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ABSTRACT

High-dimensional Bayesian inference problems cast a long-standing challenge
in generating samples, especially when the posterior has multiple modes. For a
wide class of Bayesian inference problems equipped with the multiscale structure
that low-dimensional (coarse-scale) surrogate can approximate the original high-
dimensional (fine-scale) problem well, we propose to train a Multiscale Invertible
Generative Network (MsIGN) for sample generation. A novel prior conditioning
layer is designed to bridge networks at different resolutions, enabling coarse-to-
fine multi-stage training. Jeffreys divergence is adopted as the training objec-
tive to avoid mode dropping. On two high-dimensional Bayesian inverse prob-
lems, MsIGN approximates the posterior accurately and clearly captures multiple
modes, showing superior performance compared with previous deep generative
network approaches. On the natural image synthesis task, MsIGN achieves the
superior performance in bits-per-dimension compared with our baseline models
and yields great interpret-ability of its neurons in intermediate layers.

1 INTRODUCTION

Bayesian inference provides a powerful framework to blend prior knowledge, data generation pro-
cess and (possibly small) data for statistical inference. With some prior knowledge ρ (distribution)
for the quantity of interest x ∈ Rd, and some (noisy) measurement y ∈ Rdy , it casts on x a posterior

q(x|y) ∝ ρ(x)L(y|x) , where L(y|x) = N (y −F(x); 0,Γε) . (1)

where L(y|x) is the likelihood that compares the data y with system prediction F(x) from the
candidate x, here F denotes the forward process. We can use different distributions to model the
mismatch ε = y − F(x), and for illustration simplicity, we assume Gaussian in Equation 1. For
example, Bayesian deep learning generates model predicted logits F(x) from model parameters x,
and compares it with discrete labels y through binomial or multinomial distribution.

Sampling or inferring from q is a long-standing challenge, especially for high-dimensional (high-d)
cases. An arbitrary high-d posterior can have its importance regions (also called “modes”) anywhere
in the high-d space, and finding these modes requires computational cost that grows exponentially
with the dimension d. This intrinsic difficulty is the consequence of “the curse of dimensionality”,
which all existing Bayesian inference methods suffer from, e.g., MCMC-based methods (Neal et al.,
2011; Welling & Teh, 2011; Cui et al., 2016), SVGD-type methods (Liu & Wang, 2016; Chen et al.,
2018; 2019a), and generative modeling (Morzfeld et al., 2012; Parno et al., 2016; Hou et al., 2019).

In this paper, we focus on Bayesian inference problems with multiscale structure and exploit this
structure to sample from a high-d posterior. While the original problem has a high spatial resolution
(fine-scale), its low resolution (coarse-scale) analogy is computationally attractive because it lies in
a low-dimension (low-d) space. A problem has the multiscale structure if such coarse-scale low-d
surrogate exists and gives good approximation to the fine-scale high-d problem, see Section 2.1.
Such multiscale property is very common in high-d Bayesian inference problems. For example,
inferring 3-D permeability field of subsurface at the scale of meters is a reasonable approximation
of itself at the scale of centimeters, while the problem dimension is 106-times fewer.

We propose a Multiscale Invertible Generative Network (MsIGN) to sample from high-d Bayesian
inference problems with multiscale structure. MsIGN is a flow-based generative network that can
both generate samples and give density evaluation. It consists of multiple scales that recursively
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lifts up samples to a finer-scale (higher-resolution), except that the coarsest scale directly samples
from a low-d (low resolution) distribution. At each scale, a fixed prior conditioning layer combines
coarse-scale samples with some random noise according to the prior to enhance the resolution, and
then an invertible flow modifies the samples for better accuracy, see Figure 1. The architecture of
MsIGN makes it fully invertible between the final sample and random noise at all scales.

Figure 1: MsIGN generates samples from coarse to fine scale. Each scale, as separated by vertical
dash lines, takes in feature xl−1 from the coarser scale and Gaussian noise zl, and outputs a sample
xl of finer scale. The prior conditioning layer PCl lifts up the coarser-scale sample xl−1 to a finer
scale x̃l, which is the best guess of xl given its coarse-scale value xl−1 and the prior. An invertible
flow Fl further modifies x̃l to better approximate xl. See Section 2.1 for detailed explanation.

MsIGN undergoes a multi-stage training that learns a hierarchy of distributions with dimensions
growing from the lowest to the highest (the target posterior). Each stage gives a good initialization
to the next stage thanks to the multiscale property. To capture multiple modes, we choose Jeffreys
divergence DJ(p‖q) as the training objective at each stage, which is defined as

DJ(p‖q) = DKL(p‖q) +DKL(q‖p) = Ex∼p [log (p(x)/q(x))] + Ex∼q [log (q(x)/p(x))] . (2)

Jeffreys divergence removes bad local minima of single-sided Kullback-Leibler (KL) divergence to
avoid mode missing. We build an unbiased estimation of it by leveraging prior conditioning layer
in importance sampling. Proper loss function and good initialization from multi-stage training solve
the non-convex optimization stably and capture multi-modes of the high-d distribution.

In summary, we claim four contributions in this work. First, we propose a Multiscale Invertible
deep Generative Network (MsIGN) with a novel prior conditioning layer, which can be trained
in a coarse-to-fine scale manner. Second, Jeffreys divergence is used as the objective function to
avoid mode collapse, and is estimated by importance sampling based on the prior conditioning
layer. Third, when applied to two Bayesian inverse problems, MsIGN clearly captures multiple
modes in the high-d posterior and approximates the posterior accurately, demonstrating its superior
performance compared with previous methods via the generative modeling approach. Fourth, we
also apply MsIGN to image synthesis tasks, where it achieves superior performance in bits-per-
dimension among our baseline models, like Glow (Kingma & Dhariwal, 2018), FFJORD (Grathwohl
et al., 2018), Flow++ (Ho et al., 2019), i-ResNet (Behrmann et al., 2019), and Residual Flow (Chen
et al., 2019b). MsIGN also yields great interpret-ability of its neurons in intermediate layers.

2 METHOLOGY

We will abbreviate q(x|y) in Equation 1 as q(x) for simplicity in the following context, because y
only plays the role of defining the target distribution q(x) in MsIGN. In Section 2.1, we discuss the
multiscale structure in detail of the posterior q(x) and derive a scale decoupling that can be utilized
to divide and conquer the high-d challenge of Bayesian inference.

As a flow-based generative model like in Dinh et al. (2016), MsIGN models a bijective that maps
Gaussian noise z to a sample x whose distribution is denoted as pθ(x), where θ is the network pa-
rameters. MsIGN allows fast generation of samples x and density evaluation pθ(x), so we train our
working distribution pθ(x) to approximate the target distribution q(x). We present the architecture
of MsIGN in Section 2.2 and the training algorithm in Section 2.3.
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2.1 MULTISCALE STRUCTURE AND SCALE DECOUPLING

We say a Bayesian inference problem has multiscale structure if the associated coarse-scale likeli-
hood Lc approximates the original likelihood L well:

L(y|x) ≈ Lc(y|xc) , where Lc(y|xc) := N (y −Fc(xc); 0,Γε) . (3)

Here xc ∈ Rdc is a coarse-scale version of the fine-scale quantity x ∈ Rd (dc < d), given by a
deterministic pooling operator A : xc = A(x). The map Fc : Rdc → Rdy is a forward process that
gives system prediction based on the coarse-scale information xc. A popular case of the multiscale
structure is when A is the average pooling operator, and F(x) ≈ Fc(xc), meaning that the system
prediction mainly depends on the lower-resolution information xc. Equation 3 motivates us to define
a surrogate distribution q̃(x) ∝ ρ(x)Lc(y|A(x)) that approximates the target posterior q(x) well1:

q̃(x) = ρ(x)Lc(y|A(x)) = ρ(x)Lc(y|xc) ≈ ρ(x)L(y|x) = q(x) . (4)

We also notice that the prior ρ allows an exact scale decoupling. To generate a sample x from
ρ, one can first sample its coarse-scale version xc = A(x), and then replenish missing fine-scale
details without changing the coarse-scale structure by sampling from the conditional distribution
ρ(x|xc) = ρ(x|A(x) = xc). Using ρc to denote the distribution of xc = A(x), the conditional
probability calculation summarizes this scale decoupling process as ρ(x) = ρ(x|xc)ρc(xc).

Combining the scale effect in the likelihood and the scale decoupling in the prior, we decouple the
surrogate q̃(x) = ρ(x)Lc(y|A(x)) into the prior conditional distribution ρ(x|xc) and a coarse-scale
posterior, defined as qc(xc) := ρc(xc)L(y|xc). The decoupling goes as

q̃(x) = ρ(x)Lc(y|xc) = ρ(x|xc)ρc(xc)Lc(y|xc) = ρ(x|xc)qc(xc) , (5)

The prior conditional distribution ρ(x|xc) bridges the coarse-scale posterior qc(xc) and the surrogate
q̃(x), which in turn approximates the original fine-scale posterior q(x). Parno et al. (2016) proposed
a similar scale decoupling relation, and we leave the discussion and comparison to Appendix A.

Figure 1 shows the integrated sampling strategy. To sample an x from q, we start with an xc from
qc. The prior conditioning layer then performs random upsampling from the prior conditional distri-
bution ρ(·|xc), and the output will be a sample x̃ of the surrogate q̃. Due to the approximation q̃ ≈ q
from Equation 4, we stack multiple invertible blocks for the invertible flow F to modify the sample
x̃ ∼ q̃ to a sample x ∼ q: x = F (x̃). F is initialized as an identity map in training. Finally, to
obtain the xc from qc, we apply the above procedure recursively until the dimension of the coarsest
scale is small enough so that qc can be easily sampled by a standard method.

