
One-shot Imitation Learning via Interaction Warping

Anonymous Author(s)
Affiliation
Address
email

Abstract: Imitation learning of robot policies from few demonstrations is crucial1

in open-ended applications. We propose a new method, Interaction Warping, for2

learning SE(3) robotic manipulation policies from a single demonstration. We3

infer the 3D mesh of each object in the environment using shape warping, a tech-4

nique for aligning point clouds across object instances. Then, we represent ma-5

nipulation actions as keypoints on objects, which can be warped with the shape6

of the object. We show successful one-shot imitation learning on three simulated7

and real-world object re-arrangement tasks. We also demonstrate the ability of8

our method to predict object meshes and robot grasps in the wild.9

Keywords: 3D manipulation, imitation learning, shape warping.10

1 Introduction11

Figure 1: The Mug Tree task.

In one-shot imitation learning, we are given a sin-12

gle demonstration of a desired manipulation behav-13

ior and we must find a policy that can reproduce the14

behavior in different situations. A classic example15

is the Mug Tree task, where a robot must grasp a16

mug and hang it on a tree by its handle. Given a17

single demonstration of grasping a mug and hanging18

it on a tree (top row of Figure 1), we want to ob-19

tain a policy that can successfully generalize across20

objects and poses, e.g. differently-shaped mugs and21

trees (bottom row of Figure 1). This presents two22

key challenges: First, the demonstration must gener-23

alize to novel object instances, e.g. different mugs.24

Second, the policy must reason in SE(3), rather than25

in SE(2) where the problem is much easier [1].26

To be successful in SE(3) manipulation, it is generally necessary to bias the model significantly27

toward the object manipulation domains in question. One popular approach is to establish a corre-28

spondence between points on the surface of the objects in the demonstration(s) with the same points29

on the objects seen at test time. This approach is generally implemented using keypoints, point de-30

scriptors that encode the semantic location of the point on the surface of an object and transfer well31

between different novel object instances [2, 3, 4]. E.g., points on handles from different mugs should32

be assigned similar descriptors, thereby helping to correspond handles on different mug instances. A33

key challenge therefore becomes how to learn semantically meaningful keypoint descriptors. Early34

work used hand-coded feature labels [4]. More recent methods learn a category-level object descrip-35

tor models during a pre-training step using implicit object models [5] or point models [2].36

This paper proposes a different approach to the point correspondence problem based on Coherent37

Point Drift (CPD) [6], a point-cloud warping algorithm. We call this method Interaction Warp-38

ing. Using CPD, we train a shape-completion model to register a novel in-category object instance39

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

to a canonical object model in which the task has been defined via one-shot demonstration. The40

canonical task can then be projected into scenes with novel in-category objects by registering the41

new objects to the canonical models. Our method has several advantages over the previous work42

mentioned above [2, 3, 4]. First, it performs better in terms of its ability to successfully perform43

a novel instance of a demonstrated task, both in simulation and on robotic hardware. Second, it44

requires an order-of-magnitude fewer object instances to train each new object category – tens of45

object instances rather than hundreds. Third, our method is agnostic to the use of neural networks –46

the approach presented is based on CPD and PCA models, though using neural networks is possible.47

2 Related Work48

The two main lines of work we draw on are shape warping [7, 8] and imitation learning via keypoints49

[4]. Shape warping uses non-rigid point cloud registration [9], a set of methods for aligning point50

clouds or meshes of objects, to transfer robot skills across object of different shape. In this context,51

our paper is the first to use shape warping to perform relational object re-arrangement and to handle52

objects in arbitrary poses. Second, keypoints are a state abstraction method that reduces objects53

states to the poses of a set of task-specific keypoints. We use a version of keypoints, which we call54

interaction points, to transfer robot actions. The novelty in our work is that our interaction points55

are found automatically and warped together with object shape.56

Few-shot Learning of Manipulation Policies: Keypoint based methods have been used in few-57

shot learning of object re-arrangement [4, 10, 11]. These methods rely on human-annotated object58

keypoints, which can be time-consuming to collect. Our work does not require manual annota-59

tion. Follow-up works proposed learned keypoints for learning tool affordances [12, 13, 14] and60

for model-based reinforcement learning [15]. A related idea is the learning of 2D [16] and 3D61

[5, 17, 18, 19] descriptor fields, which provide a semantic embedding for any point on an object. An62

arbitrary key point can then be matched across object instances using its embedding. We specifically63

compare to Simeonov et al. [5, 17] and show that our method requires fewer demonstrations. In sep-64

arate lines of works, Pan et al. [2] (also included in our comparison) tackled object re-arrangement65

using cross-attention [20] between point clouds and Wen et al. [21] used pose estimation to solve66

precise object insertion tasks.67

Shape Warping and Manipulation: We use a learned model of in-class shape warping originally68

proposed by Rodriguez et al. [22]. This model was previously used to transfer object grasps [7, 23,69

24] and parameters for skills such as pouring liquids [8] (previously explored by [25]). Our method70

jointly infers the shape and pose of an object; prior work assumed object pose to be either given [8]71

or detected using a neural pose detector [24]. Gradient descent on both the pose and the shape was72

previously used by Rodriguez et al. [7], Rodriguez and Behnke [23], but only to correct for minor73

deviations in pose. A second related line of work focuses on detecting the contacts between a gripper74

and an object, and then warping the contact points to fit a novel object [26, 27, 28, 29, 30, 22, 31, 32].75

Finally, point-cloud warping has been used to manipulate deformable objects [33, 34].76

3 Background77

So
ur

ce
 o

ve
r t

ar
ge

t

Initial Final

Figure 2: Coherent Point Drift warping.

