
Appendix of Confidence-Aware Imitation Learning
from Demonstrations with Varying Optimality

A Proofs

In this section, we provide the proofs of the theorems in Section 4.2 of the main text.

A.1 Preliminaries

Definition 1. (Lipschitz-smooth) Function f(x) : Rd → R is Lipschitz-smooth with constant L if

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ Rd (1)

Lemma 1. If function f(x) is Lipschitz-smooth with constant L, then the following inequality holds:

(∇f(x)−∇f(y))
T

(x− y) ≤ L||x− y||2 (2)

Proof. The proof is straight forward that

(∇f(x)−∇f(y))
T

(x− y)

≤ ||∇f(x)−∇f(y)|| · ||x− y||
≤ L||x− y||2

(3)

The first equation follows from the Cauchy-Schwarz inequality, and the second inequality comes
from the definition of Lipschitz-smooth.

Lemma 2. If function f(x) is Lipschitz-smooth with constant L, then the following inequality holds:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
||y − x||2, ∀x, y (4)

Proof. Define g(t) = f(x + t(y − x)). If f(x) is Lipschitz-smooth with constant L, then from
Lemma 1, we have

g′(t)− g′(0)

= (∇f(x+ t(y − x))−∇f(x))
T

(y − x)

=
1

t
(∇f(x+ t(y − x))−∇f(x))

T
((x+ t(y − x))− x)

≤ L

t
||t(y − x)||2 = tL||y − x||2

(5)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

We then integrate this equation from t = 0 to t = 1:

f(y) = g(1) = g(0) +

∫ 1

0

g′(t)dt

≤ g(0) +

∫ 1

0

g′(0)dt+

∫ 1

0

tL||y − x||2dt

= g(0) + g′(0) +
L

2
||y − x||2

= f(x) +∇f(x)T (y − x) +
L

2
||y − x||2

(6)

A.2 Proof of Theoretical Results

In this section, we provide the proofs of the theorems proposed in this paper. First, we provide the
proof of Theorem 1 in the main text.
Theorem 1. (Convergence) Suppose the outer loss Lout is Lipschitz-smooth with constant L, the
inequality

∇θLout(θτ+1)>∇θLin(θτ , βτ+1) ≥ C||∇θLin(θτ , βτ+1)||2 (7)
holds for a constant C ≥ 0 in every step τ 1, and the learning rate satisfies µ ≤ 2C

L , then the
outer loss decreases along with each iteration: Lout(θτ+1) ≤ Lout(θτ), and the equality holds if
∇βLout(θτ) = 0 or θτ+1 = θτ .

Proof. Since Lout is Lipschitz-smooth, following Lemma 2, we have

Lout(θτ+1)− Lout(θτ)

≤ ∇θLout(θτ)T (θτ+1 − θτ) +
L

2
||(θτ+1 − θτ)||2

= −µ∇θLout(θτ+1)T∇θLin(θτ , βτ+1)

+
L

2
µ2||∇θLin(θτ , βτ+1)||2

≤ −
(
µC − L

2
µ2

)
||∇θLin(θτ , βτ+1)||2

≤ 0

(8)

The first inequality comes from Lemma 2, and the second inequality holds because we update
θτ to θτ+1 only when ∇θLout(θτ+1)T∇θLin(θτ , βτ+1) ≥ C||∇θLin(θτ , βτ+1)||2 holds, otherwise
θτ+1 = θτ so Lout(θτ+1) = Lout(θτ). The third inequality holds because we choose the learning rate
to satisfy µ ≤ 2C

L .

Then if ∇θLout(θτ) = 0, and if Eqn. (7) is satisfied, we have ∇θLin(θτ , βτ+1) = 0. Following the
updating rule of α in Eqn. (10), we can derive θτ+1 = θτ , so Lout(θτ+1) = Lout(θτ). Besides, if
Eqn. (11) is not satisfied, we also have θτ+1 = θτ , and thus Lout(θτ+1) = Lout(θτ).

We now provide the proof of Theorem 2 on convergence rate of the algorithm.
Theorem 2. (Convergence Rate) Under the assumptions in Theorem 1, let

g(θ, β) = θ − µ∇θLin(s, a; θ, β). (9)

We assume that Lout(g(θ, β)) is Lipschitz-smooth w.r.t. β with constant L1, Lin and Lout have σ-
bounded gradients, and the norm of ∇β∇θLin(θ;β) is bounded by σ1. L is the Lipschitz-smooth
constant for Lout w.r.t. g(θ, β) as shown in Theorem 1. Consider the total training steps as T , we set
α = C1√

T
, for some constant C1 where 0 < C1 ≤ 2

L1
and µ = C2

T for some constant C2. CAIL can
achieve:

min
1≤τ≤T

E[||∇βLout(θτ)||2] ≤ O
(

1√
T

)
. (10)

1We remove (s, a) in Lin for notation simplicity.

