Supplementary Material for
“Deep Learning with Label Differential Privacy”

A Missing Proofs

A.1 Proof of Lemmal[ll

Proof of Lemmall] Consider any inputs y,y’ € [K] and any possible output § € Y.
Pr[RRTop-k(y) = ¢] is maximized when y = §, whereas Pr[RRTop-k(y’) = ¢| is minimized
when ¢’ € Y}, \ {¢}. This implies that

Pr[RRTop-k(y) = 9] _ zi1 _ -

PrRRTop-k(y') = ] =~

Thus, RRTop-k is e-DP as desired. O

B Details of the Experimental Setup

Datasets. We evaluate our algorithms on the following image classification datasets:

e MNIST [61]], 10 class classification of hand written digits, based on inputs of 28 x 28 gray
scale images. The training set contains 60,000 examples and the test set contains 10,000.

* Fashion MNIST [97], 10 class classification of Zalando’s article images. The dataset size
and input format are the same as MNIST.

* KMNIST [25], 10 class classification of Hiragana characters. The dataset size and the input
format are the same as MNIST.

* CIFAR-10/CIFAR-100 [60] are 10 class and 100 class image classification datasets, respec-
tively. Both datasets contains 32 x 32 color images, and both have a training set of size
50,000 and a test set of size 10,000.

* MovieLens [49] contains a set of movie ratings from the MovieLens users. It was collected
and maintained by a research group (GroupLens) at the University of Minnesota. There
are 5 versions: ‘“25m”, “latest-small”, “100k”, “Im”, “20m”. Following Bu et al. [15], we
use the “Im” version, which the largest MovieLens dataset that contains demographic data.
Specifically, it contains 1,000,209 anonymous ratings of approximately 3,900 movies made
by 6,040 MovieLens users, with some meta data such as gender and zip code.

Architectures. On CIFAR-10/CIFAR-100, we use ResNet [51], which is a Residual Network
architecture widely used in the computer vision community. In particular, we use ResNet18 V2 [52].
Note the standard ResNet18 is originally designed for ImageNet scale (image size 224 x 224). When
adapting to CIFAR (image size 32 x 32), we replace the initial block with 7 x 7 convolution and
3 x 3 max pooling with a single 3 x 3 convolution (with stride 1) layer. The upper layers are kept
the same as the standard ImageNet ResNet18. On MNIST, Fashion MNIST, and KMNIST, we use a
simplified Inception [91] model suitable for small image sizes, and defined as follows:

Inception ::  Conv(3x3, 96) — S1 — S2 — S3 — GlobalMaxPool — Linear.
S1::  Block(32, 32) — Block(32, 48) — Conv(3 x 3, 160, Stride=2).
S2:: Block(112, 48) — Block(96, 64) — Block(80, 80) — Block (48, 96) —
Conv(3x3, 240, Stride=2).
S3::  Block(176, 160) — Block(176, 160).
Block(C'1, C) :: Concat(Conv(1x1, Cy), Conv(3x3,C5)).
Conv :: Convolution — BatchNormalization — ReLU.

For the MovieLens experiment, we adopt a two branch neural networks from the neural collaborative
filtering algorithm [54]. We simply treat the ratings as categorical labels and apply our algorithm for
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multi-class classification. During evaluation, we output the average rating according to the softmax
probabilities output by the trained model.

Training Procedures. On MNIST, Fashion MNIST, and KMNIST, we train the models with mini-
batch SGD with batch size 265 and momentum 0.9. We run the training for 40 epochs (for multi-stage
training, each stage will run 40 epochs separately), and schedule the learning rate to linearly grow
from O to 0.02 in the first 15% training iterations, and then linearly decay to O in the remaining
iterations.

On CIFAR-10, we use batch size 512 and momentum 0.9, and train for 200 epochs. The learning rate
is scheduled according to the widely used piecewise constant with linear rampup scheme. Specifically,
it grows from O to 0.4 in the first 15% training iterations, then it remains piecewise constant with a
decay factor of 10 at the 30%, 60%, and 90% training iterations, respectively. The CIFAR-100 setup
is similar to CIFAR-10 except that we use a batch size 256 and a peak learning rate 0.2. MovieLens
experiments are trained similarly, but with batch size 128.

On all datasets, we optimize the cross entropy loss with an £, regularization (coefficient 10~%).
All the networks are randomly initialized at the beginning of the training. For the experiment on
CIFAR-10 where we explicitly study the effect of pre-training to compare with previous methods that
use the same technique, we train a (non-private) ResNet18 on the full CIFAR-100 training set and
initialize the CIFAR-10 model with the pre-trained weights. The classifier is still randomly initialized
because there is no clear correspondence between the 100 classes of CIFAR-100 and the 10 classes of
CIFAR-10. The remaining configuration remains the same as in the experiments without pre-training.
In particular, we did not freeze the pre-trained weights.

We apply standard data augmentations, including random crop, random left-right flip, and random
cutout [28]], to all the datasets during training. We implement our algorithms in TensorFlow [1]], and
train all the models on NVidia Tesla P100 GPUs.

