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Supplementary Material

1. Training Details
We provide the detailed network architecture in Table 1. Our model contains a total of 16,385,392 parameters and is trained
for 50,000 steps on ETH3D in 2.25 hours and 200,000 steps on TanksandTemples in 9 hours using a single Nvidia A40 GPU.

Table 1. Network Architecture Details. We have a spatial feature extractor that uses implementation of QFF [3] to extract features for each
point. The extracted features are passed into the Density MLP to obtain per-point density and geometric features of length 15. The extracted
geometry features are passed into Color MLP (along with the direction) and Surface Normal MLP to extract color c and surface normal nθ

respectively.

Name # Parameters Input Output Size

Spatial Features

QFF [3] 32x80x80x80 (x, y, z) ∈R3 32

Density MLP

D0θ 32x16 QFF 16
D1θ 16x15 ReLU(D0θ) 15
D2θ 16x1 ReLU(D0θ) σ ∈ R1

Color MLP

C0θ 18x16 D1θ + (d ∈ R3) 16
C1θ 16x3 ReLU(C0θ) c ∈R3

Surface Normal MLP

S0θ 15x16 D1θ 16
S1θ 16x3 ReLU(S0θ) nθ ∈ R3

2. Baseline Training Details
MonoSDF: We show how varying the initialization bias [1] of MonoSDF [17] affects its reconstruction quality. We used
the author provided configs of TnT on ETH3D, but found that MonoSDF suffer from local minimum in some challenging
scenes with original bias parameters due to the scene scale. We therefore contacted the MonoSDF authors and were advised to
use a small bias for initialization. Figure 1 compares the reconstruction of MonoSDF given different bias parameters in a
challenging scene relief_2 of ETH3D [8].
Neuralangelo: For Neuralangelo [4] experiment on ETH3D [8], we follow author provided setup on TanksAndTemples [2],
but use a batch size of 4 instead of 16 to run on the same device settings. We additionally disable image embedding features,
as we empirically found it to worsen the results. One visualization of results with different batch size is present in Figure 2.
The F -score2cm, F -score5cm of high and low batch size results are 1.53, 11.5 and 1.46, 11.8.
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Figure 1. Visualization of MonoSDF with different paramters in Relief_2. MonoSDF1.0 denotes MonoSDF trained with the default bias
parameter (1.0) in the code provided by the authors on the large scale TnT [2] evaluation. MonoSDF0.1 denotes MonoSDF trained with the
parameter suggested by the authors (0.1) for large-scale scenes specifically. MonoSDF [17] reconstructs better mesh given smaller bias, and
falls into local minimum with original bias.

Batch size = 4 Batch size = 16

Figure 2. Visualization of Neuralangelo with different batch size in Facade.



3. Depth Evaluation
We provide evaluation of depth maps from radiance based methods and MVS methods in Tab. 2 following robust multi-view
benchmark [9]. We report the Absolute Relative Error (rel) and Inlier Ratio (τ ) with a threshold of 1.03, and split the evaluated
methods based on the requirement for poses, depth ranges, and intrinsics. To better compare the performance, we additionally
group NeRF models together. We show that though not as accurate as MVS methods, we predict more complete depths, as our
rel is lower than all classical MVS methods.

Table 2. Multi-view depth evaluation with different settings: a) Classical approaches; b) with poses and depth range, without alignment; c)
absolute scale evaluation with poses, without depth range and alignment; d) without poses and depth range, but with alignment; e) neural
radiance field based models. ‘med‘ means alignment based on median ground truth depth and the median predicted depth. Numbers with ∗

are from our results, while others are from DUSt3R [12]. The best results for each setting are in bold.

Methods
GT GT GT Align ETH3D

Pose Range Intrinsics rel ↓ τ ↑

(a)
COLMAP [6, 7] ✓ × ✓ × 16.4 55.1
COLMAP Dense [6, 7] ✓ × ✓ × 89.8 23.2
ACMMP∗ [13] ✓ × ✓ × 16.0 91.6

(b)

MVSNet [16] ✓ ✓ ✓ × 35.4 31.4
MVSNet Inv. Depth [16] ✓ ✓ ✓ × 21.6 35.6
Vis-MVSSNet [18] ✓ ✓ ✓ × 10.8 43.3
MVS2D ScanNet [15] ✓ ✓ ✓ × 27.4 4.8
MVS2D DTU [15] ✓ ✓ ✓ × 99.0 11.6

(c)

