
A Experiment setups

In this section, we provide detailed experimental setups for all the tasks discussed in the main paper.
Specifically, we will explain the datasets, architectures and implementation details for all tasks.

A.1 Dataset Distillation

Datasets. Our models are tested on six standard dataset distillation benchmarks:

• MNIST contains 10 classes with 60,000 writing digit images as the training set and 10,000
images as the test set. The images are gray-scale with a shape of 28 × 28 and associated
with a label from 10 classes (digit 0-9).

• FashionMNIST is a dataset with clothing and shoe images and consists of a training set with
size 60,000 and a test set with size 10,000. Each image is 28× 28 in gray scale, and has a
label from 10 classes.

• SVHN street digit images where each image has a shape of 32×32×3. The dataset contains
73257 images for training and 26032 images for testing. We use the cropped SVHN where
the center of the image indicates the number and the rest is background. Each image is
categorized into 10 classes (digits 0-9).

• CIFAR10 is a dataset consisting of 32×32 RGB images and has 10 classes in total: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each class contains 5,000
images for training and 1,000 images for testing, leading to 50,000 images for training and
10,000 images for testing in total.

• CIFAR100 contains 60,000 images in total from 100 classes. For every class, 500 images
are used for training and 100 images are used in testing. The 100 classes are associated with
20 superclasses, where each superclass contains 5 classes at a finer level.

• TinyImageNet is a downscaled subset of ImageNet, with 200 classes. The dataset contains
images of shape 64x64, a training set with 100,000 images and a testing set with 10,000
images.

Architectures. We mainly work with a three-layer convolutional neural network, denoted as "Con-
vNet", which contains convolutional layers with 3× 3 filters, followed by ReLU activation function
and InstanceNorm. The network has 128 hidden dimensions and uses an average pooling layer with
2× 2 kernel size after every Instancenorm operation. We also test our models on ResNet-12 with
64, 128, 256, 512 hidden dimensions in each block. The ResNet-12 architecture is slightly modified
by replacing BatchNorm with InstanceNorm, and removing the final average pooling layer. We find
using the full spatial information in the final layer is important for distillation. Both ConvNet and
ResNet-12 are standard architectures for few-shot learning benchmarks.

Implementation details. We use one 24-GB GPU for each experiment run. For all our models, we
use a SGD optimizer with learning rate 0.1 and momentum rate 0.5. Every model is trained for
50,000 iterations. For both the inner loop optimization and evaluation, we use learning rate 0.01 and
momentum rate 0.9. For random initialization of addressing matrices and bases, we use Kaiming
uniform initialization. To select the number of bases for each setting, we randomly sample 10% of
training set as the validation set. Data augmentations with rotation and flip are applied on CIFAR10
and CIFAR100 datasets. ZCA preprocessing is used on CIFAR10, CIFAR100 and SVHN datasets.
No ZCA preprocessing or data augmentations are used on MNIST and FashionMNIST datasets.

A.2 Continual learning

Datasets. We use six datasets to evaluate our models. The details are summarized in table 1.

Architectures and implementation details. For all MNIST-based datasets, we use a multi-layer
perceptron (MLP) with 256 hidden units. Following La-MAML, we use the ConvNet architecture
with 160 hidden dimensions. All experiments are run on a 24-GB GPU, using a SGD optimizer with
0.1 learning rate and 0.5 momentum rate. The inner loop optimization learning rate is set as 0.01 with
momentum rate 0.9. During the testing phase, the re-training phase uses the same setups as the inner
loop optimization. We use data samples stored in the memory buffer for minibatch replay to perform
compressing, summarized in table 1.

1



Dataset #Tasks Batch size #Samples/task Total mem size #Bases #Replay
Rotations 20 10 1000 200 24(ds) 4

Permutations 20 10 1000 200 8 20
MANY 100 10 1000 1000 8 20

CIFAR100 20 10 2250 200 24(ds) 4
Rotations∗ 20 10 60000 200 24(ds) 2

Permutations∗ 20 10 60000 200 8 2

Table 1: The details on six benchmarks used in the experiments: MNIST Rotations (Rotations),
MNIST Permutations (Permutations), MANY Permutations (MANY), Incremental CIFAR100 (CI-
FAR100), MNIST Rotations with 60,000 data samples (Rotations∗), MNIST Permutations with
60,000 data samples (Permutations∗). Note that works compare under different benchmarks, we
follow the settings and compare our model with La-MAML on Rotations, Permutations, MANY,
and CIFAR100, and compare with Kernel Continual Learning on Rotations∗ and Permutations∗.
#Samples per task is specified for training. (ds) indicates using downsampled bases.