Coherent Point Drift (CPD) Given two point78

clouds, X(i) ∈ Rn×3 and X(j) ∈ Rm×3, Coher-79

ent Point Drift (CPD) finds a displacement Wi→j ∈80

Rn×3 of the points X(i) that brings them as close as81

possible (in an L2 sense) to the points X(j) [6]. CPD82

is a non-rigid point-cloud registration method – each83

point in X(i) can be translated independently. CPD84

minimizes the following cost function,85

J(Wi→j) = −
m∑

k=1

log

n∑
l=1

exp

(
1

2σ2

∥∥∥X(i)
l + (Wi→j)l −X

(j)
k

∥∥∥)+
α

2
ϕ(Wi→j), (1)

2

using expectation maximization over point correspondences and distances (see [6] for details). This86

can be viewed as fitting a Gaussian Mixture Model of n components to the data X(j). Here, ϕ(Wi→j)87

is a prior on the point displacements that regularizes nearby points in X(i) to move coherently,88

preventing the assignment of arbitrary correspondences between points in X(i) and X(j).89

Generative Object Modeling Using CPD: CPD can be used as part of a generative model90

for in-category object shapes as follows [7]. Assume that we are given a set of point clouds,91

{X(1), . . . ,X(K)}, that describe K object instances that all belong to a single category, e.g. a set of92

point clouds describing different mug instances. Each of these point clouds must be a full point cloud93

in the sense that it covers the entire object. Select a “canonical” object X(C), C ∈ {1, 2, ...,K} and94

define a set of displacement matrices WC→i = CPD(X(C),X(i)), i ∈ {1, 2, ...,K}. The choice of95

C is arbitrary, but we heuristically choose the C that is the most representative (Appendix A.2). Now,96

we calculate a low rank approximation of the space of object-shape deformations using PCA. For97

each matrix WC→i ∈ Rn×3, let W̄C→i ∈ R3n×1 denote the flattened version. We form the 3n×K98

data matrix W̄C =
[
W̄C→1, . . . , W̄C→K

]
and calculate the d-dimensional PCA projection matrix99

W ∈ R3n×d. This allows us to approximate novel in-category objects using a low-dimensional100

latent vector vnovel ∈ Rd, which can be used to compute a point cloud101

Y = X(C) +Reshape(Wvnovel), (2)

where the Reshape operator casts back to an n× 3 matrix.102

Shape Completion From Partial Point Clouds: In practice, we want to be able to approximate103

complete point clouds for objects for which we only have a partial view [8]. This can be accom-104

plished using the generative model by solving for105

L(Y) = D(Y,X(partial)), (3)

using gradient descent on v. Essentially, we are solving for the latent vector that gives us a recon-106

struction closest to the observed points. To account for the partial view, Thompson et al. [8] use the107

one-sided Chamfer distance [35],108

D
(
X(i),X(j)

)
=

1

m

m∑
k=1

min
l∈{1,...,n}

∥∥∥X(i)
l −X

(j)
k

∥∥∥
2
. (4)

Note that X(i) ∈ Rn×3 and X(j) ∈ Rm×3 do not need to have the same number of points (n ̸= m).109

4 Interaction Warping110

This section describes Interaction Warping (IW), our proposed imitation method (Figure 3). We111

assume that we have first trained a set of category-level generative object models of the form de-112

scribed in Section 3. Then, given a single demonstration of a desired manipulation activity, we113

observed point cloud

v1, s1, t1, R1object shape
and pose
inference v2, s2, t2, R2

grasp
prediction placement

prediction

grasp demo placement demoinferred scene

Tgrasp Tplace

1s
t P

rin
ci

pa
l A

xi
s.

2n
d

Pr
in

ci
pa

l A
xi

s.

0.0-1.0 1.0

warping model

Figure 3: Interaction Warping pipeline for predicting grasp and placement poses from point clouds.

3

detect the objects in the demonstration using off-the-shelf models. For each object in the demon-114

stration that matches a previously trained generative model, we fit the model to the object in order to115

get the pose and completed shape of the object (Section 4.1 and 4.2). Next, we identify interaction116

points on pairs of objects that interact and corresponding those points with the matching points in117

the canonical object models. Finally, we reproduce the demonstration in a new scene with novel118

in-category object instances by projecting the demonstrated interaction points onto the completed119

object instances in the new scene (Section 4.3).120

4.1 Joint Shape and Pose Inference121

In order to manipulate objects in SE(3), we want to jointly infer the pose and shape of an object122

represented by a point cloud X(partial). To do so, we warp and transform point cloud Y ∈ Rn×3 to123

minimize a loss function,124

L(Y) = D(Y,X(partial)) + βmax
k

∥Yk∥22 , (5)

which is akin to Equation 3 with the addition of the second term, a regularizer on the size of the125

decoded object. Our implementation regularizes the object to fit into the smallest possible ball. The126

main reason for the regularizer is to prevent large predicted meshes in real-world experiments, which127

might make it impossible to find collision-free motion plans.128

We parameterize Y as a warped, scaled, rotated and translated canonical point cloud,129

Y = [(X(C) +Reshape(Wv))︸ ︷︷ ︸
Equation 2

⊙s]RT + t. (6)

Here, X(C) is a canonical point cloud and v ∈ Rd parameterizes a warped shape (as described130

in Section 3), s ∈ R3 represents scale, R ∈ SO(3) is a rotation matrix and t ∈ R3 represents131

translation. We treat s and t as row vectors in this equation.132

We directly optimize L with respect to v, s and t using the Adam optimizer [36]. We parameterize133

R using R̂ ∈ R2×3, an arbitrary matrix, and perform Gram-Schmidt orthogonalization (Algorithm134

5) to compute a valid rotation matrix R. This parameterization has been shown to enable stable135

learning of rotation matrices [37, 38]. We run the optimization with many initial random restarts,136

please see Appendix A.4 for further details.137

The inferred v, s represent the shape of the object captured by X(partial) and R, t represent its pose.138