Learning with Noisy Labels. Standard training procedures tend to overfit to the label noise and
generalize poorly on the test set when some of the training labels are randomly flipped. We apply
mixup [101] regularization, which generates random convex combinations of both the inputs and the
(one-hot encoded) labels during training. It is shown that mixup is resistant to random label noise.
Note that our framework is generic and in principle any robust training technique could be used. We
have chosen mixup for its simplicity, but there has been a rich body of recent work on deep learning
methods with label noise, see, e.g., [55] 146} 99| 211 (104! [74} 691 |64} (105} (56 50 147} 65| 1861 [79], 187]]
and the references therein. Potentially with more advanced robust training, even higher performance
could be achieved.

Multi-Stage Training. There are a few implementation enhancements that we find useful for
multi-stage training. For concreteness, we discuss them for LP-2ST. First, we find it helps to initialize
the stage-2 training with the models trained in stage-1. This is permitted as the stage-1 model is
trained on labels that are queried privately. Moreover, we can reuse those labels queried in stage-1
and train stage-2 on a combined dataset. Although the subset of data from stage-1 is noisier, we find
that it generally helps to have more data, especially when we reduce the noise of stage-1 data by
using the learned prior model. Specifically, for each sample (z, ¢) in the stage-1 data, where § is the
private label queried in stage-1, we make a prediction on x using the model trained in stage-1; if g
is not in the top k predicted classes, we will exclude it from the stage-2 training. Here & is simply
set to the average k obtained when running RRWithPrior to query labels on the data held out for
stage-2. Similar ideas apply to training with more stages. For example, in LP-3ST, stage-3 training
could use the model trained in stage-2 as initialization, and use it to filter the queried labels in stage-1
and stage-2 that are outside the top % prediction, and then train on the combined data of all 3 stages.

Priors from Self-supervised Learning. Recent advances in self-supervised learning (SSL) [22,
23144, 153} [16] show that representations learned from a large collection of unlabeled but diverse
images could capture useful semantic information and can be finetuned with labels to achieve
classification performance on par with the state-of-the-art fully supervised learned models. We apply
SSL algorithms to extract priors for image classification problems, with the procedure described in
Algorithm

Specifically, we choose two recent SSL algorithms: BYOL [44] and DINO [16]]. For BYOL, we
train the SSL model using the (unlabeled) CIFAR-10 images only, as a demonstration without using
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Algorithm 4 SSL Priors.

Input: Training set D = {(xs,y:) }i=1, cluster count C, privacy budget for priors £, trained SSL model fssi..

1. Initialize P < 1/K ones(n, K) as the uniform priors.

2. Extract SSL features F' = { fssi.(z:) : (z3,y:) € D}.

3. Run k-means algorithms to partition F' into C' groups.

4. Foreachc=1to C:
(a) Compute histogram of classes H. € N 12(0 according to the labels of examples in the c-th group.
(b) Get a private histogram query H. « H.+ scipy.stats.dlaplace.rvs(ep/2, K), via the

discrete Laplace mechanism.

(c) Get a prior via normalization: p. = max(H.,0)/ Zszl max (H.[k],0).
(d) For each example i in group c, assign P[i, :] < pe.

5. Output P.
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Figure 2: Accuracy evaluated on CIFAR-10 test set, of private histogram querying with kmeans
clustering on self-supervised learning based features learned by (a) BYOL [44] on CIFAR-10 and (b)
DINO [16]] on ImageNet.

external data. For DINO, we use the models pre-trained on (unlabeled) ImageNet [27] images. Since
ImageNet is a much larger and more diverse dataset than CIFAR-10, the SSL representations are
also more capable of capturing the semantic information. Note the ImageNet images are of higher
resolution and resized to 224 x 224 during training. To extract features for 32 x 32 CIFAR-10 images,
we simply upscale the images to 224 x 224 before feeding into the trained neural network.

We choose relatively large cluster sizes so that the private histogram query is more robust to the added
discrete Laplace noise. In particular, we found C' = 100 clusters for BYOL representations and
C = 50 clusters for DINO representations achieve a good balance of robustness and accuracy. Since
€p will be subtracted from the privacy budget for RRWithPrior, we simply choose the smallest ¢,
without causing too much deterioration of the priors. In our experiments, we set £, = 0.05 for BYOL
and g, = 0.025 for DINO. Note the model accuracy could potentially be further boosted by choosing
C and ¢, adaptively according to the overall privacy budget. In the following, we provide a simple
study to show how the interplay between €, and C affects the accuracy of the histogram queries.

To compute an accuracy measure on the test set, we extract features using a SSL learned models on
both training and test set. A k-means clustering algorithm is run on the joint set of training and test
features. For each cluster, we apply the discrete Laplace mechanism to make a private histogram of
class distributions from only the training examples in that cluster. The class with the maximum votes
are then used as predicted labels for all the fest examples in the cluster, and compared with the true
test labels to calculate the accuracy. Figure 2] shows the accuracy with the two different SSL features
under different privacy budgets (¢) for making the histogram queries. As expected, the accuracy is
higher with smaller clusters, but at the same time sensitive to noise introduced by the Geometric
Mechanism when the privacy budget is small.
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Table 4: Test accuracy (%) on MNIST and Fashion MNIST. The baseline performances taken from
previously published results correspond to (e, d)-DP with § = 10~°.