DeMon [11] ✓ × ✓ × 19.0 16.2
DeepV2D KITTI [10] ✓ × ✓ × 30.1 9.4
DeepV2D ScanNet [10] ✓ × ✓ × 18.7 28.7
MVSNet [16] ✓ × ✓ × 507.7 8.3
MVSNet Inv. Depth [16] ✓ × ✓ × 60.3 5.8
Vis-MVSNet [18] ✓ × ✓ × 51.5 17.4
MVS2D ScanNet [15] ✓ × ✓ × 30.7 14.4
MVS2D DTU [15] ✓ × ✓ × 78.0 0.0
Robust MVD Baseline [9] ✓ × ✓ × 9.0 42.6

(d)

DeMoN [11] × × ✓ ∥t∥ 17.4 15.4
DeepV2D KITTI [10] × × ✓ med 27.1 10.1
DeepV2D ScanNet [10] × × ✓ med 11.8 29.3
DUSt3R 224-NoCroCo[12] × × × med 9.51 40.07
DUSt3R 224[12] × × × med 4.71 61.74
DUSt3R 512[12] × × × med 2.91 76.91

(e)

RegNeRF∗ [5] ✓ × ✓ × 24.9 15.0
FreeNeRF∗ [14] ✓ × ✓ × 194.0 7.3
Ours∗ ✓ × ✓ × 7.4 67.2
Ours (MVS-Depth)∗ ✓ × ✓ × 7.2 83.5



4. Sparse-view Tanks and Temples Comparison
We compare our method with Neuralangelo [4] on Tanks and Temples [2] with 1/5 views that are uniformly sampled from
original views in Tab. 3. We follow Neuralangelo to preprocess the scene, and use the same parameters (include the batch size)
as the original paper except for using 200,000 instead of 500,000 training steps due to reduced input images. Our method
outperform Neuralangelo in all scenes, showing that our method works better for the challenging sparse view setup. See Fig 3
for qualitative comparison.

Table 3. Comparison on TnT [2] with sparse input views. We report the F -score of our method and Neuralangelo [4] in three large-scale
TnT scenes following Neuralangelo preprocessing. Best results are in bold.

Meetingroom Courthouse Barn

Ours 14.0 16.0 30.8
Neuralangelo 1.7 7.7 5.7
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Figure 3. Training view visualization on sparse view TnT. We compare the rendered color images, depth map, and normals map from the
training view on Meetingroom for our method and Neuralangelo [4].

5. Foreground Fattening
In patch-based MVS, Foreground fattening can happen due to the plane-based propagation of depth candidates and a patch-wise
planar assumption in computing photometric scores. Our method does not suffer from foreground fattening because we do
not make planar assumptions (current depth estimates are projected into other views to compute photometric scores), and the
rendering loss discourages such artifacts. Figure 4 shows the alignment of RGB image and the depth images. The image and
the depth are aligned precisely, indicating that our method does not suffer from the foreground fattening.

Figure 4. Image and Depth overlay visualization. From the left to right, we overlay the RGB image and the rendered depth map with
varying fade thresholds. We show that our method does not experience foreground fattening as the images and the depths are precisely
overlapped.



6. Additional Qualitative Results
Images: We present one additional compairson like our teaser figure in Figure 5. Additional visualization of mesh and novel
view synthesis are shown in Figure 6. We also provide additional visualizations of our method on subsets of TanksAndTem-
ples [2] advanced scenes in Figure 7 and Figure 8, and on ETH3D [8] in Figure 9 and Figure 10.
Videos: We present a free-view rendering of scenes Relief_2, Facade, and Kicker on ETH3D [8] with trajectory interpolated
from training poses on the attached html file. The html file also also contains comparisons with RegNeRF [5], Neuralangelo[4],
and MonoSDF [17]. There are only 31, 76, 31 training views for the scenes, but the rendering is realistic and the video is
smooth. We also provide real-time video rendering of novel views for the TanksandTemples [2] scenes in the additionally
attached files. All our results, except for ones annotated with (Ours-MVS-Depth) in Figure 7 and Table 1 of the main paper,
are from our model with monocular cues.
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Figure 5. Additional qualitative comparison on kicker. We provide additional test view comparisons with baselines [4, 5, 14, 17].
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Figure 6. Additional comparison of novel view images and meshes on ETH3D. We provide additional comparisons with baselines [4, 5,
14, 17].
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Figure 7. Point clouds visualization for TnT advanced scenes [2]. We visualize interior and far-away views for point clouds to have a
better visualization of the reconstructed geometry. Our method reconstructs complete and accurate point clouds.
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Figure 8. Free-form views rendering for TnT advanced scenes [2].



Figure 9. Point clouds visualization for ETH3D. We visualize point clouds for all scenes on ETH3D [8] except Facade. Our method
reconstructs complete and accurate point clouds.



Figure 10. Free-form views rendering for ETH3D [8]. We render novel views using our free-form viewer for each scenes in ETH3D. We
show that our novel view rendering retains high-quality detailed textures in novel views.
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