2

Proof. According to the update rule of θ, we have

Lout(θτ+1)− Lout(θτ)

= Lout(θτ − µ∇θLin(θτ , βτ+1))

− Lout(θτ−1 − µ∇θLin(θτ−1, βτ))

= {Lout(θτ − µ∇θLin(θτ , βτ+1))

− Lout(θτ−1 − µ∇θLin(θτ−1, βτ+1))}
+ {Lout(θτ−1 − µ∇θLin(θτ−1, βτ+1))

− Lout(θτ−1 − µ∇θLin(θτ−1, βτ))}
= {Lout(g(θτ , βτ+1))− Lout(g(θτ−1, βτ+1))}

+ {Lout(g(θτ−1, βτ+1))− Lout(g(θτ−1, βτ))}

(11)

We remove (s, a) in the Lin for notation convenience. For the first term,

Lout(g(θτ , βτ+1))− Lout(g(θτ−1, βτ+1))

≤ ∇Lout(g(θτ−1, βτ+1))T∆g +
L

2
||∆g||2

(12)

where
∆g = g(θτ , βτ+1)− g(θτ−1, βτ+1)

= [θτ − µ∇θLin(θτ , βτ+1)]

− [θτ−1 − µ∇θLin(θτ−1, βτ+1)]

= −µ[∇θLin(θτ , βτ+1) +∇θLin(θτ−1, βτ)

−∇θLin(θτ−1, βτ+1)]

(13)

Since Lin has σ-bounded gradients, we take the norm on both sides, and use the triangle inequality,
so

||∆g|| ≤ 3µσ (14)
Substitute this into Eqn. (12), we have

Lout(g(θτ , βτ+1))− Lout(g(θτ−1, βτ+1))

≤ 3µσ2 +
9

2
Lµ2σ2

(15)

And for the second term,
Lout(g(θτ−1, βτ+1))− Lout(g(θτ−1, βτ))

≤ ∇βLout(g(θτ−1, βτ))T (βτ+1 − βτ) +
L1

2
||βτ+1 − βτ ||2

= −α∇βLout(g(θτ−1, βτ))T∇βLout(g(θτ , βτ))

+
L1α

2

2
||∇βLout(g(θτ , βτ))||2

= −(α− L1α
2

2
)||∇βLout(g(θτ , βτ))||2

+ α(∇βLout(g(θτ , βτ))−∇βLout(g(θτ−1, βτ)))T∇βLout(g(θτ , βτ))

(16)

Since∇β∇θLin(θ, β) is bounded by σ1 and L has σ-bounded gradients, then

∇βLout(g(θ, β))

= ∇βg(θ, β)T∇gLout(g(θ, β))

= −µ∇β∇θLin(θ, β)T∇gLout(g(θ, β))

≤ µσσ1

(17)

So
Lout(g(θτ−1, βτ+1))− Lout(g(θτ−1, βτ))

≤ −(α− L1α
2

2
)||∇βLout(g(θτ , βτ))||2

+ 2αµσσ1

(18)

3

Combining the two parts, we can derive that

Lout(θτ+1)− Lout(θτ)

≤ −(α− L1α
2

2
)||∇βLout(g(θτ , βτ))||2

+ 3µσ2 +
9

2
Lµ2σ2 + 2αµσσ1

(19)

Summing up both sides from τ = 1 to T , and rearranging the terms, we can derive that
T∑
τ=1

(α− L1α
2

2
)||∇βLout(θτ)||2

≤ Lout(θ1)− Lout(θT+1) + T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµσσ1

) (20)

Since α− L1α
2

2 ≥ 0, we have

min
τ

E[||∇βLout(θt)||2]

≤
∑T
τ=1(α−

L1α
2

2
)||∇βLout(θt)||2

T (α− L1α2

2
)

≤ 1

Tα(1− L1α
2

)
[Lout(θ1)− Lout(θT+1)

+T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµσσ1

)]
≤ 1

α
√
T (
√
T − 1)

[Lout(θ1)− Lout(θT+1)

+T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµσσ1

)]
=
Lout(θ1)− Lout(θT+1)

α
√
T (
√
T − 1)

+
σµ
√
T

α(
√
T − 1)

(
3σ +

9

2
Lµσ + 2ασ1

)
=
Lout(θ1)− Lout(θT+1)

C1(
√
T − 1)

+
σC2

C1(
√
T − 1)

(
3σ +

9

2
Lµσ + 2ασ1

)
= O

(
1√
T

)

(21)

The second inequality holds since 1− L1α
2 ≥ 1− 1√

T
.

