
Supplementary material: what training reveals about
neural network complexity

Andreas Loukas
EPFL

andreas.loukas@epfl.ch

Marinos Poiitis
Aristotle University of Thessaloniki

mpoiitis@csd.auth.gr

Stefanie Jegelka
MIT

stefje@mit.edu

The supplementary material commences in Section B by presenting the proofs supporting our
theoretical claims. Section A discusses experimental details and shows additional results. Finally,
Section C lays out theoretical results of side-interest.

A Additional empirical results

A.1 Description of Task 1

The input data of Task 1 are generated by the following two step procedure:

First, we sample N = 100 points zi ∈ [−1, 1]2 uniformly at random and assign them a ground truth
label according to the sinusoidal function:

yi = cos(2πω zi(1)) · cos(2πω zi(1)) ∈ [−1, 1],

where ω is interpreted as a frequency and we set ω ∈ {0.25, 0.5, 0.75, 1.0} in our experiments. The
four resulting functions are visualized in Figure A.2.

We then determine {xi}Ni=1 by isometrically embedding {zi}Ni=1 into R10. We achieve this by
selecting the first 2 columns R ∈ R10×2 of a random 10× 10 unitary matrix and setting xi = Rzi.
This procedure ensures that the distances between points remains the same in high dimensions.

A.2 Distance to initialization for Task 2

0.0 0.2 0.4 0.6
Corruption rate

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 to
 in

iti
al

iza
tio

n

Figure A.1: Distance to init. with BCE loss.

We focus on the image classification CNN trained
with a BCE loss. Figure A.1 depicts the distance
from initialization ‖b(t)1 −b

(0)
1 ‖2 in the last 10 train-

ing epochs.

As explained in Section 4.2, when a BCE loss
is utilised, the derivative of the loss becomes un-
bounded which stops Corollary 3 from applying.
Interestingly, Figure A.1 confirms this by show-
ing that the distance is not an increasing function
of complexity. The reverse phenomenon can be
observed when an MSE loss is utilized (see Fig-
ure 3b).

A.3 Visualizing linear regions

Aiming to gain intuition about the behavior of NNs in linear regions close and far the training data,
we take a closer look at the function an MLP is learning when trained to solve task 1 (ω = 0.5, 2
hidden layers, N = 200).

Figures A.3a and A.3b depict, respectively, the real and learned function projected in 2D (recall
that the true function is isometrically embedded in 10D). Blue dots are training data points. The

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(a) ω = 0.25 (b) ω = 0.5 (c) ω = 0.75 (d) ω = 1.0

Figure A.2: The surface of the sinusoidal function from where the input points are sampled, for
different frequencies ω. Sampled points are plotted on top of the surface.

(a) ground truth function (b) learned function

(c) local Lipschitz constants (d) Lipschitz constants far from training data

Figure A.3: Visual illustration of the linear regions (top right) of the trained NN when fitting a
sinusoidal function (top left), together with their local Lipschitz constants (bottom left) and those far
from the training data as predicted by Theorem 2 (bottom right).

boundaries between region are indicated with black lines. As observed, there is a large number of
linear regions of varying sizes with the smaller and more densely packed regions being found close
to the (0,0) point.

The bottom two panels display the local Lipschitz constants (i.e., the magnitude of the gradient within
every region). In Figure A.3c we can see the real constants at all regions. Interestingly, it appears that
low- and high-Lipschitz constants are clustered, which likely follows from the hierarchical region
formation process: in other words, regions within the same cluster fall within the same region of a
shallower sub-network and are split by a higher layer.

Figure A.3d distinguishes between regions containing training points (in white) and the rest (in color).
We color empty regions depending on the bound given by Theorem 2 and black regions are those
for which the theorem does not have predictive power. We observe that, though the proposed theory

2

allows us to make statements about the function behavior far from the training data, the theory does
not explain the global behavior of the NN. This motivates the introduction of Dropout in the analysis
of Section 5.2: by exploiting stochasticity we can infer more properties about the NN complexity
from the training trajectory. Intuitively, using Dropout during a sufficiently long training, one is
able to deduce from the observed bias updates (specifically vector ϕT in Theorem 2) the Lipschitz
constants within more regions (thus they would also bound the Lipschitz constant within some of the
non-white regions in Fig A.3d). Moreover, though encountering each and every region in the training
would likely take a very long time, Theorem 2 implies that only a small subset of regions suffice to
approximate the global Lipschitz constant up to a logarithmic factor.

We finally observe that, in the regions were it applies, Theorem 2 yields a bound that is a constant
factor away from the real local Lipschitz constants: the bound overestimates the constants by roughly
a factor of four.

A.4 Total trajectory length

Figure A.4 displays the length of the entire normalized bias trajectory at every point in the training.
Thus, Figure A.4 corresponds to the integral of Figures 2b and 2e, which focus on the length of the
normalized bias trajectory within every epoch. We note also that all NNs have been trained until they
could closely fit the training set.

0 500 1000 1500 2000 2500 3000
Epoch

0

200

400

600

800

1000

1200

Bi
as

 tr
aj

ec
to

ry
 le

ng
th

 (t
ot

al
)

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(a) regression

0 20 40 60 80 100
Epoch

0

5

10

15

20
Bi

as
 tr

aj
ec

to
ry

 le
ng

th
 (t

ot
al

)
corruption=0.6
corruption=0.4
corruption=0.2
corruption=0.0

(b) CIFAR classification

Figure A.4: Length of the normalized trajectory at every pointing in the training starting from
initialization. As expected, the trajectory length of NNs grows with the complexity of the function
they are learning.

A side-by-side comparison with Figures 2a and 2d reveals that, between any two NNs that have fitted
the training data equally well, the one that implements a higher complexity function has consistently
a longer trajectory.

A.5 Effect of architecture on bias trajectory

We next evaluate the effect of the NN architecture on the optimization trajectory. We focus on the
MNIST dataset [1] and train an MLP and a CNN to distinguish between digits ‘3’ and ‘6’ based
on a training set consisting of 100 and 1000 images per class. For consistency with the previous
experiments, we used the same NN architectures for the MLP and CNN as those employed for Tasks
1 and 2, respectively (though both NNs now feature a sigmoid activation in the last layer). The
networks are trained using SGD with a BCE loss and a learning rate of αt = 0.002.