2.2 MULTISCALE INVERTIBLE GENERATIVE NETWORK: ARCHITECTURE

Our proposed MsIGN has multiple levels to recursively apply the above strategy. We denote L the
number of levels, xl ∈ Rdl the sample at level l, and Al : Rdl → Rdl−1 the pooling operator from
level l to l− 1: xl−1 = Al(xl). Following the idea in Section 2.1, we can define the l-th level target
ql(xl) and surrogate q̃l(x̃l), and the last-level target qL is our original target q in Equation 1. The
l-th level of MsIGN uses a prior conditioning layer PCl and an inverse transform Fl to capture ql.

Prior conditioning layer. The prior conditioning layer PCl at level l lifts a coarse-scale sam-
ple xl−1 ∈ Rdl−1 up to a random fine-scale one xl ∈ Rdl following the conditional distribution
ρ(xl|xl−1). The difference in dimension is compensated by a Gaussian noise zl ∈ Rdl−dl−1 , which
is the source of randomness: xl = PCl(xl−1, zl). PCl depends only on the prior conditional dis-
tribution ρ(xl|xl−1), and thus can be pre-computed independently for different levels regardless of
the likelihood L. When the prior is Gaussian and the pooling operators are linear (e.g., average
pooling), the prior conditional distribution is still Gaussian with moments specified as follows.

Lemma 2.1 Suppose that ρ(xl) = N (xl; 0,Σl), and Al(xl) = Alxl for some Al ∈ Rdl−1×dl ,
then with Ul−1 := ΣlA

T
l (AlΣlA

T
l )−1 and Σl|l−1 := Σl −ΣlA

T
l (AlΣlA

T
l )−1AlΣl, we have

ρ(xl|xl−1 = Alxl) = N (xl;Ul−1xl−1,Σl|l−1) .

1We omit normalizing constants. Equivalence and approximation are up to normalization in the following.
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With the Cholesky decomposition (or eigen-decomposition) Σl|l−1 = BlB
T
l , we design the prior

conditioning layer PCl as below, which is invertible between xl and (xl−1, zl):

xl = PCl(xl−1, zl) := Ul−1xl−1 +Blzl , zl ∼ N (0, Idl−dl−1
) . (6)

We refer readers to Appendix B for proof of Lemma 2.1 and the invertibility in Equation 6.

When the prior is non-Gaussian or the pooling operators are nonlinear, there exists a nonlinear
invertible prior conditioning operator xl = PCl(xl−1, zl) such that xl follows the prior conditional
distribution ρ(xl|xl−1) given xl−1 and zl ∼ N (0, Idl−dl−1

). We can pre-train an invertible network
to approximate this sampling process, and fix it as the prior conditioning layer.

Invertible flow. The invertible flow Fl at level l modifies the surrogate q̃l towards the target ql. The
more accurate the multiscale structure in Equation 3 is, the better q̃l approximates ql, and the closer
Fl is to the identity map. Therefore, we parameterize Fl by some flow-based generative model
and initialize it as an identity map. In practice, we utilize the invertible block of Glow (Kingma &
Dhariwal, 2018), which consists of actnorm, invertible 1× 1 convolution, and affine coupling layer,
and stack several blocks as the inverse flow Fl in MsIGN.

Overall model. MsIGN is a bijective map between random noise inputs at different scales {zl}Ll=1

and the finest-scale sample xL. The forward direction of MsIGN maps {zl}Ll=1 to xL as below:

x1 = F1(z1) ,

x̃l = PCl(xl−1, zl) , xl = Fl(x̃l) , 2 ≤ l ≤ L . (7)

As a flow-based generative model, sample generation as in Equation 7 and density evaluation pθ(x)
by the change-of-variable rule is accessible and fast for MsIGN. In scenarios when certain bound
needs enforcing to the output, we can append element-wise output activations at the end of MsIGN.
For example, image synthesis can use the sigmoid function so that pixel values lie in [0, 1]. Such
activations should be bijective to keep the invertible relation between random noise to the sample.

2.3 MULTISCALE INVERTIBLE GENERATIVE NETWORK: TRAINING

Since the prior conditioning layer PC is pre-computed and the output activation G is fixed, only the
inverse flow F contains trainable parameters in MsIGN. We train MsIGN with the following strategy
so that the distribution pθ of its output samples, where θ is the network parameter, can approximate
the target distribution q defined in Equation 1 well.

Multi-stage training and interpret-ability. The multiscale strategy in construction of MsIGN en-
ables a coarse-to-fine multi-stage training. At stage l, we target at capturing ql, and only train
invertible flows before or at this level: Fl′ , l′ ≤ l. Equation 4 implies that ql can be well approxi-
mated by the surogate q̃l, which is the conditional upsampling from ql−1 as in Equation 5. So we
use q̃l to initialize our model by setting Fl′ , l′ < l as the trained model at stage l − 1 and setting Fl
as the identity map. Our experiments demonstrate such multi-stage strategy significantly stabilizes
training and improves final performance.

Figure 1 and Equation 7 imply that intermediate activations, i.e., x̃l and xl, who are samples of
predefined posterior distributions at the coarse scales (see Equation 5), are semantically meaningful
and interpret-able. This is different from Glow (Kingma & Dhariwal, 2018), whose intermediate
activations are not interpret-able due to the loss of spatial relation.

Jeffreys divergence and importance sampling with the surrogate. The KL divergence is easy
to compute, and thus is widely used as the training objective. However, its landscape could admit
local minima that don’t favor the optimization. Nielsen & Nock (2009) suggests that DKL(pθ‖q)
is zero-forcing, meaning that it enforces pθ be small whenever q is small. As a consequence, mode
missing can still be a local minimum, see Appendix C. Therefore, we turn to the Jeffreys divergence
defined in Equation 2 which penalizes mode missing much and can remove such local minima.

Estimating the Jeffreys divergence requires computing an expectation with respect to the target q,
which is normally prohibited. Since MsIGN constructs a good approximation q̃ to q, and q̃ can
be constructed from coarser levels in multi-stage training, we do importance sampling with the
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surrogate q̃ for the Jeffreys diveregence and its derivative (see Appendix D for detailed derivation):

DJ(pθ‖q) = Ex∼pθ

[
log

pθ(x)

q(x)

]
+ Ex∼q̃

[
q(x)

q̃(x)
log

q(x)

pθ(x)

]
. (8)

∂

∂θ
DJ(pθ‖q) = Ex∼pθ

[(
1 + log

pθ(x)

q(x)

)
∂ log pθ(x)

∂θ

]
− Ex∼q̃

[
q(x)

q̃(x)

∂ log pθ(x)

∂θ

]
. (9)

With the derivative estimate given above, we optimize the Jeffreys divergence by stochastic gradient
descent. We remark that ∂ log pθ(x)/∂θ is computed by the backward propagation of MsIGN.

3 RELATED WORK

Invertible generative models (Deco & Brauer, 1995) are powerful exact likelihood models with
efficient sampling and inference. They have achieved great success in natural image synthesis, see,
e.g., Dinh et al. (2016); Kingma & Dhariwal (2018); Grathwohl et al. (2018); Ho et al. (2019); Chen
et al. (2019b), and variational inference in providing a tight evidence lower bound (ELBO), see,
e.g, Rezende & Mohamed (2015). In this paper, we propose a new multiscale invertible generative
network (MsIGN) structure, which utilizes the invertible block in Glow (Kingma & Dhariwal, 2018)
as building piece for the invertible flow at each scale. The Glow block can be replaced by any other
invertible blocks, without any algorithmic changes. Different from Glow, different scales of MsIGN
can be trained separately, and thus features in its intermediate layers can be interpreted as low-
resolution approximation of the final high-resolution output. This novel multiscale structure enables
better explain-ability of its hidden neurons and makes training much more stable.

Different from the image synthesis task where large amount of samples from target distribution are
available, in Bayesian inference problems only an unnormalized density is available and i.i.d. sam-
ples from the posterior are the target. This paper’s main goal is to train MsIGN to approximate
certain high-d Bayesian posteriors. Various kinds of parametric distributions have been proposed to
approximate posteriors before, such as polynomials (El Moselhy & Marzouk, 2012), non-invertible
generative networks (Feng et al., 2017; Hou et al., 2019), invertible networks (Rezende & Mo-
hamed, 2015; Ardizzone et al., 2018; Kruse et al., 2019) and certain implicit maps (Chorin & Tu,
2009; Morzfeld et al., 2012). Generative modeling approach has the advantage that i.i.d. samples
can be efficiently obtained by evaluating the model in the inference stage. However, due to the tricky
non-convex optimization problem, this approach for both invertible (Chorin & Tu, 2009; Kruse et al.,
2019) and non-invertible (Hou et al., 2019) generative models becomes increasingly challenging as
the dimension grows. To overcome this difficulty, we propose (1) to use the Jeffreys divergence
as loss function, which has fewer shallow local minima and better landscape compared with the
commonly-used KL divergence (see Appendix C for a concrete example), and (2) to train MsIGN in
a coarse-to-fine manner with coarse-scale solution serving as an initialization to fine-scale optimiza-
tion problem. In Kruse et al. (2019), authors list some recent models for low-d inverse problems.
We remark that their formulation of posterior assumes no observation or model error in Equation 1,
and is different from ours. See Appendix J for detailed discussion and experimental comparison.