Algorithm e=1 e=2 e=3 =4 e=28 € =00
DP-SGD [2] 95 97 98.3
—~ PATE-G [75] 98(e=2.04) 98.1(£=8.03) 99.2
« Confident-GNMax [76] 98.5(e=1.97) 99.2
E Tempered Sigmoid [[77] 98.1(=2.93)
Buet al. [15] 96.6(s=2.32) 97.0(e =5.07)
Chen and Lee [20] 90.0(e =2.5)
Nasr et al. [71]] 96.1(c =32
Yu et al. [98] 93.2(e =6.78)
Feldman and Zrnic [39] 96.56(¢=1.2) 97.71
LP-1ST 95.34 98.16 98.81 99.08 99.33
LP-2ST 95.82 98.78 99.14  99.24
= DP-SGD [77] 81.9(e=2.7) 89.4
E ¥ Tempered Sigmoid [[77]] 86.1(e=2.7)
L§§ Chen and Lee [20] 82.3
LP-1ST 80.78 90.18 92.52  93.50 94.28
LP-2ST 83.26 91.24 93.18 94.10

Table 5: Test accuracy (%) on KMNIST [235]].

Algorithm =1 e=2 e=3 e=4 e=00

LP-1ST 76.56 92.04 9586 96.86 98.33
LP-2ST 81.26 93.72 97.19 97.83 -

C Extra Results on Multi-Stage Training

In addition to the results presented in the main text, we include extra results of multi-stage training
on MNIST [61], Fashion MNIST [97]], and KMNIST [25]. Both MNIST and Fashion MNIST have
been previously used to benchmark DP deep learning algorithms. We compare our algorithms with
previously reported numbers in Table d. Our algorithms outperform previous methods across all
€’s on both datasets. The gap is more pronounced on Fashion MNIST, which is slightly harder
than MNIST. Furthermore, LP-2ST consistently improves over LP-1ST. Table[5 shows the model
performances on KMNIST under different privacy losses. The results are qualitatively similar to the
ones for MNIST and Fashion MNIST.

D Learning Dynamics of Multi-stage Training

Fig.[3 visualizes the learning curves of LP-1ST and LP-2ST on CIFAR-10 with ¢ = 2. Stage-1 of
LP-2ST (using 65% training data) clearly underperforms LP-1ST with the full training set. But it
is good enough to provide useful prior for stage-2. The RRWithPrior algorithm responds with an
average k = 1.86 over the remaining 35% of the training set. As the dotted line shows, the top-2
accuracy of the model trained in stage-1 reaches 90% at the end of training, indicating that the true
label on the test set is within the top-2 prediction with high probability. In stage-2, we continue with
the model trained in stage-1, and train on the combined data of the two stages. This is possible because
the labels queried in stage-1 are already private. As a result, LP-2ST achieves higher performance
than LP-1ST.

E Analysis of Robustness to Hyperparameters

Following previous work, [e.g.,[77], we report the benchmark performance after hyperparameter
tuning. In practice, to build a rigorous DP learning system, the hyperparameter tuning should be
performed using private combinatorial optimization [45]. Since that is not the main focus of this paper,
we skip this step for simplicity. Meanwhile, we do the following analysis of model performance
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Figure 3: The learning curves of LP-1ST vs LP-2ST on CIFAR-10 (¢ = 2).
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under variations of different hyperparameters, which shows that the algorithms are robust in a large
range of hyperparameters, and also provides some intuition for choosing the right hyperparameters.

Data Splits and Prior Temperature. The data split parameter decides the ratio of data in different
stages of training. Allocating more data for stage-1 allows us to learn a better prior model for the
LP-2ST algorithm. However, it will also decrease the number of training samples in stage-2, which
reduces the utility of the learned prior model. In practice, ratios slightly higher than 50% for stage-1
strike the right balance for LP-2ST. We use a temperature parameter t to modify the learned prior.
Specifically, let fi(x) be the logits prediction of the learned prior model for class & on input z. The
temperature modifies the prior py(z) as:

Lo el
) = o e @)t)

As t — 0, it sparsifies the prior by forcing it to be more confident on the top classes, and as ¢ — oo,
the prior converges to a uniform distribution. In our experiments, we find it useful to sparsify the
prior, and temperatures greater than 1 are generally not helpful. Fig.[d(a) shows the performance for
different combinations of data split ratio and temperature.

Accuracy of Stage-1. Ideally, one would want the k calculated in RRWithPrior to satisfy the
condition that the ground-truth label is always in the top-k prior predictions. Because otherwise, the
randomized response is guaranteed to be a wrong label. One way to achieve such a goal is to make
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Figure 5: The relation between top-k accuracy of stage-1 and the final accuracy of LP-2ST (CIFAR-10,
€ = 2). The x-axis is the range of top-k accuracy of stage-1 models evaluated on the test set. For
each range, the violin plot shows the distribution of the final test accuracy of LP-2ST where the
RRWithPrior procedure calculated an average k (rounded to the nearest integer) for which the top-%
accuracy of the stage-1 model falls in the given range.

the stage-1 model have high top-k accuracy. For example, we could allocate more data to improve
the performance of stage-1 training, or tune the temperature to spread the prior to effectively increase
the k calculated by RRWithPrior. In either case, a trade-off needs to be made. In Fig.[5| we visualize
the relation between top-k test accuracy of stage-1 training and the final performance of LP-2ST. For
each value range in the x-axis, we show the distribution of the final test accuracy where the average
k (rounded to the nearest integer) calculated in RRWithPrior would make the top-k accuracy of the
corresponding stage-1 training fall into this value range. The plot shows that the final performance
drops when the top-k accuracy is too low or too high. In particular, achieving near perfect top-k
accuracy in stage-1 is not desirable. Note this plot measures the top-k accuracy on the test set, so
while it is useful to observe the existence of a trade-off, it does not provide a procedure to choose the
corresponding hyperparameters.

