
Supplementary Material369

A.1 Neural Radiance Fields (NeRFs)370

Neural radiance fields [9] model a scene as a 6D, vector-valued continuous function that maps from371

a position x = (x, y, z) and a normalized viewing direction d = (dx, dy, dz), to the differential372

density σ and emitted color (r, g, b). In practice, this is achieved via two neural networks which373

partially share parameters: 1) the density network σ(x) which depends only on the position x; and374

2) the color network c(x,d) which depends on both the position x and viewing direction d.375

Novel-View Synthesis. For a scene, we are given a dataset of N RGB images {Ii}Ni=1 with camera376

poses {T}Ni=1. At each iteration, we sample a batch of rays R ∼ {T}Ni=1 and optimize σ and c by377

minimizing the photometric loss Lrgb =
∑

r∈R ∥ Ĉ(r)−C(r)∥22, where C(r) is the RGB value of378

the pixel corresponding to ray r ∈ R, and Ĉ(r) is the color estimated by the model using a discrete379

approximation of Eq.5 [9, 36].380

NeRF synthesizes an image by casting a ray r from the camera origin o through the center of each381

pixel. Points along the ray are parameterized as rt = o+ td, where t is the distance of the point to382

the camera origin o. The color C(r) of the ray r between the near and far scene bounds tn and tf is383

given by the volume rendering integral [37]384

C(r) =

∫ tf

tn

T (t)σ(rt)c(rt,d) dt, T (t) = exp

(
−
∫ t

tn

σ(rs) ds

)
, (5)

where T (t) is the accumulated transmittance along the ray from rtn to rt.385

A.2 Fast Feature Distillation386

A.2.1 Distillation Procedure387

We extend the Nerfacto method from Nerfstudio [8], and implement our feature field using a hierar-388

chical hash grid [6].389

Algorithm 1 Parallel Distillation Pseudocode

1 def parallel_distillation(images, num_steps, lambda_feat):
2 nerf = NeRF()
3 feat_field = FeatureField()
4 optimizer = Adam(nerf, feat_field)
5

6 feats = extract_features(images)
7

8 for i in range(num_steps):
9 rays_o, rays_d, target_rgb, target_feats =

sample_rays(rgb_images, feats)
10

11 # Forward pass
12 pred_rgb = nerf(rays_o, rays_d)
13 pred_feats = feature_field(rays_o, rays_d)
14

15 # Compute loss
16 rgb_loss = MSELoss(pred_rgb, target_rgb)
17 feat_loss = MSELoss(pred_feats, target_feats
18

19 loss = rgb_loss + lambda_feat * feat_loss
20 loss.backward()
21 optimizer.step()

390

12



We offer two distillation procedures both implemented in our codebase. The first approach trains391

the NeRF and distills the features in parallel (Algorithm 1). This can require tuning the weight392

λ associated with the feature loss. Our second approach trains the NeRF, then distills features393

sequentially (Algorithm 2).394

Algorithm 2 Sequential Distillation Pseudocode

1 def sequential_distillation(images, rgb_num_steps,
feat_num_steps):

2 nerf = NeRF()
3 feat_field = FeatureField()
4 rgb_optimizer = Adam(nerf)
5 feat_optimizer = Adam(feat_field)
6

7 feats = extract_features(images)
8

9 for i in range(rgb_num_steps):
10 target_rgb = sample_rays(rgb_images)
11

12 # Forward pass
13 pred_rgb = nerf(rays_o, rays_d)
14 rgb_loss = MSELoss(pred_rgb, target_rgb)
15

16 rgb_loss.backward()
17 rgb_optimizer.step()
18

19 for i in range(rgb_num_steps):
20 # Distill features at their original resolution
21 rays_o, rays_d, target_feats = sample_rays(feats)
22

23 # Forward pass
24 pred_feats = nerf(rays_o, rays_d)
25 feat_loss = MSELoss(pred_feats, target_feats)
26

27 feat_loss.backward()
28 feat_optimizer.step()

