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A Intuitive Description on Spherical Motion Dynamics

In introduction of the main text, we only provide a brief statement on the concept of Spherical Motion
Dynamics (SMD) due to the limitation of the length. In this section we give a detailed description on
intuition of Spherical Motion Dynamics and its relevant concept, effective learning rate.

Effective learning rate Since Batch Normalization (Ioffe & Szegedy, 2015) becomes an indispens-
able module of popular network structures, the scale of the weight norm does not affect the output of
unit at all, Euclidean distance defined in weight space completely fails to measure the evolving of
DNN during learning process. As a result, learning rate η cannot properly measure update efficiency
of normalized DNN. To deal with such issue, van Laarhoven (2017); Hoffer et al. (2018); Zhang et al.
(2019b) propose “effective learning rate” as a substitute for learning rate to measure update efficiency
of normalized neural network using stochastic gradient descent (SGD), defined as

ηeff =
η

||w||22
. (1)

Now we show why effective learning rate is defined like Eq.(1). A typical SGD update rule without
weight decay(WD) is

wt+1 = wt − η
∂L
∂w

∣∣∣
w=wt

, (2)

if ||wt||2 = ||wt+1||2, then dividing both side of Eq.(7) by ||wt||2, combining with the definition of
unit gradient, and let w̃t = wt/||wt||2, we have

w̃t+1 = w̃t −
η

||wt||22
∂L
∂w

∣∣∣
w=w̃t

= w̃t − ηeff ·
∂L
∂w

∣∣∣
w=w̃t

.

(3)

Eq.(3) shows effective learning rate can be viewed as learning rate of SGD defined on the intrinsic
domain Sp−1.

Next we show the connection between effective learning rate and angular update. According to
the definition of angular update, ∂L/∂w is perpendicular to weight w (see Figure 1 in main text),
combining with Eq.(3) and (1) we have

tan(∆t) =
η

||wt||
· || ∂L
∂w

∣∣∣
w=wt

||2 = ηeff · ||
∂L
∂w

∣∣∣
w=w̃t

||2. (4)
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If angular update ∆t is small enough, it can be approximated by first order Taylor series expansion of
tan(∆t) = ∆t +O(∆2

t ), therefore we have

∆t ≈ tan(∆t) = ηeff · ||
∂L
∂w

∣∣∣
w=w̃t

||2. (5)

It can be seen from Eq.(5) effective learning rate multiplying unit gradient norm equals angular update.
Comparing with original definition of learning rate η, effective learning rate is not deterministic, its
value depends on the variation of weight norm. Even in equilibrium state of SMD where weight norm
has its own theoretical value that can be explicitly computed (theorem 1 in main text), the theoretical
value of effective learning rate still depends on unit gradient norm. On the hand, our results in main
text showing the theoretical value of angular update in equilibrium is only determined by predefined
hyper parameters (learning rate η, WD factor λ). Therefore, we suggest to directly study the behavior
of angular update instead of effective learning in SMD.

Necessity of Weight Decay Another deduction from Eq.(2) is that weight norm always increases
because

||wt+1||22 = ||wt||22 + (η|| ∂L
∂w

∣∣∣
w=wt

||2)2 > ||wt||22. (6)

Recall lemma 1 in main text implies gradient norm is inversely proportional to weight norm if unit
gradient is fixed, hence increasing weight norm can shrink gradient norm as well as effective learning
rate in Eq.(1). Zhang et al. (2019b) states the potential risk that GD/SGD without WD but BN
will converge to a stationary point (where gradient norm is very small) not by reducing loss but by
increasing norm of weight. Arora et al. (2019) proves that full gradient descent can avoid the risk of
vanishing effective learning rate, and converge to a stationary point defined on Sp−1, but their results
still require sophisticated learning rate decay schedule in SGD case. Besides, practical implementation
suggests trained neural networks without WD often suffer from poor generalization (Zhang et al.,
2019b; Bengio & LeCun, 2007; Lewkowycz & Gur-Ari, 2020).

Tug-of-war in Spherical Motion Dynamics Now we intuitively derive the tug-of-war between the
centripetal effect from WD, and the centrifugal effect from the gradient perpendicular to weights.
Considering the update rule of SGD with WD:

wt+1 = wt − η(
∂L
∂w

∣∣∣
w=wt

+ λwt). (7)

The squared norm of updated weight is

||wt+1||22 = (1− λη)2||wt||22 + (η|| ∂L
∂w

∣∣∣
w=wt

||2)2 (8)

Comparing with Eq.(6), Eq.(8) implies WD provides direction of updates tending to reduce weight
norm, hence Chiley et al. (2019); Zhang et al. (2019b) point out the possibility that weight norm can
be steady, but do not explain this clearly. Here we demonstrate the mechanism deeper: By Eq.(8), we
have

||wt+1||2 − ||wt||2

=

√
(1− λη)2||wt||22 + η2|| ∂L

∂w

∣∣∣
w=wt

||22 − ||wt||2

=
(1− λη)2||wt||22 + η2|| ∂L∂w

∣∣∣
w=wt

||22 − ||wt||22√
(1− λη)2||wt||22 + η2|| ∂L∂w

∣∣∣
w=wt

||22 + ||wt||2
.

(9)

When ηλ� 1, we have

(1− λη)2||wt||22 + η2|| ∂L
∂w

∣∣∣
w=wt

||22 − ||wt||22

=− 2λη||wt||22 + η2|| ∂L
∂w

∣∣∣
w=wt

||22 +O(λη)

(10)

√
(1− λη)2||wt||22 + η2|| ∂L

∂w

∣∣∣
w=wt

||22 + ||wt||2 = 2||wt||2 +O(λη). (11)
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Therefore, we have

||wt+1||2 − ||wt||2

=− λη||wt||2 +
η2

2||wt||2
|| ∂L
∂w

∣∣∣
w=wt

||22 +O(λη)

≈− λη||wt||2 +
η2

2||wt||32
|| ∂L
∂w

∣∣∣
w=w̃t

||22.

(12)

Eq.(12) implies if unit gradient norm (|| ∂L∂w
∣∣∣
w=w̃t

||2) is steady, “centripetal force” (−λη||wt||2) is

proportional to ||wt||2, while “centrifugal force” ( η2

2||wt||32
|| ∂L∂w

∣∣∣
w=w̃t

||22) is inversely proportional

to ||wt||32. As a result, the dynamics of weight norm is like a spherical motion in physics: overly
large weight norm makes centripetal force larger than centrifugal force, leading to decreasing weight
norm; while too small weight norm makes centripetal force smaller than centrifugal force, resulting
in increasing weight norm. At last, equilibrium state will be reached if the number of iterations is
sufficiently large.

Let us see what will happen if equilibrium is reached in this tug-of-war. By Eq.(12), we have

λη||wt||2 =
η2

2||wt||32
|| ∂L
∂w

∣∣∣
w=w̃t

||22. (13)

Rewrite Eq.(13), we have
η

||wt||2
· || ∂L
∂w

∣∣∣
w=w̃t

||2 =
√

2λη. (14)

Recall η
||wt||2 is effective learning rate ηeff . Combining with (14) and (5), we have

∆t ≈
√

2λη. (15)
√

2λη is exactly the theoretical value of angular update ∆t in SGD case (Theorem 3 in main text).

Note the intuitive description on SMD is only suitable for SGD case. In momentum case, the tug-and-
tar between effect of weight decay and gradient of loss is not as clear as that in pure SGD case. But
our theorem 2/3 in main text shows SGDM can also obtain equilibrium, and the theoretical value of
angular update is influenced by momentum factor α besides learning rate η and weight decay factor
λ.

B Related Work

In this section, we additionally review literatures about normalization techniques and weight decay.

Normalization techniques Batch normalization (BN (Ioffe & Szegedy, 2015)) is proposed to
deal with gradient vanishing/explosion, and accelerate the training of DNN. Rapidly, BN has been
widely used in almost all kinds of deep learning tasks. Aside from BN, more types of normalization
techniques have been proposed to remedy the defects of BN (Ioffe, 2017; Wu & He, 2018; Chiley
et al., 2019; Yan et al., 2020) or to achieve better performance (Ba et al., 2016; Ulyanov et al., 2016;
Salimans & Kingma, 2016; Shao et al., 2019; Singh & Krishnan, 2020). Though extremely effective,
the mechanism of BN still remains as a mystery. Existing works attempt to analyze the function of
BN: Ioffe & Szegedy (2015) claims BN can reduce the Internal Covariance Shift (ICS) of DNN;
Santurkar et al. (2018) argue that the effectiveness of BN is not related to ICS, but the smoothness
of normalized network; Luo et al. (2019) shows BN can be viewed as an implicit regularization
technique; Cai et al. (2019) proves that with BN orthogonal least square problem can converge at
linear rate; Dukler et al. (2020) proves weight normalization can speed up training in a two-layer
ReLU network.

