
8th ICML Workshop on Automated Machine Learning (2021)

Bandit Limited Discrepancy Search and Application to Machine
Learning Pipeline Optimization

Abstract
Optimizing a machine learning (ML) pipeline has been an important topic of AI and ML. Despite
recent progress, this topic remains a challenging problem, due to potentially many combinations
to consider as well as slow training and validation. We present the BLDS algorithm for optimized
algorithm selection (ML operations) in a fixed ML pipeline structure. BLDS performs multi-fidelity
optimization for selecting ML algorithms trained with smaller computational overhead, while
controlling its pipeline search based on multi-armed bandit and limited discrepancy search. Our
experiments on well-known benchmarks show that BLDS is superior to competing algorithms.

1. Introduction

Automated Machine Learning (AutoML) seeks to automatically compose and parameterize ML
algorithms to maximize a given metric such as predictive accuracy on a given dataset. The task
has received increased attention over the past decades and has become even more acute in light
of the recent explosion in ML applications. AutoML gradually extended from hyper-parameter
optimization (HPO) for the best configuration of a single ML algorithm (Bergstra et al., 2011) to
tackling the optimization of the entire ML pipeline from data preparation to model learning (Feurer
et al., 2015). Consequently, this effort has spurred the development of a wide variety of efficient
AutoML systems such as (Kotthoff et al., 2017; Olson et al., 2016; Feurer et al., 2015; Mohr et al.,
2018; Rakotoarison et al., 2019; Liu et al., 2020).

Existing AutoML systems assume a fixed linear structure of the pipeline consisting of several
different stages such as pre-processing, feature selection, transformation and estimation. The AutoML
problem which is known as the combined algorithm selection and hyper-parameter optimization
(CASH) selects the ML methods for each of these pipeline stages and the corresponding hyper-
parameters of these methods such that a given black-box objective function is optimized. More
specifically, the fixed structure of the pipeline implies an optimization problem with a fixed number
of decision variables where, for example, we have one variable for a preprocessing algorithm, one
variable for a learning algorithm, and one variable for each parameter of each algorithm. This in turn
leads to a complex solution space involving both discrete and continuous variables. Consequently,
the CASH problem is solved in many different ways, including standard Bayesian optimization
(BO) (Hutter et al., 2011; Klein et al., 2017; Falkner et al., 2018), hierarchical task networks (Mohr
et al., 2018; Katz et al., 2020), reinforcement learning Drori et al. (2018) or Monte-Carlo tree search
coupled with BO (Rakotoarison et al., 2019).

A recent approach to tackle CASH that proved quite effective in practice splits the algorithm
selection phase and the HPO into two simpler subproblems which are subsequently solved separately
in an iterative manner using the augmented Lagrangian function via the alternating direction method
of multipliers (ADMM) (Liu et al., 2020). This general framework was shown to outperform existing
AutoML systems that solve CASH as a full joint optimization problem, e.g., (Feurer et al., 2015;

©2021 A. Uthor and S. Cientist.

UTHOR AND CIENTIST

Olson et al., 2016). However, even when solved in isolation, the algorithm selection subproblem raises
several challenges: (1) the black-box nature of the objective function prevents the algorithm selection
from leveraging any of the objective function’s characteristics while searching for a better pipeline
configuration; (2) there are many possible combinations of algorithms in a multi-stage pipeline
structure and training every single pipeline configuration is actually quite expensive especially when
dealing with large input datasets; (3) popular black-box solvers such as BO perform well with
continuous variables but are still not well established for combinatorial problems.

Contribution: In this paper, we focus on the algorithm selection problem in AutoML and
introduce a new algorithm, called Bandit Limited Discrepancy Search (BLDS), that combines ideas
behind algorithms for the multi-armed bandit (MAB) problem, e.g., (Auer et al., 2002; Kocsis and
Szepesvári, 2006), limited discrepancy search (LDS) (Harvey and Ginsberg, 1995) and multi-fidelity
optimization (Sabharwal et al., 2016). More specifically, BLDS assumes that a better solution tends
to be found in a set of pipelines similar to the current best one. The notion of discrepancy in LDS
reduces the search space examined by BLDS. In addition, BLDS attempts to reduce the computational
overhead associated with training the pipelines. It starts with a small subset of training data and
increases the size of the subset if that pipeline is promising according to an objective function. This
involves a procedure to compare pipelines trained with different subsets of data. Unlike existing
multi-fidelity optimization approaches such as the Data Allocation Upper Bound (DAUB) algorithm
(Sabharwal et al., 2016), BLDS calculates the upper and lower confidence bounds inspired by MAB.
These bounds allow BLDS to select a more promising pipeline as well as to decide whether to
allocate more resources to a pipeline for further training.