4.2 From Point Clouds to Meshes139

We infer the shape and pose of objects using point clouds, but we need object meshes to perform140

collision checking. This is important for finding contacts between objects and performing motion141

planning (Section 4.3). We propose a simple approach for recovering the mesh of the warped object142

based on the vertices and faces of the canonical object.143

First, we need to warp the vertices of the canonical object. To do so, the vertices need to be a part144

of X(C) because our model only knows how to warp points in X(C) (Section 3). However, these145

vertices (extracted from meshes made by people) are usually very biased (e.g. 90% of the vertices146

might be in the handle of a mug), which results in learned warps that are ignore some parts of the147

object. Second, we add points to X(C) that are randomly sampled on the surface of the canonical148

mesh. X(C) is then composed of approximately the same number of mesh vertices and random149

surface samples, leading to a better learned warping. We construct X(C) such that the first V points150

are the vertices; note that the ordering of points in X(C) does not change as it is warped.151

Given a warped, rotated and translated point cloud Y (Equation 6), the first V points are the warped152

mesh vertices. We combine them with the faces of the canonical object to create a warped mesh M .153

Faces are represented as triples of vertices and these stay the same across object warps.154

4

(a) (b) (c)

Figure 4: (a) Contacts between a gripper and a bowl extracted from a demonstration. (b) Nearby
points between a mug and a tree extracted from a demonstration of hanging the mug on the tree. (c)
A virtual point (red) representing the branch of the tree intersecting the handle of the mug. The red
point is anchored to the mug using k nearest neighbors on the mug (four are shown in green) and
moves as the mug warps. All points shown in this visualization are extracted automatically.

(a) (b)

Figure 5: Predicting grasps using interaction point warping. (a) the predicted grasp for a bowl/plate
changes based on the curvature of the object. (b) the placement of a mug on a mug tree changes as
the mug grows larger so that the branch of the tree is in the middle of the handle.

4.3 Transferring Robot Actions via Interaction Points155

Consider the example of a point cloud of a mug Y that is warped using Equation 6. We can select156

any point Yi and track it as the mug changes its shape and pose. For example, if the point lies on the157

handle of the mug, we can use it to align handles of mugs of different shapes and sizes. That can,158

in turn, facilitate the transfer of manipulation policies across mugs. The key question is how to find159

the points Yi relevant to a particular task. We call these interaction points.160

Grasp Interaction Points: We define the grasp interaction points as the pairs of contact points161

between the gripper and the object at the point of grasp. Let Y (A) and M (A) be the point cloud and162

mesh respectively for the grasped object inferred by our method (Section 4.1, 4.2). Let M (G) be163

a mesh of our gripper and TG the pose of the grasp. We use pybullet collision checking to find164

P pairs of contact points (p(A)
j , p

(G)
j)Pj=1, where p

(A)
j is on the surface of M (A) and p

(G)
j is on the165

surface of M (G) in pose TG (Figure 4a). We want to warp points p(A)
j onto a different shape, but our166

model only knows how to warp points in Y (A). Therefore, we find a set of indices IG = {i1, ..., iP },167

where Y
(A)
ij

is the nearest neighbor of p(A)
j .168

Transferring Grasps: In a new scene, we infer the point cloud of the new object Y (A′) (Eq.169

6). We solve for the new grasp as the optimal transformation T ∗
G that aligns the pairs of points170

(Y
(A′)
ij

, p
(G)
j), j ∈ {1, ..., P}, ij ∈ IG. Here, Y (A′)

ij
are the contact points from the demonstration171

warped to a new object instance. Note that there is a correspondence between the points in Y (A)172

and Y (A′); shape warping does not change their order. We predict the grasp T ∗
G (Figure 5a) that173

minimizes the pairwise distances analytically using an algorithm from Horn et al. [39].174

5

Placement Interaction Points: For placement actions, we look at two objects being placed in175

relation to each other, such as a mug being placed on a mug-tree. Here, we define interaction points176

as pairs of nearby points between the two object, a generalization of contact points. We use nearby177

points so that the two objects do not have to make contact in the demonstration; e.g., the mug might178

not be touching the tree before it is released from the gripper. Similarly, the demonstration of an179

object being dropped into a container might not include contacts.180

Let Y (A) and Y (B) be the inferred point clouds of the two objects. We capture the original point181

clouds from a demonstration right before the robot opens its gripper. We find pairs of nearby points182

with L2 distance below δ, {(p(A) ∈ Y (A), p(B) ∈ Y (B)) :
∥∥∥p(A) − p(B)

∥∥∥ < δ}. Since there might183

be tens of thousands of these pairs, we find a representative sample using farthest point sampling184

[40]. We record the indices of points p(B)
j in Y (B) as IP = {i1, i2, ..., iP }.185

We further add p
(B)
j as virtual points into Y (A) – this idea is illustrated in Figure 4 (b) and (c). For186

example, we wish to solve for a pose that places a mug on a tree, such that the branch of the tree187

intersects the mug’s handle. But, there is no point in the middle of the mug’s handle that we can use.188

Hence, we add the nearby points p(B)
j (e.g. points on the branch of the tree) as virtual points q(A)

j to189

Y (A). We anchor q(A)
j using L-nearest-neighbors so it warps together with Y (A). Specifically, for190

each point p(B)
j we find L nearest neighbors (nj,1, ..., nj,L) in Y (A) and anchor q(A)

j as follows,191

q
(A)
j =

1

L

L∑
k=1

Y (A)
nj,k

+ (p
(B)
j − Y (A)

nj,k
)︸ ︷︷ ︸

∆j,k

= p
(B)
j . (7)

To transfer the placement, we save the neighbor indices nj,k and the neighbor displacements ∆j,k.192

Transferring Placements: We infer the point clouds of the pair of new objects Y (A′) and Y (B′).193

We calculate the positions of the virtual points with respect to the warped nearest neighbors,194

q
(A′)
j =

1

L

L∑
k=1

Y (A′)
nj,k

+∆j,k. (8)