395

A.2.2 Extracting Dense Visual Features from CLIP396

We present an improved dense feature extraction scheme for vision-language models that preserves397

their semantic grounding. For clarity, we include Python code in Alg.3 for the original feature output398

in a CLIP ViT (Line 2: forward), and our improved dense feature output (Line 9: forward_v). We399

remove the identity and the residual output from the small MLP in Lines 5-6, which improves the400

signal-to-noise for language-guided object retrieval tasks. We apply the same technique to the final401

attention pooling layer in the ResNet version of CLIP, and observe that it provides better contrast402

than the ViT backbone but is less localized.403

Another detail is that the image model in CLIP first center-crops the input image, and then divides404

it into 14× 14 patches which are very low in resolution. We alleviate this issue by interpolating the405

positional encoding of each patch [3], so that our CLIP model can consume images with arbitrary406

aspect ratio and divide them into arbitrary numbers of patches. These changes enable us to extract407

higher-resolution visual features from CLIP and use all the information in an image by removing408

the need for cropping.409

13



Algorithm 3 Extracting Dense Features from CLIP

1 class Attn(nn.ResidualBlock):
2 def forward(self, x): # regular output
3 q, k, v = W_qkv @ self.ln_1(x)
4 v = F.softmax(dot(q[:1], k), dim= -1) * v
5 x = x + W_out @ v
6 x = x + self.mlp(self.ln_2(x))
7 return x # take x[:1] for CLS token
8

9 def forward_v(self, x): # dense output
10 v = W_v @ self.ln_1(x)
11 z = W_out @ v
12 return z # take z[1:] remove CLS token

410

A.3 Experimental Setup411

We provide details about our experimental setup used across our experiments for learning to grasp412

from demonstrations and language-guided object manipulation.413

Physical Setup. We collect RGB images with a RealSense D415 camera (the depth sensor is not414

used) mounted on a selfie stick. The selfie stick is used to increase the coverage of the workspace, as415

a wrist-mounted camera can only capture a small area of the workspace due to kinematic limitations.416

We program a Franka Panda arm to pick up the selfie stick from a magnetic mount, scan 50×1280×417

720 RGB images of the scene following a fixed trajectory of three helical passes at different heights,418

and place the selfie stick back on the mount.419

To calibrate the camera poses, we run COLMAP [38, 39] on a scan of a dedicated calibration scene420

with objects at known poses placed by the robot. We use these objects to compute the transformation421

from the COLMAP coordinate system to the world coordinate system. These camera poses are422

reused on subsequent scans. Given that the true camera poses vary due to small differences in how423

the robot grasps the selfie-stick, we optimize them as part of NeRF modeling to minimize any errors424

and improve reconstruction quality [8, 40, 41].425

Labeling Demonstrations. We label demonstrations in virtual reality (VR) using a web-based 3D426

viewer based on Three.js we developed that supports the real-time rendering of NeRFs, point clouds,427

and meshes. Given a NeRF of the demonstration scene, we sample a point cloud and export it into428

the viewer. We open the viewer in a Meta Quest 2 headset to visualize the scene, and move a gripper429

to the desired 6-DOF pose using the hand controllers (see Fig.2c).430

Feature Type Resolution

DINO ViT 98× 55
CLIP ViT 42× 24

CLIP ResNet 24× 14

Table 3: Feature Map Resolu-
tions. Resolutions of the fea-
tures output by the vision models
given a 1280× 720 RGB image.

NeRF and Feature Field Modeling. We downscale the im-431

ages to 640× 480 to speed up modeling of the RGB NeRF, and432

use the original 1280× 720 images as input to the vision model433

for dense feature extraction. We optimize the NeRF and feature434

field sequentially for 2000 steps each, which takes at most 90s435

(average is 80s) on a NVIDIA RTX 3090, including the time to436

load the vision model into memory and extract features.437

In our experiments, we distill the features at their original fea-438

ture map resolution which is significantly smaller than the RGB439

images (see Table 3). We achieve this by transforming the cam-440

era intrinsics to match the feature map resolutions, and sampling rays based on this updated camera441

model. The specific models we used were dino vits8 for DINO ViT, ViT-L14@336px for CLIP442

ViT, and RN50x64 for CLIP ResNet.443

14



49 Training Images 30 Training Images 20 Training Images 18 Training Images

Figure A10: Qualitative comparison of feature fields trained on different numbers of views. (Top
Row) The segmentation heatmap for “Baymax” from a CLIP feature field overlaid on the RGB
image from NeRF. (Bottom Row) The depth map rendered from NeRF.