Theorem 3. RK in Eqn. (14) in the main text is Lipschitz.

Proof. We consider the case where ηξi > ηξj . The case for ηξi <= ηξj can be demonstrated
similarly. We prove that RK is Lipschitz by definition. Let z = ξ′i − ξ′j , the derivative of RK is

ORKz =

0 z > ε,

1
2ε (z − ε) −ε ≤ z ≤ ε,

−1 z < −ε
Thus, the second-order derivative of RK satisfies that |O(ORKz)z| ≤ 1

2ε . If we take L > 1
2ε , then

∀z1, z2, |O(z1)− O(z2)| < L|z1 − z2|. This proves that RK is Lipschitz smooth.

B Experiments

In this section, we provide additional experimental details and results.

4

B.1 Experimental Details

We first go over the implementation details. We will then describe the environments and details of
running experiments including train/validation/test splits, the number of evaluation runs, the average
time for each run, and the used computing infrastructure.

B.1.1 Implementation Details

We implement CAIL based on a PPO-based AIRL. The actor and the critic are neural networks
with two hidden layers with size 64 and Tanh as the activation function, and the discriminator is a
neural network with two hidden layers with size 100 and ReLU as the activation function. We use
ADAM to update the imitation learning model and Stochastic Gradient Descent method (SGD) to
update the confidence. We implement our method in the PyTorch framework [1]. We train each
algorithm 10 times with different random seeds, and record how the expected return and the standard
deviation varies during training. While testing the return, we run the algorithm for 100 episodes.
While implementing Eqn. (11), we normalize β so that their mean value is 1, i.e. for the first part of
Eqn. (11), we use

∑
(s,a)∈Ξ

(
− nβ(s,a)∑

(s,a)∈Ξ β(s,a)

)
log(D(s, a)), where n is the number of state-action

pairs in Ξ. All the experiments in all environments are run on one Intel(R) Xeon(R) Gold 6244 CPU
@ 3.60GHz with 10G memory.

B.1.2 Environment

Reacher. In the Reacher environment, the agent is an arm with two links and one joint, and the end
effector of the arm is supposed to reach a final location. Each step, the agent is penalized for the
energy cost and the distance to the target.

We collect 200 trajectories in total for training, where each trajectory has 50 interaction steps. 5%
of the trajectories are annotated with rankings. We collect 5 trajectories for testing. We run the
experiment for 5 runs and compute the mean and the standard deviation of the expected return. The
average time for each run is 1,291s.

Ant. In the Ant environment, the agent is an ant with four legs and each leg has two links and two
joints. Its goal is to move forward in the x-axis direction as fast as possible. Each step, the agent is
rewarded for moving fast in the x-axis direction without falling down, while it is penalized for the
energy cost. If the ant fails to stand, the trajectory will be terminated.

We collect 200 trajectories in total for training, where each trajectory has at most 1000 interaction
steps. 5% of the trajectories are annotated with rankings. We collect 5 trajectories for testing. We run
the experiment for 5 runs and compute the mean and the standard deviation of the expected return.
The average time for each run is 17,140s.

Simulated Robot Arm. In this environment, there is a Franka Panda Arm that is supposed to pick up
a bottle, avoid the obstacle, and put the bottle on a target platform. Each step, the agent is penalized
for the energy cost and the distance to the target. If the agent drops the bottle or hits the target, it will
receive a large negative reward and the trajectory will be terminated. If the agent succeeds to make
the bottle stand on the target, the trajectory will be terminated too, so that the arm will no longer
receive penalization. The reachable region of the arm is [0.20, 0.80] in x-axis, and [−0.35, 0.35] in
y-axis. The initial position of the bottle is sampled in [0.68, 0.72]× [−0.05, 0] and the initial position
of the target is sampled in [0.28, 0.32] × [−0.32,−0.28]. The action space is the velocity of the
end-effector, and the maximum velocity is 1 in each direction.

We collect 200 trajectories in total for training, where each trajectory has at most 2000 interaction
steps. 5% of the trajectories are annotated with rankings. We collect 5 trajectories for testing. We run
the experiment for 5 runs and compute the mean and the standard deviation of the expected return.
The average time for each run is 44,731s.

