
A Method Details404

We included the code for both our simulated and real-world experiments for reference. Please find405

it in the supplementary material under iw code. Algorithms 1 and 2 describe our warp learning and406

inference.407

Algorithm 1 Warp Learning

Input: Meshes of K example object instances {obj1, obj2, ..., objK}.
Output: Canonical point cloud, vertices and faces and a latent space of warps.
Parameters: Smoothness of CPD warping α and number of PCA components L.

1: PCD =

SampleS(obji)

�K
i=1

. ▷ Sample a small point cloud per object (Appendix A.1).
2: C = SelectCanonical(PCD). ▷ Select a canonical object with index C (Appendix A.2).
3: canon = Concat(objC .vertices, SampleL(objC)). ▷ Use both vertices and surface samples.
4: for i ∈ {1, 2, ..., K}, i ̸= C do
5: WC→i = CPD(canon,PCDi,α). ▷ Coherent Point Drift warping (Section 3).
6: end for
7: DW = {Flatten(WC→i)}Ki=1,i̸=C . ▷ Dataset of displacements of canon.
8: PCA = FitPCA(DW , n components = L). ▷ Learn a latent space of canonical object warps.
9: return Canon(points = canon, vertices = objC .vertices, faces = objC .faces),PCA.

Algorithm 2 Warp Inference and Mesh Reconstruction

Input: Observed point cloud pcd, canonical object canon and latent space PCA.
Output: Predicted latent shape v and pose T .
Parameters: Number of random starts S, number of gradient descent steps T , learning rate η

and object size regularization β.

1: tg = 1
|pcd|

P|pcd|
i=1 pcdi.

2: pcd = pcd− tg . ▷ Center the point cloud.
3: for i = 1 to S do
4: Rinit = Random initial 3D rotation matrix.

5: Initialize v =

0 0 ... 0

�
, s =

1 1 1

�
, tl =

0 0 0

�
, R̂ =

�
1 0 0
0 1 0

�
.

6: Initialize Adam [36] with parameters v, s, tl, r and learning rate η.
7: for j = 1 to T do
8: δ = Reshape(Wv).
9: X = canon.points + δ. ▷ Warped canonical point cloud.

10: R = GramSchmidt(R̂).
11: X = (X ⊙ s)RT

initR
T + tl. ▷ Scaled, rotated and translated point cloud.

12: L = 1
|pcd|

P|pcd|
k min

|X|
l ∥pcdk −Xl∥22. ▷ One-sided Chamfer distance.

13: L = L+ βmax
|X|
l ∥Xl∥22. ▷ Object size regularization.

14: Take a gradient descent step to minimize L using Adam.
15: end for
16: end for
17: Find parameters v∗, s∗, t∗l , R

∗
init, R

∗ with the lowest final loss across i ∈ {1, 2, ..., S}.
18: X = canon.points + Reshape(Wv∗).
19: X = (X ⊙ s∗)(R∗

init)
T (R∗)T + t∗l + tg . ▷ Complete point cloud in workspace coordinates.

20: vertices = ⟨X1, X2, ..., X|canon.vertices|⟩. ▷ First |canon.vertices| points of X are vertices.
21: return Mesh(vertices = vertices, faces = canon.faces). ▷ Warped mesh.

13

A.1 Point Cloud Sampling408

We use trimesh1 to sample the surface of object meshes. The function409

trimesh.sample.sample surface even samples a specified number of points and then410

rejects points that are too close together. We sample 2k points for small point clouds (SampleS)411

and 10k point for large point clouds (SampleL).412

A.2 Canonical Object Selection413

Among the K example objects, we would like to find the one that is the easiest to warp to the other414

objects. For example, if we have ten examples of mugs, but only one mug has a square handle,415

we should not choose it as it might be difficult to warp it to conform to the round handles of the416

other nine mugs. We use Algorithm 3, which computes K ∗K − 1 warps and picks the object that417

warps to the other K − 1 objects with the lowest Chamfer distance. We also note an alternative and418

computationally cheaper algorithm from Thompson et al. [8], Algorithm 4. This algorithm simply419

finds the object that is the most similar to the other K − 1 objects without any warping.420

Algorithm 3 Exhaustive Canonical Object Selection

Input: Point clouds of K training objects ⟨X(1),X(2), ...,X(K)⟩.
Output: Index of the canonical object.