Figure A.5 depicts the training loss, normalized bias trajectory length, and test loss for each dataset.
Note that, in contrast to Figure 2, here all three measures are computed over time-intervals of 100
iterations (rather than per epoch). As expected, when the training set is small, both architectures fit
the training data equally well after roughly 20k iterations, but the CNN overfits less. By observing the
length of the bias trajectory, we deduce that the MLP is learning a more complex function than the
CNN. Thus, in the MNIST100 case, there is a correlation between trajectory length and generalization
with the NN architecture that is more appropriate for the task exhibiting a shorter trajectory.

It is important to remark that the complexity of the learned function is not the sole factor driving
generalization (though it is can be a crucial factor all other things being equal). Convolutional layers

3

0 5000 10000 15000 20000
Iteration

0.0

0.1

0.2

0.3

Tr
ai

n
lo

ss

cnn
mlp

(a) Training loss (MNIST100)

0 5000 10000 15000 20000
Iteration

0.00

0.02

0.04

0.06

0.08

Bi
as

 tr
aj

ec
to

ry
 (p

er
 1

00
 it

er
)

cnn
mlp

(b) Bias trajectory (MNIST100)

0 5000 10000 15000 20000
Iteration

0.0

0.1

0.2

0.3

Te
st

 lo
ss

(c) Test loss (MNIST100)

0 10000 20000 30000 40000
Iteration

0.0

0.1

0.2

0.3

Tr
ai

n
lo

ss

cnn
mlp

(d) Training loss (MNIST1000)

0 10000 20000 30000 40000
Iteration

0.00

0.02

0.04

0.06

0.08

Bi
as

 tr
aj

ec
to

ry
 (p

er
 1

00
 it

er
)

cnn
mlp

(e) Bias trajectory (MNIST1000)

0 10000 20000 30000 40000
Iteration

0.0

0.1

0.2

0.3

Te
st

 lo
ss

(f) Test loss (MNIST1000)

Figure A.5: Training and test behavior of a MLP and a CNN solving a binary MNIST image
classification task with different number of samples (100 and 1000 images per class). All three
measures (training loss, bias trajectory length, and test loss) are plotted at intervals of 100 iterations.

are indeed more constrained and better suited to image data than fully convolutional ones – thus it
is reasonable to expect better generalization than MLPs. Nevertheless, our experiment shows that
the CNN, beyond having the right architecture for the task, also learns a slightly lower complexity
function than the MLP while fitting the training data equally well or better. Thus, here we mainly
use the bias trajectory length as a diagnostic tool that helps us understand what functions the two
architectures are learning.

A.6 Effect of batch size on bias trajectory

This experiment investigates the effect of different batch sizes on the bias trajectory. We adopt the
same setup as that of Task 1 (specifically ω = 0.25 and 0.75 in Figure A.6) and train NNs with SGD
using batch sizes of 16 and 32, whereas our original experiment used a batch size of 1.

0 500 1000 1500 2000 2500 3000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Tr
ai

n
lo

ss

freq=0.75, bs=32
freq=0.75, bs=16
freq=0.25, bs=32
freq=0.25, bs=16

(a) Training loss

0 500 1000 1500 2000 2500 3000
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

Te
st

 lo
ss

(b) Test loss

0 2500 5000 7500 10000 12500
Iteration

0.005

0.010

0.015

0.020

0.025

0.030

Bi
as

 tr
aj

ec
to

ry
 (p

er
 1

00
 it

er
)

freq=0.75, bs=32
freq=0.75, bs=16
freq=0.25, bs=32
freq=0.25, bs=16

(c) Bias trajectory

Figure A.6: Training and test behavior of MLPs using different batch size (16 and 32) and evaluated
on data sampled from two different frequencies (ω =0.25 and 0.75 in Task 1). All three measures
(training loss, bias trajectory length, and test loss) are plotted at intervals of 100 iterations. The
trajectory length correlates with the NN’s complexity for different batch sizes.

The results are consistent with those of Figure 2, with a longer bias trajectory indicating that the NN
is fitting a more complex hypothesis and correlating with higher test loss. Increasing the batch size
from 1 to 32 also leads to a slight increase in trajectory length, though we currently lack mathematical
evidence that support this empirical observation.

4

0 500 1000 1500 2000 2500 3000
Epoch

0.00

0.05

0.10

0.15

Tr
ai

n
lo

ss

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(a) Training loss

0 500 1000 1500 2000 2500 3000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Bi
as

 tr
aj

ec
to

ry
 le

ng
th

 (p
er

 e
po

ch
)

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(b) b1 trajectory

0 500 1000 1500 2000 2500 3000
Epoch

0.00

0.05

0.10

0.15

Te
st

 lo
ss

(c) Test loss

0 500 1000 1500 2000 2500 3000
Epoch

0.00

0.05

0.10

0.15

0.20

Bi
as

 tr
aj

ec
to

ry
 le

ng
th

 (p
er

 e
po

ch
)

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(d) b2 trajectory

0 500 1000 1500 2000 2500 3000
Epoch

0.01

0.02

0.03

0.04

0.05

Bi
as

 tr
aj

ec
to

ry
 le

ng
th

 (p
er

 e
po

ch
)

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(e) b3 trajectory

0 500 1000 1500 2000 2500 3000
Epoch

0.002

0.004

0.006

0.008

Bi
as

 tr
aj

ec
to

ry
 le

ng
th

 (p
er

 e
po

ch
)

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(f) b4 trajectory

0 500 1000 1500 2000 2500 3000
Epoch

0.000

0.005

0.010

0.015

0.020

0.025

Bi
as

 tr
aj

ec
to

ry
 le

ng
th

 (p
er

 e
po

ch
)

freq=1.0
freq=0.75
freq=0.5
freq=0.25

(g) b5 trajectory

Figure A.7: Illustration of how the biases of all layers change when training a MLP to fit a function
of increasing spatial frequency. Sub-figures (a) and (c) show the behavior of the training and test loss,
whereas sub-figures (b) and (d-g) depict the per epoch bias trajectory.

A.7 The trajectory of higher layer biases

Our last experiment examines the training dynamics associated with the biased of higher layers. We
focus on Task 1 and replicate the experiment described in Section 6, but now we track the normalized
bias trajectory length of all biases and optimize W1 freely.