We compare BLDS with the Combinatorial MAB (CMAB) algorithm (Liu et al., 2020) as well as
DAUB and Hyperband (Li et al., 2018), which we adapted for algorithm selection. Using well-known
ML benchmarks and a fixed 4-stage pipeline structure comprising over 3000 possible algorithm
selections, we show that BLDS performs better than the competing methods.

The appendix includes details of the algorithms, empirical evaluation and additional results.

2. Preliminaries

Algorithm Selection A ML pipeline structure consists of a fixed sequence of m stages (e.g., data
preprocessor → feature preprocessor → classifier) such that for each stage j = 1, . . .m there is
a set Aj of available ML algorithms. A pipeline configuration (or pipeline for short) p ∈ P is a
complete configuration of algorithms, one for each stage, namely p = (a1, . . . , am) where aj ∈ Aj

is the algorithm selected for the j-th stage and P = A1 × · · · × Am is the set of all possible pipeline
configurations. Given a limited amount of training data D = {(x1, y1), . . . , (xn, yn)}, the goal of
the algorithm selection problem is to determine the pipeline P ∗ ∈ P with optimal generalization
performance. Generalization performance is estimated by splitting D into disjoint training and
validation sets D(i)

train and D(i)
valid, learning functions fi by applying P ∗ to D(i)

train and evaluating the
predictive performance of these functions on D(i)

valid. Therefore, the algorithm selection problem can
be written more formally as p∗ = arg min

p∈P

1
k

∑k
i=1 L(p,D(i)

train,D
(i)
valid), where L(p,D(i)

train,D
(i)
valid)

is the value of the black-box loss function (e.g., misclassification error) achieved by p when trained
on D(i)

train and evaluated on D(i)
valid.

Limited Discrepancy Search We consider a search space that is a complete binary tree with

2

AUTOML@ICML SAMPLE PAPER

Algorithm 1 BLDS: Bandit Limited Discrepancy Search

Require: Training set T , validation set V , discrepancy
disc

1: procedure BLDS(T , V , disc)
2: while time is not up do
3: pinit = FINDINITIALPIPELINE()
4: repeat
5: INCREASEANDTRAIN(pinit, T , V)
6: for all (θ = 1; θ ≤ disc; θ = θ + 1) do
7: pnew = SEARCH(pinit, pinit.lcb, pinit.ucb, T ,
V , 1, θ)

8: if (pnew 6= φ) then
9: pinit = pnew; break

10: until (pinit is trained with a full set of T)
11: return best pipeline obtained
12: function SEARCH(Pipeline p, LCB lcb, UCB ucb,

training set T , validation set V , stage i, current dis-
crepancy θ)

13: if (θ = 0 ∨ i > m) then
14: (l, u) = GETCURRENTPERFORMANCE(p)
15: if (u < lcb) then return p
16: if (l ≤ ucb) then (l, u) = INCREASEANDTRAIN(p,

T , V)
17: if (u < ucb) then return p
18: else return φ
19: else
20: for all algorithm a ∈ Ai do
21: if (p[i] = a) then
22: r = SEARCH(p, lcb, ucb, T , V , i+ 1, θ)
23: else
24: pnew = p; pnew[i] = a
25: r = SEARCH(pnew, lcb, ucb, T , V , i+1, θ− 1)
26: if (r 6= φ) then return r
27: return φ

bounded height h. Leaf nodes correspond to goals or failures and the task of interest is to find a goal
leaf node. Each internal node represents a decision that has to be made to reach a goal. Furthermore,
the left child of each internal node represents following the recommendation of a value-ordering
heuristic and the right child represents going against that recommendation. Disregarding the heuristic
recommendation is called a discrepancy (Harvey and Ginsberg, 1995). The number of discrepancies
of a leaf node is the number of right turns in the path from the root to that leaf node. Limited
Discrepancy Search (LDS) (Harvey and Ginsberg, 1995; Korf, 1996) is a depth-first search algorithm
that searches for a goal node while increasing the number of discrepancies in an iterative manner
(see Appendix for details).