Other than the generative modeling, various Markov Chain Monte Carlo (MCMC) methods have
been the most popular in Bayesian inference, see, e.g., Beskos et al. (2008); Neal et al. (2011);
Welling & Teh (2011); Chen et al. (2014; 2015); Cui et al. (2016). Particle-optimization-based sam-
pling is a recently developed effective sampling technique with Stein variational gradient descent
(SVGD) (Liu & Wang, 2016)) and many related works, e.g., Liu (2017); Liu & Zhu (2018); Chen
et al. (2018; 2019a). The intrinsic difficulty of Bayesian inference displays itself as highly corre-
lated samples, leading to undesired low sample efficiency, especially in high-d cases. The multiscale
structure and multi-stage strategy proposed in this paper can also benefit these particle-based meth-
ods, as we can observe that they benefit the amortized-SVGD (Feng et al., 2017; Hou et al., 2019)
in Section 4.1.3. We leave a more thorough study of this topic as a future work.

Works in Parno et al. (2016); Matthies et al. (2016) utilize the multiscale structure in Bayesian
inference and build generative models with polynomials. They suffer from exponential growth of
parameter number for high-d polynomial basis. The Markov property (Spantini et al., 2018) is used
to alleviate this exponential growth. Different from these works, we leverage the great capacity of
invertible generative networks to parametrize the high-d distribution, and we design novel network
architecture to make use of the multiscale structure. The multiscale structure is a more general

5



Under review as a conference paper at ICLR 2021

structure than commonly-used intrinsic low-d structure (Spantini, 2017; Cui et al., 2016; Chen et al.,
2019a), which assumes that the density of high-d posterior concentrates in a low-d subspace.

In the image synthesis task, this multiscale idea incorporates with various generative models. For
example, Denton et al. (2015); Odena et al. (2017); Karras et al. (2017); Xu et al. (2018) uses it in
generative adversarial networks (GANs) to grow a high-resolution image from low-resolution ones.
But the lack of invertibility in these models makes it difficult for them to apply to Bayesian infer-
ence problems. Invertible generative models like Dinh et al. (2016); Kingma & Dhariwal (2018);
Ardizzone et al. (2019) adopted this multiscale idea, but their multiscale strategy is not in the spatial
sense: the intermediate neurons are not semantically interpret-able, as we show in Figure 6.

4 EXPERIMENT

We study two high-d Bayesian inverse problems (BIPs) known to have at least two equally important
modes in Section 4.1 as test beds for distribution approximation and multi-mode capture: one with
true samples available in Section 4.1.1; one without true samples but close to real-world applications
in subsurface flow in Section 4.1.2. We also report the ablation study of MsIGN in Section 4.1.3.
In addition, we apply MsIGN to the image synthesis task to benchmark with flow-based generative
models and demonstrate its interpret-ability in Section 4.2. We adopt the invertible block in Glow
(Kingma & Dhariwal, 2018) as the building piece, and stack several of them to build our invertible
flow F . We utilize average pooling with kernel size 2 and stride 2 as our pooling operator A.

4.1 BAYESIAN INVERSE PROBLEMS

Sample x of our target posterior distribution q is a vector on a 2-D uniform 64 × 64 lattice, which
means the problem dimension d is 4096. Every x is equivalent to a piece-wise constant function on
the unit disk: x(s) for s ∈ Ω = [0, 1]

2, and we don’t distinguish between them thereafter. We place
a centered Gaussian with a Laplacian-type covariance as the prior: N

(
0, β2(−∆)−1−α), which is

very popular in geophysics and electric tomography. See Appendix E for problem settings in detail.

The key to guarantee the multi-modality of our posteriors is the symmetry. Combining properties
of the prior defined above and the likelihood defined afterwards, the posterior is mirror-symmetric:
q(x(s1, s2)) = q(x(s1, 1−s2)). We carefully select the prior and the likelihood so that our posterior
q has at least two modes. They are mirror-symmetric to each other and possess equal importance.

As in Figure 1, we plan to learn our 4096-D posteriors at the end of L = 6 levels, and set problem
dimension at each level as dl = 2l ∗ 2l = 4l. The training follows our multi-stage strategy, and the
first stage l = 1 is initialized by minimizing the Jeffreys divergence without importance sampling,
because samples to q1 is available since d1 = 4 is relatively small. See Appendix E for details.

We compare MsIGN with representatives of major approaches: amortized-SVGD (short as A-
SVGD) (Feng et al., 2017) and Hamilton Monte Carlo (short as HMC) (Neal et al., 2011), for
high-d BIPs, see our discussion in Section 3. We measure the computational cost by the number of
forward simulations (nFSs), because running the forward simulation F occupies most training time,
especially in Section 4.1.2. We budget a same nFS for all methods for fair comparison.

4.1.1 SYNTHETIC BAYESIAN INVERSE PROBLEMS

This problem allows access to ground-truth samples so the comparison is clear and solid. The for-
ward process is given by F(x) = 〈ϕ,x〉2 = (

∫
Ω
ϕ(s)x(s)ds)2, where ϕ(s) = sin(πs1) sin(2πs2).

Together with the prior, our posterior can be factorized into one-dimensional sub-distributions,
namely q(x) =

∏d
k=1 qk(〈wk,x〉) for some orthonormal basis {wk}dk=1. This property gives us

access to true samples via inversion cumulative function sampling along each direction wk. Fur-
thermore, these 1-D sub-distributions are all single modal except that there’s one, denoted as qk∗ ,
with two symmetric modes. In other words, the marginal distribution along wk∗ is double-model
and the rest are uni-model. This confirms our construction of two equally important modes. See
Appendix E for more details in problem settings. The computation budget is fixed at 8× 105 nFSs.

Multi-mode capture. To visualize mode capture, we plot the marginal distribution of generated
samples along the critical direction wk∗ , which by construction is the source of double-modality of
the posterior. The (visually) worst one in three independent experiments is shown in Figure 2(a).
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Figure 2: Results of the synthetic BIP. (a): Distribution of 2500 samples along the critical direction
wk∗ . MsIGN is more robust in capturing both modes, its samples are more balanced. (b): Error
mean and its 95% confidence interval. MsIGN is more accurate in distribution approximation, es-
pecially at finer scale when the problem dimension is high. The margin is statistical significant as
shown by the confidence interval. For more experimental results, please refer to Appendix F.

Method MsIGN A-SVGD
(Feng et al., 2017)

Error 56.77±0.15 3372±21

Table 1: Distribution approximation error
by Jeffreys divergence with the target pos-
terior in three independent runs

Distribution approximation. To measure distribution
approximation, we report the error of mean, variance
and correlation at or between all sub-distributions,
as well as the Jeffreys divergence. Thanks to the
factorization property, we compare the mean, vari-
ance and correlation estimate with theoretical ground-
truths, and report the root mean square of error at all
dimensions in Figure 2(b). For MsIGN and A-SVGD that gives access to not only samples but also
density, we also report the Monte Carlo estimates of the Jeffreys divergence with the target posterior
in Table 1. We can see that MsIGN has superior accuracy in approximating the target distribution.

4.1.2 ELLIPTIC BAYESIAN INVERSE PROBLEMS

This problem originates from geophysics and fluid dynamics. The forward model is given by linear
measurement of the solution to an elliptic partial differential equation associated with x. We define

F(x) =
[∫

Ω
ϕ1(s)u(s)ds

∫
Ω
ϕ2(s)u(s)ds . . .

∫
Ω
ϕm(s)u(s)ds

]T
,

where ϕk are fixed measurement functions, and u(s) is the solution of

−∇ ·
(
ex(s)∇u(s)

)
= f(s) , s ∈ Ω , with boundary condition u(s) = 0 , s ∈ ∂Ω . (10)

This model appears frequently in real applications. For example, x, u can be seen as permeability
field and pressure in geophysics. However, there is no known access to true samples of q. Again the
trick of symmetry introduced in Section 4.1 and explained in Appendix E guarantees at least two
equally important modes in the posterior. We put a 5× 105-nFS budget on our computation cost.
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Figure 3: Results of the elliptic BIP. (a): Distribution of 2500 samples along a critical direction.
MsIGN and HMC capture two modes in this marginal distribution, but A-SVGD fails. (b): Clus-
tering result of 2500 samples. Samples of MsIGN are more balanced between two modes. The
similarity of the cluster means of MsIGN and HMC implies that they both are likely to capture the
correct modes. For more experimental results, please refer to Appendix I.

Multi-mode capture. Due to lack of true samples, we check the marginal distribution of the pos-
terior along eigen-vectors of the prior, and pick a particular one to demonstrate that we can capture
double modes in Figure 3(a). We also confirm the capture of multiple modes by embedding samples

7
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by Principle Component Analysis (PCA) to a 2-D space. We report the clustering (by K-means)
result and means of each cluster in Figure 3(b), where we can see that A-SVGD failed to capture the
two symmetric modes, while MsIGN has a more balanced capture of the symmetric posterior.

4.1.3 ABLATION STUDY OF ARCHITECTURE DESIGN AND TRAINING STRATEGY

We run extensive experiments to study the effectiveness of the network architecture and training
stragtegy of MsIGN, see Figure 4. We refer to Appendix G for details in setting and more results.

Network architecture. We replace the prior conditioning layer by two direct alternatives: a stochas-
tic nearest-neighbor upsampling layer (model denoted as “MsIGN-SNN”), or the split and squeeze
layer in Glow design (now the model is essentially Glow, so we also denote it as “Glow”).