Figure A.7 reports the obtained results. It can be observed that the bias dynamics correlate with task
complexity for the first three layers, while being uncorrelated for the last two. To interpret these
results, we recall that in the proof of Lemma 1 the trajectory length of bl relates to the Lipschitz
constant of subnetwork fd←l+1 = fd ◦ · · · ◦ fl+1 close to the training data. Then, noticing how
the trajectory length decays by almost an order of magnitude at each layer, we may infer that the
Lipschitz constant of fd←l+1 decays quickly with l. The latter implies that the NN predominantly
employs the first few layers to solve the task, whereas the last two layers implement very simple
functions.

B Deferred technical arguments

B.1 A simple Lemma

Lemma 1. Let f (t) be a d-layer NN at the t-th SGD iteration, denote by x(t) ∈ X the point of the
training set sampled at that iteration, and set

εf(t)(x, y) :=

∣∣∣∣∂`(ŷ, y)

∂ŷ

∣∣∣∣
ŷ=f(t)(x)

. (1)

The Lipschitz constant of f (t) atRx(t) is

‖b(t+1)
1 − b

(t)
1 ‖2

αt · εf(t)(x(t), y(t))
· σn(W

(t)
1) ≤ λf(t)(Rx(t)) ≤

‖b(t+1)
1 − b

(t)
1 ‖2

αt · εf(t)(x(t), y(t))
· σ1(W

(t)
1),

where σ1(W
(t)
1) ≥ · · · ≥ σn(W

(t)
1) > 0 are the singular values of W (t)

1 .

Let us start with some basics. By the chain rule, we have

∂`(f(x(t),w(t)), y(t))

∂w(t)
=
∂`(ŷ, y(t))

∂ŷ
· ∂f(x(t),w(t))

∂w(t)

5

with ŷ = f(x(t),w(t)), whereas the gradient w.r.t. the bias of the `-th layer is given by(
∂f(x(t),w(t))

∂b
(t)
l

)>
= S

(t)
d (x(t))W

(t)
d · · ·S

(t)
l+1(x(t))W

(t)
l+1S

(t)
l (x(t)).

Note that the above equation abuses notation for the last layer activation S
(t)
d (x(t)). Specifically,

depending on whether we are using an identity or sigmoid activation function in the last layer, we set

S
(t)
d (x(t)) = 1 or S

(t)
d (x(t)) = ψ

(
W

(t)
d

(
f
(t)
d−1 ◦ · · · ◦ f

(t)
1 (x(t))

)
+ b

(t)
d

)
, (2)

where ψ(z) = ∂ρd(z)
∂z = 1

1+e−z ·
(

1− 1
1+e−z

)
.

Part 1. Define the following shorthand notation:∥∥∥∥∥
(
∂`(f(x(t),w(t)), y(t))

∂bl

)>∥∥∥∥∥
2

= βl(x
(t))

It follows from definition that

βl(x
(t)) =

∥∥∥∥∂`(o, y(t))∂o
S

(t)
d (x(t))W

(t)
d · · ·S

(t)
l (x(t))W

(t)
l+1Sl(x

(t))

∥∥∥∥
2

=

∣∣∣∣∂`(o, y(t))∂o

∣∣∣∣
∥∥∥∥∥
(
l+1∏
i=d

S
(t)
i (x(t))W

(t)
i

)
S

(t)
l (x(t))

∥∥∥∥∥
2

or equivalently,∥∥∥∥∥
(
l+1∏
i=d

S
(t)
i (x(t))W

(t)
i

)
S

(t)
l (x(t))

∥∥∥∥∥
2

= βl(x
(t))

∣∣∣∣∂`(o, y(t))∂o

∣∣∣∣−1 =
βl(x

(t))

εf(t)(x(t), y(t))
. (3)

Part 2. We are interested in upper bounding the Lipschitz constant λf(t) of the NN close to the
training data X .

First observe that f(x,w) = fd←2 ◦ f1(x), where we set

fd←2(x,w) = fd ◦ fd−1 ◦ · · · ◦ f2(x,w)

Let Rx(t) be the region associated with point x(t) and R
f
(t)
1 (x(t))

the region of the NN f
(t)
d←2

associated with point f (t)1 (x(t)). The Lipschitz constants of f (t)d←2 and f (t) are related as follows:

λ
f
(t)
d←2

(R
f
(t)
1 (x(t))

) · σn(W
(t)
1) ≤ λf(t)(Rx(t)) ≤ λ

f
(t)
d←2

(R
f
(t)
1 (x(t))

) · σ1(W
(t)
1), (4)

whereas

λfd←2
(R

f
(t)
1 (x(t))

) =

∥∥∥∥∥
(

2∏
l=d

S
(t)
l (x(t))W

(t)
l

)
S

(t)
1 (x(t))

∥∥∥∥∥
2

=
β1(x(t))

εf(t)(x(t), y(t))
. (5)

Combining (4) with (5), we obtain

β1(x(t))

εf(t)(x(t), y(t))
· σn(W

(t)
1) ≤ λf(t)(Rx(t)) ≤

β1(x(t))

εf(t)(x(t), y(t))
· σ1(W

(t)
1)

Part 3. Re-organizing the SGD expression and taking the norm, we have

βl(x
(t)) =

∥∥∥∥∥∥
(
∂`(f(x(t),w(t−1)), y(t))

∂b
(t)
l

)>∥∥∥∥∥∥
2

=
1

αt
‖b(t+1)
l − b

(t)
l ‖2.

implying also

‖b(t+1)
1 − b

(t)
1 ‖2

αt · εf(t)(x(t), y(t))
· σn(W

(t)
1) ≤ λf(t)(Rx(t)) ≤

‖b(t+1)
1 − b

(t)
1 ‖2

αt · εf(t)(x(t), y(t))
· σ1(W

(t)
1),

as claimed.

6

B.2 Proof of Theorem 1

The proof of the theorem follows directly from Lemma 1 by summing over the training trajectory:∑
t∈T

λf(t)(Rx)

σn(W
(t)
1)

Lemma 1
≥

∑
t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

αt εf(t)(x(t), y(t))

Lemma 1
≥

∑
t∈T

λf(t)(Rx)

σ1(W
(t)
1)

.