1: for i = 1 to K do
2: for j = 1 to K, j ̸= i do
3: Wi→j = CPD(X(i),X(j)) ▷ Warp point cloud i to point cloud j.

4: Ci,j =
1

|X(j)|
P|X(j)|

k=1 min
|X(i)|
l=1

X(j)
k − (X(i) +Wi→j)l

2

2
5: end for
6: end for
7: for i = 1 to K do
8: Ci =

PK
j=1,j ̸=i Ci,j ▷ Cumulative cost of point cloud i warps.

9: end for
10: return argminKi=1 Ci ▷ Pick point cloud that is the easiest to warp.

Algorithm 4 Approximate Canonical Object Selection [8]

Input: Point clouds of K training objects ⟨X(1),X(2), ...,X(K)⟩.
Output: Index of the canonical object.

1: for i = 1 to K do
2: for j = 1 to K, j ̸= i do

3: Ci,j =
1

|X(j)|
P|X(j)|

k=1 min
|X(i)|
l=1

X(j)
k −X

(i)
l

2

2
4: end for
5: end for
6: for i = 1 to K do
7: Ci =

PK
j=1,j ̸=i Ci,j

8: end for
9: return argminKi=1 Ci

A.3 Gram-Schmidt Orthogonalization421

We compute a rotation matrix from two 3D vectors using Algorithm 5 [38].422

1https://github.com/mikedh/trimesh

14

Algorithm 5 Gram-Schmidt Orthogonalization

Input: 3D vectors u and v.
Output: Rotation matrix.

1: u′ = u/∥u∥
2: v′ = v−(u′·v)u′

∥v−(u′·v)u′∥
3: w′ = u′ × v′

4: return Stack(u′, v′, w′)

A.4 Shape and Pose Inference Details423

The point clouds Y ∈ Rn×3 starts in its canonical form with the latent shape v equal to zero. We set424

the initial scale s to one, translation t to zero and rotation R̂ to identity,425

v =

0 0 ... 0

�
| {z }

d

, s =

1 1 1

�
, t =

0 0 0

�
, R̂ =

�
1 0 0
0 1 0

�
. (9)

R̂ is then transformed into R ∈ SO(3) using Algorithm 5. We minimize L with respect to v, s, t426

and R̂ using the Adam optimizer [36] with learning rate 10−2 for 100 steps. We set β = 10−2. We427

found the optimization process is prone to getting stuck in local minima; e.g., instead of aligning428

the handle of the decoded mug with the observed point cloud, the optimizer might change the shape429

of the decoded mug to hide its handle. Hence, we restart the process with many different random430

initial rotations and pick the solution with the lowest loss function. Further, we randomly subsample431

Y to 1k points at each gradient descent step – this allows us to run 12 random starting orientations432

at once on an NVIDIA RTX 2080Ti GPU.433

A.5 Using Multiple Demonstrations434

Our method transfers grasps and placements from a single demonstration, but in our simulated ex-435

periment, we have access to multiple demonstrations. We implement a simple heuristic for choosing436

the demonstration that fits our method the best: we make a prediction of the relational object place-437

ment from the initial state of each demonstration and select the demonstration where our prediction438

is closest to the demonstrated placement. The intuition is that we are choosing the demonstration439

where our method was able to warp the objects with the highest accuracy (leading to the best place-440

ment prediction). This is especially useful in filtering out demonstrations with strangely shaped441

objects.442

B Experiment Details443

B.1 Object re-arrangement on a physical robot444

We use a UR5 robotic arm with a Robotiq gripper. We capture the point cloud using three RealSense445