3. Bandit Limited Discrepancy Search

In this section, we present our new Bandit Limited Discrepancy Search (BLDS) algorithm for tackling
the algorithm selection problem in AutoML. The basic idea behind our approach is to conduct a
discrepancy-based exploration that focuses on the most promising portions of the pipeline search
space while controlling the size of the training data used for training the pipelines found in a most
cost-effective manner. Unlike standard LDS, we consider an optimization problem where each leaf
node is a goal and corresponds to a pipeline p which has an associated cost (i.e., value of a black-box
loss or objective function L(p)) and the task is to find the least-cost one.

3.1 Algorithm Description

Algorithm 1 describes the BLDS approach. We consider a linear1 pipeline structure with m
stages such that each stage i has a set Ai of available machine learning algorithms. The fol-
lowing notations is used. Function FINDINITIALPIPELINE generates a randomly initialized pipeline
pinit = (a1, . . . , am), however, the algorithm can start with any pipeline obtained with other AutoML

1. BLDS is applicable to non-linear pipeline structures as well.

3

UTHOR AND CIENTIST

methods. Function INCREASEANDTRAIN trains pipeline p with a (sub)set of training data T and
evaluates p’s performance on validation data V . As also discussed in (Sabharwal et al., 2016), when
training p for the k-th time, BLDS selects bηk samples from T , where b and η are constants. The
pipeline p has an extra structure that preserves an objective value v, and two associated values lcb
and ucb which refer to a lower confidence bound (LCB) and an upper confidence bound (UCB),
respectively. The LCB and UCB values are regarded as lower and upper bounds of the achievable
objective value (we defer the details to the next subsection). The discrepancy disc indicates the
maximum number of allowed algorithm changes to the stages of the initial pipeline pinit. BLDS
assumes that a better pipeline tends to be instantiated in a similar fashion to pinit and, therefore, it
examines a limited search space where similar pipelines are located. The symbol φ is used to indicate
that the algorithm could not find a pipeline better than pinit with current discrepancy value θ.

The algorithm starts with a discrepancy value θ of 1 and conducts an iterative search that allows
to change the algorithms of at most θ stages in pinit while incrementing θ until a better pipeline
pnew is found or θ exceeds disc (see lines 5-10). If pnew is found, BLDS uses it as a new initial
pipeline and attempts to improve it further. BLDS repeats the steps of INCREASEANDTRAIN and
the iterative search limited by θ until it finds a pipeline trained with a full set T . However, even after
finding such a pipeline, the algorithm can still continue the search for another one by restarting with
a different initial pipeline calculated by FINDINITIALPIPELINE until it uses up the allocated time.
For efficiency, BLDS also caches the objective value and the corresponding UCB/LCB values for all
trained pipelines in order to avoid retraining them.

Function SEARCH (lines 12-27) performs the actual exploration of the pipeline search space
limited by discrepancy θ. Specifically, when it selects an algorithm a that is different from the one
corresponding to stage i in pinit it decrements θ to reduce the number of changes allowed for the
remaining stages (lines 24-25). Otherwise, the algorithm for stage i is unchanged and, therefore, the
θ value is preserved (line 21-22). When SEARCH either has checked all m stages in p or consumed
the discrepancy budget, it checks p’s performance (lines 13-18). The GETCURRENTPERFORMANCE

method retrieves p’s LCB and UCB values l and u if they are cached. Caching alleviates the overhead
of revisiting the same pipelines possibly with different θ. Otherwise, it evaluates p with V after
training p with b samples in T . BLDS assumes the real objective value for p to be in [l, u] and decides
whether or not p is a promising pipeline as well as whether or not p should be trained with a larger
training subset. This way, BLDS attempts to focus on promising pipelines and thus alleviates the
training overhead. SEARCH receives pinit’s LCB and UCB values lcb and ucb. If u < lcb holds, p
is considered to be better than pinit and becomes a new pipeline to start with (line 15). If l ≤ ucb
(and lcb ≤ u) holds, p might or might not be better than pinit. In this case, p is re-trained with an
increased training (sub)set and re-evaluated with V . The algorithm subsequently selects a pipeline
based on whether or not p’s updated UCB value is better than that of pinit (lines 16-17). For the
other cases (e.g., ucb ≤ l holds), pinit is considered to be better than p and thus is kept (line 18).