Real Robot Arm. In this environment, we use a real UR5e robot arm in a similar settings as the
simulation environment.

We collect 200 trajectories in total for training, where each trajectory has at most 2000 interaction
steps. 5% of the trajectories are annotated with rankings. We collect 5 trajectories for testing. We run

5

the experiment for 5 runs and compute the mean and the standard deviation of the expected return.
The average time for each run is 141,699s.

B.1.3 Evaluation Metrics

To evaluate the proposed CAIL and other methods, we use the expected return for all the environments,
which is the discounted cumulative reward of a trajectory. For the Reacher and the Ant environments,
we use the reward function in their original implementation in Gym2. For the Simulated Robot Arm
and the Real Robot Arm environments, we define a reward as follows: Assume that the action of the
robot arm (the velocity of the end-effector) is a, the distance between the bottle and the target is d,
the distance between the bottle’s initial position and the target is dinit, then at each step, the robot will
receive a reward of − 0.02a

d2
init
− 0.05d. If the robot drops the bottle or the obstacle is moved, the robot

will receive a reward of −2000 and the trajectory will be terminated. In the robot arm environments
(both simulated and real), we also use the success rate as another metric to evaluate the rate that the
robot arm successfully moves the bottle to the goal area without colliding with the obstacle.

B.2 Results

Table 1: The converged expected return of all the methods in Mujoco Reacher and Ant, Simulated
Franka Panda Robot Arm, and the Real UR5e Robot Arm environments. We provide numerical
results for a clearer comparison.

Method Reacher Ant Simulated Robot Real Robot

CAIL -7.816±1.518 3825.644±940.279 -62.946±50.644 -34.330±1.242
2IWIL -23.055±3.803 3473.852±271.696 -120.622±122.787 -52.445±7.182

IC-GAIL -55.355±5.046 1525.671±747.884 -349.511±342.597 -550.235±657.838
AIRL -25.922±2.337 3016.134±1028.894 -236.953±230.495 -597.819±752.149
GAIL -60.858±3.299 998.231±387.825 -527.604±452.379 -532.854±664.415
T-REX -66.371±21.295 -1867.930±318.339 -1933.944±380.834 -2003.672±32.771
D-REX -78.102±14.918 -2467.779±135.175 -1817.239±481.672 -1538.100±703.266
SSRR -70.044±14.735 -105.346±210.837 -2077.616±58.764 -2154.214±168.086
Oracle -4.312 4787.233 -35.362 -31.056

Numerical Comparison. We provide the numerical comparison of CAIL and the baseline methods
in Table 1. The results correspond to the results in Fig. 2 in the main text. We can observe that
CAIL outperforms all the baseline methods in all the environments and the margin between CAIL
and the best-performing policy is much closer than the margin between baseline methods and the
best-performing policy.

Table 2: Success rate (%) among 100 trials of all the methods in the simulated and real robot
environments.

Method CAIL 2IWIL IC-GAIL AIRL GAIL T-REX D-REX SSRR

Simulated Robot 100 100 81 87 31 0 0 0
Real Robot 100 83 7 33 20 0 0 0

Success Rate. We report the success rate among 100 trials of different methods in Table 2. We
observe that for both simulated and real robot environments, CAIL achieves the highest success rate.
Though 2IWIL also achieves a high success rate; however, it induces trajectories with longer detour
and thus has lower expected return.

Ablating the size of ranking dataset We provide results of CAIL and the compared methods
including 2IWIL, IC-GAIL, and T-REX with varying levels of supervision. We do not include GAIL,
AIRL, D-REX, and SSRR in this ablation since they do not require any supervision. We conduct
experiments in the Reacher environment, and vary the ratio of demonstrations labeled with ranking.
The agents are provided with 200 trajectories, and the ratios of labeled demonstrations are 1%, 2%,

2https://github.com/openai/gym

6

Table 3: The performance with respect to the size of the ranking dataset.

