1ll = lgeall

Note that in the last step, we used the triangle inequality. Combining the two, we get
2ledll o 8lledli
erell = a(l+o14)’

as desired. Let us now show the “furthermore” part. From our assumptions about M, we can appeal
to the first part of the proposition, and as before, we have for any ¢t > M,

[Ze41 — 2| <

80, 8 [t dy
(ct,xt — 2e1) < llecll |20 — 21| € —————= < */ -
Oé(l + Ulit) 1+o1.-1 Y
Now, summing this inequality over ¢ € [M,T] gives us
T 1+o1:m
8 dy 8
Z<Ct,$t — Tpp1) < */ — < —log(1 +o1.7). [
t=M « 1401:0m-1 y o

The next lemma is a consequence of the standard FTRL analysis. We include its proof for complete-
ness. This is also Part (1) of Theorem 3.1.

Lemma B.4. For the FTRL algorithm described earlier; for all N € [T and for any vector u with
|lu|| < 1, we have

N
Z e,y — u) < 4.5v/1+ o1.N.
t=1
Proof. Suppose we use Lemma B.1 with m = 0 and T = NV, then we get:

N
Z Yy (x41) < Yo.n ().

t=0
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Plugging in the value of v,

=2

N

N

ry
Z (ct,xe — u) Z 5 (lull® = llzeeal®) + Z<Ct7$t — T41).
t=1

t=0 t=1
Now, we use the naive bound of 7.y for the first summation on the RHS, and use Proposition B.2
to bound the second summation by 7.5 . This completes the proof. O

C Switch-once dynamic regret

Theorem 3.3. Let \ > 1 be a given parameter, and (z;)1_, be any sequence of cost values satisfying
22 < doy. Let (q;)1_, bea valid-in-hindsighl sequence. The points p, produced by A,g, then satisfy:

Z (pr — @) < A(1+3log(l+o1.7)).
t=1

Proof. The proof is analogous to that of OGD (e.g., [30]), but we need fresh ideas specific to our
setup. First, observe that since q is a valid-in-hindsight sequence, we have ¢; € D; for all ¢.

Thus, we have
(Per1 — @)* < (pe — ezt — qr)? (since projection only shrinks distances)
= (pt — ¢1)* = 2meze(pe — q1) + 17 %7 -
(pe — q)* = (Pe1 — a)? @22

2i(pe — qr) < 5T o % (10)
We now need to sum (10) over ¢. Note that the second term is easier to bound:
T U3 A~ do
t 2 t
< < 2\ log(1 . 11
2479 t—zzuau— og(1 +ovr), (an

where the last inequality uses Proposition A.1. Suppose S is the time step at which the switch occurs
in the sequence ¢, and let ¢ be ¢; (i.e., the value in the non-zero segment). We split the first term as:

XT: (pt - Qt)2 ; (pt+1 - %)2 _ Z (pt - 5)2 ; (pt+1 - 5)2 i Z P? ;P%-H' (12)

o Mt i<s Mt ey Tt

Next, by setting 179 = A, writing

(pe —6)* = (pey1 —0)>  (pr—0)>  (piy1 —90)* | (pr —0)* < 1 1 )
= — + - —
2m 2011 2m, 2 N Me—1
and noting that i — m: = 3¢, we can make the summation telescope. Doing a similar manipulation

for the sum over ¢ > S, the RHS of (12) simplifies to:

(1 =0  (pst1—9)? n Pei1 Pra + Z (pr — 6)%0y n Pio

210 2ns 2ns 2nr = 2\ = 2

|DS|2 |Dt ¢

13
< 277 g ; (13)
where | D] is the length/diameter of the domain at time ¢, i.e., | D;|* = min(1, 12— + -). The inequal-

ity holds because for all ¢, both p; and ¢; are in D;. Plugging in the values of \Dt| and 7, the first
two terms in (13) are at most A/2 (because A > 1). Thus plugging this back into (12), we get

= (pt_Qt) (pt 1—(]t)
Z 2 : </\<1+Z 1+0’1t)>.

t=1 It t=1

Finally, using Proposition A.1, the RHS above can be upper bounded by A (1 + % log(1 + U1;T)).
Plugging this back into (10), summing over ¢, and using (11), we get

> zi(pe— @) < A1+ 3log(1+ o1r)) - O
t
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D Proofs for Section 4