A.3 New classifier synthesis

Datasets and setups. For experiments on both extrapolating between tasks and recall with images,
we use CIFAR100 as the dataset. For task extrapolation experiments, we split CIFAR100 into 20
5-way classification tasks for training, and use 2-way and 5-way classification for testing. The 2-way
and 5-way tasks during testing are obtained through randomly selecting 2 or 5 training tasks and
then randomly sampling 1 class from each selected task. This ensures that every pairs of classes in a
testing task have not been used together for training. For recall with images experiments, we use all
classes in CIFAR100 for training, and use 20 5-way classification tasks in testing. During evaluation
on a 5-way classification task, we sample 1 or 5 images per class (depends on 1-shot or 5-shot), and
use the sampled images for recall. The sampled images are from test set, i.e. we would like to use
testing images to perform recall and build a new classifier.

Architectures and implementation details. In the task extrapolation experiments, since our models
are performing dataset distillation, we use the exact same hyperparameters and architectures as dataset
distillation tasks in Sec. A.1. For recall with images, we use 64 bases and 16 addressing matrices (i.e.
each query can generate 16 synthetic images) in our model. For baselines, we pretrain the feature
backbone for nearest neighbor classifier and the classifier in "classify-then-recall" for 100 epochs
on CIFAR100, using SGD optimizer with 0.01 learning rate and 0.9 momentum rate. The visual
observations (image shots) we used are from the test set.

B Additional results and discussion

B.1 Dataset Distillation

Back-propagation through time as a strong baseline. Besides the main ablation study results on
CIFAR10 and CIFAR100, table 3 provides the results for the benchmarks. As shown in the table,
back-propagation through time is indeed a strong baseline that consistently outperforms the single-
step gradient matching method, and downsampling can reduce spatial redundancies and improve the
compression rate, leading to a higher recovery performance.

1 image/class 10 images/class

AlexNet ResNet-12 ConvNet AlexNet ResNet-12 ConvNet
AlexNet 58.5±0.5 53.6±0.6 57.3±0.6 65.6±0.5 60.2±0.6 63.7±0.6
ResNet12 53.2±0.8 58.5±0.5 57.0±0.3 62.3±0.9 67.8±0.3 65.2±0.6
ConvNet 50.5±1.3 55.9±0.6 66.4±0.4 63.8±0.8 67.5±0.4 71.2±0.4

Table 2: Cross architecture generalization under various pixel/image storage budgets.

2



I/C Single-step GM OursBPTT OursBPTT+ds OursFull w/o Aug. OursFull

MNIST
1 91.7±0.5 95.2±0.3 98.2±0.1 - 98.7±0.7

10 97.4±0.2 98.8±0.1 98.9±0.1 - 99.3±0.5
50 98.8±0.2 99.2±0.1 99.4±0.1 - 99.4±0.4

F-MNIST
1 70.5±0.6 83.9±0.4 86.7±0.3 - 88.5±0.1

10 82.3±0.4 89.1±0.2 89.1±0.1 - 90.0±0.7
50 83.6±0.4 90.4±0.1 90.7±0.1 - 91.2±0.3

SVHN
1 31.2±1.4 71.6±0.8 80.1±0.5 - 87.3±0.1

10 76.1±0.6 83.1±0.3 86.2±0.2 - 89.1±0.2
50 82.3±0.3 86.5±0.2 88.8±0.2 - 89.5±0.2

CIFAR10
1 28.3±0.5 49.1±0.6 55.2±0.5 64.2±0.6 66.4±0.4

10 44.9±0.5 62.4±0.4 65.9±0.4 70.9±0.4 71.2±0.4
50 53.9±0.5 70.5±0.4 71.1±0.5 72.1±0.5 73.6±0.5

CIFAR100 1 12.8±0.3 21.3±0.6 25.9±0.4 33.5±0.2 34.0±0.4
10 25.2±0.3 34.7±0.5 36.5±0.4 40.6±0.3 42.9±0.7

Table 3: Full ablation studies on model variants and comparison with single-step gradient matching
baseline. No augmentations are used on MNIST, FashionMNIST and SVHN.

Transfer across architectures. To show that our compressed memories are generalizable across ar-
chitectures, we also test the training on ResNet-12. Specifically, we learn the memories and addressing
matrices on ConvNet and ResNet-12, and test them on ResNet-12 and ConvNet, respectively. Results
are summarized in table 2. We use 10 images per class as the storage budget on CIFAR10. Each row
is the architecture that our method trains on, and each column is the generalization performance. The
learned compressed representation is quite robust across ConvNet and ResNet-12.

Choice of # bases. To select the number of bases for each experiment, we evaluate the performance
on a separate validation set, which is 10% random samples of the training set. The results on the
validation set are shown in fig. 1. We select the number of bases that leads to the highest performance
on the validation set for the full training set distillation.