B.3 Proof of Corollary 1

For any point x with label y and iteration t ∈ T , we say that condition ct(x) holds if

‖b(t+1)
1 − b

(t)
1 ‖ ≤ ϕαt εf(t)(x, y)

The above is the same condition as in the corollary statement but applied to an arbitrary point x.

Write κt to refer to the number of training points xi ∈ X for which ct(xi) holds: clearly, κt ∈ [0, N],
where N is the size of the training set.

We also suppose that there are ξ iterations within T for which κt < N : these are the iterations where
the Lipschitz constant is larger than βϕ for at least one point in the training set.

Since we sample x(t) i.i.d. from X , the probability that ct(x(t)) is satisfied for every t ∈ T is at most∏
t∈T

κt
N
≤
(
N − 1

N

)ξ
=

(
1− 1

N

)ξ
≤ e−ξ/N .

By noting that above corresponds to the probability that the NN is (τ, ϕ)-steady, we deduce that ξ
cannot grow with |T | (otherwise, the probability that the NN is (τ, ϕ)-steady would become zero as
|T | → ∞, which contradicts the corollary assumptions).

To complete the derivation, we note that if we select the iteration t at random from T , the probability
that there will be some xi ∈ X for which ct(xi) is not satisfied is ξ/|T | = O(1/|T |), which
converges to 0 as |T | grows.

B.4 Proof of Corollary 2

We consider the interval T = {t1 + 1, . . . , t2} and fix

b1 = argminb∈Rn
∑
t∈T
‖b(t)1 − b‖22 =

∑
t∈T

b
(t)
1

|T |

to be the average bias. Working as in the proof of Theorem 1, we deduce∑
t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

εf(t)(x(t), y(t))
≥
∑
t∈T

αtλf(t)(Rx(t))

σ1(W
(t)
1)

.

We then proceed to upper bound the trajectory length studied in Theorem 1 in terms of the (empirical)
variance of the bias:(∑

t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

εf(t)(x(t), y(t))

)2

≤

(∑
t∈T

‖b(t+1)
1 − b1‖2 + ‖b(t)1 − b1‖2

εf(t)(x(t), y(t))

)2

≤

(∑
t∈T

εf(t)(x(t), y(t))−2

)(∑
t∈T

(
‖b(t+1)

1 − b1‖2 + ‖b(t)1 − b1‖2
)2)

(From Cauchy’s inequality)

≤
∑
t∈T

εf(t)(x(t), y(t))−2
∑
t∈T

2
(
‖b(t+1)

1 − b1‖22 + ‖b(t)1 − b1‖22
)

(since (a+ b)2 ≤ 2(a2 + b2))

≤ 4
∑
t∈T

εf(t)(x(t), y(t))−2
t2∑
t=t1

‖b(t)1 − b1‖22

7

or, equivalently,

t2∑
t=t1

‖b(t)1 − b1‖22
|T |

≥ 1

4|T |

(∑
t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

εf(t)(x(t), y(t))

)2
1∑

t∈T εf(t)(x(t), y(t))−2
(6)

Thus, we have

t2∑
t=t1

‖b(t)1 − b1‖22
|T |

≥ 0.25

(
t2

avg
t=t1

αtλf(t)(Rx(t))

σ1(W
(t)
1)

)2
|T |∑

t∈T
1

ε
f(t)

(x(t),y(t))2

. (7)

The proof concludes by noticing that the right-most term corresponds to a harmonic mean of
εf(t)(x(t), y(t))2 over t ∈ T .

B.5 Proof of Corollary 3

Suppose that we train our NN for τ iterations and set T = {0, . . . , τ−1}. The distance to initialization
is bounded by

‖b(τ)1 − b
(0)
1 ‖2 ≤

∑
t∈T
‖b(t+1)

1 − b
(t)
1 ‖2 =

∑
t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

εf(t)(x(t), y(t))
εf(t)(x(t), y(t)).

We obtain the final expression by arguing as in the proof of Theorem 1 to write:∑
t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

εf(t)(x(t), y(t))
εf(t)(x(t), y(t)) ≤

∑
t∈T

αt εf(t)(x(t), y(t))λf(t)(Rx(t))

σn(W
(t)
1)

.

B.6 Proof of Theorem 2

We will start by proving the following Lemma:

Lemma 2. LetRx be a linear region of f (t) and suppose that there exists a vector a ∈ R|T | such
that

1∏
l=d−1

[S
(t)
l (x)](il, il) =

∑
k∈T

a(k) ·
1∏

l=d−1

[S
(k)
l (x(k))](il, il) (8)

for all indices {il}l=1,··· ,d−1, with il ∈ {1, . . . , nl}. Then, f (t) is Lipschitz continuous within Rx

and its Lipschitz constant is at most

λf(t)(Rx) ≤ (1 + γ)
∑
k∈T

|a(k)|
|S(t)
d (x)|

|S(t)
d (x(k))|

λf(k)(Rx(k)),

with

S
(t)
d (z) =

∂ρd(x)

∂x

∣∣∣∣
x=W

(t)
d

(
f
(t)
d−1◦···◦f

(t)
1 (z)

)
+b

(t)
d

. (9)

Proof. The gradient of a network f (t) at at point x is simply

∇f (t)(x) =

1∏
l=d

S
(t)
l (x)W

(t)
l = S

(t)
d (x)

q(t)(x)︷ ︸︸ ︷
W

(t)
d

1∏
l=d−1

S
(t)
l (x)W

(t)
l .

Term q(t)(x) can be expanded as follows:

q(t)(x) =

nd∑
id−1=1

W
(t)
d (1, id−1)

[
1∏

l=d−1

S
(t)
l (x)W

(t)
l

]
(id−1, :)

8

= · · ·

=

nd−1∑
id−1=1

· · ·
n1∑
i1=1

W
(t)
d (1, id−1) · · · [S(t)

1 (x)](i1, i1)W
(t)
1 (i1, :).

Thus, under the main Lemma condition it is also true that

q(t)(x) =
∑
k∈T

a(k) ·

 nd−1∑
id−1=1

· · ·
n1∑
i1=1

W
(t)
d (1, id−1) · · · [S(k)

1 (x(k))](i1, i1)W
(t)
1 (i1, :)


=
∑
k∈T

a(k) ·

 nd−1∑
id−1=1

· · ·
n1∑
i1=1

W
(t)
d (1, id−1) · · · [S(t)

1 (x(k))](i1, i1)W
(t)
1 (i1, :)


=
∑
k∈T

a(k) · q(t)(x(k)),

Note that in the second step above we have used Assumption 1 to argue that the training point
activation patterns do not change within T .