Theorem 4.1. For any B,

78 + 381log(1 + ||e/|2.7)
E[R 4,0(0)] < " EE2 40 [ flet] |2+* D 1712y /log(1 + [lell?.r)
teB teB
B|logT
0 ‘7 d E o« <20 2
(V ! ) Q@) < 204 ey

Proof. In the proof of Theorem 3.4, we exploited the fact that Lemma 3.5 actually bounds the
expected regret when B = (). However, when B # (), we have a more complicated relationship:

T T
ZEKCt,jt — U>] = Zpt<ct, —ht — CEt> + <Ct,1't — U>
t=1

< Zpt (—alledl® = (ees o)) + {eo, e —u) + Zpt<ctv —hi — @) + (co, 20 —w)

t¢B tenB
—Zpt (—alled” = (e o)) + <Ct7$t—u>+Z—Pt(<Ct7ht> — alle|?)
teB

< Zpt (—alle® = {ee, ) + (e, e — w) + Y IDyal(lleclllhe]] + elleel]?),
teB
10 . . . . .
where |D;_1| = P E and the last line follows from the restrictions on p; in Algorithm 2.

The first sum in the above expression is already controlled by Lemma 3.5. For the second sum,

S D al(leellllbell + alledl?) < 2> [Del(llexll [l + alle]|)
tenB tenB

10[] ||
<2y _+ DyJledll]
teB \/1 + 2 resr<tlerll

< 40 Z llee]| + QZ |Dell[celll| el
teB tenB

(by Cauchy-Schwarz) < 40 [ [lecll2+2 [ hell? [ llecl?|Dyl?
teB teB teB

20
<40 > led® + - > ka2 /log(1 + [[el|? 7). O
teB teB
Theorem 4.2. Set o = %. Then
E[R Ao (8)] < 312+ 15210g(1 + ||¢[|T.) + 80 (1 +4/log(1 + ||C%T)> \ I> llee = hel?
teB

=0 | log(T ZIICt h||?log(T) | , and  E[Qa,,.a(E)] < 204/]c]lF.-

Proof. The idea is to get a bound in terms of |lc; — hy|%?. Since a = 1, ¢t € B is equivalent to

1
(ct, he) < %. Thus if t € B:

lex”

llee = hell* =lleell® = 2(ce, he) + [1he]l® > 2

+ 1hel*.

17



Therefore, we have:

10 /> lleell? + 80\/2 1721 log(1 + flellf.7) < 80(1 + y/log(1 + [le]%.1)), I> ller = hal |
teB teB teB

Now, by Theorem 4.1 we have:

78 + 381og(1 + ||¢||2. 20
E[R4a(9)] < Chal '1-T)+4o\/2||ct2+a\/2htn2 log(1 + [lel.7)

«
ten teB

78 + 38log(1 + ||c||2,
A lelir) s (14 yhogt+ ) )| [S -l O
teB

E Proofs for Section 5

Theorem 5.2. Let A be any deterministic algorithm for OLO with hints that makes at most C/T <
T /2 queries, for some parameter C > 0. Then there is a sequence cost vectors ¢, and hints hy of

unit length such that (a) hy = ¢, whenever A makes a hint query, and (b) the regret of A on this

input sequence is at least 2(17%

Proof. The main limitation of a deterministic algorithm A is that even if it adapts to the costs seen
so far, the adversary always knows if .4 is going to make a hint query in the next step, and in steps
where a query will not be made, the adversary knows which x; will be played by .A.

Using this intuition, we define the following four-dimensional instance. For convenience, let ey be
a unit vector in R*, and let S be the space orthogonal to ey. The adversary constructs the instance
iteratively, doing the following for¢t = 1,2,...:

1. If the algorithm makes a hint query at time ¢, set hy = ¢; = eg.

2. If the algorithm does not make a hint query, then if z; is the point that will be played by
the algorithm, set ¢; to be a unit vector in S that is orthogonal to z; and to ¢; + - - - + ¢¢—1.
(Note that since S is a three-dimensional subspace of R, this is always feasible.)

For convenience, define I; to be the set of indices < ¢ in which the algorithm has asked for a hint.
Then we first observe that for all ¢,

2

S ol =t—1nl (14)

JE[tIN\I¢

This is easy to see, because c; is always orthogonal to ey, and thus is also orthogonal to
Jeft—1\Is_1 Ci- The equality (14) then follows from the Pythagoras theorem.