A.4 Ablation on Number of Training Views444

Although our robot scans 50 images per scene in our experiments, we demonstrate that it is possi-445

ble to use a significantly smaller number of views for NeRF and feature field modeling without a446

significant loss in quality. To investigate this, we ablate the number of training images by evenly447

subsampling from the 50 scanned images and modeling a NeRF and feature field.448

Fig. A10 qualitatively compares the RGB, depth, and segmentation heatmaps. We observe an in-449

crease in floaters as we reduce the number of training images, with approximately 20 images being450

the lower bound before a drastic decline in quality.451

A.5 Learning to Grasp from Demonstrations452

Sampling Query Points. We use Nq = 100 query points across all the tasks. As other works453

have observed [17], the downstream performance can vary significantly across different samples of454

the query points. To address this issue, we sample five sets of query points over different seeds455

for each task, and run the grasp optimization procedure across a set of test scenes used for method456

development. We select the query points that achieved the highest success rate. The covariance of457

the Gaussian is manually tuned to fit the task.458

Grasp Pose Optimization. We first discuss how we initialize the grasp poses. We consider a459

tabletop workspace of size 0.7×0.8×0.35 meters, and sample a dense voxel grid over the workspace460

with voxels of size δ = 0.0075m (we use 0.005m for the cup on racks experiment), where each voxel461

v = (x, y, z) represents the translation for a grasp pose.462

Next, we compute the alpha value α(v) for each voxel using the NeRF density network σ, and filter463

out voxels with α(v) < 0.1. This removes approximately 98% of voxels by ignoring free space.464

The cosine similarity of the voxel features fα(v) is thresholded with the task embedding to further465

filter out voxels. This threshold is adjusted depending on the task and type of feature distilled, and466

typically cuts down 80% of the remaining voxels. Finally, we uniformly sample Nr = 8 rotations467

for each voxel to get the initial grasp proposals T .468

We minimize Eq. 3 to find the grasp pose that best matches the demonstrations using the Adam469

optimizer [19] for 50 steps with a learning rate of 5e-3. This entire procedure takes 15s on average.470

Grasp Execution. We reject grasp poses which cause collisions by checking the overlap between471

a voxelized mesh of the Panda gripper and NeRF geometry. We input the ranked list of grasp poses472

into an inverse kinematics solver and BiRRT motion planner in PyBullet [20, 21], and execute the473

highest-ranked grasp with a feasible motion plan.474

15



(a) Test Scene with a Screwdriver (b) Affordance Prediction (c) Predicted Grasp

Figure A11: MIRA Failure Case. (a) Test scene with a screwdriver and other distractors for the
screwdriver task (Fig.4b). (b) The orthographic render of the view selected by MIRA, we show
the RGB (top) and depth (bottom) renders. The pixel circled in cyan indicates the action with the
highest pixel-wise affordance across all views. (c) The predicted 6-DOF grasp incorrectly targets
the silicone brush, as it shares resemblance to a screwdriver from a top-down perspective.

A.5.1 Baselines475

We provide implementation details of the four baselines used in our few-shot imitation learning476

experiments. The first three baselines use NeRF-based outputs as features for the query point-based477

pose optimization:478

1. Density: we use the alpha α ∈ (0, 1) values for NeRF density to ensure the values are scaled479

consistently throughout different scenes, as the density output by the density field σ is unbounded.480

2. Intermediate Features: we use the features output by the intermediate density embedding MLP481

in Nerfacto [8], which have a dimensionality of 15.482

3. RGB: we use [r, g, b, α] as the feature for this baseline. α is used to ensure that this baseline483

pays attention to both the color and geometry, as we found that using RGB only with the alpha-484

weighted feature field (Eq. 2) collapsed RGB values to (0, 0, 0) for free space, which corresponds485

to the color black.486

MIRA Baseline. The fourth baseline we consider is Mental Imagery for Robotic Affordances487

(MIRA) [25], a NeRF-based framework for 6-DOF pick-and-place from demonstrations that renders488

orthographic views for pixel-wise affordance prediction. MIRA formulates each pixel in a rendered489

orthographic view as a 6-DOF action T = (R, t), with the orientation of the view defining the490

rotation R and the estimated depth from NeRF defining the translation t. The FCN is trained to491

predict the pixels in the rendered views corresponding to the demonstrated 6-DOF actions, and reject492

pixels sampled from a set of negative views. During inference, MIRA renders several orthographic493

views of the scene and selects the pixel that has the maximum affordance across all views.494