The above analysis implies that

λf(t)(Rx) = |S(t)
d (x)|‖q(t)(x)‖2 = |S(t)

d (x)|‖
∑
k∈T

a(k) · q(t)(x(k))‖2

≤ |S(t)
d (x)|

∑
k∈T

‖a(k) · q(t)(x(k))‖2

=
∑
k∈T

|a(k)| ·
|S(t)
d (x)|

|S(t)
d (x(k))|

· λf(t)(Rx(k))

≤ (1 + γ)
∑
k∈T

|a(k)| ·
|S(t)
d (x)|

|S(t)
d (x(k))|

· λf(k)(Rx(k))

with the 3rd step being true due to the triangle inequality and the 5th follows from Assumption 1.

The proof continues by realizing that, for every index set id−1, · · · , i1 there exists an entry i such that

[

1⊗
l=d−1

S
(t)
l (x)](i, i) =

1∏
l=d−1

[S
(t)
l (x)](il, il).

Therefore, condition (8) is equivalent to asserting that

st(x) =

1⊗
l=d−1

diag
(
S

(t)
l (x)

)
=
∑
k∈T

a(k) ·
1⊗

l=d−1

diag
(
S

(k)
l (x(k))

)
=
∑
k∈T

a(k) · sk(x(k)) = ST a.

Let us focus on |S(t)
d (x)|/|S(t)

d (x(k))|. When there is no activation in the last layer, the term is
trivially ξ = 1. We next derive an upper bound to also account for the sigmoid activation: To do this,
set z = W

(t)
d

(
f
(t)
d−1 ◦ · · · ◦ f

(t)
1 (x)

)
+ b

(t)
d such that

S
(t)
d (x) = ψ(z) with ψ(z) =

∂ρd(z)

∂z
=

1

1 + e−z
·
(

1− 1

1 + e−z

)
Function ψ takes its maximum value for z = 0, with ψ(z) ≤ ψ(0) = 0.25. We notice that ψ is
symmetric around 0 and monotonically decreasing on either side. Its minimum is thus given when |z|
is as large as possible. However, since our classifier’s output is bounded in f (t)(x) ∈ [µT , 1− µT]
for all points seen within T , we have |z| ≤ log(1/µT − 1) and thus

|S(t)
d (x(k))| ≥ ψ(log(1/µT − 1)) = µT (1− µT).

9

All in all, we get |S(t)
d (x)|/|S(t)

d (x(k))| ≤ 0.25/(µT (1− µT)) = ξ.

We then rely on Lemma 1 to upper bound each local Lipschitz constant in terms of the bias update:

λf(k)(Rx(k)) ≤
‖b(k+1)

1 − b
(k)
1 ‖2

αk εf(k)(x(k), y(k))
σ1(W

(k)
1)2 ≤ β

‖b(k+1)
1 − b

(k)
1 ‖2

αk εf(k)(x(k), y(k))
, (10)

matching the claim of the theorem.

B.7 Proof of Theorem 3

We repeat the theorem statement here for easy reference:

Theorem 3. Let f (t) be a depth d NN with ReLU activations being trained with SGD, a BCE loss
and 1/2-Dropout.

Suppose that f (t) is (τ, ϕ)-steady and that for every t ≥ τ the following hold: (a) Assumption 1, (b)
st(x) ≤

∑N
i=1 st(xi) for every x ∈ X , (c) σ1(W

(t)
1) ≤ β, and (d) f (t)(x(t)) ∈ [µ, 1− µ].

Define

rt(X) =
minNi=1 |1− 2f (t)(xi)|

c ϕ log
(∑d−1

l=1 nl

) and c =
(1 + γ)β (1 + o(1))

µ (1− µ) pmin
,

where pmin = minl<d,i≤nl,t≥τ [avgx∈X diag(S
(t)
l (x))]i > 0 is the minimum frequency that any

neuron is active before Dropout is applied.

For any δ > 0, with probability at least 1− δ over the Dropout and the training set sampling, the
generalization error is at most∣∣eremp

t − erexp
t

∣∣ ≤√4 log(2)N (X ; `2, r(X)) + 2 log (1/δ)

N
,

where N (X ; `2, r) is the minimal number of `2-balls of radius r needed to cover X .

The proof consists of two parts. First, Lemma 3 provides a bound on the global Lipschitz constant of a
NN trained with Dropout as a function of the bias updates observed during a sufficiently long training.
Then, Lemma 4 uses techniques from the robustness framework [2, 3] to derive a generalization
bound.

B.7.1 The global Lipschitz constant

We prove the following:
Lemma 3. In the setting of Theorem 2, suppose that the network is trained using 1/2-Dropout and

denote by pl = avgx∈X diag
(
S

(t)
l (x)

)
the probability that the neurons in layer l are active (before

Dropout is applied). The global Lipschitz constant of f (t) is with high probability

λf(t) ≤ c log

(
d−1∑
l=1

nl

)
‖ϕT ‖∞ := λsteady

f(t)

for c = (1 + γ)β ξ (1 + o(1))/pmin, whenever |T | = Ω̃
(
pavg

p2min

∑d−1
l=1 nl

)
, with pmin and pavg being the

minimum and average entry over all pl, respectively.

The inequality provided above is unexpectedly tight: combining λf(t) ≥ λf(t)(Rx(t)) with Lemma 1
we can deduce that

λf(t) ≤ λsteady
f(t) ≤ λf(t) O(log(dn)),

where we have assumed that c/σn(W1) = O(1) and nl = n for all l < d.

Proof. Let x be a point within a region where f (t) assumes its maximum gradient norm.

The activation S̃T (:, t) = s̃t(x
(t)) at the t-th SGD iteration is obtained by a two step procedure:

10

1. Sample a point x(t) from X with replacement. Let st(x(t)) =
⊗1

l=d−1 st,l(x
(t)) be its

activation pattern (before dropout), where st,l(x
(t)) := diag

(
S

(t)
l (x(t))

)
.

2. Construct s̃t(x(t)) by setting each neuron activation to zero with probability 0.5. Specifically,
s̃t(x

(t)) =
⊗1

l=d−1(zl ◦ st,l(x(t))), where zl ∈ {0, 1}nl is a random binary vector.