Figure 4(a) shows that the prior conditioning layer design is crucial to the performance of MsIGN
on both problems, because neither “MsIGN-SNN” nor “Glow” has a successful mode capture.

Training strategy. We study the effectiveness of the Jeffreys divergence objective and multi-stage
training. We try substituting the Jeffreys divergence objective (no extra marks) with the KL diver-
gence (model denoted with a string “-KL”) or kernelized Stein discrepancy (which resumes A-SVGD
algorithm, model denoted with a string “-AS”), and switching between multi-stage (no extra marks)
or single-stage training (model denoted with a string “-S”). We remark that single-stage training
using Jeffreys divergence is infeasible because of the difficulty to estimate DKL(q‖pθ).

Figure 4(b) and (c) show that, all models trained in the single-stage manner (“MsIGN-KL-S”,
“MsIGN-AS-S”) will face mode collapse. We also observe that our multi-stage training strategy
can benefit training with other objectives, see “MsIGN-KL” and “MsIGN-AS”.

We also notice that the Jeffreys divergence leads to a more balanced samples for these symmetric
problems, especially for the complicated elliptic BIP in Section 4.1.2.
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Figure 4: Ablation study of the network architecture and training strategy. “MsIGN” means our
default setting: training MsIGN network with Jeffreys divergence and multi-stage strategy. Other
models are named by a base model (MsIGN or Glow), followed by strings indicating its variance
from the default setting. For example, “MsIGN-KL” refers to training MsIGN network with single
KL divergence in a multi-stage way, while “MsIGN-KL-S” means traininng in a single-stage way.

4.2 IMAGE SYNTHESIS TASK

We train our MsIGN architecture with maximum likelihood estimation to benchmark with other
flow-based generative models. The prior conditional distribution ρ(x|xc) is modeled by a simple
Gaussian with a scalar matrix as its covariance and is learned from a training set. We refer readers
to Appendix H for more experimental details, and to Appendix I for additional results.

We report the bits-per-dimension value with our baseline models of flow-based generative networks
in Table 2. Our MsIGN is superior in number and also is more efficient in parameter size: for
example, MsIGN uses 24.4% fewer parameters than Glow for CelebA 64, and uses 37.4% fewer
parameters than Residual Flow for ImageNet 64.
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In Figure 5, we show synthesized images of MsIGN from CelebA 64 dataset, and linear interpolation
of real images in the latent feature space. In Figure 6, we visualize internal activations at checkpoints
of the invertible flow at different scales which demonstrates the interpret-ability of MsIGN.

Table 2: Bits-per-dimension value comparison with baseline models of flow-based generative net-
works. All models in this table do not use “variational dequantization” in Ho et al. (2019). *: Score
obtained by our own reproducing experiment.

Model MNIST CIFAR-10 CelebA 64 ImageNet 32 ImageNet 64

Real NVP(Dinh et al., 2016) 1.06 3.49 3.02 4.28 3.98
Glow(Kingma & Dhariwal, 2018) 1.05 3.35 2.20∗ 4.09 3.81
FFJORD(Grathwohl et al., 2018) 0.99 3.40 – – –

Flow++(Ho et al., 2019) – 3.29 – – –
i-ResNet(Behrmann et al., 2019) 1.05 3.45 – – –

Residual Flow(Chen et al., 2019b) 0.97 3.28 – 4.01 3.76
MsIGN (Ours) 0.93 3.28 2.15 4.03 3.73

Figure 5: Left: Synthesized CelebA 64 images with temperature 0.9. Right: Linear interpolation in
latent space shows MsIGN’s parameterization of natural image manifold is semantically meaningful.

Figure 6: Visualization of internal activation shows the interpret-ability of MsIGN hidden neurons.
From left to right, we show how MsIGN progressively generates new samples in high resolution by
taking snapshots at internal checkpoints. See Appendix I for details.

5 CONCLUSION

For high-dimensional Bayesian inference problems with multiscale structure, we propose Multi-
scale Invertible Generative Networks (MsIGN) and associated training algorithms to approximate
the high-dimensional posterior. In this paper, we demonstrate the capability of this approach in high-
dimensional (up to 4096 dimensions) Bayesian inference problems with spatial multiscale structure,
leaving several important directions as future work. The network architecture also achieves the
state-of-the-art performance in various image synthesis tasks. We plan to apply this methodology to
other Bayesian inference problems, for example, Bayesian deep learning with multiscale structure
in model width or depth (e.g., Chang et al. (2017); Haber et al. (2018)) and data assimilation prob-
lem with multiscale structure in the temporal variation (e.g., Giles (2008)). We also plan to develop
some theoretical guarantee of the posterior approximation performance for MsIGN.
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invertible neural networks. arXiv preprint arXiv:1808.04730, 2018.
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APPENDIX

A MULTISCALE STRUCTURE AND SCALE DECOUPLING: RELATED WORK

In Parno et al. (2016), a similar notion of multiscale structure is defined as follows. A likelihood
function has the Parno et al. (2016)-multiscale structure, if there exists a coarse-scale random vari-
able γ of dimension dc (dc < d) and a likelihood Lc such that

L(y|x,γ) = Lc(y|γ). (11)

Then the joint posterior distribution of the fine- and coarse-scale parameters (x,γ) can be decoupled
in the following way, with normalizing constants omitted in the equivalence relations:

q(x,γ) ∝ ρ(x,γ)L(y|x,γ)
(i)
= ρ(x,γ)Lc(y|γ)

(ii)
= ρ(x|γ)ρ(γ)Lc(y|γ)

(iii)
= ρ(x|γ)qc(γ), (12)

where we use the Parno et al. (2016)-multiscale structure (Equation 11) in (i) and ρ(x,γ) =
ρ(x|γ)ρ(γ) in (ii) due to standard conditional probability calculation. In (iii) we define the Parno
et al. (2016)-posterior in coarse scale: qc(γ) = ρ(γ)Lc(y|γ).

There are two important differences in these two definitions. First, our coarse-scale parameter xc is
a deterministic function of the fine-scale parameter x, while in Parno et al. (2016), γ is a random
variable that may contain extra randomness outside x (as demonstrated in numerical examples in
Parno et al. (2016)). This difference in definition results in significant difference in modeling. Since
the dimension of input Gaussian random noise in the invertible transforms or networks must agree
with that of the target distribution, our invertible model has d-dimensional random noise as input
to approximate exactly the target posterior q(x), while models in Parno et al. (2016) has d + dγ-
dimensional random noise as input to approximate the joint-posterior q(x,γ). It is questionable to
us whether this extra randomness in γ is necessary in real applications. One extra consequence is
that users need to define the joint prior ρ(x,γ) in Parno et al. (2016), while in our definition the
prior of xc is naturally induced by the prior of x.

Second, our multiscale structure is an approximate relation and we use invertible transform F in
MsIGN to model this approximation, while in Parno et al. (2016) the multiscale structure (Equa-
tion 12) is an exact relation and authors treat the prior-upscaled solution ρ(x|γ)qc(γ) (RHS of
Equation 12) as the final solution. Our approximate multiscale relation and further treatment by
transform F enables us to apply the method recursively in a multiscale fashion, while in Parno et al.
(2016) the proposed method is essentially a two-scale method and there is not further correction
based on the prior-upscaled solution ρ(x|γ)qc(γ) at the fine-scale. As we show in Appendix F,
the true posterior could still be far away from the prior-upscaled solution, especially in the first few
coarse scales.

Finally, as we discussed in related work (Section 3), the invertible model in Parno et al. (2016)
is polynomials, which suffer from the exponential growth of polynomial coefficients as dimension
grows. In this work, the invertible model is deep generative networks, whose number of parameters
are independent of the problem dimension.

B PRIOR CONDITIONING: FORMULATION AND INVERTIBILITY

we first prove Lemma 2.1 which gives closed-form formulation for the prior conditional distribution.
Then we prove a powerful tool of partition of unity in Lemma B.1, and use it to prove Theorem B.1
that gives the invertibility between xl and (xl−1, zl) as in Equation 6. We adopt the notations in
Section 2.2 here.

Lemma 2.1 Suppose that the prior ρ(xl) = N (xl; 0,Σl), and that the pooling operator is linear,
i.e., Al(xl) = Alxl for some matrixAl ∈ Rdl−1×dl , then:

ρ(xl|xl−1 = Alxl) = N (xl;Ul−1xl−1,Σl|l−1) ,

where Ul−1 = ΣlA
T
l (AlΣlA

T
l )−1 and Σl|l−1 = Σl −ΣlA

T
l (AlΣlA

T
l )−1AlΣl.

12
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Proof: By the Bayes rule, the conditional density has the form:

ρ(xl|xl−1 = Alxl) =
ρ(xl)∫

{x′l:xl−1=Alx′l} ρ(x′l)dx′l

Given xl−1, the denominator of the above equation is a constant, so we may write:

log ρ(xl|xl−1 = Alxl) = log ρ(xl)− log

(∫
{x′l:xl−1=Alx′l}

ρ(x′l)dx′l

)
= −1

2
xlΣ

−1
l xl + C ,

where C is a constant that only depends on xl−1. Since log ρ(xl|xl−1 = Alxl) is a quadratic
function of xl, then ρ(xl|xl−1 = Alxl) is a Gaussian distribution. To determine this distribution
we only needs to calculate E[xl|xl−1 = Alxl] and Cov(xl|xl−1 = Alxl).