Weight decay Weight decay (WD) is well-known as l2 regularization, or ridge regression, in
statistics. WD is also found to be extreme effective when applied in deep learning tasks. Krizhevsky
& Geoffrey (2009) shows WD sometimes can even improve training accuracy not just generalization
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performance; Zhang et al. (2019b) show WD can regularize the input-output Jacobian norm and
reduce the effective damping coefficient; Li et al. (2020a) discusses the disharmony between WD
and weight normalization. A more recent work Lewkowycz & Gur-Ari (2020) empirically finds the
number of SGD steps T until a model achieves maximum performance satisfies T ∝ 1

λη , where λ, η
are weight decay factor and learning rate respectively, they interpret this phenomenon under the view
of Neural Tangent Kernel (Jacot et al., 2018), showing that weight decay can accelerate the training
process. Notice their result has no connection with equilibrium condition discussed in this work. Our
results shows the cause of equilibrium condition can be reached long before neural network gets its
highest performance.

Equilibrium Since the scale invariant property caused by normalization makes euclidean metrics of
weight meaningless, researchers start to study the behavior of effective learning rate. van Laarhoven
(2017); Chiley et al. (2019) estimate the magnitude of effective learning rate under equilibrium
assumptions in SGD case; Hoffer et al. (2018) quantify effective learning rate without equilibrium
assumption; Arora et al. (2019) proves that without WD, normalized neural network still can converge
using fixed/decaying learning rate in Gradient Descent(GD)/SGD cases respectively; Zhang et al.
(2019b) shows WD can increase effective learning rate; Li & Arora (2020) proves standard multi-
stage learning rate schedule with BN and WD is equivalent to an exponential increasing learning rate
schedule without WD. As a proposition, Li & Arora (2020) quantifies the magnitude of effective
learning rate in SGDM case. But none of them have ever discussed why equilibrium condition can be
reached. A recent work Li et al. (2020b) studies the convergence of effective learning rate by SDE,
proving that the convergence time is of O(1/(λη)), where λ, η are weight decay factor and learning
rate respectively. Kunin et al. (2021) also depicts the equilibrium state by gradient flow.

Adaptive learning rate method Equilibrium state of Sperical Motion Dynamics makes all the
relative update (||∆wt||2/||wt||2) of weights from different layers same and only determined by
predefined hyper-parameters. Though this interesting phenomenon has not been widely accepted by
optimization community (due to lack of justification on equilibrium), a bunch of large batch training
methods (You et al., 2017, 2019) have adopted this “fixed relative update” motivation to design
optimization algorithm for deep models. They do not connect the “fixed relative update” motivation
with equilibrium phenomenon at all, but it is still worth being mentioned.

C Proof of Theorems

Remark C.1. In the rest of context, we will use the following conclusions multiple times: ∀δ, ε ∈ R,
if |δ| � 1, |ε| � 1, then we have:

(1 + δ)2 = 1 + 2δ + o(δ), (16)
√

1 + δ = 1 +
δ

2
+ o(δ), (17)

1

1 + δ
= 1− δ + o(δ), (18)

(1 + δ)(1 + ε) = 1 + δ + ε+ o(δ + ε). (19)

C.1 Proof of Lemma 1

Lemma 1. If w is scale-invariant with respect to L(w) , then for all k > 0, we have:

〈wt,
∂L
∂w

∣∣∣
w=wt

〉 = 0 (20)

∂L
∂w

∣∣∣
w=kwt

=
1

k
· ∂L
∂w

∣∣∣
w=wt

. (21)

Proof. Given w0 ∈ Rp\{0}, since ∀k > 0,L(w0) = L(kw0), then we have

∂L(w)

∂w

∣∣∣
w=w0

=
∂L(kw)

∂w

∣∣∣
w=w0

=
∂L(w)

∂w

∣∣∣
w=kw0

· k (22)
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∂L(kw)

∂k

∣∣∣
w=w0

= 〈∂L(w)

∂w

∣∣∣
w=kw0

,w0〉 =
1

k
· 〈∂L(w)

∂w

∣∣∣
w=w0

,w0〉 = 0 (23)

C.2 Proof of Theorem 1

Lemma C.1. If the sequence {xt}∞t=1 satisfies

xt ≥ αxt−1 +
L

xt−1
, (24)

where x1 > 0, L > 0, α > 1/2

Then, we have

xt ≥
√

L

1− α
− αt−1|

√
L

1− α
− x1| (25)

Proof. If xt ≥
√

L
1−α , since

√
L

1−α ≥
√

L
α , and f(x) = αx+ L/x is monotonically increasing on

[
√
L/α,∞). Then we have

xt+1 ≥αxt +
L

xt

≥α
√

L

1− α
+

L√
L/(1− α)

=

√
L

1− α
,

(26)

which means ∀k > t, xk ≥
√
L/(1− α).

If 0 < xt <
√
L/(1− α), then√

L

1− α
− xt+1 ≤ (α−

√
L(1− α)

xt
)(

√
L

1− α
− xt)

< α(

√
L

1− α
− xt).

(27)

Therefore, if 0 < xT <
√
L/(1− α), by induction it’s easy to ∀t ∈ [1, T − 1], we have

0 < xt < xt+1 ≤ xT <
√

L

1− α
, (28)

(

√
L

1− α
− xT ) < αT−1(

√
L

1− α
− x1). (29)

Summarizing Eq.(26), Eq.(29), we have

xt ≥
√

L

1− α
− αt−1|

√
L

1− α
− x1| (30)

Theorem 1. (Equilibrium in SGD) Assume the loss function is L(X;w) with scale-invariant weight
w, gt = ∂L

∂w

∣∣
Xt,wt

, g̃t = gt · ||wt||2. Consider the update rule of SGD with weight decay,

wt+1 = wt − η · (gt + λwt) (31)

where λ, η ∈ (0, 1). If the following assumptions hold:

1) λη � 1 (o(λη) can be omitted);
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2) Let Lt = E[||g̃t||22|wt]. ∃V ∈ R+, ∀t ∈ N+, E[(||g̃t||22 − Lt)2|wt] ≤ V ;

3) ∀t ∈ N+, Lt satisfies |Lt+1 − Lt| < 4
√
V (λη)3/2;

4) ∃l ∈ R+, ∀t ∈ N+, ||g̃t||22 > l, l > 2[ 2λη
1−2λη ]2Lt.

Then ∃B > 0, ∀t ∈ N+, w∗t = 4
√
Lt−1η/(2λ), we have

E[||wt||22 − (w∗t )2]2 ≤ (1− 2λη)tB +
2V η2

l(1− 2λη)
. (32)

Proof. Since 〈wt, gt〉 = 0, by Eq.(31) we have:

||wt+1||22 = (1− ηλ)2||wt||22 +
||g̃t||22η2

||wt||22
(33)

Let xt denote ||wt||22, Gt denote ||g̃t||22 and omit O((ηλ)2) part. Then according to assumptions 1),
2), 3), Gt > l, E[Gt|xt] = Lt,E[(Gt − Lt)2|xt] < V , Eq.(33) can be rewritten as

xt+1 = (1− 2λη)xt +
Gtη

2

xt
. (34)

The rest work is to prove the sequence {xt}∞t=1 will approach to another sequence {x∗t }∞t=1 in
expectation, where x∗t =

√
Lt−1η/(2λ).

Step 1, derive a lower bound of xt using Lemma C.1 and assumption 4.

According to Lemma C.1, the lower bound of xt is

xt >

√
lη

2λ
− (1− 2λη)t|x0 −

√
lη

2λ
|. (35)

Eq.(35) implies when t > T (λ, η, l, x0), where

T (λ, η, l, x0) = [1 +
log((

√
2− 1)

√
lη/(4λ))− log(|x0 −

√
lη/(4λ)|)

log(1− 2λη)
], (36)

we have

xt >

√
lη

4λ
. (37)

Step 2, derive the relation between E(xt − x∗t+1)2 and E(xt+1 − x∗t+1)2 using lower bound of xt
and assumption 2, 4.

Since x∗t+1 =
√
Ltη/(2λ), Expanding E(xt+1 − x∗t+1)2 we have

E[(xt+1 − x∗t+1)2|xt] = E[((1− 2λη − Ltη
2

xtx∗t+1

)(xt − x∗t+1) +
(Gt − Lt)η2

xt
)2|xt]

= (1− 2λη − Ltη
2

xtx∗t+1

)2(xt − x∗t+1)2 +
E[(Gt − Lt)2|xt]η4

x2
t

.