Let S be a binary matrix containing neuron activations as columns. We introduce the following
definitions:

• We call S a covering set if S1 ≥ 1 with the inequality taken element-wise.
• We call S a basis of st(x) if S1 = st(x).

Our proof hinges on two observations:

Observation 1. Every basis yields a bound on the Lipschitz constant of f (t) (this can be seen
from the proof of Theorem 2). Specifically, for any k training points x1, . . . ,xk whose activations
S = [st(x1), . . . , st(xk)] is a basis of st(x), we have

λf(t)(Rx) ≤ ξ
k∑
i=1

λf(t)(Rxi) ≤ k ξ
k

max
i=1

λf(t)(Rxi).

where ξ ≥ |S(t)
d (x)|

|S(t)
d (xi)|

accounts for the sigmoid.

Thus, if we don’t use dropout and within the columns of ST there exist k that form a basis of st(x),
then this also implies that the global Lipschitz constant will be bounded by

λf(t)(Rx) ≤ kβ(1 + γ)ξ max
t∈T

‖b(t+1)
1 − b

(t)
1 ‖2

αtεf(t)(x(t), y(t))
,

where, in an identical fashion to Theorem 2, the 1 + γ factor is added due to Assumption 1 in order to
account for f (t) not having completely converged, and we have also used Lemma 1 and the uniform
bound ‖W (t)

1 ‖2 ≤ β.

Observation 2. Let us consider the effect of Dropout. Suppose that ST does not contain a basis of
st(x) =

⊗1
l=d−1 st,l(x), but there exist a set of columns S that is a covering set (as we will see,

this is a much easier condition to satisfy). Denote by S̃ the same matrix after the Dropout sampling.
Then, with some strictly positive probability, S̃ can become a basis.

Claim 1. For any k training points x1, . . . ,xk whose activations S = [st(x1), . . . , st(xk)] form a
covering set, there must exist Q = [q1, . . . , qk] with qi =

⊗1
l=d−1 qi,l and qi,l ≤ st,l(xi) (i.e., that

Dropout can sample) such that Q is a basis of st(x).

Proof. To deduce this fact, we notice that since

k∑
i=1

qi =

k∑
i=1

1⊗
l=d−1

qi,l =

1⊗
l=d−1

(
k∑
i=1

qi,l

)
and st(x) =

1⊗
l=d−1

st,l(x),

to ensure that Q is a basis we need to show that, for every l, there exists [q1,l · · · qk,l] with qi,l ≤
st,l(xi) such that

∑k
i=1 qi,l = st,l(x). The latter can always be satisfied when

∑k
i=1 st,l(x) ≥ 1.

When S is a covering set we have

S1 =

k∑
i=1

1⊗
l=d−1

st,l(xi) =

1⊗
l=d−1

k∑
i=1

st,l(xi) ≥ 1,

which also implies
∑k
i=1 st,l(xi) ≥ 1 as needed.

To obtain an upper bound for the Lipschitz constant of f (t), our strategy will entail lower bounding
the probability that such a basis of st(x) will be seen within T .

11

Consider any k training points x1, . . . ,xk sampled with replacement from X and let S =
[st(x1), . . . , st(xk)] be the corresponding (random) matrix of neural activations. Further, denote by
pcover(S) the probability that S is a covering set.

The probability pbasis(ST) that S̃T contains a basis of st(x) is given by

pbasis(ST) = 1− P
(
S̃T does not contain a basis

)
≥ 1−

b |T |k c∏
p=1

P
(
S̃T (:, (p− 1)k + 1 : pk) is not a basis

)
For every S̃T (:, (p− 1)k + 1 : pk) we have:

P
(
S̃T (:, (p− 1)k + 1 : pk) is a basis

)
= P

(
S̃ is a basis

)
= P

(
S̃ is a basis | S is a covering set

)
P(S is a covering set)

= P
(
S̃ is a basis | S is a covering set

)
pcover(S).

By Observation 2, if S is a covering set then there must exist qi =
⊗1

l=d−1 qt,l(xi) ≤ st(xi) =⊗1
l=d−1 st,l(xi), such that Q = [q1, . . . , qk] is a basis of st(x).

We proceed to compute the probability that the activation pattern sampled by Dropout s̃t(xi) =⊗2
l=d(zi,l ◦ st,l(xi)), where zl,t are random binary vectors, is a basis of st(x(t)) due to S̃ = Q:

P
(
S̃ is a basis | S is a covering set

)
= P

(
S̃ = Q

)
= P(s̃t(xi) = qi for i = 1, . . . , k)

=

k∏
i=1

P(s̃t(xi) = qi)

=

k∏
i=1

P

(
1⊗

l=d−1

(zi,l ◦ st,l(xi)) =

1⊗
l=d−1

qi,l

)

=

k∏
i=1

1∏
l=d−1

P(zi,l ◦ st,l(xi) = qi,l)

=
k∏
i=1

1∏
l=d−1

1

2‖st,l(xi)‖1
= 2−

∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 ,

where the second to last step is a consequence of Dropout with probability 0.5 sampling for each
layer uniformly at random from the set of all possible neuron activation patterns that can obtained by
disabling some neurons of st,l(xi).

Term
∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 can be seen as the sum of k independent samples, each having

mean m = avgx∈X
∑1
l=d−1 ‖st,l(x)‖1 and maximum value c = maxx∈X

∑1
l=d−1 ‖st,l(x)‖1.