We then construct pairs of points (q(A
′)

j , Y
(B′)
ij

), j ∈ {1, ..., P}, ij ∈ IP and find the optimal trans-195

formation of the first object T ∗
P that minimizes the distance between the point pairs. Since we know196

how we picked up the first object, we can transform T ∗
P into the coordinate frame of the robot hand197

and execute the action of placing object A′ onto object B′ (Figure 5b).198

5 Experiments199

We evaluate both the perception and imitation learning capabilities of Interaction Warping. In Sec-200

tion 5.1, we perform three object re-arrangement tasks with previously unseen objects both in sim-201

ulation and on a physical robot. In Section 5.2, we show our system is capable of proposing grasps202

in a cluttered kitchen setting from a single RGB-D image.203

5.1 Object Re-arrangement204

Setup: We use an open-source simulated environment with three tasks: mug on a mug-tree, bowl on205

a mug and a bottle in a container [17]. Given a segmented point cloud of the initial scene, the goal is206

to predict the pose of the child object relative to the parent object (e.g. the mug relative to the mug-207

tree). A successful action places the object on a rack / in a container so that it does not fall down,208

but also does not clip within the rack / container. The simulation does not test grasp prediction.209

In our real-world experiment, we perform both grasps and placements based on a single demon-210

stration. We capture a fused point cloud using three RGB-D. We use point-cloud clustering and211

heuristics to detect objects in the real-world scenes (details in Appendix B.1) and perform motion212

6

Figure 6: Example of an episode of putting a mug on a tree starting from a tilted mug pose.

Train. Mug on Tree Bowl on Mug Bottle in Container
Method Demo Meshes Upright Arbitrary Upright Arbitrary Upright Arbitrary

R-NDF [17] 1 200 60.0 51.0 69.0 68.0 19.0 8.0
TAX-Pose [2] 1 200 61.0 41.0 16.0 9.0 4.0 1.0
IW (Ours) 1 10 86.0 83.0 82.0 84.0 62.0 60.0
R-NDF [17] 5 200 88.0 89.0 53.0 46.0 78.0 47.0
TAX-Pose [2] 5 200 82.0 51.0 29.0 14.0 6.0 2.0
IW (Ours) 5 10 90.0 87.0 75.0 77.0 79.0 79.0
R-NDF [17] 10 200 71.0 70.0 69.0 60.0 81.0 59.0
TAX-Pose [2] 10 200 82.0 52.0 20.0 20.0 2.0 1.0
IW (Ours) 10 10 88.0 88.0 83.0 86.0 70.0 83.0

Table 1: Success rates of predicted target poses of objects in simulation. Upright and Arbitrary refer
to the starting pose of the manipulated object. Measured over 100 trials with unseen object pairs.

Mug on Tree Bowl on Mug Bottle in Container Mean
Method Pick Pick&Place Pick Pick&Place Pick Pick&Place Pick Pick&Place

NDF1 [5] 93.3 26.7 75.0 33.3 20.0 6.7 62.8 22.2
R-NDF [17] 64.0 12.0 37.5 37.5 26.7 20.0 42.7 23.2
IW (Ours) 96.0 92.0 87.5 83.3 86.7 83.3 90.1 86.2

Table 2: Success rates of real-world pick-and-place experiments with a single demonstration. The
manipulated object (e.g. a mug) starts in an arbitrary pose (we use a stand to get a range of poses)
and the target object (e.g. a mug-tree) starts in an arbitrary upright pose. 1The target object (e.g.
the mug tree) is in a fixed pose for this experiment, as NDF does not handle target object variation.
Each entry is measured over 25 - 30 trials with unseen object pairs.

planning with collision checking based on the meshes predicted by our method. We evaluate the213

ability of each method to pick and place unseen objects with a varying shape and pose (Figure 8).214

Result: We find that our method (IW) generally outperforms R-NDF [5] and TAX-Pose [2] on215

the simulated relational-placement prediction tasks (Table 1) with 20 times fewer training objects.216

We chose these two baselines as recent state-of-the-art SE(3) few-shot learning methods. IW can217

usually predict with above 80% success rate even with 1 demo, whereas R-NDF and TAX-Pose can218

only occasionally do so with 5+ demos, and often fail to reach 80% success rate at all. We use an219

open-source implementation of R-NDF provided by the authors [41], which differs in performance220

from the results reported in [17]. TAX-Pose struggles with precise object placements in the bowl on221

mug and bottle in box tasks; it often places the pair of objects inside one another.222

In real-world pick and place experiments, we demonstrate the ability of IW to solve the three object223

re-arrangement tasks – mug on tree, bowl on mug and bottle in box – with unseen objects (Figure224

8) and variation in the starting pose of objects (Table 2). We find that NDF and R-NDF [5, 17]225

struggle with the partial and noisy real-world point clouds. This often results in both the pick and226

place actions being too imprecise to successfully solve the task. Pre-training (R-)NDF on real-world227

point clouds could help, but note that IW was also pre-trained on simulated point clouds. We find228

that the warping of canonical objects is more robust to noisy and occluded point clouds. We show229

an example episode of placing a mug on a tree in Figure 6.230

7

(a) (b) (c) (d) (e)

Figure 7: Grasp prediction in the wild: (a) an RGB-D (depth not shown) image, (b) open-vocabulary
object detection and segmentation using Detic [42] and Segment Anything [43], (c) object meshes
predicted by our method based on segmented point clouds (we filter out distant and small objects),
(d) meshes projected into the original image, (e) grasps predicted by Interaction Warping projected
into the original image. Figure 9 has additional examples.

We use the meshes predicted by IW to perform collision checking during motion planning. We do231

not perform collision checking (other than to avoid contact with the table) when using (R-)NDF as232

these methods do not predict object meshes, but failures due to a collision between the robot and233

one of the object were infrequent in real-world (R-)NDF trials.234

5.2 Grasp Prediction in the Wild235

Setup: In this experiment, we show that we can combine our method with a state-of-the-art object236

detection and segmentation pipeline to predict object meshes and robot grasps from a single RGB-D237

image. We use an open-vocabulary object detector Detic [42] to predict bounding boxes for common238

household objects and Segment Anything [43] to predict segmentation masks within these bounding239

boxes. We turn the predicted RGB-D images into point clouds and use our shape warping model to240

predict a mesh for each object. Finally, we use interaction warping to predict a robot grasp based on241

a single demonstration per each object class (details in Appendix B.2).242

Result: We show the results for two example scenes in Figure 7 and 9. Our perception pipeline can243

successfully detect objects in images with cluttered backgrounds. Our warping algorithm accounts244

for the variation in the shape and size of objects and our interaction warping algorithm can generalize245

the demonstrated grasps to the novel objects.246

6 Limitations and Conclusion247

We introduced Interaction Warping, a method for one-shot learning of SE(3) robotic manipulation248

policies. We demonstrated that warping of shapes and interaction points leads to successful one-249

shot learning of object re-arrangement policies. We also showed that we can use open-vocabulary250

detection and segmentation models to detect objects in the wild and predict their meshes and grasps.251