With Ul−1 = ΣlA
T
l (AlΣlA

T
l )−1, we will decompose xl = (xl − Ul−1Alxl) + Ul−1Alxl. We

will prove that xl −Ul−1Alxl is independent fromAlxl, and therefore,

E[xl|xl−1 = Alxl] = E[(xl −Ul−1Alxl) +Ul−1Alxl|xl−1 = Alxl]

= E[xl −Ul−1Alxl|xl−1 = Alxl] + E[Ul−1Alxl|xl−1 = Alxl]

= 0 +Ul−1xl−1 = Ul−1xl−1 .

To prove that xl −Ul−1Alxl = (Idl −Ul−1Al)xl is independent from Alxl, we notice that they
are both linear transformation of the Gaussian variable xl, so their joint distributions should also be
a Gaussian, and their covariance can be computed as

Cov((Idl −Ul−1Al)xl,Alxl) = (Idl −Ul−1Al)ΣlA
T
l = ΣlA

T
l −Ul−1AlΣlA

T
l

= ΣlA
T
l −ΣlA

T
l (AlΣlA

T
l )−1AlΣlA

T
l

= ΣlA
T
l −ΣlA

T
l = 0 .

And therefore, xl −Ul−1Alxl = (Idl −Ul−1Al)xl is independent fromAlxl.

And finally, since E[xl|xl−1 = Alxl] = Ul−1xl−1, we calculate

Cov(xl|xl−1 = Alxl) = Cov[xl −Ul−1Alxl|xl−1 = Alxl]

Because xl−Ul−1Alxl = (Idl −Ul−1Al)xl is independent fromAlxl, we can drop the condition
and write:

Cov(xl|xl−1 = Alxl) = Cov[xl −Ul−1Alxl] = (Idl −Ul−1Al)Σl(Idl −Ul−1Al)
T

= Σl −Ul−1AlΣl −ΣlA
T
l U

T
l−1 +Ul−1AlΣlA

T
l U

T
l−1

= Σl −ΣlA
T
l (AlΣlA

T
l )−1AlΣl −ΣlA

T
l (AlΣlA

T
l )−1ΣlAl

+ ΣlA
T
l (AlΣlA

T
l )−1AlΣlA

T
l (AlΣlA

T
l )−1ΣlAl

= Σl −ΣlA
T
l (AlΣlA

T
l )−1AlΣl −ΣlA

T
l (AlΣlA

T
l )−1ΣlAl

+ ΣlA
T
l (AlΣlA

T
l )−1ΣlAl

= Σl −ΣlA
T
l (AlΣlA

T
l )−1AlΣl = Σl|l−1 .

So now we can claim that ρ(xl|xl−1 = Alxl) = N (xl;Ul−1xl−1,Σl|l−1). �

Now we introduce the following lemma, also called the partition of unity.

Since Al ∈ Rdl−1×dl (dl−1 < dl), we can always find a matrix Ãl ∈ R(dl−dl−1)×dl , such that
AlÃ

T
l = 0. In fact, let V ∈ Rdl be the row space of Al, then dim(V ) = dl−1 < dl, so its

orthogonal complement V ⊥ is non-trivial: dim(V ⊥) = dl − dl−1 > 0. Collect a basis of V ⊥ and
pack in the rows, and we have a matrix Ãl ∈ R(dl−dl−1)×dl . By construction we knowAlÃ

T
l = 0.

Lemma B.1 Since Al ∈ Rdl−1×dl , Ãl ∈ R(dl−dl−1)×dl , AlÃ
T
l = 0 and Σl is symmetric positive

definite, we have the following decomposition of the identity matrix Idl ∈ Rdl×dl :

Idl = Σ
1
2

l A
T
l (AlΣlA

T
l )−1AlΣ

1
2

l + Σ
− 1

2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−1ÃlΣ

− 1
2

l (13)
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Proof: Consider the following matrix Ωl ∈ Rdl×dl :

Ωl = [Σ
1
2

l A
T
l (AlΣlA

T
l )−

1
2 Σ

− 1
2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ]

SinceAlÃ
T
l = 0 and the covariance matrix Σl is symmetric: Σl = ΣT

l , we have

ΩT
l Ωl =

[
(AlΣlA

T
l )−

1
2AlΣ

1
2

l

(ÃlΣ
−1
l Ã

T
l )−

1
2 ÃlΣ

− 1
2

l

] [
Σ

1
2

l A
T
l (AlΣlA

T
l )−

1
2 Σ

− 1
2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−

1
2

]
=

[
(AlΣlA

T
l )−

1
2AlΣlA

T
l (AlΣlA

T
l )−

1
2 (AlΣlA

T
l )−

1
2AlÃ

T
l (ÃlΣ

−1
l Ã

T
l )−

1
2

(ÃlΣ
−1
l Ã

T
l )−

1
2 ÃlA

T
l (AlΣlA

T
l )−

1
2 (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l Ã

T
l (ÃlΣ

−1
l Ã

T
l )−

1
2

]
=

[
Idl−1

Idl−dl−1

]
= Idl .

Therefore, Ωl is a dl × dl orthonormal matrix, and ΩlΩ
T
l = Idl , which means

Idl = ΩlΩ
T
l =

[
Σ

1
2

l A
T
l (AlΣlA

T
l )−

1
2 Σ

− 1
2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−

1
2

] [
(AlΣlA

T
l )−

1
2AlΣ

1
2

l

(ÃlΣ
−1
l Ã

T
l )−

1
2 ÃlΣ

− 1
2

l

]
= Σ

1
2

l A
T
l (AlΣlA

T
l )−1AlΣ

1
2

l + Σ
− 1

2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−1ÃlΣ

− 1
2

l .

And this proves Equation 13. �

Now we prove the invertibility between xl and (xl−1, zl) with the help of Lemma B.1.

Theorem B.1 The relation between xl and (xl−1, zl) as introduced by xl = Ulxl−1 + Σl|l−1zl in
Equation 6 is invertible. In other words, xl and (xl−1, zl) can uniquely determine each other.

Proof: Since we already have xl = Ulxl−1 + Σl|l−1zl, so of course (xl−1, zl) can uniquely deter-
mine xl. We only need to prove the opposite.

We notice that

Σl|l−1 = Σl −ΣlA
T
l (AlΣlA

T
l )−1AlΣl

= Σ
1
2

l

(
Idl −Σ

1
2

l A
T
l (AlΣlA

T
l )−1AlΣ

1
2

l

)
Σ

1
2

l

Use the identity decomposition in Lemma B.1, we have

Σl|l−1 = Σ
1
2

l Σ
− 1

2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−1ÃlΣ

− 1
2

l Σ
1
2

l

= ÃT
l (ÃlΣ

−1
l Ã

T
l )−1Ãl .

Since Σl|l−1 = ÃT
l (ÃlΣ

−1
l Ã

T
l )−1Ãl, we must have that its Cholesky decomposition (or eigen-

decomposition) Σl|l−1 = BlB
T
l admits the form Bl = ÃT

l (ÃlΣ
−1
l Ã

T
l )−

1
2Pl for some determin-

istic orthonormal matrix Pl ∈ R(dl−dl−1)×(dl−dl−1).

Now we claim that xl−1 = Alxl and zl = P T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l xl gives the inversion. We

just need to plug them back into the right hand side of Equation 6 to see if it holds.

We compute

Ul−1xl−1 +Blzl = Ul−1Alxl +BlP
T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l xl

= (Ul−1Al +BlP
T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l )xl .

We will show Ul−1Al +BlP
T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l = Idl to complete the proof.

Since Ul−1 = ΣlA
T
l (AlΣlA

T
l )−1 andBl = ÃT

l (ÃlΣ
−1
l Ã

T
l )−

1
2Pl, we have

Ul−1Al = ΣlA
T
l (AlΣlA

T
l )−1Al

BlP
T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l = ÃT

l (ÃlΣ
−1
l Ã

T
l )−

1
2PlP

T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l

= ÃT
l (ÃlΣ

−1
l Ã

T
l )−1ÃlΣ

−1
l
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Therefore,

Ul−1Al +BlP
T
l (ÃlΣ

−1
l Ã

T
l )−

1
2 ÃlΣ

−1
l

=ΣlA
T
l (AlΣlA

T
l )−1Al + ÃT

l (ÃlΣ
−1
l Ã

T
l )−1ÃlΣ

−1
l

=Σ
1
2

l

(
Σ

1
2

l A
T
l (AlΣlA

T
l )−1AlΣ

1
2

l + Σ
− 1

2

l ÃT
l (ÃlΣ

−1
l Ã

T
l )−1ÃlΣ

− 1
2

l

)
Σ
− 1

2

l

(i)
=Σ

1
2

l IdlΣ
− 1

2

l = Idl .

Here in step (i) we use the identity decomposition (Equation 13) from Lemma B.1. �

In the end, Theorem B.1 suggests that the prior conditioning layer (Equation 6) is invertible. Notice
that, all matrices (Ul−1,Bl,Pl, Ãl, and etc) only depends on our prior distribution N (0,Σl) and
pooling operatorAl, and thus can be pre-computed.

C COMPARISON OF THE KL DIVERGENCE AND JEFFREYS DIVERGENCE

The KL divergence sometimes can be inefficient in capture multi-modes: the single-sided KL di-
vergence could be easily trapped by a local minimum that misses some modes or is far from the
ground-truth. We support our claim by a concrete example.

Given σ > 0, let q be a 1-D Gaussian mixture model, with parameters µ1 and µ2 unknown but fixed:

q(x) =
1

2

(
N (x;µ1, σ

2) +N (x;µ2, σ
2)
)
.

Our model p is also a 1-D Gaussian mixture model with parameter m1 and m2:

pm1,m2
(x) =

1

2

(
N (x;m1, σ

2) +N (x;m2, σ
2)
)
.