Mixup Regularization. Mixup [101] has a hyperparameter « that controls the strength of regu-
larization (larger « corresponds to stronger regularization). We found that « values between 4 and
8 are generally good in our experiments, and as shown in Fig. @{(b), stage-2 typically requires less
regularization than stage-1. Intuitively, this is because the data in stage-2 is less noisier than stage-1.

F Convex SCO with LabelDP

In this section, we give the proofs of the Theorem [5 and Corollary [6 for private stochastic convex
optimization (SCO) and additionally prove some further, related results. We first formally introduce
the setting of SCO.

Suppose we are given some feature space X (e.g., the space of all images), and label space [K] =
{1,2,...,K}. Write Z = X x [K]. Let W C RP be a convex parameter space. Let D be

the (Euclidean) diameter of W, namely D := max,, wew ||w — w’||. Suppose we are given a
loss function ¢ : W x Z — R, which specifies the loss ¢(w, z) for a given parameter vector
w € W on the example z = (z,y). Given a sequence of samples (x1,41),. .., (T, yn) drawn

i.i.d. from a distribution P over Z, the goal is to find w minimizing the popoulation risk, namely
L(w, P) := B y)~pll(w, (x,y))]. Write w* := argmin, ¢, L(w, P). In this section, we make
the following assumptions on ¢:

Assumption 7 (Convexity). For each z € Z, the function w — {(w, z) is convex.

Assumption 8 (Lipschitzness). For each z € Z, the function w — {(w, z) is L-Lipschitz (with
respect to the Euclidean norm).

Under Assumptions |z and E, Bassily et al. [12} Theorem 4.4] showed that there is an (g, §)-DP
algorithm that given n i.i.d. samples from a distribution P and has access to a gradient oracle for /,
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outputs some w so that the excess risk is bounded as follows:

E[L (@, P)] — L(w*, P) <O <LD : <pl§fl/5 + %)) . ©6)

As shown by Bassily et al. [12] (building off of previous work by Bassily et al. [10]), the rate (6)

is tight up to logarithmic factors: in particular, there is a lower bound of €2 ( ‘4—?) on the excess

risk for any (g, 4)-DP algorithm, meaning that dimension dependence is necessary for private SCO.
Subsequent work [40] showed how to obtain the rate (6] in linear (in n) time. We additionally remark
that there has much work (e.g., [19} 59} 10,103, [95]]) on the related problem of DP empirical risk
minimization, for which rates similar to (@), except without the 1//n term, are attainable.

F.1 Label-Private SGD

In this section we prove Theorem 5, showing that dimension-independent rates are possible in the
setting of label DP privacy (in contrast to the standard setting of DP where privacy of the features
must also be maintained). The algorithm that obtains the guarantee of Theorem [5]is LP-RR-SGD
(Algorithm[5). Both LP-RR-SGD and the training procedure of Section [5](which uses RRWithPrior)
update the weight vectors using gradient vectors §;, which are obtained by using randomized response
on the labels y, for the training examples (x, y; ). LP-RR-SGD, however, ensures that g, is an unbiased
estimate of the true gradient, which facilitates the theoretical analysis, whereas this is not guaranteed
the training procedure of Section [5]

Algorithm 5 LP-RR-SGD
Input: Distribution P, convex and L-Lipschitz loss function ¢, privacy parameter e, convex parameter space WV,
variance factor o > 0, step size sequence 7; > 0.
1. Choose an initial weight vector w; € W.
2. Fort =1ton:
(a) Receive a sample (z¢,y¢) ~ P.
(b) Let g+ denote the output of RR(y:). In other words,

€

- N ar—g H9=uy
Prlje =g =4 <t 7
T U F e

forall § € [K].
(c) Let g: = Vwl(we, (x¢,3:)) and
K
G = CtE -1 Vuwl(wy, (1, k))
gt = o —1 <9t ; ec+ K —1 ’ @

(d) Letweyr Hw(wt =Mt gt)
3. Output W := Wp+1.

We now restate Theorem [5| formally below:

Theorem 9 (Formal version of Theorem E). For any ¢ € (0, 1), the algorithm LP-RR-SGD satisfies
the requirement of -LabelDP; moreover, if run with step size 1y = 6KD7LE\/£, its output W satisfies

E[£(, P)] — L(w*, P) < O (DLK log(”)> .

evn

We remark that even in the non-private setting, a lower bound of Q(DL/+/n) is known on the
excess risk for stochastic convex optimization [73| 6], meaning that Theorem [J]is tight up to a factor

of O(K logn/e). In Section we improve the lower bound to Q(DL/+/en) for small ¢ < 1
(where € hides a logarithmic factor in 1/¢). Hence, our bound above is tight to within a factor of

O(K logn/+/z).

Proof of Theorem[9], We first verify the privacy property of LP-RR-SGD. For any two points
(z4,y¢), (x4, y}), differing only in their label, if we let g, g; be the vectors defined in (7) for each
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of these points, respectively, then it is immediate from definition of ), that for any subset S C RP,
ﬁ;{gzg} < e®. That LP-RR-SGD is e-LabelDP follows immediately from the post-processing property
of DP.