Figure 1: Number of bases v.s. retrain accuracy on validation set. I/C: images per class.

Further ablations on momentum terms. How is the momentum term exactly affecting the back-
propagation through time process? We analyze the performance of baseline BPTT algorithms on
three cases: no-momentum, forward-only momentum, and full momentum. No-momentum uses
BPTT without momentum terms. Forward-only momentum uses the momentum term only in the
forward BPTT, but blocks the gradients on the momentum term in the backward pass (except for the
gradients on the current time step weights) to remove the “bridging effect" of momentum term across
multiple steps. Full momentum is our full model. All the experiments are performed on CIFAR10
with 200 inner optimization steps.

I/C no-momentum forward-only momentum full momentum
1 40.5±0.8 45.6±0.7 49.1±0.6
10 50.0±0.5 57.4±0.3 62.4±0.4

Table 4: Further analysis of momentum terms of BPTT on CIFAR10 dataset.

3



Adam optimizer for inner loop. We also experimented with using Adam optimizer to optimize
the synthetic data, instead of using stochastic gradient descent with momentum. Empirically, we
found that Adam optimizer leads to certain instability of gradients (e.g., magnitude) on the inner
optimization steps when using the same learning rate magnitude and perfers smaller ones such as
1e-4. The end results are similar to the SGD algorithms.

B.2 Continual learning

Memory designs in “compress-then-recall”. We follow the Reservoir sampling strategy to store
samples in the memory buffer. When learning through the tasks, our algorithm utilizes all the currently
available memory buffer storage space to store samples. After the learning on one task is finished, the
algorithm saves the compressed representation to the memory buffer, taking 1/T the buffer where T
is the total number of tasks, and clear the storage space which stores the real samples for the current
task. This strategy makes sure that the compression algorithm has enough samples to replay, resulting
in 1− (t− 1)/T of the storage to use, where t ∈ {1, ..., T} is the current task index.

B.3 New classifier synthesis

Designs of “image addressing” model. Since our formulation allows flexible query forms, we use
an extra ConvNet to take the visual observations (images) as input and treat the output feature vectors
as queries. The feature vector queries are used for vector matrix product with addressing matrices to
compute coefficients for combining bases. To train the addressing model: For every training iteration,
we randomly subsample a subset of classes from all classes and pick 1 or 5 images (depends on 1-shot
or 5-shot), and use the recalled synthetic datasets with the feature vectors of the images to perform
inner loop optimizations. The generalization loss is computed using other image-label pairs from the
subset classes (the same as standard dataset distillation training). The ConvNet (feature extractor),
bases and image matrices are jointly trained.

Discussion of “image addressing” results. We compare the "image addressing" model with two
strong baselines: nearest neighbor classifiers and "classify-then-recall" method. It’s interesting to see
that, having the ability to access the dataset-level information (even compressed) can often lead to
better performance when building a new classifier, while nearest neighbor classifiers can only utilize
image shots to serve as limited information for classification. Note that the "classify-then-recall"
method is also a strong baseline, but can suffer from the classification errors on test images, leading
to less robust recall. The direct usage of feature vectors from image shots can provide a continuous
space and potentially lead to more robust behaviours in the addressing and recall processes.

C Visualization and analysis

Coefficients similarity map. We show the full matrix of cosine similarities on the coefficients that
combine the bases from all 100 classes in CIFAR100, as shown in fig. 2. The order of classes on x
and y axis is organized by superclasses. Every 5 classes is under a common superclass on the axis.
As shown by the matrix, we can clearly see that the classes under the same superclass often have
significant similarities, indicating strong sharings when combining bases. For example, categories
bridge, castle and house share similar bases; baby, girl, man and woman also share similar bases,
while crab and tulips use very different coefficients to perform addressing.

Visualization on bases. In figure 3, we visualize the learned 64 bases on CIFAR100. The bases
contain various colors, shapes and textures, and are used to be combined with coefficients generated
from queries and addressing matrices.

D More visualization comparisons

In this section, we further compare the visualization of our methods under various settings.

D.1 Same amount of generated images

We visualize the synthetic images from the baseline method BPTT and from our proposed memory
addressing parameterization. For BPTT, we use 100 image per class as the budgets, and for our