(38)

Now we need to prove

0 < 1− 2λη − Ltη
2

xtx∗t+1

< 1− 2λη (39)

when t is sufficiently large. According to Eq.(36),(37), when t > T (λ, η, l, x0), xt >
√

lη
4λ ,

x∗t+1 =
√
Ltη/(2λ), then we have

1− 2λη −
√

2Lt
l
· 2λη < 1− 2λη − Ltη

2

x∗t+1xt
. (40)
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Combining with assumption 4 in Theorem 1, we have

0 < 1− 2λη −
√

2Lt
l
· 2λη < 1− 2λη − Lt

x∗t+1xt
. (41)

Combining with Eq.(37),(38),(41), if t > T (λ, η, l, x0), we have

E[(xt+1 − x∗t+1)2|xt] < (1− 2λη)2(xt − x∗t+1)2 +
4V η3λ

l
. (42)

Considering the expectation with respect to the distribution of xt, we have

E(xt+1 − x∗t+1)2 < (1− 2λη)2E(xt − x∗t+1)2 +
4V η3λ

l
. (43)

Step 3, derive the relation between E(xt+1 − x∗t+1)2 and E(xt − x∗t )2 using assumption 4 and
results in step 2

Note the theoretical value at iteration t is x∗t not x∗t+1. Now we see at iteration t,

|xt − x∗t+1| ≤ |xt − x∗t |+ |x∗t − x∗t+1|. (44)

Since ∀t, Gt > l, Lt = E[Gt|xt] > l, we have

|x∗t − x∗t+1| ≤ (
√
Lt−1 −

√
Lt) ·

√
η

2λ
=
|Lt−1 − Lt|√
Lt−1 +

√
Lt
·
√

η

2λ
≤ |Lt−1 − Lt|

2
√
l

·
√

η

2λ
. (45)

Combining with assumption 3, we have

|xt − x∗t+1| ≤ |xt − x∗t |+
√

2V η2λ√
l

(46)

Now considering the expectation w.r.t. distribution of xt, we have

E(xt − x∗t+1)2 ≤ E[|xt − x∗t |+
√

2V η2λ√
l

]2 ≤ [
√

E(xt − x∗t )2 +

√
2V η2λ√
l

]2 (47)

Now we consider two cases separately: if λη
√

E(xt − x∗t )2 >
√

2V η2λ√
l

, then

E(xt − x∗t+1)2 ≤ [
√
E(xt − x∗t )2 +

√
2V η2λ√
l

]2 ≤ (1 + λη)2E(xt − x∗t )2. (48)

Combining with Eq.(43), we have

E(xt+1 − x∗t+1)2 < (1− 2λη)E(xt − x∗t )2 +
4V η3λ

l
. (49)

Else if λη
√

E(xt − x∗t )2 <
√

2V η2λ√
l

, i.e. E(xt − x∗t )2 < 2V η2

l , then by Eq.(47), we have

E(xt − x∗t+1)2 ≤ [
√

E(xt − x∗t )2 +

√
2V η2λ√
l

]2 < (1 + λη)2 2V η2

l
. (50)

Combining with Eq.(43), we have

E(xt+1 − x∗t+1)2 < (1− 2λη)
2V η2

l
+

4V η3λ

l
=

2V η2

l
. (51)

Summary Eq.(49), (51), we have

E(xt+1 − x∗t+1)2 < max{(1− 2λη)E(xt − x∗t )2 +
4V η3λ

l
,

2V η2

l
}. (52)
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Step 4, derive the upper bound of E(xt+1 − x∗t+1)2 given t

According to Eq.(52), by applying deduction method, when t > T (λ, η, l, x0), we have

E(xt − x∗t )2 ≤ (1− 2λη)t−T E(xT − x∗T )2 +
2V η2

l
(53)

Now we have derived the upper bound of E(xt+1 − x∗t+1)2 when t ≥ T (λ, η, l, x0), we need
to take t < T (λ, η, l, x0) into account. To do that, we just need to prove B = max{(1 −
2λη)−tE(xt − x∗t )

2|t = 1, 2, ..., T exists, where T = T (λ, η, l, x0). Specifically, we need
to prove ∀t ∈ {0, 1, 2, ..., T , E(xt − x∗t )

2 is finite. According to Lemma C.1, since Gt > l,

xt ≥ min{x0,
√

lη
2λ}, we have

Ex2
t =E[(1− 2λη)2x2

t−1 + 2(1− 2λη)Gt +
G2
t

x2
t−1

]

<(1− 4λη)Ex2
t−1 + 2(1− 2λη)Lt +

V + L2
t

min(x2
0, lη/(2λ))

.

(54)

Eq.(54) implies if Ex2
t−1 <∞, then Ex2

t <∞. Hence by deduction methods, ∀t ∈ [0, T (λ, η, l, x0)],
Ex2

t is finite. Next, we can bounded E(xt − x∗)2 by

E(xt − x∗)2

<Ex2
t + 2x∗t |Ext|+ (x∗t )

2

<Ex2
t + 2x∗t

√
Ex2

t + (x∗t )
2

<∞.

(55)

Therefore, B exists, and satisfies: when t ≤ T (λ, η, l, x0), we have

E(xt−x∗)2 = (1−2λη)t ·(1−2λη)−tE(xt−x∗t )2 < (1−2λη)tB < (1−2λη)tB+
2V η2

l
; (56)

when t > T (λ, η, l, x0), we have

E(xt − x∗t )2 ≤ (1− 2λη)t−T E(xT − x∗T )2 +
2V η2

l
≤ (1− 2λη)tB +

2V η2

l
; (57)

In summary, ∀t > 0, we have

E(xt − x∗)2 < (1− 2λη)tB +
2V η2

l
. (58)

C.3 Proof of Theorem 2

Lemma C.2. Assume α, β, ε ∈ (0, 1), where β � 1. Denote diag(1− 2β
1−α , α, α

2 + 2α2

1−αβ) as Λ,

k = ( 1
(1−α)2 ,−

2α
(1−α)2 ,

α2

(1−α)2 )T , e = (1, 1, 1)T . If ε < 1
3 [ 1−α2

β − 8
1−α ], then ∀d ∈ Rp, we have

||(Λ− εβ(1− α)2keT )d||22 < (1− 4β

1− α
)||d||22 (59)

Proof. Omit O(β2) part, we have

||(Λ− εβ(1− α)2keT )d||22

=(1− 4β

1− α
)d2

1 + α2d2
2 + α4(1 +

4β

1− α
)d2

3

− 2εβ(d1 + d2 + d3)(d1 − 2α2d2 + α4d3)

(60)
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First, we need to estimate the lower bound of (d1 + d2 + d3)(d1 − 2α2d2 + α4d3) by

(d1 + d2 + d3)(d1 − 2α2d2 + α4d3)

=
[d1 + (1− 2α2)d2]2

2
+

[d1 + (1 + α4)d3]2

2

− (1/2 + 2α4)d2
2 −

1 + α8

2
+ (α4 − 2α2)d2d3

≥− (
1

2
+ 2α4 +

α4

2
)d2

2 − (
α8

2
+
α4

2
− 2α2 +

5

2
)d2

3

≥− 3d2
2 −

5

2
d2

3.

(61)

Then combining Eq.(60), (61), we have

||(Λ− εβ(1− α)2keT )d||22

≤(1− 4β

1− α
)d2

1 + (α2 + 3βε)d2
2

+(α4 +
4βα4

1− α
+

5βε

2
)d2

3.

(62)

Since ε < 1
3 [ 1−α2

β − 8
1−α ], we have

α2 + 3βε < 1− 4β

1− α
, (63)

α4 +
4βα4

1− α
+

5βε

2
< 1− 4β

1− α
. (64)

Hence, by Eq.(62) we have

||(Λ− εβ(1− α)2keT )d||22 < (1− 4β

1− α
)||d||22 (65)

Theorem 2. (Equilibrium in SGDM) Considering the update rule of SGDM (heavy ball
method (Polyak, 1964)):

vt = αvt−1 + gt + λwt (66)
wt+1 = wt − ηvt (67)

where λ, η ∈ (0, 1), α ∈ ( 1
2 , 1). If following assumptions hold:

5) λη � 1, λη < (1−
√
α)2;

6) Define ht = ||gt||22 + 2α〈vt−1, gt〉, h̃t = ht · ||wt||22, Lt = E[h̃t|wt]. ∃V ∈ R+, ∀t ∈ N+,
E[(h̃t − Lt)2|wt] ≤ V ;

7) ∀t ∈ N+, Lt satisfies |Lt+1 − Lt| < 4
√
V (λη)3/2;

8) ∃l ∈ R+,∀t ∈ N+, h̃t > l > 2[ 6λη
(1−α)3(1+α)−8λη(1−α) ]2Lt, ;

then ∃B,C > 0, C only depends on α, w∗t = 4
√
Lt−1η/(λ(1− α)(2− λη/(1 + α))), we have

E[||wt||22 − (w∗t )2]2 ≤ (1− 2λη

1− α
)tB +

V η2

l
C, (68)

Proof. The update rule is
wt+1 = wt − ηvt

= wt − η(αvt−1 +
g̃t
||wt||

+ λwt)

= wt − η(α
wt−1 −wt

η
+

g̃t
||wt||

+ λwt)

= (1− ηλ+ α)wt − αwt−1 − gtη.