Next we establish the uility guarantee. Note that by definition of §;, we have that

CE+ K —1 €.Vl , , Vol 7 & Kvwg , &
ala] = SHE L€ Vollun (ug) | 5o Vullon @uk) 5~ Yl @,5)
e —1 e+ K -1 e+ K -1 e+ K —1
k#y: k=1
= vwe(wh (xt7 yt));

i.e., g; is an unbiased estimate of V., (ws, (x4, yt)).

Next, we bound the variance of the gradient error g; — V ,,¢(wy, (x4, y¢)), as follows:

Eg, (19— Vb, (22, 90)]°]

2 K ?
§2 <2£(> 'Egt | <gt—zwm(a%’k))>|‘ +2va€(wt7($t7yt))”2

— e+ K —1
32K2L?
<7
S—0=

36 K212
+ 2L2 S 727
€
where we have used that ¢ is L-Lipschitz, ¢ < 1, and that K > 2.
Using Shamir and Zhang [81}, Theorem 2] with gradient moment G2 := 36[6{#

size choices 7; := GL\/E’ the output w of LP-RR-SGD satisfies

E[L(, P)] — L(w*, P) < O (DG\}Zg”) <0 (W) . 0

Now we prove Corollary[6} a formal version of the corollary is stated below.

, we get that for step

Corollary 10 (Formal version of Corollary[6). Suppose that we are given a prior p* for every x
and let Y;? denote the set of top-k labels with respect to p*. Then, for any € € (0,1), there is an
e-LabelDP algorithm which outputs w € VWV satisfying

E[£(w, P)] - min L(w, P) < O (DL- (k:/gﬁ” SR Y,f])) )

Proof. Suppose we are given access to samples (z, y) drawn from a distribution P on X’ x [K]. For
a pair (z,y) € X x [K], define a random pair £((x,y)) € X x [K], by setting £((z,y)) = (x,y) if
y € Y}?, and otherwise letting {((z, y)) to be drawn uniformly over the set {(z, k") : k' € Y}*}. Let
P’ be the distribution of £((x,y)), where (z,y) ~ P. For any wy,ws € W, it follows that

|(L(wy, P) = L{wg, P)) = (L(wy, P') = L(wa, P'))|
/[f(wh(x,y))—€(w2,($7y))]dP(($,y))—/[f(wl,(l“,y))—f(wz,(xvy))]dP’((ﬂf,y))’
zZ zZ

<

/ ([wy, (2, 9)) = Lwe, (2,9))] = [E(wr, (2, ) — (w2, (2, 1)))]) dP((x,y))’
{(z,9):ygY}

<2DL- Pr Y], 9)
(%y)wp[yg k]

where the last step uses that [{(w1, (z,y)) —(ws, (z,y))| < L||jw; —wz|| < LD forall wy, ws € W.
Now we simply run the algorithm LP-RR-SGD, except that when we receive a point (x,y) ~ P, we
pass the example £((x,y)) to LP-RR-SGD (instead of (x,y)), and we let the set of possible labels
be Y;¥ (instead of [K]). Since each such example £((x, y)) is only passed to LP-RR-SGD once, the
resulting allgorithm is still e-LabelDP. Since the label of £((z,y)) belongs to Y,¥, which has size k
for all z, Theorem 9] gives that the output @ of LP-RR-SGD satisfies E[£(w, P’)] — min,, £(w, P") <
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0 (%\/‘}%(n)). Next (E) gives that, for any fixed w, letting wp, = argmin,, L(w, P'),w} =

arg min,, L(w, P),
‘C(va) - ﬁ(wpvp) S‘C('LD’P/) - E(U’;%P/) +2DL - ( P)I‘ P[y ¢ Ykm}
z,y)~
<L(w,P") — L(wp/, P") +2DL - ( P)r P[y Z Y7, (10)
T.y)~

where (10) follows since L(w},, P') < L(w}p, P’) by definition of w},. (8) is an immediate
consequence. O

F.2 A Better Bound for Approximate DP

Next we introduce an algorithm, LP-Normal-SGD (Algorithm [6]), which shows how to improve upon
the excess risk bound of Theorem E by a factor of V'K, if we relax the privacy requirement to
approximate LabelDP (i.e., (¢, §)-LabelDP with § > 0). LP-SGD performs a single pass of SGD over
the input dataset, with the following modification: it adds a Gaussian noise vector to each gradient
vector with nonzero variance only in the K -dimensional subspace £; corresponding to the K possible
labels for each point z;. This means that the norm of a typical noise vector scales only as V'K as
opposed to the scaling ,/p, which similar algorithms for the standard setting of DP (e.g., [10]) obtain.

Algorithm 6 LP-Normal-SGD
Input: Distribution P over X’ x [K], convex and L-Lipschitz loss function ¢, privacy parameters ¢, §, convex
parameter space W, variance factor o > 0, step size sequence 7; > 0.
1. Choose an initial weight vector w; € W.
2. Fort =1ton:
(a) Receive (z¢,y:) ~ P.
(b) Letby ~ N(0,0%1,).
(c) Let Ly < span{Vl(wt, (x4, k)) : k € [K]} C RP.
(d) Letb; < Iz, (b;) denote the Euclidean projection of b; onto L.
(e) Let Wi1 < Hw(wt — Mt - (Vwé(wt, (l’t, yt)) + bt))
3. Output W := Wnp41.