When we set µ1 = −µ2 = 1.5, and σ = 0.25, we plot the landscape of single-sided KL di-
vergences DKL(pm1,m2

‖q) and DKL(q‖pm1,m2
), and the Jeffreys divergence DJ(pm1,m2

‖q) =
DKL(pm1,m2

‖q) +DKL(q‖pm1,m2
) as functions of m1,m2 in Figure 7.

It is now clear that the single-sided KL divergenceDKL(p‖q) alone might guide the training towards
the local minima around (1.5, 1.5) or (−1.5,−1.5), where only one mode of q is captured. We
explain this phenomenon asDKL(p‖q) = Ex∼p[log(p(x)/q(x))] becomes small as long as p is close
to zero wherever q close to zero. Nielsen & Nock (2009) describes this property as “zero-forcing”,
and observes that DKL(p‖q) will be small when high-density region of p is covered by that of q.
However, it doesn’t strongly enforce p to capture all high-density region of q. In our example,
when (m1,m2) = (1.5, 1.5) or (−1.5,−1.5), the only high-density region of p is a strict subset of
high-density region of q, and thus it attains a small value of DKL(p‖q).

3 2 1 0 1 2 3
m1

3

2

1

0

1

2

3

m
2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

3 2 1 0 1 2 3
m1

3

2

1

0

1

2

3

m
2

0

10

20

30

40

50

60

70

80

3 2 1 0 1 2 3
m1

3

2

1

0

1

2

3

m
2

0

20

40

60

80

100

Figure 7: Landscape of DKL(p‖q) (left), DKL(q‖p) (middle), and DJ(p‖q) (right). We mark the
global minima (ground-truth) by golden cross, and other local minima by green cross.

We also argue here that the other single-sided KL divergence DKL(q‖p) alone faces the risk as well.
Similar as discussed above, DKL(q‖p) = Ex∼q[log(q(x)/p(x))] becomes small as long as q is close
to zero wherever p is close to zero. Thus if p captures all modes in q but also contains some extra
modes, described as “zero-avoiding” in Nielsen & Nock (2009), we could also observe a small value
of DKL(q‖p). Therefore, we choose to use the Jeffreys divergence as a robust learning objective to
capture multi-modes.
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D OPTIMIZATION OF THE JEFFREYS DIVERGENCE

In Equation 8, we introduced the importance sampling approach to estimate the Jeffreys divergence.
When training, we use Monte Carlo method to estimate its gradient, and use stochastic gradient
descent to optimize the Jeffreys divergence. More specifically, we recall that MsIGN models a
working distribution pθ, where θ is the network parameter, we calculate its gradient as follows

∂

∂θ
DJ(pθ‖q) =

∂

∂θ
(DKL(pθ‖q) +DKL(q‖pθ))

=
∂

∂θ

(
Ex∼pθ

[
log

pθ(x)

q(x)

]
+ Ex∼q̃

[
q(x)

q̃(x)
log

q(x)

pθ(x)

])
=

∂

∂θ

(∫
pθ(x) log

pθ(x)

q(x)
dx +

∫
q̃(x)

q(x)

q̃(x)
log

q(x)

pθ(x)
dx

)
=

∫ (
∂pθ(x)

∂θ
log

pθ(x)

q(x)
+ pθ(x)

∂ log pθ(x)

∂θ

)
dx−

∫
q̃(x)

q(x)

q̃(x)

∂ log pθ(x)

∂θ
dx .

Now since ∂
∂θ log pθ(x) = 1

pθ(x)
∂
∂θpθ(x), we have ∂

∂θpθ(x) = pθ(x) ∂∂θ log pθ(x). So we continue

∂

∂θ
DJ(pθ‖q) =

∂

∂θ
(DKL(pθ‖q) +DKL(q‖pθ))

=

∫ (
pθ(x)

∂ log pθ(x)

∂θ
log

pθ(x)

q(x)
+ pθ(x)

∂ log pθ(x)

∂θ

)
dx

−
∫
q̃(x)

q(x)

q̃(x)

∂ log pθ(x)

∂θ
dx

= Ex∼pθ

[(
1 + log

pθ(x)

q(x)

)
∂ log pθ(x)

∂θ

]
− Ex∼q̃

[
q(x)

q̃(x)

∂ log pθ(x)

∂θ

]
.

We comment that samples and (unnormalized) density to pθ are accessible, because pθ is modeled by
MsIGN, who is essentially a flow-based generative network. We can compute the gradient ∂

∂θ log pθ
by backward propagation. Samples and density to q̃ is also accessible because q̃ is essentially the
MsIGN model at the last level. Therefore, the Jeffreys divergence and its gradient can be estimated
by Monte Carlo method with samples of pθ and q̃.

E BAYESIAN INVERSE PROBLEMS EXPERIMENTAL DETAILS

E.1 EXPERIMENT SETTINGS

We place a Gaussian distribution with a Laplacian-type covariance N
(
0, β2(−∆)−1−α) for both

of our Bayesian inverse problem examples. Here the Laplacian operator ∆ can be understood as a
graph Laplacian when we consider x as a vector on a 2-D uniform lattice, or it can be understood as
the operator gives the divergence of the gradient when we consider x = x(s) as a function on the unit
disk Ω = [0, 1]

2 ⊂ R2 (as introduced in Section 4.1, we don’t distinguish these two interpretation for
x or x). We choose zero Dirichlet boundary condition for ∆. As for the distribution to model noise
(error) as in Equation 1, we set Γε = σ2

εI . Specifically, we set (α, β, σε) = (0.1, 2.0, 0.2) for the
synthetic Bayesian inverse problem, and set (α, β, σε) = (0.5, 2.0, 0.02) for the elliptic Bayesian
inverse problem.

The synthetic Bayesian inverse problem sets its ground-truth for x as x(s) = sin(πs1) sin(2πs2),
and generates its observation by the formula y = F(x) + ε, with F(x) = 〈f ,x〉2 =
(
∫

Ω
ϕ(s)x(s)ds)2 is a nonlinear measurement, where ϕ(s) = sin(πs1) sin(2πs2).

The elliptic Bayesian inverse problem also sets its ground-truth for x as x(s) = sin(πs1) sin(2πs2),
and generates its observation by the formula y = F(x) + ε. The forward process F is given by
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linear measurement of the solution to an elliptic partial differential equation (PDE) associate with x.
F is given by

F(x) =
[∫

Ω
ϕ1(s)u(s)ds

∫
Ω
ϕ2(s)u(s)ds · · ·

∫
Ω
ϕm(s)u(s)ds

]T
, (14)

where ϕk are fixed measurement functions, and u is the solution of an elliptic PDE in below:

−∇ ·
(
ex(s)∇u(s)

)
= f(s) , for s ∈ Ω ,

u(s) = 0 , for s ∈ ∂Ω .
(15)
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Figure 8: Left: 15 measurement functions in Equation 14. Here we plotted non-zero patches of ϕk,
k = 1, . . . , 15, with k labeled next to them. ϕk has a constant non-zero value on its patch(es) and is
zero else where. The constant value here is chosen so that we have ‖ϕk‖L2 = 1. Right: The force
term (Equation 16) of the elliptic PDE (Equation 15). We remark that both measurement functions
and the force term are symmetric along the s2 direction (the orange dash line).

We have m = 15 measurement functions ϕk that all detects local properties of u, and are all sym-
metry along the s2 direction, see Figure 8. As for the force term of the elliptic PDE, we set

f(s) =
100

π
e−10‖s−f1‖2 +

100

π
e−10‖s−f2‖2 − 50

π
e−10‖s−f3‖2 − 50

π
e−10‖s−f4‖2 , (16)

where f1 = (0.25, 0.3), f2 = (0.25, 0.7), f3 = (0.7, 0.3), f4 = (0.7, 0.3), and ‖ · ‖ is the Euclidean
norm in R2. The force term is also symmetric along the s2 direction, see Figure 8.

By the symmetric design, our posterior q has the property q(x) = q(x̃), where x̃ is a function that
satisfies x̃(s1, 1 − s2) = x(s1, s2). We carefully choose our hyper-parameters α, β, σε, such that it
ends up to be a symmetric double-modal posterior distribution. To certify the multi-modality, we
run multiple gradient ascent searching of the posterior, starting from different initial points. They
all converge to two mutually symmetric points x∗ and x̃∗. Visualization of the 1D landscape profile
of the posterior q on the line passing through x∗ and x̃∗ also shows a clear double-modal feature.

To simulate the forward process F , we solve the PDE (Equation 15) by the Finite Element Method
with mesh size 1/64. We remark here that no matter how the dimension of the posterior q changes,
we always solve the elliptic PDE (Equation 15) using 1/64 mesh size, because at this resolution the
solution is well resolved numerically, and the computational cost is also moderate.

When counting the number of forward simulations (nFSs) as our indicator for computational cost,
we notice that A-SVGD requires not only the log posterior log q(x) but also its gradient: ∂x log q(x).
Thanks to the adjoint method, the gradient can be computed with only one extra forward simulation.

E.2 TRAINING DETAILS

In Table 3 we report our hyperparameter for network setting in the Bayesian inverse problem exam-
ples. Our multi-stage training of MsIGN enables the usage of the Jeffreys divergence as objective
in all levels but the bottom one. For the bottom level l = 1, we still use the Jeffreys divergence
DJ(p‖q) = Ex∼p[log(p(x)/q(x))] + Ex∼q[log(q(x)/p(x))] as training objective, but this time it is
directly estimated by the Monte Carlo method with samples from distribution p and q. p samples
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come from the model itself and q samples come from an HMC chain. We remark that at l = 1, the
posterior lies in 4-D space, which is relatively a low-d problem, so an HMC run can approximate
the target distribution q1 well. Our present solution of seeking help from HMC can be replaced by
some other strategies, like other MCMC methods, and deep generative networks.