Hoeffding’s inequality yields

P

(
k∑
i=1

1∑
l=d−1

‖st,l(xi)‖1 > E

[
k∑
i=1

1∑
l=d−1

‖st,l(xi)‖1

]
+ kδ

)
< exp

(
−2 k2δ2

kc2

)
,

implying also that P
(

2−
∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 < 2−(kµ+

√
k/2c)

)
< 1/e. Thus,

P
(
S̃ is a basis | S is a covering set

)
= P

(
S̃ is a basis | S is a covering set, 2−

∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 ≥ 2−h

)
P
(

2−
∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 < 2−h

)
12

+ P
(
S̃ is a basis | S is a covering set, 2−

∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 < 2−h

)
P
(

2−
∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 < 2−h

)
≥ P

(
S̃ is a basis | S is a covering set, 2−

∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 ≥ 2−h

)
P
(

2−
∑k
i=1

∑1
l=d−1 ‖st,l(xi)‖1 < 2−h

)
≥ 2−(kµ+c

√
k/2) (1− 1/e) > 2−(kµ+c

√
k/2+1),

where the first step employs the law of total probability. We therefore deduce that

pbasis(ST) ≥ 1−
(

pcover(S)

2(kµ+c
√
k/2+1)

)b |T |k c
= 1− 2

(
b |T |k c log2

(
pcover(S)

2(kµ+c
√
k/2+1)

))

= 1− 2
−
(

b |T |
k
c

(kµ+c
√
k/2+1)

log2(1/pcover(S))

)
,

which is satisfied with high probability when

|T | = Ω

(
k(kµ+ c

√
k/2 + 1)

log (1/pcover(S))

)
= Ω

(
k2µ+ nk3/2

− log pcover(S)

)
.

The final step of the proof entails bounding µ and pcover(S). We will think of neuron i at layer l as a
(dependent) Bernoulli random variable with activation probability pl(i). The probability that neuron
i in layer l is not activated within k independent trials is (1− pl(i))

k. Taking a union bound over all
neurons in all layers, results in:

pcover(S) ≥ 1−
d−1∑
l=1

nl−1∑
i=1

(1− pl(i))
k = 1−

d−1∑
l=1

nl∑
i=1

(
1− k pl(i)

k

)k
≥ 1−

∑
l,i

exp (−k pl(i))

≥ 1− exp

(
−kpmin + log

(
d−1∑
l=1

nl

))
with pmin = minl,i pl(i). On the other hand, the average norm is given by

m = avg
x∈X

d−1∑
l=1

‖st,l(x)‖1 =
∑
x∈X

∑d−1
l=1

∑nl
i=1[st,l(x)](i)

N

=

d−1∑
l=1

nl∑
i=1

∑
x∈X [st,l(x)](i)

N

=

d−1∑
l=1

nl∑
i=1

pl(i) =

(
d−1∑
l=1

nl

)
pavg.

The number of iterations we thus need to obtain a high probability bound is thus

|T | = Ω

 k2
(∑d−1

l=1 nl

)
pavg +

(∑d−1
l=1 nl

)
k3/2

− log
(

1− exp
(
−kpmin + log

(∑d−1
l=1 nl

)))
.

If we select k = (1 + o(1)) log
(∑d−1

l=1 nl

)
/pmin, we obtain

|T | = Ω


 (1 + o(1)) log

(∑d−1
l=1 nl

)
pmin

2(
d−1∑
l=1

nl

)
pavg +

(
d−1∑
l=1

nl

) (1 + o(1)) log
(∑d−1

l=1 nl

)
pmin

3/2


13

= Ω̃

((
1

pmin

)2
(
d−1∑
l=1

nl

)
pavg +

(
d−1∑
l=1

nl

)(
1

pmin

)3/2
)

= Ω̃

((
d−1∑
l=1

nl

)
pavg

p2min

)
,

where the asymptotic notation hides logarithmic factors.

The final Lipschitz constant is obtained by plugging in the bound of Observation 1 the value
k = (1 + o(1)) log

(∑d−1
l=1 nl

)
/pmin.

B.7.2 Generalization

We prove the following:

Lemma 4. In the setting of Lemma 3, suppose that the NN f (t) has been trained using a BCE loss
and a sigmoid activation in the last layer, let g(t)(x) = 1

[
f (t)(x)) > 0.5

]
∈ {0, 1} the classifier’s

output, and define

rt(X) :=
minNi=1 |f (t)(xi)− 0.5|

2λbound
f(t)

,

where λf(t) ≤ λbound
f(t) with probability at least 1 − o(1). For any δ > 0, with probability at least

1− δ − o(1), we have∣∣∣∣E(x,y)

[
er
(
g(t)(x), y

)]
− N

avg
i=1

er
(
g(t)(xi), yi

)∣∣∣∣ ≤
√

4 log(2)N (X ; `2, rt(X)) + 2 log (1/δ)

N
,

where er(ŷ, y) = 1[ŷ 6= y] is the classification error and N (X ; `2, r) is the minimal number of
`2-balls of radius r needed to cover the input domain X .

Proof. For convenience, we drop the iteration index.

Following Xu and Mannor [2], we define the input margin γi of classifier g at xi to be

γi := sup{a : ∀x, ‖x− xi‖2 ≤ a, g(x) = g(xi)},

which is the distance (in input space) to the classification boundary. For completeness, we also repeat
the definition of a robust classifier:

Definition 1 (Adapted from Definition 2 [2]). Classifier g is (K, ε)-robust ifX×Y can be partitioned
into K disjoint sets, denoted as CKk=1, such that ∀i = 1 · · · , N ,

(xi, yi), (x, y) ∈ Ck =⇒ |er(g(xi), yi)− er(g(x), y) | ≤ ε.

Denote by x∗i a point with ‖x∗i − xi‖2 = γi with g(x∗i) = g(xi) and notice that f(x∗i) = 0.5 (due
to the definition g(x) = 1[f(x) > 0.5]). We use the argument of Sokolić et al. [3] and bound the
input margin as follows:

γi ≥
‖f(xi)− f(x∗i)‖2

λf
=
‖f(xi)− 0.5‖2

λf
≥ ‖f(xi)− 0.5‖2

λbound
f

, (11)

with probability at least 1 − o(1). From Example 1 in [2] we then deduce that g is
(2N (2X , `2, rt(X)), 0)-robust for

rt(X) =
‖f(xi)− 0.5‖2

2λbound
f

≤
N

min
i=1

γi
2
.

Theorem 3 [2] implies that if g is (K, 0)-robust then, for any δ > 0, the following holds:∣∣∣∣E(x,y) [er(g(x), y)]− N
avg
i=1

er(g(xi), yi)

∣∣∣∣ ≤
√

2 log(2)K + 2 log (1/δ)

N
, (12)

with probability at least 1− δ. We obtain the final bound by substituting K = 2N (2X , `2, rt(X))
and taking a union bound on the events that inequalities (11) and (12) do not occur.