(69)
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Derive the update of weight norm by Eq.(69), we have

||wt+1||22
=(1− ηλ+ α)2||wt||22 − 2α(1 + α− ηλ)〈wt,wt−1〉

+ α2||wt−1||22 + ||gt||22η2 + 2〈αwt−1, gtη〉
=(1− ηλ+ α)2||wt||22 − 2α(1 + α− ηλ)〈wt,wt−1〉

+ α2||wt−1||22 + ||gt||22η2 + 2〈α(wt + ηvt−1), gtη〉
=(1− ηλ+ α)2||wt||22 − 2α(1 + α− ηλ)〈wt,wt−1〉

+ α2||wt−1||22 +
h̃tη

2

||wt||22
.

(70)

Derive the update of inner product by Eq.(69) and the fact that g̃t is perpendicular to wt, we have

〈wt+1,wt〉 = (1 + α− λη)||wt||2 − α〈wt,wt−1〉. (71)

Now Eq.(70), (71) can be formulated as a 3 dimensional iterative map, let Xt,A, e denote:

Xt =

(
at
bt
ct

)
=

 ||wt||22
〈wt,wt−1〉
||wt−1||22

 , (72)

A =

 (1 + α− λη)2 −2α(1 + α− λη) α2

1 + α− λη −α 0
1 0 0

 , (73)

e =

(
1
0
0

)
, (74)

(75)

respectively, then we have

Xt+1 = AXt +
h̃tη

2

eTXt
e. (76)

The rest process is to prove {Xt} will approach to another sequence {X∗t }, where X∗t denotes the
solution of equation

X = AX +
Lt−1η

2

eTX
e (77)

Step 1, simplify the iterative equation Eq.(76) by eigenvalue decomposition.

When λη < (1−
√
α)2, the eigen value of A are all real number, and explicity computed as

λ1 =
(1 + α− λη)2 + (1 + α− λη)

√
(1 + α− λη)2 − 4α

2
− α

=1− 2λη

1− α
+O(λ2η2),

λ2 = α,

λ3 =
(1 + α− λη)2 − (1 + α− λη)

√
(1 + α− λη)2 − 4α

2
− α

=α2 +
2α2

(1− α)
λη +O(λ2η2),

and they satisfy
0 < λ3 < λ2 = α < λ1 < 1. (78)
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We omit O(λ2η2) in following derivation. Considering a eigenvalue decomposition of A

S−1AS = Λ, (79)

where Λ is a diagonal matrix whose diagonal elements are the eigen value of A; the column vector
of S is the eigen vectors of A, note the fromulation of S,Λ are not unique. Specifically, we set Λ,S
as Eq.(80), (81), the inverse of S exists, and can be explicitly expressed as Eq.(82).

Λ =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
, (80)

S =

 1 1 1
1+α−λη
α+λ1

1+α−λη
α+λ2

1+α−λη
α+λ3

1
λ1

1
λ2

1
λ3

 . (81)

S−1 =


(α+λ1)λ1

(λ1−α)(λ1−λ3) − 2λ1(α+λ1)(α+λ3)
(λ1−λ3)(λ1−α)(1+α−β)

λ1λ3(α+λ1)
(λ1−α)(λ1−λ3)

− 2α2

(λ1−α)(α−λ3)
2α(α+λ1)(α+λ3)

(λ1−α)(α−λ3)(1+α−β) − 2αλ1λ3

(λ1−α)(α−λ3)
(α+λ3)λ3

(α−λ3)(λ1−λ3) − 2λ3(α+λ3)(α+λ1)
(λ1−λ3)(α−λ3)(1+α−β)

(α+λ3)λ1λ3

(α−λ3)(λ1−λ3)

 . (82)

Remark C.2. The computing process of eigenvalue decomposition of A is straightforward and
tedious, so we omit them. Besides, notice A is not symmetric, its eigenvalue decomposition is not
equivalent to its SVD(singular value decomposition). The eigen vectors of A are not necessarily unit
or orthogonal to each other

Let Yt = S−1Xt, combining with Eq.(76), we have

Yt+1 = ΛYt +
h̃tη

2

(STe)TYt
S−1e. (83)

Combining with Eq.(81) and Eq.(82), and set Yt = (ãt, b̃t, c̃t)
T , Eq.(83) can explicitly expressed as

ãt+1 = λ1ãt +
h̃tη

2

ãt + b̃t + c̃t
· (α+ λ1)λ1

(λ1 − α)(λ1 − λ3)
, (84)

b̃t+1 = αb̃t −
h̃tη

2

ãt + b̃t + c̃t
· 2α2

(λ1 − α)(α− λ3)
, (85)

c̃t+1 = λ3c̃t +
h̃tη

2

ãt + b̃t + c̃t
· (α+ λ3)λ3

(α− λ3)(λ1 − λ3)
. (86)

Step 2. derive the lower bound of ||wt||22 = ãt + b̃t + c̃t like step 1 in theorem 1

To do that, we need to prove following inequations (Eq.(87) - Eq.(91)) by mathematical induction
method

b̃t <0, (87)
c̃t >0, (88)

(α− λ1)b̃t >(λ1 − λ3)c̃t, (89)

ãt + b̃t + c̃t >0, (90)

ãt+1 + b̃t+1 + c̃t+1, >λ1(ãt + b̃t + c̃t) +
h̃tη

2

ãt + b̃t + c̃t
. (91)

According to Eq.(72), start point X1 satisfies

X1 = (||w1||22, 〈w1,w0〉, ||w0||22)T = (a1, a1, a1)T (92)

11



where w0 = w1, a1 = ||w1||22. Then Y1 = S−1X1. Combining with Eq.(85), (86), we have

b̃1 =− 2α2λη

(λ1 − α)(α− λ3)
a1, (93)

c̃1 =
λ3(λ3 + α)(1− α+ λη)

(λ3 − α)(λ1 − λ3)(1 + α− λη)
(
1− α− λη
1− α+ λη

− λ1)a1, (94)

Since

λ3 <α (95)
1− α− λη
1− α+ λη

− λ1 =O(λ2η2) (96)

then we have
(α− λ1)b̃1 = O(λη) > O(λ2η2) = (λ1 − λ3)c̃1. (97)

Besides
ã1 + b̃1 + c̃1 = eTSY1 = eTX1 = a1 > 0. (98)

Sum Eq.(84), Eq.(85), Eq.(86), set t = 1, and combine with Eq.(97) we have

ã2 + b̃2 + c̃2 =λ1ã1 + αb̃1 + λ3c̃1 +
h̃1η

2

ã1 + b̃1 + c̃1
,

≥λ1(ã1 + b̃1 + c̃1) +
h̃1η

2

ã1 + b̃1 + c̃1
.

(99)

Therefore, for t = 1, Eq.(87) - (91) holds.

Suppose for t = T , Eq. (87) - (91)) hold. Then by Eq.(85), (86), we have b̃T+1 < 0, ãT+1 > 0, so
Eq.(87), (88) hold for t = T + 1;

Combining with Eq.(85), (86), (89), we have

(α− λ1)b̃T+1

=α(α− λ1)b̃T +
h̃tη

2

ãT + b̃T + c̃T
· 2α2

(α− λ3)

>λ3(λ1 − λ3)c̃T +
h̃tη

2

ãT + b̃T + c̃T
· (α+ λ3)λ3

(α− λ3)

=(λ1 − λ3)c̃T+1,

(100)

thus Eq.(89) holds for t = T + 1.

Sum Eq.(84), Eq.(85), Eq.(86) for t = T + 1, due to Eq.(100) we have

ãT+2 + b̃T+2 + c̃T+2

=λ1ãT+1 + αb̃T+1 + λ3c̃T+1 +
h̃tη

2

ãT+1 + b̃T+1 + c̃T+1

>λ1(ãT+1 + b̃T+1 + c̃T+1) +
h̃tη

2

ãT+1 + b̃T+1 + c̃T+1

,

(101)

Eq.(91) holds for t = T + 1.

Combining with the fact that ãT + b̃T + c̃T > 0, when t = T in Eq.(91), we have

ãT+1 + b̃T+1 + c̃T+1

>λ1(ãT + b̃T + c̃T ) +
h̃tη

2

ãT + b̃T + c̃T
>0

(102)

Hence Eq.(90) holds for t = T + 1.
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In summary, Eq.(87) - (91) hold ∀t > 0. Eq.(91) allow us to estimate the lower bound of ãt + b̃t + c̃t
when t is sufficient large. Define T (α, λ, η, l, a1) as Eq.(103)

T (α, λ, η, l, a1)

=[1 +
log((

√
2− 1)

√
lη

4λ(1−α) )− log(|x0 −
√

lη
4λ(1−α) |)

log(1− 2λη
1−α )

]
(103)

According to Lemma C.1, when t > T (α, λ, η, l, a1), we have

ãt + b̃t + c̃t ≥

√
lη

2(1− λ1)
=

√
lη(1− α)

4λ
+O(λη) (104)

Step 3, derive the relation between E||Yt −Y ∗t+1||22 and E||Yt+1 −Y ∗t+1||22 like step 2 in theorem
1.