3.2 Upper and Lower Confidence Bounds

Existing approaches to compute UCB values for addressing the MAB problems only account for
the number of visits to each arm/branch, e.g., (Auer et al., 2002; Kocsis and Szepesvári, 2006).
In our task, as defined below, the size of the training (sub)set is closely related to the accuracy of
the objective value. Therefore, in addition to the number of training operations performed, our

UCB and LCB formulas newly account for the training data size: UCB = v +

√
log

cLDk
2

δ
Dk

and

4

AUTOML@ICML SAMPLE PAPER

(a) BANK-MARKETING (b) HIGGS (c) MINIBOONE

(d) ADULT (e) GUILLERMO (f) NOMAO

Figure 1: Performance of each method for algorithm selection for representative domains.

LCB = v −

√
log

cLDk
2

δ
Dk

, where v is an objective value for the k-th evaluation with validation set V

and c (> 4) and δ are constants, L = Πm
i=1|Ai| and Dk =

∑k
j=1 bη

(j−1).
The second term of UCB/LCB determines whether to perform a so-called exploration, aiming at

updating v that might be inaccurate due to a small number of training examples.

4. Experimental Results

We implemented all algorithms in Python using scikit-learn (Pedregosa et al., 2011) and performed
the experiments on a cluster of Intel Xeon CPU E5-2667 processors at 3.3GHz. We use only one
core when running each algorithm in order to better track the objective value versus time as also
suggested in (Rakotoarison et al., 2019; Liu et al., 2020). We evaluate: (a) BLDS(1) and BLDS(2)
with disc = 1, 2, respectively, (b) CMAB (Liu et al., 2020) (c) DAUB, (d) Hyperband and (e) simple
random search (RND). Although algorithms DAUB and Hyperband were originally designed to
address other tasks, we adapted them here to pipeline optimization (see the Appendix).

We set up experiments similar to those in (Liu et al., 2020). For each benchmark dataset, we
consider an 70-30% train-validation split, and run each algorithm with a time limit of two hours per
trial to perform a binary classification. We consider (1.0 – AUROC) (area under the ROC curve) as
the black-box objective function that needs to be minimized. We select 10 benchmarks from OpenML
repositories (Bischl et al., 2017). For a consistent evaluation, we first impute any missing values with
the most common value of the corresponding feature and subsequently perform one-hot encoding
of the categorical features. For our purpose, we consider a 4-stage pipeline structure which results

5

UTHOR AND CIENTIST

in a total of 3072 possible pipelines.2 For each benchmark, all algorithms use the same training
and validation sets. BLDS, Hyperband and DAUB use the same strategy to increase the subset of
training data for their multi-fidelity optimization. We set b = 100 and η = 2 for all the algorithms
and cL/δ = 1/9600 for BLDS, where L = 3072.

Figures 1(a)-(f) show the performance for representative benchmarks. For clarity, we use doubly
logarithmic plots. After 10 runs for each algorithm, we compute a median of the objective values and
the region within the first and third quartiles. The fixed default parameters from scikit-learn are used
for each instantiated pipeline and no HPO is performed.

