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(Supplemental material)

A Implementation details of the network

Layer Kernel Channels Out Input
Conv0a 3× 3 3/8 1 Image
Conv0b 3× 3 8/8 1 Conv0a
Conv1a 3× 3 8/16 2 Conv0b
Conv1b 3× 3 16/16 2 Conv1a
Conv2a 3× 3 16/32 4 Conv1b
Conv2b 3× 3 32/32 4 Conv2a
Conv3a 3× 3 32/64 8 Conv2b
Conv3b 3× 3 64/64 8 Conv3a
Conv4a 3× 3 64/128 16 Conv3b
Conv4b 3× 3 128/128 16 Conv4a
Out4 3× 3 128/4 16 Conv4b
Dconv3 3× 3 128/64 8 Conv4b
Out3 3× 3 64/4 8 Dconv3
Dconv2 3× 3 64/32 4 Dconv3 + Conv3b
Out2 3× 3 32/4 4 Dconv2
Dconv1 3× 3 32/16 2 Dconv2 + Conv2b
Out1 3× 3 16/4 2 Dconv1
Dconv0 3× 3 16/8 1 Dconv1 + Conv1b
Out0 3× 3 8/4 1 Dconv0 + Conv0b

Table 1: Network architecture of our image fea-
ture network.

Layer Kernel Channels Out Input
Conv0a 3× 3× 3 8/8 2 B0

Conv0b 3× 3× 3 8/8 2 Conv0a
Conv1a 3× 3× 3 8+8/16 4 [Conv0b,B1]
Conv1b 3× 3× 3 16/16 4 Conv1a
Conv2a 3× 3× 3 16+8/32 8 [Conv1b,B2]
Conv2b 3× 3× 3 32/32 8 Conv2a
Conv3a 3× 3× 3 32+8/64 16 [Conv2b,B3]
Conv3b 3× 3× 3 64/64 16 Conv3a
Conv4a 3× 3× 3 64+8/128 32 [Conv3b,B4]
Conv4b 3× 3× 3 128/128 32 Conv4a
Dconv4 3× 3× 3 128/64 16 Conv4b
Out4 3× 3× 3 64/4 16 Dconv4
Dconv3 3× 3× 3 64/32 8 Dconv4
Out3 3× 3× 3 32/4 8 Dconv3
Dconv2 3× 3× 3 32/16 4 Dconv3
Out2 3× 3× 3 16/4 4 Dconv2
Dconv1 3× 3× 3 16/8 2 Dconv2
Out1 3× 3× 3 8/4 2 Dconv1
Dconv0 3× 3× 3 8/8 1 Dconv1
Out0 3× 3× 3 8/4 1 Dconv0

Table 2: Network architecture of our 3D CNNs.

Image feature network. In this paper, we apply the shared FPN network to extract multi-scale
features for all multi-view inputs first. The detailed network architecture is shown in Tab. 1. “Out”
column refers to the downscaling factor to the input image. All convolutional layers except the output
layer consist of convolution block, batch normalization [3] and ReLU activator [4]. As presented in
our main paper, we apply a feature network of 5 scales, and the outputs with incremental resolution
of “Out4”, “Out3”, “Out2”, “Out1” and “Out0” are the multi-scale features we need. We equipe each
feature map with only 4 channels for efficiency.

3D CNNs. We first construct the multi-scale cost volume from multi-scale features, and then employ
a 3D CNNs to refine them to get our final multi-scale volume. As shown in Tab. 2, we inject cost
volumes of corresponding scales at different stages of the encoder of the model to avoid repeatedly
running the network for each scale, which greatly improves the efficiency. Similarly, we only generate
volumes of 4 channels for efficiency.

MLPs. We adopt the similar network architecture and initialization scheme as [9, 6]. Meanwhile,
we set the number of channels in each layer of the network to 128, which is half of the original.

B Annealing surface sampling strategy

To further speed up the fine-tuning, we propose an annealing surface sampling strategy to reduce
the number of sampling points. In the early stage, we use the same importance sampling strategy as
NeuS [6] to train a decent model, which can roughly predict the surface position. Afterwards, we
only sample a small number of points near the surface. Specifically, we first sample a certain number
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of points uniformly on the ray and find the surface position via Eq. 7. Then we define a sampling
range with this surface position as the median, and only sample a small number of points from it for
subsequent volume rendering. To avoid that the sampling range does not include the ground-truth
surface due to the limited capacity of the early model, we define an annealing sampling range, which
means first defining a wider sampling range and then gradually narrowing it down.

Wide sampling range Narrow sampling range

Figure 1: Annealing surface sampling.