Thus, suppose the algorithm makes K queries in total (over the course of the T steps). By assump-

tion K < Cv/T < T/2. Then we have that

2 2
gl =K+ Y ¢l =K*+T-K.
JE(T] JETN T
Thus the optimal vector in hindsight (say u) achieves Zj e[ (¢j,u) =—vVT — K + K2

Let us next look at the cost of the algorithm. In every step where it makes a hint query, the best cost
that A can achieve is —1 (by playing —ep). In the other steps, the construction ensures that the cost
is 0. Thus the regret is at least

~K+\VT-K+K?= r-K > /2 > VT . O
K+VT-K+K2 K+vT  2(1+C)
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F Proofs for Section 6

In order to prove Theorems 6.1 and 6.2, we first provide the following technical statement that allows
us to unify much the analysis:

Lemma F.1. Suppose that A,,. is an unconstrained online linear optimization algorithm that out-
puts wy € R in response to costs c1, . ..,ci_1 € R satisfying ||c.|| < 1 for all T and guarantees
for some constants A and B for all v € R¢:

T
Rt (0, < e+ Allully | Y lleal? log([ul|T/€ + 1) + Bllul| log([[ul| T/ + 1),
t=1

where € is an arbitrary user-specified constant. Further, suppose A, c.1p is an unconstrained online
linear optimization algorithm that outputs y; € R in response to g1, . .., gi—1 € R satisfying |g,| <
1 for all T and guarantees for all y, € R:

T

T
> a(u =) < e+ Alyely| Y g2 log(|y.|T/e + 1) + By log(|y«| T /e + 1).
t=1 t=1

Finally, suppose also that E

—

Sillenhdl] = MVTHAR; - N and

E[Y,c5 Lil{ci,he)|]] < H and E _Zthl 1t<ct,ht>2] < F\/1+|c|3.; for some constant
M, N, H, F. Then both the deterministic and randomized version of Algorithm 4 guarantee:

AA|[ul|(H + N) 10g(IIUHT/6 +1)

E[R 4 (1, 6)] < 2€ + Bllul|log(||ul|T/e + 1) +

2ABHu||«/1og |ul|T/e + 1) log( 2A||u||T\/log |lul|T/e+1)/(Me)+ 1)
2143F||U||\/10g(||u||T/6 +1) 10g(2A\|u||T\/ log(|[ulT/e+1)/(Me) +1)

M2

Proof of Lemma F.1. Some algebraic manipulation of the regret definition yields:

T

T
E[R A, (u,&)] <E lmfz Cty Wy — u) — y*z 1 (hy, ce) Z Li(hy, e)( y*)l
t=1

t=1 t=1

T T T
<E l inf <Ct7wt - U> — Yx Z 1t|<htact>| + 2%2 ]]-t‘<htact>| - Z ]]-t<ht7ct>(yt - y*)] .
t=1 1

>0
Y= teB t=

Now using the hypothesized bounds we have

T T
E[RAu (v, )] <E ngfo (s wy —u) = g M1+ [[el3p + 20 H + 5N =D Ll ) (ys — y*)l

- t=1 t=1

< 1nf E |2e+ Aljull ZHctHZlog(HuHT/eJrl)+B||u\|log(||u\|T/e+1)
t=1

t
— g M\J1+ |[cl2p + 20 H + o N + Ay, | Y g2 log(yuT/e + 1) + By, log(y.T/e + 1)

t=1
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using Jensen inequality,

T
< dnf 2e + Aljul > lleel?log(l[ullT/e + 1) + Bllulllog(|ulT/e + 1) = yu M/ 1+ |lell3 1

t=1

t

Z 1t<Ct, ht>2

t=1

+ 2y, H + y N + Ay, , | E log(ysT/e+ 1) + By, log(y«T /e + 1)