D455 camera with extrinsics calibrated to the robot. For motion planning, we use MoveIt with446

ROS1. To segment the objects, we use DBSCAN to cluster the point clouds and simple heuristics447

(e.g. height, width) to detect the object class.448

B.2 Grasp prediction in the wild449

We use a single RealSense D435 RGB-D camera. Our goal is to be able to demonstrate any task450

in the real world without having to re-train our perception pipeline. Therefore, we chose an open-451

vocabulary object detection model Detic [42], which is able to detect object based on natural lan-452

guage descriptions. We used the following classes: ”cup”, ”bowl”, ”mug”, ”bottle”, ”cardboard”,453

”box”, ”Tripod”, ”Baseball bat”, ”Lamp”, ”Mug Rack”, ”Plate”, ”Toaster” and ”Spoon”. We use454

15

(a) (b) (c)

Figure 8: Objects used for the real-world tasks: (a) mug on tree, (b) bowl (or plate) on mug and (c)
bottle in box. We use a single pair of objects to generate demonstrations and test on novel objects.

the predicted bounding boxes from Detic to condition a Segment Anything model [43] to get ac-455

curate class-agnostic segmentation masks. Both Detic2 and Segment Anything3 come with several456

pre-trained models and we used the largest available. Finally, we select the pixels within each seg-457

mentation mask and use the depth information from our depth camera to create a per-object point458

cloud. We use DBSCAN to clouster the point cloud and filter out outlier points. Then, we perform459

mesh warping and interaction warping to predict object meshes and grasps.460

Previously, we experimented with Mask R-CNN [44] and Mask2Former [45] trained on standard461

segmentation datasets, such as COCO [46] and ADE20k [47]. We found that these dataset lack the462

wide range of object classes we would see in a household environment and that the trained models463

struggle with out-of-distribution viewing angles, such as looking from a steep top-down angle. We464

also experimented with an open-vocabulary object detection model OWL-ViT [48] and found it to465

be sensitive to scene clutter and the viewing angle.466

C Additional Results467

Training and inference times: We measure the training and inference times of TAX-Pose, R-NDF468

and IW (Table 3). Both R-NDF and IW take tens of seconds to either perceive the environment or469

to predict an action. This is because both of these methods use gradient descent with many random470

restarts for inference. On the other hand, TAX-Pose performs inference in a fraction of second but471

requires around 16 hours of training for each task. Neither R-NDF nor IW require task-specific472

training. We do not include the time it takes to perform pre-training for each class of objects, which473

is required by all three methods, because we used checkpoints provided by the authors of TAX-Pose474

and R-NDF.475

Additional real-world grasp predictions: We include additional examples of real-world object476

segmentation, mesh prediction and grasp prediction in Figure 9.477

2https://github.com/facebookresearch/Detic
3https://github.com/facebookresearch/segment-anything

16

Method Training Perception Grasp prediction Placement prediction

TAX-Pose [2] 16.5 ± 1.3 h - 0.02 ± 0.01 s 0.02 ± 0.01 s
R-NDF [17] - - 21.4 ± 0.5 s 42.5 ± 1.8 s
IW (Ours) - 29.6 ± 0.2 s 0.01 ± 0.01 s 0.003 ± 0.004 s

Table 3: Approximate training and inference times for our method and baselines measured over five
trials. R-NDF and IW do not have an explicit training phase, as they use demonstrations nonpara-
metrically during inference. Only IW has a perception step that is separate from the action prediction
step. We do not include the time it takes to capture a point cloud or to move the robot. Training and
inference times were measured on a system with a single NVIDIA RTX 2080Ti GPU and an Intel
i7-9700K CPU.

(a) (b) (c) (d) (e)

Figure 9: Additional examples, please see Figure 7.

Figure 10: Example of mug on tree episode.

17

Figure 11: Example of bowl/plate on mug episode.

Figure 12: Example of bottle in box episode.

18