Limitations: Our method requires segmented point clouds of objects. We demonstrated a pipeline252

for real-world detection in Section 5.2, but it can be difficult to capture clean point clouds that align253

with RGB-based segmentation predictions. The process of jointly inferring shape and pose of an254

object takes around 25 seconds per object on a single desktop GPU. Future work could train an255

additional neural network to amortize the inference, or to predict favorable initialization. We use a256

PCA model of shape warps for simplicity; this model cannot capture the details of objects, such as257

the detailed shape of the head of a bottle. A model with higher capacity should be used for tasks that258

require high precision. Finally, our predicted policy is fully determined by the shape warping model259

and a single demonstration; our method does not learn from its failures, but it is fully differentiable.260

8

References261

[1] D. Wang, R. Walters, and R. Platt. So(2)-equivariant reinforcement learning. In The Tenth262

International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-263

29, 2022. OpenReview.net, 2022.264

[2] C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held. TAX-Pose: Task-Specific Cross-Pose265

Estimation for Robot Manipulation. In 6th Annual Conference on Robot Learning, Nov. 2022.266

[3] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph267

cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.268

[4] L. Manuelli, W. Gao, P. R. Florence, and R. Tedrake. KPAM: KeyPoint Affordances for269

Category-Level Robotic Manipulation. In T. Asfour, E. Yoshida, J. Park, H. Christensen, and270

O. Khatib, editors, Robotics Research - The 19th International Symposium ISRR 2019, Hanoi,271

Vietnam, October 6-10, 2019, volume 20 of Springer Proceedings in Advanced Robotics, pages272

132–157. Springer, 2019.273

[5] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-274

mann. Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation.275

In 2022 International Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA,276

USA, May 23-27, 2022, pages 6394–6400. IEEE, 2022.277

[6] A. Myronenko and X. Song. Point-Set Registration: Coherent Point Drift. IEEE Trans. Pattern278

Anal. Mach. Intell., 32(12):2262–2275, Dec. 2010. ISSN 0162-8828.279

[7] D. Rodriguez, C. Cogswell, S. Koo, and S. Behnke. Transferring Grasping Skills to Novel280

Instances by Latent Space Non-Rigid Registration, Sept. 2018.281

[8] S. Thompson, L. P. Kaelbling, and T. Lozano-Perez. Shape-Based Transfer of Generic Skills.282

In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 5996–283

6002, May 2021.284

[9] X. Huang, G. Mei, J. Zhang, and R. Abbas. A comprehensive survey on point cloud registra-285

tion. CoRR, abs/2103.02690, 2021.286

[10] W. Gao and R. Tedrake. kPAM 2.0: Feedback Control for Category-Level Robotic Manipula-287

tion. IEEE Robotics and Automation Letters, 6(2):2962–2969, Apr. 2021. ISSN 2377-3766.288

[11] W. Gao and R. Tedrake. kPAM-SC: Generalizable Manipulation Planning using KeyPoint289

Affordance and Shape Completion. In 2021 IEEE International Conference on Robotics and290

Automation (ICRA), pages 6527–6533, May 2021.291

[12] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese. KETO: learning keypoint representations292

for tool manipulation. In 2020 IEEE International Conference on Robotics and Automation,293

ICRA 2020, Paris, France, May 31 - August 31, 2020, pages 7278–7285. IEEE, 2020.294

[13] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute, T. Rothörl, C. Schuster,295

R. Hadsell, L. Agapito, and J. Scholz. S3K: Self-Supervised Semantic Keypoints for Robotic296

Manipulation via Multi-View Consistency, Oct. 2020.297

[14] D. Turpin, L. Wang, S. Tsogkas, S. Dickinson, and A. Garg. GIFT: Generalizable Interaction-298

aware Functional Tool Affordances without Labels, June 2021.299

[15] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the Future: Self-Supervised300

Correspondence in Model-Based Reinforcement Learning, Sept. 2020.301

[16] P. R. Florence, L. Manuelli, and R. Tedrake. Dense Object Nets: Learning Dense Visual Object302

Descriptors By and For Robotic Manipulation. In 2nd Annual Conference on Robot Learning,303

CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87 of Proceedings304

of Machine Learning Research, pages 373–385. PMLR, 2018.305

9

[17] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.306

SE(3)-Equivariant Relational Rearrangement with Neural Descriptor Fields. In 6th Annual307

Conference on Robot Learning, Nov. 2022.308

[18] H. Ryu, J. Lee, H. Lee, and J. Choi. Equivariant descriptor fields: Se(3)-equivariant energy-309

based models for end-to-end visual robotic manipulation learning. CoRR, abs/2206.08321,310

2022.311

[19] E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling. Local Neural Descriptor312

Fields: Locally Conditioned Object Representations for Manipulation, Mar. 2023.313

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-314

sukhin. Attention is All you Need. In Advances in Neural Information Processing Systems,315

volume 30. Curran Associates, Inc., 2017.316

[21] B. Wen, W. Lian, K. Bekris, and S. Schaal. You Only Demonstrate Once: Category-Level317

Manipulation from Single Visual Demonstration. In Robotics: Science and Systems XVIII.318

Robotics: Science and Systems Foundation, June 2022. ISBN 978-0-9923747-8-5.319

[22] D. Rodriguez, A. Di Guardo, A. Frisoli, and S. Behnke. Learning Postural Synergies for Cat-320

egorical Grasping Through Shape Space Registration. In 2018 IEEE-RAS 18th International321