T

< Inf 2¢ + Allul > lleel?log([[ullT/e + 1) + Bllulllog(|ul|T/e + 1) = g M/ 1+ |lel|3 1

t=1

+ 2y H +y N + Ay*\/F I+ HCH%;T log(y«T'/€ + 1) + Bys log(y.T/e + 1)

with a little rearrangement,

T
. Y

< inf 2e+ Aflull | Y lleel|2log(|ul|T/e + 1) + Bllul| log([[ul|T/e + 1) = Z=M/||cl|?.1
Yx>0 2

t=1

+2y.H + y. N + By, log(y.T/e + 1)
Ay P+ el or(n T+ 1) = L0015 el

. Yx
< inf 2e+ Aflull | Y lleel|?log(|ul| T/e + 1) + Bllul| log([[ul| T/e + 1) = Z=M/||cll3.1
Y« >0 2

t=1

+ 2y, H +y,N + By, log(y,T/e + 1) + sup Ay, /FX log(y.T/e + 1) — %*MX
X

T
. Y
< inf 2e+ Aflull [ Y lleel|2log(|ul|T/e + 1) + Bllul| log([[ul|T/e + 1) — Z=M/||cl|?.1
Y20 t=1 2

LAZF 1 T/e+1

2M
Now, we set
_ 2A]Jully/log([[ullT/€ + 1)
Y = M .
This yields

E[R 4 (u, 0]
Yy« A2F log(y,T /e + 1)

< 2¢ + Bllul|log(||ul[T/e + 1) + 2y, H + y.N + By, log(y.T/e + 1) + o

4A[|ul|(H + N)/log(||ulT/e + 1)

< 2¢ + Bl|lu|[log(||u||T/e + 1) +

M
. 2AB]lullylog(|[ullT/e + 1) log(2A[ul|T'log(J[ullT/e + 1)/ (Me) +1)
M

N QA?’FIIUH\/log(HUIIT/<E + 1) log (2A]|ul[T\/log([|ul[T/e + 1)/ (Me) + 1)
M? '

Now, to prove Theorem 6.1, it suffices to instantiate the Lemma. We restate the Theorem below for
convenience:
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Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

Jull Vog(Tul[T/€) | K + el T eles Il /57, Tk 08 7)

(67

2¢ +

with expected query cost at most 2K \/||c||7.1-

Proof. Define

. K
py =min [ 1, —————— | ,
( a\/1+||c||it>

so that in the randomized version of Algorithm 4, at round ¢, we ask for a hint with probability p;_;.
Clearly, the expected query cost is:

T

T
[[et]?
E L(ce, he) | = ) apiillel” < ell3.
z] Sl z L <ol

Now, to bound the regret we consider two cases. First, if 1 + ||¢/|3.; < then we have:

042’

T T T T
E[R A, (u,0)] < Z Ct, Wy — u) Z]lt ct, he)y E Z<Ct7wt —U>+th(yt—0)]
t=1 t=1 t=1 t=1
T
< 2¢ + Allully | D lleel|* log(||ul|T/e + 1) + Bllul| log(||u]| T/e + 1)
t=1
Allu||K+/log(||u]|T/e + 1
< gc 4 AWMLY | gy voguize + 1),
and so the result follows. Thus, we may assume 1 + ||c[|2.; > —. In this case, we will calculate

values for M, H, and F' to use in tandem with Lemma F.1. First,

T T
B[S h] >l < 2 el < il
— 1:t

So that we may take F' = 2£_ Next, note that = — K by our casework assumption.
y o pr /TP o y p

Therefore:
—aprldir < a—apr(1+[cfir) < a—Ky/llelir,

so that we may take M = K and N = «. Finally,

teB teB & ”CtH teB leall3e teB teB

cll||h c
Zpt e he)| < K Z lleelll t” \/Z [lee||? Z||htH2< Z||ht||210g L4 lell?.p),

so that we may take H = £ \/ZtGIB |he||? log(1 + ||c||2.7-). Then Lemma F.1 implies
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AA|ul[(H + o) log(llul\T/6+ 1)

E[R Ay (1, &)] < 2€ + Bllu||log(||ul[T/e + 1) +

2AB||u||«/log lu]|T/e + 1) log( 2A||u||T\/log |lul|T/e+1)/(Me) + 1)
A3F||u||\/log (lu]|T/e+ 1) log 2A||u||T\/log lul|T/e+1)/(Me)+ 1)

M2

4Allull\/log(IIUIIT/e +1) Xiep el log (1 + [le]12.r)

< 2e + Bllu||log(||u||T/e+ 1) +

} AAllullar/log(f[ullT/e +1)
K
. 2AB|lullylog(|lulT/e + 1) log(2A|[ul| Ty log([[ullT/e + 1)/(Ke) +1)
K

N 2A‘°’||u||\/log(IIUIIT/e + D 1og(2A[[u||T\/log([[ul|T/e + 1)/ (Ke) + 1)

Ka

(67

Simplifying the expression yields

]E[R-Aunc (u’ E)]
log(]|u 3/210 lo ull /e
oo (BT omtoB T/ - Mo ul[T /) Sy el og(1 + llell3.r))

(07

<240

F.1 Deterministic version

Before providing the proof of Theorem 6.2, we need the following auxiliary statement.