These results clearly demonstrate that BLDS(1) tends to achieve better objective values much
quicker than the other competitors. For example, BLDS(1) achieves the objective value of 0.07398
in 138 seconds on BANK-MARKETING, thus converging 19.4 times faster than Hyperband. Moreover,
BLDS(1) tends to outperform the other methods for the first 30-500 seconds in many cases including
datasets ADULT, BANK-MARKETING, and MINIBOONE. When running for a longer time, the
other schemes are able to catch up with BLDS(1). At this stage, they can evaluate a sufficiently
large number of pipelines, thus being able to return the objective values competitive to those found
by BLDS(1). Liu et al. (2020) showed that CMAB is the best-performing algorithm under the
ADMM framework. However, we observe that CMAB sometimes converges to values that are much
worse than those obtained by the other methods. RND also occasionally suffers from a suboptimal
solution. These results might indicate that the multi-fidelity optimization has an advantage over these
approaches which are not based on multi-fidelity optimization. DAUB performs poorly in general.
Due to more configurations (i.e., 3072 pipelines) than those in (Sabharwal et al., 2016) (only 41 ML
classifiers to choose from), DAUB suffers from a significant overhead in its bootstrapping step. Even
in its pipeline search step, DAUB’s linear regression model is not often accurate enough to return an
optimized pipeline. DAUB needs to continue search even after a fully-trained pipeline is obtained.
DAUB eventually finds an optimized pipeline, but suffers from much slower convergence. BLDS(2)
under-performs BLDS(1). We hypothesize that this is caused by a much larger number of pipelines
needed to be re-trained and evaluated within a discrepancy threshold disc. If BLDS(1) finds no
pipeline better than the initial one, it examines 26 pipelines within disc = 1. BLDS(1) then restarts
with a new pipeline randomly initialized, which might be a good starting point. However, in the
worst case, BLDS(2) needs to examine 272 pipelines within disc = 2, before it restarts search with a
new initial pipeline. Therefore, there is a big gap in the local search space between disc = 1 and 2.

5. Conclusion

We introduced BLDS to address the algorithm selection problem in AutoML. Our results clearly show
that BLDS is a well-performing algorithm that tends to converge more quickly than other competing
algorithms. In future work, we plan to further improve the search performance to be able to deal with
large-scale training data as well as more complicated pipeline structures as well as combine BLDS
with HPO under AutoML ADMM. Possible extensions include a combination with an approach for
selecting candidate pipelines with meta-learning, e.g., (Feurer et al., 2015; Rakotoarison et al., 2019),
and an introduction of a better discrepancy value allowing for a more granular control of the local
search space. In addition, applying BLDS to other tasks such as HPO is important to elucidate its
applicability and limitation. Finally, it is important to have a better theoretical understanding to our
MAB strategy by taking into account BLDS’ behavior that limits the search space.

2. See the supplementary material for the ML algorithms considered at each stage and the data size of each benchmark.

6

AUTOML@ICML SAMPLE PAPER

References

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235–256, 2002.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for hyper-parameter optimization.
In NeuIPS, page 2546–2554, 2011.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn, and J. Van-
schoren. OpenML benchmarking suites and the OpenML100. https://arxiv.org/abs/1708.03731,
2017.

I. Drori, Y. Krishnamurthy, R. Rampin, R. de Paula Lourenco, J. Ono, K. Cho, C. Silva, and J. Freire.
Alphad3m: Machine learning pipeline synthesis. In Workshop on AutoML (ICML), 2018.

S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter optimization at scale.
In ICML, pages 1436–1445, 2018.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In NeurIPS, page 2962–2970, 2015.

W. Harvey and M. Ginsberg. Limited discrepancy search. In IJCAI, pages 607–613, 1995.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In International Conference on Learning and Intelligent Optimization, page
507–523, 2011.

M. Katz, P. Ram, S. Sohrabi, and O. Udrea. Exploring context-free languages via planning: The case
for automating machine learning. In ICAPS, pages 403–411, 2020.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of machine
learning hyperparameters on large datasets. In AISTATS, pages 528–536, 2017.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of
the 17th European Conference on Machine Learning (ECML), volume 4212 of Lecture Notes in
Computer Science, pages 282–293. Springer, 2006.

R. E. Korf. Improved limited discrepancy search. In AAAI, pages 286–291, 1996.

L. Kotthoff, C. Thornton, H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-weka 2.0: Automatic
model selection and hyperparameter optimization in weka. J. Mach. Learn. Res., 18(1):826–830,
2017.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-
based approach to hyperparameter optimization. J. Mach. Learn. Res., 18:1–52, 2018.

S. Liu, P. Ram, D. Vijaykeerthy, D. Bouneffouf, G. Bramble, H. Samulowitz, D. Wang, A. Conn, and
A. Gray. An ADMM based framework for AutoML pipeline configuration. In AAAI, 2020. Their
preprint available at https://arxiv.org/pdf/1905.00424.pdf.

7

h
https://arxiv.org/pdf/1905.00424.pdf

UTHOR AND CIENTIST

F. Mohr, M. Wever, and E. Hullermeier. ML-Plan: Automated machine learning via hierarchical
planning. Machine Learning, 107(1):1495–1515, 2018.