C More ablation studies in dense seeting

Here, we show more ablation studies in dense setting.

C.1 Generalized multi-scale volume

GMV MFS VCL Mean
✗ ✗ ✗ 1.92
✓ ✗ ✗ 1.08
✓ ✓ ✗ 0.83
✓ ✓ ✓ 0.81

Table 3: Ablation on the number of
scales.

Number of scales 24 37 105
3 0.87 1.59 0.80
5 0.66 1.01 0.78

Table 4: Ablation on the number of
scales.

As analyzed in our main paper, our generalization model
to reconstruct surfaces from multi-view images faces many
tricky problems. The increase of viewpoints leads to more
serious occlusion, and the aggregated features are easily
polluted by features of occluded rays shot from behind,
which leads to poor performance of the general single
volume representation. In this paper, we build the gener-
alized multi-scale volume (GMV) to efficiently represent
the scene, which exploits multi-scale information in both
2D (FPN feature) and 3D spaces. We show more visual
comparisons of our generalized multi-scale volume and
the single large-width volume in Fig. 2. It can be seen that
the surface reconstructed by the single volume method
has obvious noise and holes, and our GMV can recover
smoother and more refined structures. These significant
advantages just demonstrate the effectiveness of our GMV.
The volume with small resolution has more global information, which is conducive to maintaining
global smoothness, while the large-resolution volume restores geometric details through finer features.
We further conduct an ablation study on the number of scales. We remove 2 low-resolution volumes
to form the 3-scale GMV in Tab. 4, whose resolution is increased from 26 to 28. The results show
that the 5-scale GMV has a great advantage over the 3-scale GMV, which verifies the effectiveness of
the multi-scale design.

C.2 Multi-scale feature-metric consistency

Method 24 37 105
Base 0.92 1.91 1.09
+PC 2.10 2.39 1.24
+MPC 0.82 1.74 0.85
+MFC 0.68 1.12 0.77

Table 5: Ablation on the multi-
scale feature-metric consistency.

Our multi-scale feature-metric consistency (MFC) is conducted
on the multi-scale feature space, which can provide a more
discriminative representation and enable more robust match-
ing compared with the ordinary photometric consistency. To
demonstrate our superiority, we perform some experiments to
compare with photometric consistency as mentioned in our
main paper. We have shown some visual comparisons in Fig.
9, and we illustrate more qualitative and quantitative results
here. The “Base” in Tab. 5 is a model with only the generalized
multi-scale volume. The “PC” stands for the model applying
the photometric consistency, which constrain the multi-view consistency in the image space as [1, 2].
The results show that it cannot work well for generalization training. We analyze that the main reason
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Figure 2: Visual comparison of our GMV and the single large-width volume. The first row is the
result of our GMV, and the second row is the result of the single volume.

is that the region where the photometric consistency fails is more challenging for generalization
training. Some SOTA self-supervised multi-view stereo methods (Self-MVS) [7, 8, 5] try to mask
out those regions to avoid polluting model training. Another advantage they have over our model is
that they enforce photometric consistency at the image level, which can impose global geometric
smoothness constraints, whereas our model can only handle local image patches individually due
to its reliance on ray sampling. Based on this intuition, we attempt to increase the receptive field
of image patches, that is, we downsample the image in the early stage, and then sample the image
patch for multi-view matching. As the model converges, we gradually upsample the image to the
original resolution. We call this strategy multi-scale photometric consistency (MPC). The results in
Tab. 5 show that enlarging the receptive field works well for our generalization training and brings
improvements to the base model. In addition to the multi-scale information, we find that learnable
features can provide more discriminative representations, which is of great benefit for improving
matching accuracy. Therefore, we utilize the off-the-shelf multi-scale features generated from our
FPN feature network to achieve our multi-scale feature-metric consistency, which simultaneously
have different ranges of receptive fields. The results shown in Tab. 5 just prove the effectiveness
of our MFC. We show more visual comparison results in Fig. 4 to further verify the advantages of
our MFC. It can be seen that our MFC can reconstruct finer and smoother structures, especially in
low-texture and complex scenes.

C.3 View contrast loss

We have shown in our main paper that the view contrast loss can improve the reconstruction of
student models. As shown in Tab. 3, it can also benefit to the reconstruction of the teacher model.
Some visual comparison in Fig. 3 shows that the view contrast loss can improve the smoothness of
reconstruction especially for those regions visible by few viewpoints.

w/o VCL w VCL

Figure 3: Visual comparison of the model with VCL and without VCL.
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Figure 4: Visual comparison of our MFC, MPC and PC. The first row is the result of PC, the
second row is the result of MPC, and the last row is the results of MFC.
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