Proposition 11. There is a constant C > 0 so that the following holds. For any €,6 € (0,1),
CL+/log1/6 D . . .
= V2 = Wiz the algorithm LP-SGD (Algorithm|6) is (e, §)-LabelDP and

satisfies the following excess risk bound:

BIL(0,5)] - £, 5) <O (DWW ~ log<n>> |

evn

Proof of Proposition We first argue that the privacy guarantee holds. Note that for any k, &' € [n],
forany z € X, w € W, we have ||V, ¢(w, (z,k)) — V,b(w, (z,k"))|| < 2L. Therefore, for any
w; € YW, the mechanism

k— wa(wt, ({Eit, k)) + bt

is (¢,0)-DP as long as o > CLylosl/o Vlaogl/é, for some constant C' > 0 [32]. Since each (z,y;) is
used in only a single iteration of LP-Normal-SGD, it follows from the post-processing of DP that
LP-Normal-SGDis (e, d)-LabelDP for this choice of o.

Next we establish the utility guarantee. Since, for each ¢ € [n], L; is a subspace of R? of at most
K dimensions, it holds that for each ¢, E[[|b;[|?] < Ko?. Thus E |||V l(wy, (zi,, i, )) + be]|?] <
L? + Ko?. Using Shamir and Zhang [81 Theorem 2] with gradient moment G2 := L? + Ko?, we

get that for step size choices n; := GL\/{, it holds that
. DGlogn DL\/Klog1/d -log(n)
E — * < ——— | < . O
£(@,5)) - £, 5) < 0 (222 )_o< R
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F.3 Lower Bound on Population Risk

In this section, we prove the following lower bound on excess risk, which is tight with respect to (11)
in Proposition up to a factor of O(y/K/¢).

Proposition 12. For any ¢ € (0,1], D, L > 0 and any sufficiently large n € N and sufficiently small
0 > 0 (both depending on ), the following holds: for any (e, 8)-LabelDP algorithm A, there exists a
loss function ¢ that is L-Lipschitz and convex, and a distribution P for which

) X - ( DL
Bgpon ons) L0, P)] — L(w*, P) > (r) . (an

We remark that the lower bound of Q(DL/+/n) is well known for non-private SCO. This lower
bound applies to our setting as well and thus the lower bound in Proposition[I2]can be viewed as an

improvement of a factor for Q(1/+/) over the non-private lower bound.

We prove Equation (IT) by first proving an analogous bound in the empirical loss minimization
(ERM) setting and then deriving SCO via a known reduction.

F.4 Lower Bound on Excess Risk for ERM

Recall that in ERM setting, we are given a set S = {(21,91),...,(Zn,yn)} C Z of n labelled
examples. The empirical risk of w is defined as L(w, S) := £ 31" | ¢(w, (x,y)). Here we would
like to devise an algorithm that minimizes the excess empirical risk, i.e., E[L(w, S)] — L(w*, S)
where 0 is the output of the algorithm and w* := arg min ¢y, L(w, S).

We start by proving the following lower bound on excess risk for LabelDP ERM algorithms. Note
that the lower bound does not yet grow as € decreases; that version of the lower bound will be proved
later in this section.

Proposition 13. Foranye, D,L,6 > 0, K > 2 andn € N such thate < O(1),§ <1 — Q(1), the
Sollowing holds: for any (e, §)-LabelDP algorithm A, there exists a loss function ¢ that is L-Lipschitz
and convex, and a dataset S of size n for which

oz = DL
EpoagL(, )] = L(w*, ) = (\/ﬁ) : (12)

Proof. Let W :={w € R%: ||w|| < D/2} and X := {z € R?: ||z|| < 1}. We define the loss to be

L (w,z) ify =1,
lw,(z,y)) =1 —L-(w,z) ify=2
0 otherwise.

Note that the diameter of W is D and /(-, (z,y)) is convex and L-Lipschitz. Consider any (e, §)-
LabelDP algorithm A. Let e; € R™ be the ith standard basis vector. Consider a dataset S =
{(e1,y1)s---,(en,yn)} Where y1,...,y, € {1,2} are random labels which are 1 w.p. 0.5 and 2
otherwise. For notational convenience, we write ; to denote 2y; — 3 € {—1,1}. By the (¢,0)-
LabelDP guarantee of A, we have

Pr [g;- (w,e;) > 0]