Conference on Humanoid Robots (Humanoids), pages 270–276, Nov. 2018.322

[23] D. Rodriguez and S. Behnke. Transferring Category-Based Functional Grasping Skills by323

Latent Space Non-Rigid Registration. IEEE Robotics and Automation Letters, 3(3):2662–324

2669, July 2018. ISSN 2377-3766.325

[24] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko, D. Droeschel, and S. Behnke.326

Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-327

Like Robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems328

(IROS), pages 1–8, Oct. 2018.329

[25] S. Brandi, O. Kroemer, and J. Peters. Generalizing pouring actions between objects using330

warped parameters. In 2014 IEEE-RAS International Conference on Humanoid Robots, pages331

616–621, Nov. 2014.332

[26] Y. Li, J. L. Fu, and N. S. Pollard. Data-Driven Grasp Synthesis Using Shape Matching and333

Task-Based Pruning. IEEE Trans. Visual. Comput. Graphics, 13(4):732–747, July 2007. ISSN334

1077-2626.335

[27] H. Ben Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters. Generalization of336

human grasping for multi-fingered robot hands. In 2012 IEEE/RSJ International Conference337

on Intelligent Robots and Systems, pages 2043–2050, Oct. 2012.338

[28] U. Hillenbrand and M. A. Roa. Transferring functional grasps through contact warping and lo-339

cal replanning. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,340

pages 2963–2970, Oct. 2012.341

[29] R. Jäkel, S. R. Schmidt-Rohr, S. W. Rühl, A. Kasper, Z. Xue, and R. Dillmann. Learning of342

Planning Models for Dexterous Manipulation Based on Human Demonstrations. Int J of Soc343

Robotics, 4(4):437–448, Nov. 2012. ISSN 1875-4805.344

[30] T. Stouraitis, U. Hillenbrand, and M. A. Roa. Functional power grasps transferred through345

warping and replanning. In 2015 IEEE International Conference on Robotics and Automation346

(ICRA), pages 4933–4940, May 2015.347

[31] D. Pavlichenko, D. Rodriguez, C. Lenz, M. Schwarz, and S. Behnke. Autonomous Bimanual348

Functional Regrasping of Novel Object Class Instances. In 2019 IEEE-RAS 19th International349

Conference on Humanoid Robots (Humanoids), pages 351–358, Oct. 2019.350

10

[32] H. Tian, C. Wang, D. Manocha, and X. Zhang. Transferring Grasp Configurations using Active351

Learning and Local Replanning. In 2019 International Conference on Robotics and Automa-352

tion (ICRA), pages 1622–1628, May 2019.353

[33] A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel. Learning from multiple demonstrations354

using trajectory-aware non-rigid registration with applications to deformable object manipula-355

tion. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),356

pages 5265–5272, Hamburg, Germany, Sept. 2015. IEEE. ISBN 978-1-4799-9994-1.357

[34] J. Schulman, J. Ho, C. Lee, and P. Abbeel. Learning from Demonstrations Through the Use358

of Non-rigid Registration. In M. Inaba and P. Corke, editors, Robotics Research, volume 114,359

pages 339–354. Springer International Publishing, Cham, 2016. ISBN 978-3-319-28870-3360

978-3-319-28872-7.361

[35] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric correspondence and362

chamfer matching: Two new techniques for image matching. In R. Reddy, editor, Proceed-363

ings of the 5th International Joint Conference on Artificial Intelligence. Cambridge, MA, USA,364

August 22-25, 1977, pages 659–663. William Kaufmann, 1977.365

[36] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, Jan. 2017.366

[37] L. Falorsi, P. de Haan, T. R. Davidson, N. D. Cao, M. Weiler, P. Forré, and T. S. Cohen.367

Explorations in homeomorphic variational auto-encoding. CoRR, abs/1807.04689, 2018.368

[38] J. Y. Park, O. Biza, L. Zhao, J. van de Meent, and R. Walters. Learning symmetric embeddings369

for equivariant world models. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu,370

and S. Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July371

2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research,372

pages 17372–17389. PMLR, 2022.373

[39] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution of absolute orienta-374

tion using orthonormal matrices. J. Opt. Soc. Am. A, 5(7):1127–1135, Jul 1988.375

[40] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for progressive376

image sampling. In 12th IAPR International Conference on Pattern Recognition, Conference377

C: Signal Processing / Conference D: Parallel Computing, ICPR 1994, Jerusalem, Israel, 9-13378

October, 1994, Volume 3, pages 93–97. IEEE, 1994.379

[41] A. Simeonov, Y. Du, L. Yen-Chen, , A. Rodriguez, , L. P. Kaelbling, T. L. Perez,380

and P. Agrawal. Se(3)-equivariant relational rearrangement with neural descriptor fields.381

https://github.com/anthonysimeonov/relational ndf, 2022.382

[42] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes383

using image-level supervision. In S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and384

T. Hassner, editors, Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Is-385

rael, October 23-27, 2022, Proceedings, Part IX, volume 13669 of Lecture Notes in Computer386

Science, pages 350–368. Springer, 2022.387

[43] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,388

A. C. Berg, W. Lo, P. Dollár, and R. B. Girshick. Segment anything. CoRR, abs/2304.02643,389

2023.390

[44] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In IEEE International391

Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2980–392

2988. IEEE Computer Society, 2017.393

[45] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention Mask394

Transformer for Universal Image Segmentation, June 2022.395

11

[46] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,396

C. L. Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context, Feb. 2015.397

[47] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene Parsing through398

ADE20K Dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition399

(CVPR), pages 5122–5130. IEEE, July 2017.400

[48] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-401

hendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby. Simple402

Open-Vocabulary Object Detection with Vision Transformers, July 2022.403

12

A Method Details404

We included the code for both our simulated and real-world experiments for reference. Please find405

it in the supplementary material under iw code. Algorithms 1 and 2 describe our warp learning and406

inference.407

Algorithm 1 Warp Learning

Input: Meshes of K example object instances {obj1, obj2, ..., objK}.
Output: Canonical point cloud, vertices and faces and a latent space of warps.
Parameters: Smoothness of CPD warping α and number of PCA components L.