Y ∗t+1 = (ã∗t+1, b̃
∗
t+1, c̃

∗
t+1)T denotes the solution of

Y = ΛY +
Ltη

2

(STe)TY
S−1e. (105)

Recall at+1 = ãt+1 + b̃t+1 + c̃t+1, so a∗t+1 = ã∗t+1 + b̃∗t+1 + c̃∗t+1 > 0, then a∗t+1 is computed as

a∗t+1 = ã∗t+1 + b̃∗t+1 + c̃∗t+1 =

√
Ltη

λ(1− α)(2− λη
1+α )

. (106)

According to assumption 6, Eh̃t = Lt, then we have:

Yt+1 − Y ∗t+1 = (Λ− Ltη
2

ata∗t+1

keT )(Yt − Y ∗t+1) +
(h̃t − Lt)η2

at
k (107)

where k = (k1, k2, k3)T = S−1e. In the following context, we will omit the O(λ2η2) part since
λη � 1. k1, k2, k3 can be approximated by first order Taylor expansion as

k1 =
1

(1− α)2
+O(λη), (108)

k2 =− 2α

(1− α)2
+O(λη), (109)

k3 =
α2

(1− α)2
+O(λη). (110)

By Eq.(107), the conditional expected distance is derived as

E[||Yt+1 −Y ∗t+1||22|Yt] = ||(Λ− Lt
ata∗t+1

keT )(Yt −Y ∗t+1)||22 +
E[(h̃t − Lt)2|Yt]η4

a2
t

||k||22. (111)

Now we derive the upper bound of Eq.(111). We have known that if t > 1 + T (α, λ, η, l, a1),
Eq.(104) shows the lower bound of at, Eq.(106) shows the value of a∗t+1, therefore we have

Ltη
2

ata∗t+1

<

√
2Lt
l
· 2λη. (112)

According to assumption 8, we can derive√
2L

l
<

(1− α)2

3
[
1− α2

β
− 8

1− α
]. (113)

Combining with Eq.(112), (113), according to lemma C.2, omitting O(λ2η2) we have

||(Λ− L

ata∗t+1

keT )(Yt − Y ∗t+1)||22 ≤ (1− 4λη

1− α
)||Yt − Y ∗t+1||22. (114)
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Assumption 5 in theorem shows the E[(h̃t − Lt)2|Yt] < V , so combining with lower bound of at in
Eq.(104) we can derive

E[(h̃t − L)2|Yt]
a2
t

η4 <
4V η3λ

l(1− α)
. (115)

Combining with Eq.(111), (114), (115), we can derive the upper bound of conditional expected
distance in Eq.(111) given timestamp t

E[||Yt+1 − Y ∗t+1||22|Yt] < (1− 4λη

1− α
)||Yt − Y ∗t+1||22 +

4V η3λ||k||22
l(1− α)

. (116)

Then the upper bound of expected distance is

E||Yt+1 − Y ∗t+1||22 < (1− 4λη

1− α
)E||Yt − Y ∗t+1||22 +

4V η3λ||k||22
l(1− α)

. (117)

Step 4, derive the relation between E||Yt−Y ∗t ||22 and E||Yt+1−Y ∗t+1||22 like step 3 in theorem 1.

Given time step t, we have

||Yt − Y ∗t+1||2 ≤ ||Yt − Y ∗t ||2 + ||Y ∗t − Y ∗t+1||2. (118)

Here we need to estimate the upper bound of ||Y ∗t − Y ∗t+1||2. Recall Y ∗t+1 satisfies

Y ∗t+1 = ΛY ∗t+1 +
Ltη

2

(STe)TY ∗t+1

S−1e, (119)

, k = S−1e, by Eq.(106)

a∗t+1 = ã∗t+1 + b̃∗t+1 + c̃∗t+1 = (STe)TY ∗t+1 =

√
Ltη

λ(1− α)(2− λη
1+α )

. (120)

Therefore, Y ∗t+1 can be explicitly computed as

Y ∗t+1 = η

√
Ltλη(1− α)(2− λη

1 + α
)(I −Λ)−1k. (121)

Then we have

||Y ∗t − Y ∗t+1||22 = (
√
Lt−1 −

√
Lt)

2λη3(1− α)(2− λη

1 + α
)||(I −Λ)−1k||22. (122)

By assumption 7, and using the fact that Lt = E[h̃t|wt] > l we have

|
√
Lt−1 −

√
Lt| =

|Lt−1 − Lt|√
Lt−1 +

√
Lt
≤ |Lt−1 − Lt|

2
√
l

≤ 2

√
V (λη)3

l
. (123)

On the other hand,

(I −Λ)−1 = diag(
1

1− λ1
,

1

1− λ2
,

1

1− λ3
), (124)

where 1
1−λ3

< 1
1−λ2

< 1
1−λ1

= 1−α
2λη +O(λη). Therefore

||(I −Λ)−1k||22 ≤
(1− α)2

4λ2η2
||k||22 +O(λη) (125)

Combining Eq.(122), (123), (125), we have

||Y ∗t − Y ∗t+1||22 ≤
2V (1− α)3λ2η4

l
||k||22 +O(λ3η4) <

2V λ2η4

l(1− α)2
||k||22. (126)

i.e.

||Y ∗t − Y ∗t+1||2 <
√

2V

l

λη2||k||2
1− α

. (127)
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Hence combining with Eq.(118), we have

||Yt − Y ∗t+1||2 ≤ ||Yt − Y ∗t ||2 +

√
2V

l

λη2||k||2
1− α

. (128)

Now considering expectation w.r.t wt, we have

E||Yt − Y ∗t+1||22 ≤ E[||Yt − Y ∗t ||2 +

√
2V

l

λη2||k||2
1− α

]2 ≤ [
√
E||Yt − Y ∗t ||22 +

√
2V

l

λη2||k||2
1− α

]2.

(129)

If
√
E||Yt − Y ∗t ||22 ≥

√
2V
l η||k||2, then by Eq.(129), we have

E||Yt − Y ∗t+1||22 ≤ (1 +
λη

1− α
)2E||Yt − Y ∗t ||22. (130)

Then combining with Eq.(117), we have

E||Yt+1 − Y ∗t+1||22 < (1− 2λη

1− α
)E||Yt − Y ∗t ||22 +

4V η3λ||k||22
l(1− α)

. (131)

Else if
√
E||Yt − Y ∗t ||22 <

√
2V
l η||k||2, then by Eq.(129), we have

E||Yt − Y ∗t+1||22 ≤ (1 +
λη

1− α
)2 2V η2||k||22

l
. (132)

Then combining with Eq.(117), we have

E||Yt+1 − Y ∗t+1||22 ≤
2V η2||k||22

l
. (133)

Summing Eq.(131), (133), we have

E||Yt+1 − Y ∗t+1||22 ≤ max{(1−
2λη

1− α
)E||Yt − Y ∗t ||22 +

4V η3λ||k||22
l(1− α)

,
2V η2||k||22

l
}. (134)

Step 5 derive the upper bound of E||Yt+1 − Y ∗t+1||22 given t like step 4 in theorem 1

According to Eq.(134), by applying deduction method, when t > T = T (α, λ, η, l, a1), we have

E||Yt − Y ∗t ||22 < (1− 2λη

1− α
)t−T E||YT − Y ∗T ||22 +

2V η2||k||22
l

. (135)

Similar to proof in SGD case, we need to take t ≤ T (α, λ, η, l, a1) into account. To do that, we need
to prove B̃ = max{(1 − 2λη

1−α )−tE||Yt − Y ∗t ||22}, t = 1, 2, ...T (α, λ, η, l, a0)} exists by showing
E||Yt − Y ∗t ||22 is finite for t = 1, ..., T (α, λ, η, l, a0).

According to lemma C.1, combining with Eq.(91), we have

at = (STe)TYt = ãt + b̃t + c̃t > min(a0,

√
lη(1− α)

4λ
). (136)

Hence t = 0, 1, ..., T (λ, η, l, a1)− 1, we have

E||Yt+1||22 =E||ΛYt +
h̃tη

2

(STe)TYt
S−1e||22

≤2E||ΛYt||22 + 2|| h̃tη
2

(STe)TYt
S−1e||22

≤2λ2
1E||Yt||2 + 2

Lη2

min(a0,
√

lη(1−α)
4λ )

||S−1e||22.