In our experiments, we train a separate FCN for 20000 steps using the two demonstrations for495

each task in Fig.4, and sample negative pixels from datasets containing distractor objects. We use496

data augmentation following Yen-Chen et al. [25]’s provided implementation and apply random497

SE(2) transforms to the training views. Given a test scene, we scan 50 RGB images as described498

in Appendix A.3, render 360 orthographic viewpoints randomly sampled over an upper hemisphere499

looking towards the center of the workspace, and infer a 6-DOF action. MIRA was designed for500

suction cup grippers and does not predict end-effector rotations. We attempted to learn this rotation,501

but found that the policy failed to generalize. To address this issue and give MIRA the best chance502

of success, we manually select the best end-effector rotation to achieve the task. We additionally503

find that MIRA often selects floater artifacts from NeRF, and manually filter these predictions out504

along with other unreasonable grasps (e.g., grasping the table itself).505

Given that MIRA is trained from scratch given just two demonstrations, we find that it struggles to506

generalize and is easily confused by floaters and distractors despite data augmentations and negative507

16



(a) Novel Scene (b) DINO ViT Heatmap (c) CLIP ViT Heatmap

Figure A12: Comparing DINO and CLIP feature fields. We depict the cosine similarity for the task
of grasping a mug by the handle. Two demos are provided on a red and a white mug (cf. Fig.3b).
(b) DINO overfits to the red color of the apple, while (c) CLIP captures higher-level semantics, and
identifies the metal mug.

samples. MIRA additionally reasons over 2.5D by using the rendered RGB and depth from NeRF508

as inputs to the FCN, while our query point-based formulation reasons optimizes explicitly over 3D.509

Because of this, we observe that MIRA can fail when there are occlusions or distractor objects that510

look like the demonstration objects from certain viewpoints. For example, one of the demonstrations511

for the screwdriver task was a top-down grasp on a screwdriver standing vertical in a rack (Fig. 4b).512

Fig. A11 depicts an example scene for the screwdriver grasping task where MIRA incorrectly selects513

a silicone brush as it looks similar to a screwdriver from a top-down 2.5D view. DINO and CLIP514

ResNet feature fields successfully grasp the screwdriver in this scene, highlighting the benefits of515

using pretrained features and reasoning explicitly over 3D geometry.516

A.5.2 DINO Failure Cases517

Our experiments show that DINO struggles with distractor objects which have high feature similarity518

to the demonstrations, despite not representing the objects and their parts we care about (Fig.A12b).519

We observe that DINO has the tendency to overfit to color. On the other hand, CLIP struggles far520

less with distractors due to its stronger semantic understanding (Fig.A12c).521

A.6 Language-Guided Manipulation522

For the language-guided experiments, we distilled CLIP ViT features from ViT-L14@336px. We523

use the Nq = 100 query points sampled for the demonstrations in the learning to grasp from demon-524

strations section, and similarly use Nr = 8 rotations per voxel. We minimize Eq. 4 for 200 steps525

with Adam using a learning rate of 2e-3.526

Failure Cases for Retrieving Demonstrations via Text We find that retrieving demonstrations via527

text can require prompt engineering, with queries like “mug rack” and “wooden spoon” undesirably528

matching to the mug handle and cup on racks task (the demo rack is made out of wood), respectively.529

Since the CLIP feature space is very high dimensional, just one language query could underspecify530

the desired problem. We believe that task matching could be robustified by incorporating a language531

description for each demonstration.532

17


	Introduction
	Problem Formulation
	Open-Ended Manipulation with Feature Fields
	Fast Feature Field Distillation (F3D)
	Representing 6-DOF Poses with Feature Fields
	Open-Text Language-Guided Manipulation

	Results
	Learning to Grasp from Demonstrations
	Language-Guided Object Manipulation

	Related Work
	Conclusion
	Neural Radiance Fields (NeRFs)
	Fast Feature Distillation
	Distillation Procedure
	Extracting Dense Visual Features from CLIP

	Experimental Setup
	Ablation on Number of Training Views
	Learning to Grasp from Demonstrations
	Baselines
	DINO Failure Cases

	Language-Guided Manipulation