1: PCD =
〈
SampleS(obji)

〉K
i=1

. ▷ Sample a small point cloud per object (Appendix A.1).
2: C = SelectCanonical(PCD). ▷ Select a canonical object with index C (Appendix A.2).
3: canon = Concat(objC .vertices,SampleL(objC)). ▷ Use both vertices and surface samples.
4: for i ∈ {1, 2, ...,K}, i ̸= C do
5: WC→i = CPD(canon,PCDi, α). ▷ Coherent Point Drift warping (Section 3).
6: end for
7: DW = {Flatten(WC→i)}Ki=1,i̸=C . ▷ Dataset of displacements of canon.
8: PCA = FitPCA(DW ,n components = L). ▷ Learn a latent space of canonical object warps.
9: return Canon(points = canon, vertices = objC .vertices, faces = objC .faces),PCA.

Algorithm 2 Warp Inference and Mesh Reconstruction

Input: Observed point cloud pcd, canonical object canon and latent space PCA.
Output: Predicted latent shape v and pose T .
Parameters: Number of random starts S, number of gradient descent steps T , learning rate η

and object size regularization β.

1: tg = 1
|pcd|

∑|pcd|
i=1 pcdi.

2: pcd = pcd− tg . ▷ Center the point cloud.
3: for i = 1 to S do
4: Rinit = Random initial 3D rotation matrix.

5: Initialize v =
(
0 0 ... 0

)
, s =

(
1 1 1

)
, tl =

(
0 0 0

)
, R̂ =

(
1 0 0
0 1 0

)
.

6: Initialize Adam [36] with parameters v, s, tl, r and learning rate η.
7: for j = 1 to T do
8: δ = Reshape(Wv).
9: X = canon.points + δ. ▷ Warped canonical point cloud.

10: R = GramSchmidt(R̂).
11: X = (X ⊙ s)RT

initR
T + tl. ▷ Scaled, rotated and translated point cloud.

12: L = 1
|pcd|

∑|pcd|
k min

|X|
l ∥pcdk −Xl∥22. ▷ One-sided Chamfer distance.

13: L = L+ βmax
|X|
l ∥Xl∥22. ▷ Object size regularization.

14: Take a gradient descent step to minimize L using Adam.
15: end for
16: end for
17: Find parameters v∗, s∗, t∗l , R

∗
init, R

∗ with the lowest final loss across i ∈ {1, 2, ..., S}.
18: X = canon.points + Reshape(Wv∗).
19: X = (X ⊙ s∗)(R∗

init)
T (R∗)T + t∗l + tg . ▷ Complete point cloud in workspace coordinates.

20: vertices = ⟨X1, X2, ..., X|canon.vertices|⟩. ▷ First |canon.vertices| points of X are vertices.
21: return Mesh(vertices = vertices, faces = canon.faces). ▷ Warped mesh.

13

A.1 Point Cloud Sampling408

We use trimesh1 to sample the surface of object meshes. The function409

trimesh.sample.sample surface even samples a specified number of points and then410

rejects points that are too close together. We sample 2k points for small point clouds (SampleS)411

and 10k point for large point clouds (SampleL).412

A.2 Canonical Object Selection413

Among the K example objects, we would like to find the one that is the easiest to warp to the other414

objects. For example, if we have ten examples of mugs, but only one mug has a square handle,415

we should not choose it as it might be difficult to warp it to conform to the round handles of the416

other nine mugs. We use Algorithm 3, which computes K ∗K − 1 warps and picks the object that417

warps to the other K − 1 objects with the lowest Chamfer distance. We also note an alternative and418

computationally cheaper algorithm from Thompson et al. [8], Algorithm 4. This algorithm simply419

finds the object that is the most similar to the other K − 1 objects without any warping.420

Algorithm 3 Exhaustive Canonical Object Selection

Input: Point clouds of K training objects ⟨X(1),X(2), ...,X(K)⟩.
Output: Index of the canonical object.

1: for i = 1 to K do
2: for j = 1 to K, j ̸= i do
3: Wi→j = CPD(X(i),X(j)) ▷ Warp point cloud i to point cloud j.

4: Ci,j =
1

|X(j)|
∑|X(j)|

k=1 min
|X(i)|
l=1

∥∥∥X(j)
k − (X(i) +Wi→j)l

∥∥∥2
2

5: end for
6: end for
7: for i = 1 to K do
8: Ci =

∑K
j=1,j ̸=i Ci,j ▷ Cumulative cost of point cloud i warps.

9: end for
10: return argminKi=1 Ci ▷ Pick point cloud that is the easiest to warp.

Algorithm 4 Approximate Canonical Object Selection [8]

Input: Point clouds of K training objects ⟨X(1),X(2), ...,X(K)⟩.
Output: Index of the canonical object.

1: for i = 1 to K do
2: for j = 1 to K, j ̸= i do

3: Ci,j =
1

|X(j)|
∑|X(j)|

k=1 min
|X(i)|
l=1

∥∥∥X(j)
k −X

(i)
l

∥∥∥2
2

4: end for
5: end for
6: for i = 1 to K do
7: Ci =

∑K
j=1,j ̸=i Ci,j

8: end for
9: return argminKi=1 Ci

A.3 Gram-Schmidt Orthogonalization421

We compute a rotation matrix from two 3D vectors using Algorithm 5 [38].422

1https://github.com/mikedh/trimesh

14

Algorithm 5 Gram-Schmidt Orthogonalization

Input: 3D vectors u and v.
Output: Rotation matrix.