(137)
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By mathematical deduction, if E||Y0||22 = ||Y0||22 is finite, then

E||Yt||22 ≤ ∞, t = 1, ..., T (λ, η, l, a1). (138)

Further more, by Cauchy inequality, we have

E||Yt − Y ∗t ||22 ≤ 2E||Yt||22 + 2||Y ∗t ||22 <∞. (139)

Hence B̃ exists, and we can prove ∀t > 0

E||Yt − Y ∗t ||22 < (1− 2λη

1− α
)tB̃ +

2V η2||k||22
l

. (140)

If t > T , by Eq.(135), we have

E||Yt − Y ∗t ||22 < (1− 2λη

1− α
)t−T E||YT − Y ∗T ||22 +

2V η2||k||22
l

= (1− 2λη

1− α
)t · (1− 2λη

1− α
)−T E||YT − Y ∗T ||22 +

2V η2||k||22
l

≤ (1− 2λη

1− α
)tB̃ +

2V η2||k||22
l

.

(141)

Else if t ≤ T , we have

E||Yt − Y ∗t ||22 = (1− 2λη

1− α
)t · (1− 2λη

1− α
)−tE||Yt − Y ∗t ||22

≤ (1− 2λη

1− α
)tB̃

< (1− 2λη

1− α
)tB̃ +

2V η2||k||22
l

(142)

Step 6, derive the upper bound of E(||wt||22 − (w∗t )2)2 by E||Yt − Y ∗t ||22.

Recall ||wt||22 = at = ãt + b̃t + c̃t, (w∗t )2 = a∗t = ã∗t + b̃∗t + c̃∗t , therefore by Cauchy inequality,
combining with Eq.(140)

E[||wt||22 − (w∗)2]2 ≤ 3E||Yt − Y ∗t ||22 < 3(1− 2λη

1− α
)tB̃ +

6V η2||k||22
l

(143)

Set B = 3B̃, C = 6||k||22, note k = S−1e only depends on α, we can obtain

E[||wt||22 − (w∗)2]2 ≤ (1− 2λη

1− α
)tB +

V η2

l
C. (144)

C.4 Proof of Theorem 3

Theorem 3. (Theoretical value of Angular Update) In SGD(SGDM) case, if assumptions in theorem
1(2) hold, η2 � 1, t is sufficiently large so that vanishing terms in Eq.(32), (68) can be omitted, then

with probability at least 1− 3

√
V
Ltl

we have

|∆t −
√

2λη

1 + α
| < O( 3

√
V

Ltl
). (145)

In SGD case, α = 0.

Proof. According to Eq.(32), when t is sufficiently large, we have (omit O(λη3)

E|||wt||22 − (w∗t )2|2 ≤ 2V η2

l
. (146)

16



where w∗t = 4
√
Lt−1η/(2λ). Then we have ∀δ > 0,

δ2Pr(|||wt||22 −
√
Lt−1η

2λ
| > δ) ≤ E|||wt||22 −

√
Lt−1η

2λ
|2 ≤ 2V η2

l
. (147)

Eq.(147) implies ∀δ > 0

Pr(|||wt||22 −
√
Lt−1η

2λ
| > δ) ≤ 2V η2

lδ2
. (148)

Then by Eq.(148), we have ∀δ > 0

Pr(|||wt||22 −
√
Lt−1η

2λ
| < δ, |||wt+1||22 −

√
Ltη

2λ
| < δ)

≥1− Pr(|||wt||22 −
√
Lt−1η

2λ
| > δ)− Pr(|||wt+1||22 −

√
Ltη

2λ
| > δ)

≥1− 4V η2

lδ2
.

(149)

On the other hand, by update manner of SGD in Eq.(31), we have

〈wt+1,wt〉 = (1− λη)||wt||22, (150)

then we can compute cos2 ∆2
t by

cos2 ∆t =
〈wt+1,wt〉2

||wt||22 · ||wt+1||22
= (1− 2λη)

||wt||22
||wt+1||22

. (151)

According to the definition of ∆t, ∆t ≥ 0, and ∆t is very close to 0, we have

∆t ≈ sin ∆t (152)

=
√

1− cos2 ∆t (153)

=

√
1− (1− λη)2

||wt||22
||wt+1||22

(154)

=

√
1− (1− λη)2

xt
xt+1

(155)

where xt, xt+1 denotes ||wt||22, ||wt+1||22 respectively as in Eq. (34). Assume xt, xt+1 are close to

x∗t+1 =
√

Ltη
2λ , the second order Taylor expansion of Eq.(155) at xt = xt+1 = x∗t+1 is

∆t =
√

2λη +
(1− λη)2

2
√

2λη
· 1

x∗t+1

· [(xt+1 − x∗t+1)− (xt − x∗t+1)]

+O((xt+1 − x∗t+1)2 + (xt − x∗t+1)2)

(156)

Then by Eq.(156), we have,

|∆t −
√

2λη| ≤ 1

2
√
Ltη
· (|xt+1 − x∗t+1|+ |xt − x∗t |+ |x∗t − x∗t+1|)

+O(|xt+1 − x∗t+1|2 + |xt − x∗t |2 + |x∗t − x∗t+1|2)

(157)

By Eq.(45), we have

|x∗t − x∗t+1| <
√

2V

l
λη2. (158)

Assume ∃δ > 0, |xt+1 − x∗t+1| < δ, |xt − x∗t | < δ, then we have

|∆t −
√

2λη| ≤ δ

η
√
Lt

+

√
V

2Ltη
λη +O(δ2 +

2V λ2η4

l
) (159)
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Set δ = 2η
√
Lt 3

√
V
Ltl

in Eq.(149) and Eq.(159), with probability 1− 3

√
V
Ltl

, |||wt||22 −
√

Lt−1η
2λ | <

η
√
Lt

3

√
2V
Ll , |||wt+1||22 −

√
Ltη
2λ | < η

√
Lt 3

√
2V
Ltl

, therefore we have

|∆t −
√

2λη| ≤ 2 3

√
V

Ltl
+

√
V

2Ltη
λη +O(η2(

V

Ltl
)

2
3 ) = O( 3

√
V

Ltl
). (160)

In SGDM case, if t is sufficiently large so that vanishing term in Eq.(140) can be omitted, we have

E||Yt+1 − Y ∗t+1||22 ≤
2V η2||k||22

l
, (161)

where Yt+1 is defined as Eq.(83) , Y ∗t+1 is defined as Eq.(105), k is defined in Eq.(107). Similar to
Eq.(148), ∀δ > 0, we have

Pr(||Yt+1 − Y ∗t+1||2 ≥ δ) ≤
2V η2||k||22

lδ2
. (162)

Hence we have

Pr(||Yt − Y ∗t+1||2 < δ) ≥ 1− 2V η2||k||22
lδ2

. (163)

On the other hand, in SGDM case, the angular update can be computed by

∆t = sin(∆t) (164)

=
√

1− cos2 ∆t (165)

=

√
1− 〈wt,wt+1〉2
||wt||22 · ||wt+1||22

(166)

=

√
1−

b2t+1

ct+1at+1
, (167)

where (at+1, bt+1, ct+1) = (||wt+1||22, 〈wt,wt+1〉, ||wt||22). Assume (at+1, bt+1, ct+1) is close to

(a∗t+1, b
∗
t+1, c

∗
t+1), where X∗t+1 = (a∗t+1, b

∗
t+1, c

∗
t+1)T , a∗t+1 = c∗t+1 = (

√
Ltη

λ(1−α)(2− λη
1+α )

, b∗t+1 =

1+α−λη
1+α a∗t+1. Then the first order Taylor series expansion of Eq.(167) at (at+1 = a∗t+1, bt+1 =

b∗t+1, ct+1 = c∗t+1) is

∆t =

√
1−

b2t+1

at+1ct+1

=

√
2λη

1 + α
+

√
1 + α

2
√

2λη
· (1− λη

1 + α
)2

· [
at+1 − a∗t+1

a∗t+1

−
2(bt+1 − b∗t+1)

b∗t+1

+
ct+1 − c∗t+1

c∗t+1

]

+O((at+1 − a∗t+1)2 + (bt+1 − b∗t+1)2 + (ct+1 − c∗t+1)2).

(168)

Now substituting Xt+1 = (at+1, bt+1, ct+1) with Yt+1 = (ãt+1, b̃t+1, c̃t+1) defined in
Eq.(83),(84),(85), (86), Eq.(156) can be explicitly rewritten as (computing process is straightforward
and tedious so we omit it)

∆t =

√
2λη

1 + α
+

√
1 + α

2
√

2λη
(1− λη

1 + α
)2

· 1

a∗t+1

(1− α)2

α2
(c̃t+1 − c̃∗t+1) +O(λη)

+O(||Yt+1 − Y ∗t+1||22),

(169)
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Omit O(λη), if ∃δ > 0, ||Yt − Y ∗||2 < δ, we have

|∆t −
√

2λη

1 + α
|

≤
√

1 + α

2
√

2λη
(1− λη

1 + α
)2 · 1

a∗t+1

(1− α)2

α2
δ +O(δ2)

≤ (1− α)2
√

1− α2

2α2η
√
Lt

δ +O(δ2).