Label Ratio 1% 2% 5% 10% 20% 50% 100%

2IWIL −33.5± 4.9 −34.4± 3.2 −23.3± 4.1 −27.7± 6.7 −24.5± 3.0 −30.0± 2.7 −25.2± 6.9
IC-GAIL −56.4± 10.1 −53.7± 4.0 −61.0± 5.0 −54.1± 6.0 −58.8± 3.4 −44.6± 8.3 −57.1± 3.7
T-REX −83.7± 18.6 −85.8± 15.3 −82.3± 10.2 −73.2± 21.6 −91.8± 15.4 −38.6± 35.8 −27.2± 37.2
CAIL −8.0± 2.4 −8.7± 3.6 −7.3± 2.0 −8.1± 2.9 −7.1± 1.7 −7.5± 2.3 −7.8± 3.0

0.0

0.5

1.0

1.5

2.0

C
on

fid
en

ce
 S

co
re

(a) Visualization of Confidence
°10 0 10

0

1000

2000

3000

4000

5000 oracle (optimal demonstrations)

Ex
pe

ct
ed

 R
et

ur
n

(b) log(α)

°15 °10 °5

0

2000

4000

oracle (optimal demonstrations)

Ex
pe

ct
ed

 R
et

ur
n

(c) log(µ)

Figure 1: (a) The visualization of confidence for demonstrations drawn from policies with different
optimality. There are 5 policies with different optimality, where the darker color means the policy
has higher expected return. (b-c) The expected return with varying hyper-parameters α and µ.

5%, 10%, 20%, 50%, 100%. The average trajectory rewards and the standard deviations are shown
in the Table 3. CAIL outperforms all the other methods with a large gap in all settings, even in the
setting with only 1% labeled demonstrations, i.e., only two trajectories are labeled, which is the
minimum label we can have for ranking. 2IWIL and IC-GAIL, however, do not perform well, and
there is no clear increase of performance as the label ratio increases. This is because what they need
is labeled confidence, which is a much stronger type of supervision than ranking. The confidence
cannot be accurately recovered when only given rankings. T-REX does not perform well either, but
it is getting better as the ratio of labels increases. This experimentally proves that T-REX needs
much more data than CAIL to learn a reward function and CAIL can use the demonstrations more
efficiently.

Visualization of the Confidence In our experiments, we have 5 sets of demonstrations collected
from 5 different policies, where each set of demonstrations has different average returns. So we
can learn different average confidence values for each different set of demonstrations. The larger
the average return, the larger the average confidence. In our framework, we learn a confidence
for each state-action pair. We visualize the un-normalized confidence learned by CAIL of these 5
set of demonstrations in Fig. 1(a), where the darker color means the demonstrations have higher
expected returns. We observe that the darker color bar has higher confidence, which indicates that
CAIL-learned confidence matches the optimality of the demonstrations.

Hyper-parameter Sensitivity. We investigate the sensitivity of hyper-parameters including the two
learning rates α and µ. We aim to demonstrate two points: (1) The proposed approach can work stably
with the hyper-parameters falling into a specific range; (2) If the hyper-parameters are too large or too
small, the performance can drop, which means that tuning the two hyper-parameters are necessary
for the performance of our algorithm. We conduct experiments in the Ant environment. As shown
in Figure 1(b) and 1(c), the proposed approach work stably with α in the range [10−3, 100.0], and
with µ in the range [3× 10−5, 3× 10−4]. When α and µ are too large or too small, the performance
drops. The observations demonstrate the two points introduced above.

Videos for Real Robot. We show the videos of experiments in the real UR5e robot arm environment
in the file ‘robot_video.mp4’ in the supplementary materials.

7

References
[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We introduce the motivation and basic ideas of the
work and summarize the main contribution at the end of the introduction.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We do not

foresee major negative societal impacts of this work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We provide all
assumptions of Theorem 1 and 2.

(b) Did you include complete proofs of all theoretical results? [Yes] The proofs are in the
‘Proofs’ section of the supplementary materials.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provide the
code, data, and instructions in the supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We describe the training details in the ‘Implementation Details’
subsection of Section ‘Experiments’ in the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We provide the error bars in all figures including Figure 2
and 3

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The computation details are
included in the ‘Implementation Details’ subsection of Section ‘Experiments’ in the
supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the environ-

ments we use and the link to the information on robotics hardware used in Sec. 5. In
addition, we use the standard Academic Mujoco licence for our experiments in Mojuco
environments.

(b) Did you mention the license of the assets? [Yes] Our assets are open-source under the
MIT license provided in the supplementary material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include the implementation of our algorithm and the baselines mentioned in Sec 5.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The data we are using/curating are all either already public or are
synthetically generated. We will open source the generated data along with our code.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The data contains no personally identifiable
information or offensive content

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]

8

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

9

	Proofs
	Preliminaries
	Proof of Theoretical Results

	Experiments
	Experimental Details
	Implementation Details
	Environment
	Evaluation Metrics

	Results