For A-SVGD, we choose Glow (Kingma & Dhariwal, 2018) as its network design, with the same
network hyperparameter in Table 3. Due to the fact that MsIGN is more parameter-saving than Glow
with the same hyperparameter, A-SVGD model has more trainable parameters than our MsIGN
model, reducing the possibility that that its network is not expressive enough to capture the modes.

As for our training of HMC, we grid search its hyperparameters, and use curves of acceptance rate
and autocorrelation as evidence of mixing. We consider our HMC chain mixing successfully if the
acceptance rate stabilizes and falls somewhere between 30%− 75%, and the autocorrelation decays
fast with respect to lag.

Table 3: Hyperparameter setting for MsIGN in Section 4.1. The meaning of terms can be found in
Kingma & Dhariwal (2018).

Data Set Minibatch Size Levels (L) Number of Glow Block Hidden Channels
Synthetic BIP 100 6 16 32
Elliptic BIP 100 6 32 64

F BAYESIAN INVERSE PROBLEMS ADDITIONAL RESULTS

In this section we provide more results on the Bayesian inverse problems examples in Section 4.1.

F.1 SYNTHETIC BAYESIAN INVERSE PROBLEM

In Figure 9 we provide marginal distribution comparison at intermediate levels l = 1, . . . , 5, and
the learning curve of multi-stage MsIGN at l = 6. We can see from Figure 9 that as the dimension
increases, A-SVGD starts to collapse to one mode, and HMC becomes imbalanced between modes.
In other words, when the dimension goes beyond 64 (the dimension of q3), HMC requires more
computational budget for convergence. We remark here that in q1, A-SVGD failed to capture both
modes as it did to q2. This phenomenon might be caused by the aliasing effect. Very rough resolution
at this level pushes the prior to penalize the smoothness much, and also adds the sensitivity to
likelihood because entries of x can easily influence its global behavior. Therefore, there is a larger
log density gap between modes in the posterior q1 than other levels, which adds up to the difficulty
of multi-mode capture. A similar effect is observed in the elliptic example as in the next section.

The learning curve in Figure 9 shows the effectiveness of our multi-stage training of MsIGN. As we
can see, the training process at l = 6 did improve the model, with the Jeffreys divergence dropped
from 252 to 56.8. Rather than simply refining the resolution, our multi-stage training strategy does
improve our approximation to the distribution when entering the next level. We will show more
evidence about this in the next section.

F.2 ELLIPTIC BAYESIAN INVERSE PROBLEM

In Figure 10 marginal comparison at intermediate levels l = 1, . . . , 5 are presented. Again, for this
complicated posterior we observe that A-SVGD failed in detecting all modes, and could even get
stuck in the middle. In this testbed, HMC seems to capture both modes well. However we will point
out that its samples can’t be treated like a reference solution. The failure of HMC at q1 is due to the
aliasing effect: the prior penalizes fluctuation in spatial directions heavily, and the likelihood is also
very strong. As a consequence, the posterior q1 is highly twisted, and the log density gap between
two modes becomes significant.

In Figure 11, we also show the necessity of training after prior conditioning. In other words, ql is not
the same as the prior-conditioned surrogate q̃l−1, though they are similar. We plot one of the modes
we detected by our models for l = 4, 5, 6. Comparing left figures and right figures of Figure 11, we
can see the location, shape and scale of bumps and caves are different, which means the learned ql is
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different from the prior-conditioned surrogate q̃l−1, who serves as its initialization. Our multi-stage
training does learn more information at each level, rather than simply scale up the resolution.
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Figure 9: Synthetic BIP. Marginal comparison at the intermediate levels l = 1, . . . , 5, and the
learning curve of multi-stage MsIGN at l = 6. As the dimension increases, A-SVGD starts to
collapse to one mode, and HMC becomes imbalanced between modes. The learning curve shows
that the model distribution is constantly getting closer to the target distribution in the last stage of
training, supporting the necessity of training after prior conditioning.

19



Under review as a conference paper at ICLR 2021

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
q1

0

1

2

3

4

5

Ke
rn

al
 D

en
sit

y 
Es

tim
at

io
n

MsIGN
HMC
A-SVGD

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
q2

0

1

2

3

4

5

Ke
rn

al
 D

en
sit

y 
Es

tim
at

io
n

MsIGN
HMC
A-SVGD

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
q3

0

1

2

3

4

5

Ke
rn

al
 D

en
sit

y 
Es

tim
at

io
n

MsIGN
HMC
A-SVGD

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
q4

0

1

2

3

4

5

Ke
rn

al
 D

en
sit

y 
Es

tim
at

io
n

MsIGN
HMC
A-SVGD

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
q5

0

1

2

3

4

5

Ke
rn

al
 D

en
sit

y 
Es

tim
at

io
n

MsIGN
HMC
A-SVGD

Figure 10: Marginal comparison in the intermediate levels l = 1, . . . , 5. Amortized-SVGD fails in
detecting modes at all levels. HMC has acceptable performance, but still suffers from imbalanced
modes at some levels.
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Figure 11: Comparison of the modes captured by the prior conditioned untrained model and the
trained model. Bumps and caves in the left images are different from the right ones in shape,
position, and scale. Therefore, prior conditioning provides a good initial guess, but training is still
necessary.

G ABLATION STUDY ADDITIONAL MATERIALS

We provide more experimental details and results on our ablation study in Section 4.1.3.

G.1 EXPERIMENT SETTING

In Figure 4, all models involved Glow or MsIGN adopt network hyperparameters as shown in Ta-
ble 3. As for the training details, we list them as follows:

• It is not straightforward to design multi-stage strategy for Glow models, because their chan-
nel size increases with l. So for models with different number of levels L, there is no direct
way to initialize one model with another. Therefore for methods using Glow, we don’t
consider multi-stage training.

• As introduced in Appendix F.2, for the elliptic problem, the posterior at l = 1 is ill-posed,
and MsIGN variants (like MsIGN trained by the KL divergence) can hardly capture its
two modes, as shown in Table 4 and Figure 12. We report that in general it is unlikely
for multi-stage training to pick up the missing mode. Therefore, to make more convincing
comparison, for models with multi-stage training, we use pretrained MsIGN model at l = 1
(who captures q1 well) as their initialization for l = 2.
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G.2 MORE RESULTS AND DISCUSSIONS

In Figure 4 we compared different variants of MsIGN and its training strategy at the level l = 6.
In Figure 12 we plot the same comparison at all intermediate levels l = 1, . . . , 5. Since the curves
overlap each other heavily in Figure 12, we conclude their results of mode capturing (together with
Figure 4) in Table 4.

Table 4: Table for mode capturing results by eye ball norm. T demotes the successful capturing of
two modes, F denotes mode collapse, while I denotes biased, not well-separated modes capturing.
For results marked with I, we refer readers to Figure 12 for detail information. Upper: synthetic
Bayesian inverse problem; Lower: elliptic Bayesian inverse problem. ∗: we initialize the l = 2
model by our MsIGN l = 1 pretrained model.

Level l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

Glow T F F F F F
MsIGN-SNN T T T T I I
MsIGN-KL-S T F F F I F
MsIGN-KL∗ T T T T T T
MsIGN-AS-S T F F F F F
MsIGN-AS∗ T T T I I I

MsIGN T T T T T T
Level l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

Glow F F F F F F
MsIGN-SNN F F F F F F
MsIGN-KL-S F F F F F F
MsIGN-KL∗ F I I I I I
MsIGN-AS-S F F F F F F
MsIGN-AS∗ F I I T I I

MsIGN T T T T T T

We can see from Table 4 that our framework and strategy outperforms all its variants in these two
Bayesian inverse problems, which proved the necessity of our prior conditioning layer, multi-stage
training strategy, Jeffreys divergence, and our network design. In particular, the experiment of
MsIGN-SNN supports our prior conditioning layer design, the experiment of MsIGN-KL supports
our use of the Jeffreys divergence and MsIGN-KL-S supports our use of multi-stage training strategy.

Besides that, we can also see that multi-stage training also benefits other models like MsIGN with
KL divergence objective or A-SVGD with MsIGN. By carefully comparing the marginals plotted
in Figure 12, we can also conclude that Jeffreys divergence can help capture more balanced modes
than KL divergence.
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Figure 12: Ablation study at intermediate levels l = 1, . . . , 5. Left: Synthetic Bayesian inverse
problem; Right: Elliptic Bayesian inverse problem. For MsIGN-AS and MsIGN-KL, we initialize
their l = 2 models by our MsIGN l = 1 pretrained model.
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H IMAGE SYNTHESIS TASK EXPERIMENTAL DETAILS

We use the invertible block introduced in Kingma & Dhariwal (2018) as our model for the invertible
flow. For our numbers in Table 2, we report our hyperparameter settings in Table 5. And we treat
samples from those data sets as 8-bit images. For all experiments we use Adam optimizer with
α = 0.001 and default choice of β1, β2. For models here that requires hierarchical training, each
upper level will be pretrained for only 125 epochs.

Table 5: Hyperparameter setting for results in Table 2. Here the meaning of terms can be found in
Kingma & Dhariwal (2018). The size of hidden channels in the Glow block is fixed at 512.