(170)

Now set δ =
√

2Ltη||k||2 3

√
V
Ltl

in Eq.(163) and Eq.(170), with at least probability 1− 3

√
V
Ltl

, we
have

|∆t −
√

2λη

1 + α
| ≤

(1− α)2
√

2(1− α2)

2α2
||k||2 3

√
V

Ltl
+O(η2(

V

Ltl
)

2
3 ) ≤ O( 3

√
V

Ltl
) (171)

Summarize Eq.(160) and Eq.(171), for SGD/SGDM, if T is sufficiently large, with at least 1− 3

√
V
Ltl

probability, we have

|∆t −
√

2λη

1 + α
| ≤ O( 3

√
V

Ltl
). (172)

C.5 Proof of Corollary 3.1

Proof of Corollary 3.1. In SGD case, by Eq.(34), we have

||wt+1||22 > (1− 2λη)||wt||22, (173)

which means
||wt+T ||22 > (1− 2λη)T ||wt||22. (174)

On the other hand, we know that when η is divided by k, ||wt||22 should be divided by
√
k to reach

the new equilibrium state, therefore we have

||wt+T ||2

||wt||2
=

1√
k
> (1− 2λη)T . (175)

Since λη � 1, log(1− 2λη) ≈ −2λη, thus

T >
log(k)

4λη
. (176)

.

In SGDM case, by Eq.(101), we have

||wt+1||22 > (1− 2λη

1− α
)||wt||22, (177)

Similar to SGD case, we have

T >
log(k)(1− α)

4λη
. (178)

.

D Modeling Equilibrium by Stochastic Differential Equation

Li et al. (2020b) models the concept of equilibrium by Stochastic Differential Equation (SDE) in
the continuous time limit. In this section, we discuss the connection between continuous form and
discrete form of equilibrium.
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In Li et al. (2020b), SGD can be approximated by

dwt = −ηλwtdt− η∇L(wt)dt+ ηΣ1/2
wt dBt (179)

where η, λ denote learning rate and WD factor respectively in SGD. To properly approximate learning
dynamics of normalized neural network, besides the condition that L is scale invariant w.r.t. Wt,
additional property of Σwt is required:

1. Σcw = c−2Σw for any c > 0;
2. wTΣww = 0;

The key results is
Lemma D.1 (Li et al. (2020b)). If σ2 ≤ Tr(Σw̄t) ≤ (1 + ε)σ2 for all wt encountered in the
trajectory, then

γt = e−4λetγ0 + (1 +O(ε))
σ2

2λe
(1− e−4λet), (180)

where γt = ||wt||4/η2, λe = λη, w̄t = wt/||wt||2.

Li et al. (2020b) states that the sign of equilibrium is the convergence of γt, and the convergence rate
of equilibrium is determined by so called intrinsic learning rate λe = λη.

Let’s see the theoretical value of weight norm in continuous time limit, by Lemma D.1, we have

||wt||42 = e−4ληt||w0||42 + (1 +O(ε))
σ2η

2λ
(1− e−4λet). (181)

When ε is small, Eq.(181) implies the theoretical value of weight norm in equilibrium is w̃∗ =
4
√
σ2η/(2λ). Comparing with the theoretical value of weight norm (w∗t = 4

√
Lt−1η/(2λ)) in our

results (Theorem 1), the formulation of w̃∗ is very similar to w∗t . The only difference is that w̃∗ relies
on the scale of noise σ2 while w∗t relies on expected square norm of unit gradient Lt−1 = E||gt−1||22.

At first glance, the theoretical value w̃∗ of Lemma D.1 is counterintuitive: how is it possible that
the scale of norm weight ||wt||2 only relies on the scale of noise at last? The formulation of w∗ and
the proof of lemma D.1 all show that the evolving of weight norm is only driven by scale of unit
gradient noise Tr(Σw̄) and has no connection to full batch gradients∇L(wt). While our results in
discrete form seems more reasonable: the theoretical value w∗t are determined by the behavior of
unit gradient norm, which contains the information of both full batch unit gradients and noise of unit
gradients, specifically we have

E||gt||22 = ||Egt||22 + E||gt − Egt||22. (182)

Figure 1: Expectation and variance of unit gradient
norm. The data points are collected from the multi-
stage Imagenet experiment in section 4.1 in main
text.

However, in many practical cases, the theoret-
ical values of weight norm in continuous form
and discrete form are consistent due to noisy
dominated regime (Smith et al., 2020). Noisy
dominated regime means the variance of gradi-
ents is much larger than the squared norm of full
batch gradients, i.e.

||Egt||22 � E||gt − Egt||22, (183)

then we have

E||gt||22 ≈ E||gt − Egt||22, (184)

which implies that in noisy dominated regime,
Lt−1 ≈ σ2. The evolving process of weight
norm is indeed only determined by the scale of
gradients’ noise (see Figure 1).

Another connection is that in SDE settings,
the convergence rate of weight norm is deter-
mined by λe = λη. In other word, it will take
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O(1/(λη)) time to reach equilibrium. This result is consistent with the approaching rate in theorem
1.

Comparing with the discrete form of equilibrium, the weakness of continuous model is apparent: first,
lemma D.1 does not take a more general situation into account, where the scale of gradients (including
full batch gradients and its noise) can variate across the whole training process; second, it is hard to
establish equilibrium state by SDE approximation when momentum method is applied. Therefore
Li et al. (2020b) only provides conjectures and empirical observations to speculate equilibrium in
SGDM. While in discrete settings, we can strictly prove the existence of equilibrium in SGDM
case. Third, SDE approximation is not easy to depict the behavior of angular update (We exhibit
the importance of angular update will be shown in next section). We notice recent works (Kunin
et al., 2021; Tanaka & Kunin, 2021) use the term angular velocity in continuous model to describe
the angular update in the discrete SGD and SGDM respectively. The theoretical results of angular
velocity is consistent with our results. But their results about angular velocity still rely on the steady
weight norm assumption (assume equilibrium state has been reached in advance), which weaken the
significance of their results.

However, even current continuous models do not depict equilibrium phenomenon very well, continu-
ous models own their unique advantages comparing with discrete models on studying the learning
dynamics of complex function. So a more powerful theoretical tool or model which can better connect
continuous models and discrete models is needed to study the effect SMD and equilibrium make to
learning dynamics of normalized neural network.

E The Role of Momentum in Spherical Motion Dynamics

In the main text, we propose angular update to indicate equilibrium state of Spherical Motion
Dynamics (SMD), derives its theoretical property in theorem, and give an example showing the
behavior of angular update in SMD can significantly influence the training curve of neural network,
and give a detailed description on the connection between angular update and the performance of
normalized neural network.

If λη is fixed, increasing momentum factor will lead to smaller angular update (recall theorem 3), but
resulting in larger training/testing loss. A reasonable interpretation is that SGDM is equivalent to
SGD with larger learning rate (Smith et al., 2020; Mandt et al., 2017; Kidambi et al., 2018; Zhang
et al., 2019a). Intuitively speaking, even though SGDM has smaller angular update, the existence of
momentum makes its oscillation range much larger than its single step length on the loss landscape,
preventing optimization trajectory from approaching the bottom of basin. In summary, the role of
momentum is still not theoretically justified in non-convex problem, let alone taking equilibrium state
of normalized neural network into account. We leave this as a future work.

F Supplemental details on “Pseduo Overfitting” by Spherical Motion
Dynamics

Figure 2: Test Accuracy (Top-1) of Resnet50 on
Imagenet (same setting in Section 4.2 in main text).

First we introduce our experiment setting in sec-
tion 4.3 in main text. Resnet18 (He et al., 2016)
is trained on CIFAR10 (Krizhevsky & Geoffrey,
2009) for 200 epochs. Learning rate is divided
by 5 at epoch 60, 120, 160 respectively; When
using SGDM, learning rate is initialized as 0.1,
WD factor is 5 × 10−4, momentum factor is
0.9; When using Adam (Kingma & Ba, 2015),
learning rate is initialized as 10−3, WD factor
is 5× 10−4, first and second momentum factors
are 0.9, 0.999 respectively.

We need to emphasize that though increasing angular update phenomenon is ubiquitous as our
theorems suggest, the dropping test accuracy phenomenon is not common on various tasks. For
example, when Resent50 is trained on Imagenet with multi-stage learning rate schedule, we cannot
see apparent dropping test accuracy phenomenon (Figure 2). We can provide an intuitive explanation:
to produce dropping test accuracy phenomenon, optimization trajectory needs to approach the bottom
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of the basin rapidly with overly small angular update after learning rate decay, then increasing angular
update will force it leaving away from the bottom of the basin, resulting in dropping test accuracy;
However, if optimization trajectory moves to the bottom of the basin very slowly, then during the
whole intermediate process to the new equilibrium state, optimization trajectory just moves towards
the bottom of the basin. No extra “escaping” behavior occurs, no dropping test accuracy phenomenon
can be seen. Therefore, we infer that dropping test accuracy phenomenon are more likely to be seen
in simpler data experiments (like training resnet18 on CIFAR10), but hard to be seen in complex data
experiments (like training resnet50 on Imagenet).