R. Olson, N. Bartley, R. Urbanowicz, and J. Moore. Evaluation of a tree-based pipeline optimization
tool for automating data science. In Genetic and Evolutionary Computation Conference, pages
485–492, 2016.

F. Pedregosa, G. Varoquaux, and A. Gramfort. Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12(1):2825–2830, 2011.

H. Rakotoarison, M. Schoenauer, and M. Sebag. Automated machine learning with Monte-Carlo
tree search. In IJCAI, pages 3296–3303, 2019.

A. Sabharwal, H. Samulowitz, and G. Tesauro. Selecting near-optimal learners via incremental data
allocation. In AAAI, pages 2007–2015, 2016.

8

AUTOML@ICML SAMPLE PAPER

Algorithm 2 LDS: Limited Discrepancy Search
1: procedure LDS
2: for all k = 0 . . . n do
3: if PROBE(root, k) then return true
4: function PROBE(node, k)
5: if isLeaf(node) then return isGoal(node)
6: if k = 0 then return PROBE(left(node), 0)
7: else return PROBE(right(node), k-1) or PROBE(left(node),k)

Figure 2: Search space traversed by LDS (the height is 3). The number of discrepancies is indicated
below the leaf nodes.

Appendix A. Limited Discrepancy Search

We consider a search space that is a complete binary tree with bounded height h. Leaf nodes
correspond to goals or failures and the task of interest is to find a goal leaf node. Each internal node
represents a decision that has to be made to reach a goal.

Furthermore, the left child of each internal node represents following the recommendation
of a value-ordering heuristic and the right child represents going against that recommendation.
Disregarding the heuristic recommendation is called a discrepancy (Harvey and Ginsberg, 1995).
The number of discrepancies of a leaf node is the number of right turns in the path from the root to
that leaf node.

Limited Discrepancy Search (LDS) (Harvey and Ginsberg, 1995; Korf, 1996) is a depth-first
search algorithm that searches for a goal node while increasing the number of discrepancies in an
iterative manner. The pseudo-code is given in Algorithm 2. The k-th iteration of the main loop
will visit all the leaves having k or fewer discrepancies. Function PROBE is a standard recursive
implementation of depth-first search such that: (i) it keeps track (parameter k) of the number of
discrepancies still available, (ii) if a discrepancy is consumed, k is decreased before the recursive
call and (iii) if no further discrepancies are available, the algorithm does not disregard the heuristic.
Since the last iteration visits all the leaves, the algorithm is complete. In practice, LDS is used in a
anytime manner until a solution is found or a time limit is reached.

Example 1 Figure 2 shows a search tree with height 3. The gray leaves correspond to goals
(solutions). LDS stops during iteration k = 1 where it finds the solution with 1 discrepancy.

LDS has also been used successfully in optimization problems, where each leaf has an associated
cost and the task is to find the least-cost one. In this case, the heuristic gives advise about the
successor having the lowest cost leaf below and LDS outputs upper bounds on the optimal solution
cost that improve over time.

9

UTHOR AND CIENTIST

Figure 3: Search behavior of BLDS (η = 2) for a three-step pipeline structure where each module
has two algorithm choices.

Appendix B. Example of BLDS

Figure 3 illustrates the execution of BLDS on a 3-stage pipeline structure. The UCB and LCB values
u and l of a pipeline are written as [l, u]. Let p1 = (a1, a2, a3) be the current best pipeline trained
with 800 samples (Fig. 3(a)). BLDS limits search with θ = 1, allowing to change only one stage
in p1. Figures 3(b)-(d) show the pipelines examined with θ = 1. In Figure 3(b), BLDS examines
pipeline p2 = (b1, a2, a3) but considers that p1 is better than p2, since p2’s LCB value is larger than
p1’s UCB value. So is the case for pipeline (a1, b2, a3) (Fig. 3(c)). In Figure 3(d), there is an overlap
between the regions of the LCB and UCB values for pipelines p1 and p3 = (a1, a2, b3). To obtain a
more accurate objective value, BLDS re-trains p3 with an increased training subset (i.e., 400 samples)
and updates its LCB and UCB values. BLDS finds that p1 is still better than p3. Since BLDS cannot
find a pipeline better than p1 with θ = 1, it sets θ = 2, allowing to modify any of two modules in
p1. BLDS reaches pipeline p4 = (b1, b2, a3) (Fig. 3(e)). The UCB value of p4 is smaller than p1’s
LCB value, indicating that p4 is better than p1. Therefore, BLDS stops searching with θ = 2, sets p4
to the new best pipeline and resets θ = 1. By using p4 as a new initial pipeline, BLDS re-trains p4
with an increased training subset (i.e., 1600 samples) and obtains new LCB and UCB values. BLDS
performs search with θ = 1, allowing only one change to p4.