Data Set Minibatch Size Levels (L) Depth per level (K) Epochs
MNIST 400 2 32 2000

CIFAR-10 400 3 32 2000
CelebA 64 200 3 32 1000

ImageNet 32 400 3 32 400
ImageNet 64 200 3 32 200

As for the prior conditioning layer in this image application, we let the upscale operator Al from
level l to level l − 1 be average pooling, and thus the downscale operator Ul−1 will be nearest
upsampling, l ≥ 2. We further assume the covariance Σl at each level be a scalar matrix, i.e. a
diagonal matrix with equal diagonal elements.

Figure 13: Leftmost: example row of Al; The rest: example rows of Hl. They (with some unplotted
ones) form the Haar basis, and can be expressed as local convolution operation.

SinceAl ∈ Rdl−1×dl is the average pooling operator, its rows, which give average of each local pool,
is a subset of the Haar basis, see Figure 13. We can collect the rest Haar basis asHl ∈ R(dl−dl−1)×dl .
Due to the orthogonality of Haar basis, there exists a constant λl such that[

AlA
T
l

HlH
T
l

]
=

[
Al

Hl

] [
Al

Hl

]T
= λlIdl =

[
Al

Hl

]T [
Al

Hl

]
= AT

l Al +HT
l Hl .

Since we assume the covariance Σl is a scalar matrix, we can find a scalar cl such that Σl = clIdl .
Now followed from Lemma 2.1 we can find an explicit form for Σl|l−1, l ≥ 2:

Σl|l−1 = Σl −ΣlA
T
l (AlΣlA

T
l )−1AlΣl

= clIdl − clAT
l (AlA

T
l )−1Al

= clIdl − clAT
l (λlIdl−1

)−1Al

=
cl
λl
λlIdl −

cl
λl
AT
l Al

=
cl
λl

(AT
l Al +HT

l Hl)−
cl
λl
AT
l Al

=
cl
λl
HT
l Hl .

Therefore we obtain the Cholesky decomposition of Σl|l−1 for free asBl = µlHl, with µl =
√

cl
λl

.

And we are only left to estimate the scalar µl for each l ≥ 2.
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We choose to estimate µl statistically. In fact we have accessible to different resolutions of images
from the data set when we perform pooling operation. Since we hope at each level l, xl looks like a
natural image at its resolution, we set those images at that resolution as samples of xl, and estimate
µl according to Equation 6:

xl = Ul−1xl−1 +Blzl = Ul−1xl−1 + µlHlzl, zl ∼ N (0, Idl−dl−1
) .

Using 10000 sample images from each data set, we report our estimates of µl in Table 6.

Table 6: Estimate of µl for different data sets and l.
Data Set µ2 µ3 µ4

MNIST 0.67 0.61 –
CIFAR-10 0.48 0.46 0.46
CelebA 64 0.22 0.3 0.38

I IMAGE SYNTHESIS TASK ADDITIONAL RESULTS

We attach more synthesized images by MsIGN from MNIST and CIFAR-10 in Figure 14, 15. For
the CelebA data set, we made use of our multiscale design and trained our MsDGN for a higher
resolution 128. In this case, the number of levels L = 4, and we set the hyperparameters for the first
3 levels the same as we use for the 64 ∗ 64 resolution model. For the last level l = 4, due to memory
limitation, we set K = 32 and hidden channels 128. We show our synthesized 128 ∗ 128 results in
Figure 16.

We also use this 4-level model to show the interpret-ability of our internal neurons in Figure 17.
We snapshot internal neurons every 8 invertible blocks, resulting a chain of length K ∗ L/8 =
32 ∗ 4/8 = 16 for every generated image. We can see our MsIGN generates global features at the
beginning levels and starts to add more local details at higher levels.

Figure 14: Synthesized images from MsIGN on the MNIST data set, temperature = 1.0. We show
4 samples for each digit.
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Figure 15: Synthesized images from MsIGN on the CIFAR-10 data set, temperature = 1.0.

Figure 16: Synthesized images from MsIGN on the CelebA 128*128 data set, temperature = 0.8.
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Figure 17: Visualization of internal neurons of MsIGN on CelebA 128*128 data set. Snapshots
(from top to bottom) are taken every 8 invertible blocks at each level, resulting 16 checkpoints for
every image generated. Each level will have 4 snapshots, and we separate them with snapshots from
other levels. Left: when recovering images from the data set; Right: when synthesizing new images
from random noise.
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J POSTERIOR FORMULATION COMPARISON

We provide a detailed comparison of the definition of posterior with Ardizzone et al. (2018).

Authors in Ardizzone et al. (2018) purposed another approach for Bayesian inference that is different
from ours in Equation 1. They framework can be simplified as finding an invertible map [y, z] =
T (x), where x ∈ Rdx is the quantity of interest, y ∈ Rdy is observation, and z ∈ Rdz , dz = dx−dy
is a latent variable. They write T ∈ Rdx → Rdx as T = [Ty, Tz] so that y = Ty(x), z = Tz(x) and
require the following of T :

1. Ty = F , i.e. Ty recovers the forward process,

2. When we impose the prior ρ on x, its push-forward2 T]ρ can be decomposed as py⊗pz , the
Cartesian product of its marginals in y and z. And pz is a standard multi-variate Gaussian
distribution.

If such invertible map T is found, then they obtain their posterior sample of x by sampling z ∼
N (0, Idz ) and feeding (y, z) to T−1: x = T−1(y, z), where y is your observation. And naturally,
authors in Ardizzone et al. (2018) use invertible neural networks (INN) to model, parameterize the
map T , and introduce training strategy based on the above two requirements.

To avoid confusion, when we are given one observation y, we use qy to denote the posterior defined
in Ardizzone et al. (2018), and use q(x|y) to denote our definition in Equation 1. As a reminder, we
rewrite our definition below:

q(x|y) =
1

Z
ρ(x)L(y|x) =

1

Z
ρ(x)ρε(y −F(x)) , (17)

where Z is a normalizing constant, ρε is the density function of the Gaussian N (0,Γε). As for
qy , from the definition above we can write (which is also proved in Appendix 1 of Ardizzone et al.
(2018))

qy = T−1
] (δy ⊗ pz) , (18)

where δy is a delta distribution placed at the observation y. We remark here that in the definition
of qy there is no appearance of noise ε. The model in Ardizzone et al. (2018) assumes no error in
measurement.

We state the following theorem which characterize the difference between q(x|y) and qy:

Theorem J.1 Suppose T and T−1 are differentiable, then q(x|y) is related to qy by

q(x|y) ∝
∫
qy′(x)ρε(y − y′)py(y′)dy′ . (19)

Theorem J.1 shows how q(x|y) is different from qy(x). Besides the difference caused by noise
modeling, there is a non-trivial distribution py = Ty]ρ = F]ρ.

Proof: In the following we will heavily make use of the change-of-variable formula, stating as
follows:

T−1
] p(x) = p(T (x))| log det JT (x)| ,

for invertiable and differentiable T , where JT (x) is the Jacobian of T at x.

We proceed by computing

qy′(x)ρε(y − y′)py(y′) = T−1
] (δy′ ⊗ pz)ρε(y − y′)py(y′)

= δy′(Ty(x))pz(Tz(x))ρε(y − y′)py(y′)| log det JT (x)| .

2For x ∼ ρ and a map T , the push-forward T]ρ is a distribution defined by T]ρ(A) := ρ(T−1(A)) for
arbitrary set A. In other words, if x ∼ ρ, then T (x) ∼ T]ρ.

28



Under review as a conference paper at ICLR 2021

Therefore,∫
qy′(x)ρε(y − y′)py(y′)dy′ =

∫
δy′(Ty(x))pz(Tz(x))ρε(y − y′)py(y′)| log det JT (x)|dy′

= pz(Tz(x))| log det JT (x)|
∫
δy′(Ty(x))ρε(y − y′)py(y′)dy′ ,

and the property of delta function further simplifies the expression to∫
qy′(x)ρε(y − y′)py(y′)dy′ = pz(Tz(x))| log det JT (x)|ρε(y − Ty(x))py(Ty(x))

= py(Ty(x))pz(Tz(x))| log det JT (x)|ρε(y − Ty(x))

= T−1
] (py ⊗ pz)(x)ρε(y −F(x)) ,

where we use the change-of-variable formula reversely and the fact Ty = F . And by definition we
have T−1

] (py ⊗ pz)(x) = ρ(x), so∫
qy′(x)ρε(y − y′)py(y′)dy′ = ρ(x)ρε(y −F(x)) .

Finally we have proved Equation 19 according to the definition of q(x|y) in Equation 17. �

Theorem J.1 gives detailed explanation of the difference in posteriors compared to Ardizzone et al.
(2018). Despite this difference, their target qy must also exhibit double-modal property in the syn-
thetic Bayesian inverse problem in Section 4.1.1 due to our symmetric design. Thus we also try
training our MsIGN under the framework of Ardizzone et al. (2018), where they use the l2 loss for
the match of Ty and F , and use maximum mean discrepancy loss for the match of T]ρ and py ⊗ pz .
We also adopt the bi-directional training technique. In Figure 18 we show the marginal distribution
of models trained by INN. We can see INN seems to capture only one mode of the distribution.
We also remark here that in Ardizzone et al. (2018) authors design INN mostly for low-d inverse
problem.
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Figure 18: Comparison of INN and other methods in q5 and q6. INN seems to capture only one
mode of their target distribution, which should also be double-modal due to our symmetric design.
For other levels l = 1, 2, 3, 4, INN behaves similarly.
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