G Experiments on Synthetic Data

In this section we apply experiments on synthetic data to justify our claim that equilibrium is a
dynamic state, and can be reached and maintain even if unit gradient norm constantly varies across
the whole training process.

The proof of theorem implies square norm of weight is determined by the following iterative map:

xt+1 = (1− 2λη)xt +
Ltη

2

xt
, (185)

where λ, η ∈ (0, 1), Lt denotes the square of unit gradient norm. Hence we simulate xt with different
type of {Lt}∞t=1. Results in Figure 3 shows as long as the local variance of square norm of unit
gradient is not too much, and expectation of Lt changes smoothly, weight norm can quickly converge
to its theoretical value base on expectation of square norm of unit gradient.

We also simulate SGDM case by following iteration map

Xt+1 = AXt +
Ltη

2

Xt[0]
· e, (186)

where A, Xt, e is defined as Eq.(72), (73), (74). Simulation results is shown in Figure 4.

G.1 Complementary in Multi-Stage Learning Rate Schedule

In this section we present complementary results in Multi-Stage Learning Rate Schedule experiment.

The plots of weight norm (empirical and predicted values) in multi-learning rate stage is shown in
Figure 5. We also present the test performance of resent50/maskrcnn on Imagenet/MSCOCO with
multi-stage learning rate schedule mentioned in Section 5.2. We only provide complementary results
for reference only. We do not intend to prove the advantages or disadvantages of rescaling
strategy here, it is beyond the discussion of this paper.

Top 1 Accuracy(%)
Standard 76.25
Rescale 76.27

Table 1: Performance of Resnet50 on Imagenet with multi-stage learning rate scheduler.

AP bbox AP bbox50 AP bbox75 APmask APmask50 APmask7

Standard 39.25 58.88 42.95 35.16 56.09 37.48
Rescale 38.38 57.98 42.31 34.49 55.27 36.71

Table 2: Performance of Resnet50 on Imagenet with multi-stage learning rate scheduler in Section.

G.2 Rethinking Linear Scaling Principle in Spherical Motion Dynamics

In this section, we will discuss the effect of Linear Scaling Principle (LSP) under the view of SMD.
Linear Scaling Principle is proposed by Goyal et al. (2017) to tune the learning rate η with batch size
B by η ∝ B. The intuition of LSP is if weights do not change too much within k iterations, then k
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(a) Lt = 10

(b) Lt = 10 + εt

(c) Lt = 10 + sin( t
105

)

(d) Lt = 10 + sin( t
105

) + εt

Figure 3: Simulation of SGD (Eq.(185)), η = 0.1, λ = 0.001, x0 = 10, εt ∼ U(−3, 3). Orange lines
represent the square of unit gradient norm; blue solid lines represent simulated value of weight norm
square; black dashed lines represent theoretical value of weight norm square
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(a) Lt = 10

(b) Lt = 10 + εt

(c) Lt = 10 + sin( t
105

)

(d) Lt = 10 + sin( t
105

) + εt

Figure 4: Simulation of SGDM (Eq.(186)), η = 0.1, λ = 0.001, x0 = 10, εt ∼ U(−3, 3), α = 0.9.
Orange lines represent the square of unit gradient norm; blue solid lines represent simulated value of
weight norm square; black dashed lines represent theoretical value of weight norm square
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(a) ||g̃||22 and h̃ in standard settings (b) ||g̃||22 and h̃ in rescaled settings

(c) Weight norm in Imagenet with theoretical value

Figure 5: ||g̃t||22, h̃t and norm of weight from layer.1.0.conv2 in Resnet50 backbone. (a),(b) present
||g̃||22, h̃ in multi-state learning rate schedule experiments discussed in Section 5.2. semitransparent
line represents the raw value of ||g̃t||22 and h̃t, solid line represents the averaged value within
consecutive 200 iterations to estimate the expectations E||g̃t||22 and Eh̃t. (c) presents the empirical
value of weight norm and its theoretical value in standard and rescaled cases. The theoretical value is
computed by estimated expectations Eh̃t in (a), (b) respectively.

iterations of SGD with learning rate η and minibatch size B (Eq.(187)) can be approximated by a
single iteration of SGD with learning rate kη and minibatch size kB (Eq.(188):

wt+k =wt − η
∑
j<k

(
1

B

∑
x∈Bj

∂L

∂w

∣∣∣
wt+j ,x

+ λwt+j), (187)

wt+1 =wt − kη(
1

kB

∑
j<k

∑
x∈Bj

∂L

∂w

∣∣∣
wt,x

+ λwt). (188)

Goyal et al. (2017) shows that combining with gradual warmup, LSP can enlarge the batch size up to
8192(256× 32) without severe degradation on ImageNet experiments.

LSP has been proven extremely effective in a wide range of applications. However, from the
perspective of SMD, the angular update mostly relies on the pre-defined hyper-parameters, and
it is hardly affected by batch size. To clarify the connection between LSP and SMD, we explore
the learning dynamics of DNN with different batch size by conducting extensive experiments with
ResNet50 on ImageNet, the training settings rigorously follow Goyal et al. (2017): momentum
coefficient is α = 10−4; WD coefficient is λ = 10−4; Batch size is denoted by B; learning rate is
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initialized as B
256 · 0.1; Total training epoch is 90 epoch, and learning rate is divided by 10 at 30, 60,

80 epoch respectively.

(a) B = 256 versus B = 1024 (b) B = 256 versus B = 4096

Figure 6: Angular update of weights from layer1.0.conv2 in ResNet50. The blue lines represent
the angular update of weights within a single iteration in when batch settings is B = 1024(4096);
The red lines represent the accumulated angular update within 4(16) iterations in smaller batch
setting(B = 256).

(a) ||g(1024)||
||g(256)|| (b) ||g(4096)||

||g(256)||

Figure 7: Enlargement ratio of gradients’ norm of weights from layer1.0.conv2 when batch size
increases . ||g(k)|| represents the gradient’s norm computed using k samples(not average).

The results of experiments(Figure 6, 7) suggests that the assumption of LSP does not always hold
in practice because of three reasons: first, the approximate equivalence between a single iteration
in large batch setting, and multiple iterations in small batch setting can only hold in pure SGD
formulation, but momentum method is far more commonly used; Second, according Theorem 2, the
enlargement ratio of angular update is only determined by the increase factor of learning rate. Figure
6 shows in practice, the accumulated angular update ](wt,wt+k) in small batch batch setting is
much larger than angular update ](wt,wt+1) of a single iteration in larger batch setting when using
Linear Scaling Principle; Third, even in pure SGD cases, the enlargement of angular update still
relies on the increase of learning rate, and has no obvious connection to the enlargement of gradient’s
norm when equilibrium condition is reached (see Figure 7).

In conclusion, though LSP usually works well in practical applications, SMD suggests we can find
more sophisticated and reasonable schemes to tune the learning rate when batch size increases.
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G.3 Equilibrium condition with Different Network Structures

We also verify our theory on other commonly used network structures (MobileNet-V2 (Sandler et al.,
2018), ShuffleNet-V2+ (Ma et al., 2018)) with standard training settings. The results is shown in
Figure 8.

(a) Angle Update of MobileNet-V2 (b) Angular Update of ShuffleNet-V2+

Figure 8: The angular update ∆t of MobileNet-V2 (Sandler et al., 2018) and ShuffleNet-V2+ (Ma
et al., 2018). The solid lines with different colors represent all scale-invariant weights from the
model; The dash black line represents the theoretical value of angular update, which is computed by√

2λη
1+α . Learning rate η is initialized as 0.5, and divided by 10 at epoch 30, 60, 80 respectively; WD

coefficient λ is 4× 10−5; Momentum parameter α is set as 0.9.

27



References
Arora, S., Li, Z., and Lyu, K. Theoretical analysis of auto rate-tuning by batch nor-

malization. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rkxQ-nA9FX.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Bengio, Y. and LeCun, Y. Scaling learning algorithms towards AI. In Large Scale Kernel Machines.
MIT Press, 2007.

Cai, Y., Li, Q., and Shen, Z. A quantitative analysis of the effect of batch normaliza-
tion on gradient descent. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/cai19a.html.

Chiley, V., Sharapov, I., Kosson, A., Koster, U., Reece, R., Samaniego de la Fuente, S., Subbiah,
V., and James, M. Online normalization for training neural networks. In Advances in Neural
Information Processing Systems 32, pp. 8433–8443. Curran Associates, Inc., 2019.
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