1: u′ = u/∥u∥
2: v′ = v−(u′·v)u′

∥v−(u′·v)u′∥
3: w′ = u′ × v′

4: return Stack(u′, v′, w′)

A.4 Shape and Pose Inference Details423

The point clouds Y ∈ Rn×3 starts in its canonical form with the latent shape v equal to zero. We set424

the initial scale s to one, translation t to zero and rotation R̂ to identity,425

v =
(
0 0 ... 0

)︸ ︷︷ ︸
d

, s =
(
1 1 1

)
, t =

(
0 0 0

)
, R̂ =

(
1 0 0
0 1 0

)
. (9)

R̂ is then transformed into R ∈ SO(3) using Algorithm 5. We minimize L with respect to v, s, t426

and R̂ using the Adam optimizer [36] with learning rate 10−2 for 100 steps. We set β = 10−2. We427

found the optimization process is prone to getting stuck in local minima; e.g., instead of aligning428

the handle of the decoded mug with the observed point cloud, the optimizer might change the shape429

of the decoded mug to hide its handle. Hence, we restart the process with many different random430

initial rotations and pick the solution with the lowest loss function. Further, we randomly subsample431

Y to 1k points at each gradient descent step – this allows us to run 12 random starting orientations432

at once on an NVIDIA RTX 2080Ti GPU.433

A.5 Using Multiple Demonstrations434

Our method transfers grasps and placements from a single demonstration, but in our simulated ex-435

periment, we have access to multiple demonstrations. We implement a simple heuristic for choosing436

the demonstration that fits our method the best: we make a prediction of the relational object place-437

ment from the initial state of each demonstration and select the demonstration where our prediction438

is closest to the demonstrated placement. The intuition is that we are choosing the demonstration439

where our method was able to warp the objects with the highest accuracy (leading to the best place-440

ment prediction). This is especially useful in filtering out demonstrations with strangely shaped441

objects.442

B Experiment Details443

B.1 Object re-arrangement on a physical robot444

We use a UR5 robotic arm with a Robotiq gripper. We capture the point cloud using three RealSense445

D455 camera with extrinsics calibrated to the robot. For motion planning, we use MoveIt with446

ROS1. To segment the objects, we use DBSCAN to cluster the point clouds and simple heuristics447

(e.g. height, width) to detect the object class.448

B.2 Grasp prediction in the wild449

We use a single RealSense D435 RGB-D camera. Our goal is to be able to demonstrate any task450

in the real world without having to re-train our perception pipeline. Therefore, we chose an open-451

vocabulary object detection model Detic [42], which is able to detect object based on natural lan-452

guage descriptions. We used the following classes: ”cup”, ”bowl”, ”mug”, ”bottle”, ”cardboard”,453

”box”, ”Tripod”, ”Baseball bat”, ”Lamp”, ”Mug Rack”, ”Plate”, ”Toaster” and ”Spoon”. We use454

15

(a) (b) (c)

Figure 8: Objects used for the real-world tasks: (a) mug on tree, (b) bowl (or plate) on mug and (c)
bottle in box. We use a single pair of objects to generate demonstrations and test on novel objects.

the predicted bounding boxes from Detic to condition a Segment Anything model [43] to get ac-455

curate class-agnostic segmentation masks. Both Detic2 and Segment Anything3 come with several456

pre-trained models and we used the largest available. Finally, we select the pixels within each seg-457

mentation mask and use the depth information from our depth camera to create a per-object point458

cloud. We use DBSCAN to clouster the point cloud and filter out outlier points. Then, we perform459

mesh warping and interaction warping to predict object meshes and grasps.460

Previously, we experimented with Mask R-CNN [44] and Mask2Former [45] trained on standard461

segmentation datasets, such as COCO [46] and ADE20k [47]. We found that these dataset lack the462

wide range of object classes we would see in a household environment and that the trained models463

struggle with out-of-distribution viewing angles, such as looking from a steep top-down angle. We464

also experimented with an open-vocabulary object detection model OWL-ViT [48] and found it to465

be sensitive to scene clutter and the viewing angle.466

C Additional Results467

Training and inference times: We measure the training and inference times of TAX-Pose, R-NDF468

and IW (Table 3). Both R-NDF and IW take tens of seconds to either perceive the environment or469

to predict an action. This is because both of these methods use gradient descent with many random470

restarts for inference. On the other hand, TAX-Pose performs inference in a fraction of second but471

requires around 16 hours of training for each task. Neither R-NDF nor IW require task-specific472

training. We do not include the time it takes to perform pre-training for each class of objects, which473

is required by all three methods, because we used checkpoints provided by the authors of TAX-Pose474

and R-NDF.475

Additional real-world grasp predictions: We include additional examples of real-world object476

segmentation, mesh prediction and grasp prediction in Figure 9.477

2https://github.com/facebookresearch/Detic
3https://github.com/facebookresearch/segment-anything

16

Method Training Perception Grasp prediction Placement prediction

TAX-Pose [2] 16.5 ± 1.3 h - 0.02 ± 0.01 s 0.02 ± 0.01 s
R-NDF [17] - - 21.4 ± 0.5 s 42.5 ± 1.8 s
IW (Ours) - 29.6 ± 0.2 s 0.01 ± 0.01 s 0.003 ± 0.004 s

Table 3: Approximate training and inference times for our method and baselines measured over five
trials. R-NDF and IW do not have an explicit training phase, as they use demonstrations nonpara-
metrically during inference. Only IW has a perception step that is separate from the action prediction
step. We do not include the time it takes to capture a point cloud or to move the robot. Training and
inference times were measured on a system with a single NVIDIA RTX 2080Ti GPU and an Intel
i7-9700K CPU.

(a) (b) (c) (d) (e)

Figure 9: Additional examples, please see Figure 7.

Figure 10: Example of mug on tree episode.

17

Figure 11: Example of bowl/plate on mug episode.

Figure 12: Example of bottle in box episode.

18

	Introduction
	Related Work
	Background
	Interaction Warping
	Joint Shape and Pose Inference
	From Point Clouds to Meshes
	Transferring Robot Actions via Interaction Points

	Experiments
	Object Re-arrangement
	Grasp Prediction in the Wild

	Limitations and Conclusion
	Method Details
	Point Cloud Sampling
	Canonical Object Selection
	Gram-Schmidt Orthogonalization
	Shape and Pose Inference Details
	Using Multiple Demonstrations

	Experiment Details
	Object re-arrangement on a physical robot
	Grasp prediction in the wild

	Additional Results