S,aw~A(S)
: (@, ex) < 0| i = —1]
= — r w, €; i = —
2 S~A(S) 4
1
- P 0, e; 0|y, =1
5 o P (i) > 015 = 1]
1
<z-(e Pr [(he)<0|fi=1+0
<5 (e P e <0l =11+0)
1 R _
(s Pr [(e)>0|5i=—1]+6
by (e, e ) > 015 = -1 +5)
=e°- P gi -+ (W, e;) <0 d.
¢ P () <0+
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This implies that

e +0
P g; - (W, e;) > 0] < . 13
s,w~£(5)[y (i, ei) ) e +1 (13
Letting I s := {i € [n] : §; - (W, e;) > 0} for any S, w,
Es,w~nacs)[lo,sl] = .ez[:] S’wﬁﬁ(s)[ﬂz’ (W, e;) > 0]
£+
< (6 + > n. (14)
ef+1
Consider any S as generated above; it is obvious to see that w* = % . (ﬁ > icn] giei), which
results in £(w*, S) = —%. On the other hand, for any w0,
R 1 R 1 .
L(w,5) =~ > L, (ei,yi) = - > —L(w, i - e)
i€[n] i€[n]
1 —L
> = L. i e = — { @ e
0 <w7yz ez> n <w,z Yi ez>
16[1[1,5 lEI@Ys
—L —L D
> ||l - i - el > — - = /| Is.s], 15
> gl | Y Give = =25y Il (s)

where we used Cauchy—Schwarz inequality in the second inequality above. As a result, we have
Es[Egoncs)[L(0, S)] — L(w*, )]

DL

2/n

DL g o[ asl] + 2L
= m S,w~A(S) w,S 2\/5

= Es amas)[L(0, 9)] +

—-DL DL
> . N N el
z \/Es,wNA(s) [|1w,s]] + NG
@EZI) DL B [e€ 4+ 6 1

2y/n e +1

> Q(DL/v/n),

where the second inequality follows from Cauchy—Schwarz inequality and the last inequality follows
from our assumption that 6 <1 — Q(1) and e < O(1).

To make the lower bound above grows with 1/4/¢ for ¢ < 1, we will apply the technique used in
[89]. Recall that a pair of datasets are said to be k-neighbor if they differ in at most & labels. The
following is a well-known bound, so-called group privacy; see e.g. Steinke and Ullman [89, Fact
2.3]. (Typically this fact is stated for the standard DP but it applies to LabelDP in the same manner.)

Fact 14. Let A be any (£, 6)-LabelDP algorithm. Then, for any k-neighboring database S, S’ and
every subset T of the output, we have Pr[A(S) C T] < e** - Pr[A(S") C T] + 6:5:11 - 0.

We can now prove the following lower bound that grows with 1/4/¢ by simplying replicating each
element 1/ times.
Lemma 15. Forany ¢ € (0,1],D,L,8' > 0, K > 2 and n € N such that n > 1/, < Q(g),
the following holds: for any (g',8')-LabelDP algorithm N, there exists a loss function { that is
L-Lipschitz and convex, and a dataset S’ of size n for which
- - DL
E g (5 [£(, SN — L(w*,S") > Q () ) (16)

e'n
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Proof. Suppose for the sake of contradiction there exists (g, §)-LabelDP algorithm A’ such that
EwNA,(g,)[ﬁ(w,S’)] — L(w*,8") < 0( DL ) Let k = |1/e]. We construct an algorithm A as

ve'n
follows: on input S, it replicates each element of S k times to construct a dataset S’. It then

returns A’(S’). From the utility guarantee of A’, we have B ond) [L(w,S)] — E(w* S) < (%)

Furthermore, Fact |14 ensures that A is (¢,6)-DP fore = k¢/ < land § = *15' < O(d'/e).

When ¢’ = C/¢’ for any sufficiently small C' > 0, A violates Proposition [E concluding our
proof. O

F.5 From ERM to SCO

Bassily et al. [IZﬂ gave a reduction from private SCO to private ERM. Although this bound is proved
in the context of standard (both label and sample) DP, it is not hard to see that a similar bound holds
for LabelDP with exactly the same proof. To summarize, their proof yields the following bound:

Lemma 16. For any v, > 0and 6 € (0,1/2), suppose that there is an (410g(2/6)7 8103(525/5))'

LabelDP algorithm that yields expected excess population risk of for SCO is at most . Then, there
exists an (g, 0)-LabelDP algorithm for convex ERM (with the same parameters D, L,n) with excess
empirical risk at most .

Plugging this into Lemma[I5] we arrive at Proposition

G Generalization Bounds for RR with Prior

Let X, Z be similar to the previous section and ) = [K] be the class of labels. We consider a
setting where there is a concept class F of functions f : X — R. Given n samples drawn i.i.d. from
some distribution P on Z, we would like to output a function f with a small population risk, which
is defined as L(f; P) = Eq,)~p[l(f(z),(2,y))]., where £ : R x Z — [0,1] is a loss function.
Throughout this section, we assume that £ is L-Lipschitz (Assumption [8).

Priors and Randomized Response. Let k < K be a positive integer. We work in the same setting
as Corollary i.e. we assume a prior p” for every = and let Y, denote the set of top-£ labels with

respect to p*. We let P be the distribution where we first draw (z,y) ~ P and then output (z, %)
where §j ~ RRTop-k . () with DP parameter ¢.

Debiased Loss Function. Let py . denote — - k 7. We consider a debiased version of the loss l;
this was done before in [[72] for the case of bmary classification with noisy labels. In our setting, it
generalizes to the following definition:

Ut (e,y)) = 1-( CY et y>>) an

1-k Pk, yeve

For a set S of n labeled examples (z1,91),. .., (¥n,Yn) € 2, its empirical risk (w.r.t loss 0) as
(f 5) = n Zz V() (20, 93))-

We consider simple e-LabelDP algorithm that randomly draws 7 i.i.d. samples S from P, apply
(e-LabelDP) RRTop-k on each of the label to get a randomized dataset S, and finally apply empirical
risk minimization w.r.t. the debiased loss function £ on S. We remark that this algorithm is exactly
the same as drawing n samples i.i.d. from P and apply empirical risk minimization (again w.r.t.
7). Our main result of this section is a generalization bound roughly saying that the empirical risk
(w.r.t. Z) is small iff the popultion risk (w.r.t. £) is small. This is stated more formally below, where
R, p(F) denote the Rademacher Complexity of F (defined below in Definition .