4



be
av

er
do

lp
hi

n
ot

te
r

se
al

w
ha

le
aq

ua
ri

um
 fi

sh
fla

tf
is

h
ra

y
sh

ar
k

tr
ou

t
or

ch
id

s
po

pp
y

ro
se

s
su

nf
lo

w
er

s
tu

lip
s

bo
tt

le
bo

w
l

ca
ns

cu
ps

pl
at

es
ap

pl
e

m
us

hr
oo

m
s

or
an

ge
s

pe
ar

s
sw

ee
t p

ep
pe

rs
cl

oc
k

ke
yb

oa
rd

la
m

p
te

le
ph

on
e

te
le

vi
si

on
be

d
ch

ai
r

co
uc

h
ta

bl
e

w
ar

dr
ob

e
be

e
be

et
le

bu
tt

er
fly

ca
te

rp
ill

ar
co

ck
ro

ac
h

be
ar

le
op

ar
d

lio
n

tig
er

w
ol

f
br

id
ge

ca
st

le
ho

us
e

ro
ad

sk
ys

cr
ap

er
cl

ou
d

fo
re

st
m

ou
nt

ai
n

pl
ai

n
se

a
ca

m
el

ca
tt

le
ch

im
pa

nz
ee

el
ep

ha
nt

ka
ng

ar
oo

fo
x

po
rc

up
in

e
po

ss
um

ra
cc

oo
n

sk
un

k
cr

ab
lo

bs
te

r
sn

ai
l

sp
id

er
w

or
m

ba
by

bo
y

gi
rl

m
an

w
om

an
cr

oc
od

ile
di

no
sa

ur
liz

ar
d

sn
ak

e
tu

rt
le

ha
m

st
er

m
ou

se
ra

bb
it

sh
re

w
sq

ui
rr

el
m

ap
le

 tr
ee

oa
k 

tr
ee

pa
lm

 tr
ee

pi
ne

 tr
ee

w
ill

ow
 tr

ee
bi

cy
cl

e
bu

s
m

ot
or

cy
cl

e
pi

ck
up

 tr
uc

k
tr

ai
n

la
w

n 
m

ow
er

ro
ck

et
st

re
et

ca
r

ta
nk

tr
ac

to
r

beaver
dolphin

otter
seal

whale
aquarium fish

flatfish
ray

shark
trout

orchids
poppy
roses

sunflowers
tulips
bottle
bowl
cans
cups

plates
apple

mushrooms
oranges

pears
sweet peppers

clock
keyboard

lamp
telephone
television

bed
chair

couch
table

wardrobe
bee

beetle
butterfly

caterpillar
cockroach

bear
leopard

lion
tiger
wolf

bridge
castle
house

road
skyscraper

cloud
forest

mountain
plain

sea
camel
cattle

chimpanzee
elephant

kangaroo
fox

porcupine
possum
raccoon

skunk
crab

lobster
snail

spider
worm
baby
boy
girl

man
woman

crocodile
dinosaur

lizard
snake
turtle

hamster
mouse
rabbit
shrew

squirrel
maple tree

oak tree
palm tree
pine tree

willow tree
bicycle

bus
motorcycle

pickup truck
train

lawn mower
rocket

streetcar
tank

tractor 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Full coefficient cosine similarity matrix on CIFAR100. Zoom in to view the details. Classes
are ordered with superclasses. On the x and y axis, in order, every 5 classes belongs to a common
superclass.

method, we use 10 images per class and 43 bases to generate approximately the same amount of
recalled images (99). The synthetic images are visualized in figures below. To easily compare with
the vanilla version of BPTT, we do not use downsampling in either BPTT or the memory addressing
formulation.

5



Figure 3: CIFAR100 learned 64 bases.

Method: BPTT with standard parameterization Method: BPTT with memories and addressing matrices

Figure 4: Recalled synthetic images for class apple.

D.2 Various image per class budgets

We compare the visualizations of synthetic images under various image per class (I/C) budgets.
Similar to previous section D.1, we use bases with the same shape, and compare the results under 2,
10 and 50 I/Cs. The corresponding number of bases are 8, 43 and 215. The visualization results are
summarized in figure 8, figure 9 and figure 10,

6



Method: BPTT with standard parameterization Method: BPTT with memories and addressing matrices

Figure 5: Recalled synthetic images for class aquarium fish.

Method: BPTT with standard parameterization Method: BPTT with memories and addressing matrices

Figure 6: Recalled synthetic images for class bed.

7



Method: BPTT with standard parameterization Method: BPTT with memories and addressing matrices

Figure 7: Recalled synthetic images for class bottle.

8



Figure 8: Recalled synthetic images for classes apple, aquarium fish, and baby under 2 I/C with 8
bases.

9



Figure 9: Recalled synthetic images for classes apple, aquarium fish, and baby under 10 I/C with 43
bases.

10



Figure 10: Recalled synthetic images for classes apple, aquarium fish, and baby under 50 I/C with
215 bases.

11


	Experiment setups
	Dataset Distillation
	Continual learning
	New classifier synthesis

	Additional results and discussion
	Dataset Distillation
	Continual learning
	New classifier synthesis

	Visualization and analysis
	More visualization comparisons
	Same amount of generated images
	Various image per class budgets