14

C Additional theoretical results

C.1 Generalization of Lemma 1 to any element-wise activation function

Lemma 5. Let f (t) be a d-layer NN with arbitrary activation functions at the t-th SGD iteration,
demote by x(t) ∈ X the point of the training set sampled at that iteration, and set

εf(t)(x, y) :=

∣∣∣∣∂`(o, y)

∂o

∣∣∣∣
o=f(t)(x)

. (13)

The Lipschitz constant of f (t) at x(t) is

‖b(t+1)
1 − b

(t)
1 ‖2

αt · εf(t)(x(t), y(t))
· σn(W

(t)
1) ≤ λf(t)(x(t)) ≤ ‖b(t+1)

1 − b
(t)
1 ‖2

αt · εf(t)(x(t), y(t))
· σ1(W

(t)
1),

where σ1(W
(t)
1) ≥ · · · ≥ σn(W

(t)
1) > 0 are the singular values of W (t)

1 .

Proof. The proof proceeds almost identically with that of Lemma 1. The main difference is that the
diagonal matrix S

(t)
l (x(t)) is redefined to yield the appropriate derivative for the activation function

in question. Further, since now the function is not piece-wise linear, the bound only holds for x(t)

(and not for the entire regionRx(t) enclosing the point, as before).

C.2 The Lipschitz constant of the first layer

The behavior of SGD can also be indicative of the Lipschitz constant of the first layer when the
training data is sufficiently diverse and the training has converged:

Lemma 6. Let f (t) be a d-layer NN trained by SGD, let Assumption 1 hold, and further and suppose
that after iteration τ , we have

‖W (t+1)
2 −W

(t)
2 ‖2

‖b(t+1)
1 − b

(t)
1 ‖2

+ ‖b(t)1 ‖2 ≤ ϑ and ‖W (t)
1 −W

(t′)
1 ‖2 ≤ β for all t, t′ ≥ τ.

Denote by δ the minimal scalar such that, for every x ∈ X , we have ‖x−xi‖2 ≤ δ for some xi ∈ X .
Then,

λ
f
(t)
1
≤ ϑ+ β

1− δ
. (14)

under the condition δ < 1.

Proof. The weight matrix gradient is at a point x is(
∂f(x,w(t))

∂W
(t)
l

)>
= f

(t)
l−1(x,w(t)) ·W (t)

d · · ·S
(t)
l+1(x)W

(t)
l+1S

(t)
l (x).

Fixing ∥∥∥∥∥∥
(
∂`(f(x(t),w(t)), y(t))

∂W
(t)
l

)>∥∥∥∥∥∥
2

∥∥∥∥∥∥
(
∂`(f(x(t),w(t)),y(t))

∂b
(t)
l−1

)>∥∥∥∥∥∥
−1

2

≤ %l(x(t))

we have that∥∥∥∥∥∥
(
∂`(f(x(t),w(t)), y(t))

∂W
(t)
l

)>∥∥∥∥∥∥ =
∥∥∥fl−1(x(t),w(t))

∥∥∥ ∥∥∥∥∂`(ŷ, y)

∂ŷ
W

(t)
d S

(t)
d−1(x(t)) · · ·W (t)

l+1S
(t)
l (x(t))

∥∥∥∥
=
∥∥∥fl−1(x(t),w(t))

∥∥∥
2

∥∥∥∥∥∥
(
∂`(f(x(t),w(t)), y(t))

∂b
(t)
l−1

)>∥∥∥∥∥∥
2

,

15

which implies ∥∥∥fl−1(x(t),w(t))
∥∥∥ ≤ %l(x(t)). (15)

Let x∗ = argmaxx∈Sn−1

∥∥∥S(t)
1 (x)W

(t)
1 x

∥∥∥
2

and fix x(t′) to be the point in the training set that is

closest to it (sampled at iteration t′ ≥ τ).

λ
f
(t)
1

=
∥∥∥S(t)

1 (x∗)W
(t)
1 x∗

∥∥∥
2
≤
∥∥∥S(t)

1 (x(t′))W
(t)
1 x(t′)

∥∥∥
2

+
∥∥∥S(t)

1 (x∗)W
(t)
1 x∗ − S

(t)
1 (x(t′))W

(t)
1 x(t′))

∥∥∥
2
.

By the main assumption, we can bound the rightmost term by ‖x∗ − x(t′)‖λ
f
(t)
1
≤ δ λ

f
(t)
1

. We thus
get

λ
f
(t)
1

=
∥∥∥S(t)

1 (x∗)W
(t)
1

∥∥∥
2
≤
∥∥∥S(t)

1 (x(t′))W
(t)
1 x(t′)

∥∥∥
2

+ δ λ
f
(t)
1

≤
∥∥∥S(t)

1 (x(t′))W
(t′)
1 x(t′)

∥∥∥
2

+
∥∥∥W (t′)

1 −W
(t)
1

∥∥∥
2

+ δ λ
f
(t)
1

≤
∥∥∥S(t′)

1 (x(t′))W
(t)
1 x(t′) + b

(t′)
1

∥∥∥
2

+ ‖b(t
′)

1 ‖2 +
∥∥∥W (t′)

1 −W
(t)
1

∥∥∥
2

+ δ λ
f
(t)
1

= %2(x(t′)) + ‖b(t
′)

1 ‖2 +
∥∥∥W (t′)

1 −W
(t)
1

∥∥∥
2

+ δ λ
f
(t)
1

≤ ϑ+
∥∥∥W (t′)

1 −W
(t)
1

∥∥∥
2

+ δ λ
f
(t)
1
,

where, due to Assumption 1, S(t′)
1 (x(t′)) = S

(t)
1 (x(t′)). The final bound is obtained re-arrangement

and by the convergence assumption
∥∥∥W (t′)

1 −W
(t)
1

∥∥∥
2
≤ β.

References
[1] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:

//yann.lecun.com/exdb/mnist/.

[2] Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423,
2012.

[3] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin
deep neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

16

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Additional empirical results
	Description of Task 1
	Distance to initialization for Task 2
	Visualizing linear regions
	Total trajectory length
	Effect of architecture on bias trajectory
	Effect of batch size on bias trajectory
	The trajectory of higher layer biases

	Deferred technical arguments
	A simple Lemma
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Theorem 2
	Proof of Theorem 3
	The global Lipschitz constant
	Generalization

	Additional theoretical results
	Generalization of Lemma 1 to any element-wise activation function
	The Lipschitz constant of the first layer