Theorem 17. Let Py be the marginal of P over X. Let S be a set of n i.i.d. labeled samples drawn
from P. Then, with probability at least 1 — 3, the following holds for all f € F:

1+ k- pre log(2/5)

_|_
1—Fk- pre 2n (I’y)
8See the proof in Appendix D of the arXiv version of their paper [11].

\L(f;8) — L(f; P)| < 2L- R, by (F) + L EYe] (s
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Via standard techniques (see e.g. [72]), the above bound imply that the empirical risk minimizer
incurs excess loss similar to the bound in Equation @ (within a factor of 2).

Recall that RRTop-k can of course be thought of RRWithPrior in the case when e.g. the prior p” is
uniform over the k labels in Y,*. Thus, Theorem [E can be viewed as a generalization bound for
RRWithPrior with these “uniform top-k” priors.

G.1 Additional Preliminaries

To prove Theorem @, we ne;d several additional observgtions and definitions. In addition to the
previously defined L(f; P), L(f;.S), we analogously use L(f; P), L(f;S) to denote the population
risk w.r.t. £ on distribution P and the empirical risk w.r.t. £ on the labeled sample set .S respectively.

Properties of the Debiased Loss Function. We will start by proving a few basic properties of the
debiased loss functions. The first two lemmas are simple to check:

Lemma 18. Ify € )7, it holds that Eg- rrrop-k,. (y) [57(757 (x,9))] = L, (x,y)).
Lemma19. /s L - M -Lipschitz (in t for every fixed x,y).

Finally, we observe that the population risk w.r.t. ¢ on distribution P is close to that w.r.t. £ on P:

Lemma 20. For any function f, we have

IL(f;P) = L(f,P)| < Pr [y¢ Yy (19)
(z,y)~P

Proof. We can write

|£(f, P) - f(f, P)| = UE(x,y)NP[é(fv (I7 y))} - E(w,y)wP,QNRRTop—kPm (y) M(.ﬁ (l‘, g))]'
< ]E(:t y)NP“Z(fa ({E, y)) - EQNRRTop—k z(y) V(f» (:L’, g))] H

Due to Lemma[z the inner term is zero whenever y € Y,*; furthermore, since the range of ¢ is in
[0, 1], the last term is at most Pr(, )~ p[y ¢ Y;’] as desired. O

Rademacher Complexity. Given a space V and a distribution D over V, we let .S be a set of

examples vy, . .., v, drawn i.i.d. from D. We also let F be a class of functions f : V — R.
Definition G.1 (Empirical Rademacher Complexity). The empirical Rademacher complexity of F is
defined as:
Rins(F) =Eq, ... {sup ( Zazf (v:) )] (20)
fer
where 01, ..., 0, are i.i.d. random variables sampled unlformly at random from {£1}.

Definition G.2 (Rademacher Complexity). The Rademacher complexity of F is defined as
Rap(F) =E[Rns(F)], 1)

where the expectation is over the randomness of the subset .S which consists of n elements chosen
i.i.d. from D.

We also need the following two known lemmas.

Lemma 21 ([14]). Let D be a distribution and § € (0,1). If F C {f : V — [0,1]} and S =
{v1,...,vn} consists of n elements drawn i.i.d. from D, then with probability at least 1 — /3 over the
randomness of S, for every function f € F, it holds that

S

The following lemma is a standard bound for the empirical Rademacher complexity (and follows
from the Ledoux-Talagrand contraction inequality [62]).

< 2R, p(F) + % (22)

EUND

SM—‘
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Lemma 22. Let F C {f : X — R}. Let S be a multiset of n (possibly repeated) elements
Vi,...,0n € X. Moreover, let @1, ..., ®,, be L-Lipschitz functions mapping R to R. Then, it holds

that

B[ 310 (5 100 ) | < £ Rus (7).

G.2 Proof of Theorem 17|
With the preliminaries ready, we can now prove Theorem [I7]
Proof of Theorem[I7] With probability 1 — 3, the following holds:
sup [£(£,9) = £(f, P)| < sup (I£(f; P) = £(f, )| + 1£(£.5) — £(f, P)])
fer feF
(Lemma20) < Pr [y ¢ Vil + sup |L(f, ) — L(f, P)]
(z,y)~P feF

5 In(2
< Pr [yd VP42 Rop(loF)+ n( /B)’
(z,y)~P "

where inequality (24) follows from Lemma 21| with
Fori={g: 2 xy 5 0.1] glo) = S @) @)l € 7.

Finally, we have that:

IN

E : ES [ﬁn,s,\f (‘F)]
L-Rupy(F),

where @) follows from Lemma@(with ®; set to the function £(-, (z;,y;)) foralli € {1,. ..

and with Sy denoting the projection of .S on X'), and from Lemma [[9] with
- 1 .
[—p. LERPre
1-k *Pk.e

Inequality (T8) now follows by combining (24)), (26), and (27).
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