Lemma F.2. Suppose B = (). Then for all t, the deterministic version of Algorithm 4 guarantees:

¥ Z
Vielir_ = T om S Z (e, he) < Ky 1+ lellr_i-

Proof. Define Z; = 1+ Zle 14{ct, hy) with Zy = 1. We will instead prove the equivalent bound:

/ K /
K ||CH%:T—1 - K- % S ZT S 1 + K,/1 + ||C||%:T—1'

The upper bound is immediate from the definition of Z and the fact that {c;, h;) < 1. For the lower
bound, we will prove a slightly different statement that we will later show implies the desired result:

||ct'||2
forallt >0, Z; > K\/1+ ||c[}, — K PN
Z ||CH1 it

<t HCHM,_QQ

We proceed by induction. The base case for ¢ = 0 is clear from definition of Z;. Suppose the
statement holds for some ¢. Then consider two cases, either Z; < K+/1+ ||c||3., or not. If Z; >
KA\/1+|cl|i then Zyypy = Z, > K\/1+ ||c[|7,, > Ky/1+ ||c||3,;11 — K and so the statement

holds. Alternatively, suppose Z; < K+/1 + | c||3.,. Then:
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= Z; + (Ct41, hig)

Zita
HCt'||2
=3 SV ENETHE .S e, el
t'<t|y/|lc H?f—m Ml
Kllee el
> K14 clfn — WiK? Z ety '
1:t ' <t| ”C”§t72a e
Aol > o el 2
+ allciqa|
llell%.

v<tly/Tel?, <&

> K1+ |cl|fpq —
HC||1 41
o - . HCt'll
=SVIENP TR DS IelE,
vty T < b

so that the induction is complete.
Finally, observe that if 7 is the largest index such that \/||c[|3,, < 2, then

K
.
|| ||1‘r—2

by

lell3,, <9

levl? = llev®
<SP
2ol 2 2ol

v <t+1|

Now we can prove Theorem 6.2:
Theorem 6.2. If B = (), then the deterministic version of Algorithm 4 guarantees

[[ull Viog([lul|T/e + 1) n ull log™ > (||ul|T/€) 10g10g(||u|T/€)>
o K ’

T
Z(ct,xt —uy <240 (
t=1

with a query cost at most 2K +/|c||3.1.

lle[l$.7- To bound the regret,

Proof. From Lemma F.2 we have that the query cost is at most K
we will appeal to Lemma F.1, which requires finding values for M, N, H, F'. First, again by Lemma

F.2, we have:

K
K\/1+”C”%:T_3K_1_% SK\/chlT 1=

Next, since B = (), H = 0. Finally, since all

T
25 Z Ctaht

So that we may set M = K and N = 3K + 1+ 5

hints are a-good, we have

T
Z ]lt Ct, ht
t=1

so that we may take F' = K. Therefore, noticing that the expected regret is the actual regret since

Li{ce, he) < K ||CH1 T

HMH

the algorithm is deterministic, we have
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4A H -+ N)y/1 T 1
Rty (0,8 < 2 + Bllul log(u|[T/e + 1) + AIIEH = N)Aog(ullT/e 1)

M
. 2AB|lullog(|lulT/e + 1) log(2A|[ul| T log(J[ullT/e +1)/(Me) +1)
M

N 2A3FHUII\/10g(IIUHT/€ + 1) log(2A[Ju[| T\/log(||ul|T/e + 1)/ (Me) + 1)
M?2

4 1
< 2e-+ Blulog(ulT/e-+ 1)+ 4l (& + ¢ ) vioglT7e D

. 2AB|lullylog(|lulT/e + 1) log(2A|[ul| Ty log(J[ullT/e + 1)/(Ke) +1)
K

N QA?’IIUH\/log(HUIIT/6 + 1) log(2A[u|| T\/1og([[ul|T /e + 1)/ (Ke) + 1)
K

\/— 3/2
§2e+0<”“| log[ulT/e+1) , lullog” (/9 loglog(IulT/))

K
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