Appendix C. Extensions to DAUB and Hyperband

We adapt DAUB (Sabharwal et al., 2016) and Hyperband (Li et al., 2018) to obtain competing
multi-fidelity optimization based baselines for the algorithm selection problem.

Let T and V be the training and validation sets. Our DAUB implementation generates all possible
pipelines for a given fixed m-stage pipeline structure, and performs the steps of Sabharwal et al.
(2016). Even if DAUB returns a first pipeline p trained with full T , it can continue to run to return
a second pipeline which is trained with full T and which might perform better than p with respect
to an objective value evaluated with respect to V . Until DAUB’s priority queue becomes empty,
DAUB can keep searching for a better pipeline in this way. In a combination with HPO under the
ADMM framework (Liu et al., 2020), we define the number of DAUB’s iterations as the number of
pipelines with full T returned by DAUB. The pipelines not selected by DAUB are enqueued back to
its priority queue. The selected pipeline is enqueued after its hyperparameters are optimized by an
HPO algorithm.

10

AUTOML@ICML SAMPLE PAPER

Table 1: Machine learning algorithms used in the 4-stage pipeline structure. None indicates that no
algorithm is selected.

Step Module

1 (8 scalers)
None, Normalizer, Quantile transformer, Binarizer,
Standard scaler, Robust scaler, MinMax scaler,
KBins discretizer (ordinal encoding)

2 (8 transformers)

None, Sparse random projection (dense output),
Gaussian random projection, RBF sampler, PCA,
Fast ICA, Truncated SVD (algorithm=randomized),
Factor analysis (SVD method=randomized)

3 (6 selectors) None, Select percentile, Select Fpr, Select Fdr,
Select FweFS, Variance threshold

4 (8 estimators)

Random Forest, Logistic regression, Gaussian NB,
KNeighbors, Quadratic discriminant analysis,
AdaBoost (base estimator=decision tree,
max depth=3), Extra trees, Decision tree

Table 2: Data size of each benchmark

AMAZON
ADULT JM1 BANK NOMAO EMPLOYEE HIGGS APSFAILURE MINIBOONE GUILLERMO RICCARDO

MARKETING ACCESS

size 48,842 10,885 45,211 34,465 32,769 98,050 76,000 130,064 20,000 20,000

Our Hyperband implementation generates pipelines by random sampling and optimizes them
by the steps of Li et al. (2018), which we define as one iteration. In case of searching for pipelines
without HPO, this iteration can be repeated until the time is up. We set the maximum amount of
resource (called parameter R) to the training data size. This allows to perform an increase of the
training data subset in a similar way to DAUB and BLDS, while controlling the size of selected
pipelines based on η. It also employs a caching scheme similar to that of BLDS, which effectively
reuses previously trained pipelines within its Hyperband runs and among different Hyperband runs
with a combination of HPO under the ADMM framework (Liu et al., 2020).

Appendix D. Experimental Results

Figure 1 shows the performance of each algorithm selection method for all benchmarks. Table 1
shows the ML algorithms considered at each stage in the four-stage pipeline. Table 2 shows the data
size of each benchmark.

11

UTHOR AND CIENTIST

(a) ADULT (b) JM1 (c) BANK-MARKETING

(d) NOMAO (e) AMAZON_EMPLOYEE_ACCESS (f) HIGGS

(g) APSFAILURE (h) MINIBOONE (i) GUILLERMO

(j) RICCARDO

Figure 4: Performance of each method for algorithm selection

12

	Introduction
	Preliminaries
	Bandit Limited Discrepancy Search
	Algorithm Description
	Upper and Lower Confidence Bounds

	Experimental Results
	Conclusion
	Limited Discrepancy Search
	Example of BLDS
	Extensions to DAUB and Hyperband
	Experimental Results

