
A Proof of Theorem 3.1

Theorem. M = (S,A, P,R, �) be an MDP with state space S , action space A, transition function
P : S ⇥ A ! S, reward function R : A ⇥ S ! R and discount factor �. Let V 1(s) be the
value function of the phase 1 policy that is trained to be close to optimal value function V ⇤(s), i.e.,��V ⇤(s)� V 1(s)

�� < ✏ for all s 2 S, and ⇡1(s) be the greedy phase 1 policy obtained from V 1(s).
Suppose the phase 2 policy operates in a different state space S 0 given by an invertible mapping
f : S ! S 0 . If the phase 2 policy is close to phase 1

��⇡1(s)� ⇡2(f(s))
�� < ⌘ 8 s and R,P are

Lipschitz continuous, then the return of phase 2 policy is close to optimal everywhere, i.e., for all s,
���V ⇤(s)� V ⇡2

(f(s))
��� <

2✏� + ⌘c

1� �

where c /
P

s2S V ⇤(s) is a large but bounded constant.

Proof. Since the function f maps the state spaces S,S 0, we can assume for convenience that both
policies ⇡1,⇡2 operate in the same state space S. To obtain an action for s0 2 S 0, we can simply
query ⇡2(f�1(s0)). Assume that the reward function R and transition function P are Lipschitz

|R(st, at)�R(st, a
0
t)| 6 LR |at � a0t| (12)

|P (st+1 | st, at)� P (st+1 | st, a0t)| 6 LP |at � a0t| (13)

for all states st, st+1 and actions at, a0t. We generalize the structure of proof for the upper bound on
the distance in approximate optimal-value functions [84, 85] to the teacher-student setting. Let s0 be
the point where the distance between V ⇤ and V ⇡S

is maximal

s0 = argmax
s

V ⇤(s)� V ⇡S

(s) (14)

Let QT be the Q-function corresponding to V T . ⇡T is obtained by maximizing QT (s, a) over actions
⇡T (s) = argmaxa QT (s, a). Note that in general the value function V ⇡T

may be different from V T .
Let a⇤ be the action taken by the optimal policy at state s0, while aT = ⇡T (s0) be the action taken
by the teacher. Then, the return of the teacher’s greedy action aT must be highest under teacher’s
value function QT ,

QT (s0, a
⇤) 6 QT (s0, a

T) (15)
We can expand each side of (15) above to get

R(s0, a
⇤) + �

X

s2S
P (s | s0, a⇤)V T (s) 6 R(s0, a

T) + �
X

s2S
P (s | s0, aT)V T (s) (16)

Notice that
��V ⇤(s)� V T (s)

�� < ✏ implies that V T (s) 2 [V ⇤(s)� ✏, V ⇤(s) + ✏] which we can plug
into the inequality above to get

R(s0, a
⇤)�R(s0, a

T)

6 �
X

s2S

⇥
P (s | s0, aT)V ⇤(s)� P (s | s0, a⇤)V ⇤(s) + ✏

�
P (s | s0, aT) + P (s | s0, a⇤)

�⇤

6 �
X

s2S

⇥
P (s | s0, aT)V ⇤(s)� P (s | s0, a⇤)V ⇤(s)

⇤
+ 2✏� (17)

We can now write a bound for V ⇤(s0)� V ⇡S

(s0). Let aS be the action taken by the student policy
at state s0. Then,

V ⇤(s0)� V ⇡S

(s0)

= R(s0, a
⇤)�R(s0, a

S) + �
X

s2S
P (s | s0, a⇤)V ⇤(s)� P (s | s0, aS)V ⇡S

(s) (substitute (12))

6 R(s0, a
⇤)�R(s0, a

T) + LR

��aS � aT
��+ �

X

s2S
P (s | s0, a⇤)V ⇤(s)� P (s | s0, aS)V ⇡S

(s)

6 R(s0, a
⇤)�R(s0, a

T) + LR⌘ + �
X

s2S
P (s | s0, a⇤)V ⇤(s)� P (s | s0, aS)V ⇡S

(s)

14

We can now use (17) to write

V ⇤(s0)� V ⇡S

(s0)

6 2✏� + LR⌘ + �
X

s2S
P (s | s0, aT)V ⇤(s)� P (s | s0, aS)V ⇡S

(s) (substitute (13))

6 2✏� + LR⌘ + �
X

s2S
P (s | s0, aS)(V ⇤(s)� V ⇡S

(s)) + ⌘�LP

X

s2S

V ⇤(s)

= 2✏� + LR⌘ + �(V ⇤(s)� V ⇡S

(s)) + ⌘�LP

X

s2S

V ⇤(s)

�
since s0 is the state with highest difference between V ⇤ and V ⇡S�

6 2✏� + LR⌘ + �(V ⇤(s0)� V ⇡S

(s0)) + ⌘�LP

X

s2S

V ⇤(s)

Rearranging yields,

V ⇤(s0)� V ⇡S

(s0) 6
2✏� + ⌘

�
LR + �LP

P
s2S V ⇤(s)

�

1� �

Since s0 is the state at which the difference between V ⇤ and V ⇡S

is maximal, we can claim

V ⇤(s)� V ⇡S

(s) 6 2✏� + ⌘c

1� �

for all states s 2 S , where c =
�
LR + �LP

P
s2S V ⇤(s)

�

B Rewards

Previous work [3, 17] has shown that task agnostic energy minimization based rewards can lead to the
emergence of stable and natural gaits that obey high-level commands. We use this same basic reward
structure along with penalties to prevent behavior that can damage the robot on complex terrain. Now
onwards, we omit the time subscript t for simplicity.

• Absolute work penalty �|⌧ · q| where ⌧ are the joint torques. We use the absolute value so that
the policy does not learn to get positive reward by exploiting inaccuracies in contact simulation.

• Command tracking vcmd
x �

��vcmd
x � vx

�� � |!cmd
z � !z| where vx is velocity of robot in forward

direction and !z is yaw angular velocity (x, z are coordinate axes fixed to the robot).
• Foot jerk penalty

P
i2F kf it � f it�1k where f it is the force at time t on the ith rigid body and F is

the set of feet indices. This prevents large motor backlash.
• Feet drag penalty

P
i2F I

⇥
f i
z � 1N

⇤
·
���vix

��+
��viy

��� where I is the indicator function, and vix, v
i
y

is velocity of ith rigid body. This penalizes velocity of feet in the horizontal plane if in contact
with the ground preventing feet dragging on the ground which can damage them.

• Collision penalty
P

i2C[T I
⇥
f i � 0.1N

⇤
where C, T are the set of calf and thigh indices. This

penalizes contacts at the thighs and calves of the robot which would otherwise graze against edges
of stairs and discrete obstacles.

• Survival bonus constant value 1 at each time step to prioritize survival over following commands
in challenging situations.

The scales for these are �1e�4, 7,�1e�4,�1e�4,�1, 1. Notice that these reward functions do
not define any gait priors and the optimal gait is allowed emerge via RL. Target heading values
hcmd
t are sampled and commanded angular velocities is computed as

�
!cmd
z

�
t
= 0.5 ·

�
hcmd
t � ht

�

where ht is the current heading value. When walking on terrain,
�
vcmd
x

�
t
= 0.35m/s and heading is

varied in hcmd
t 2 [�10�, 10�]. On flat ground, one of three sampling modes are chosen uniformly

at random - curve following, in-place turning and complete stop. In the curve following regime�
vcmd
x

�
t
2 [0.2m/s, 0.75m/s] while hcmd

t 2 [�60�, 60�]. For in-place turning,
�
vcmd
x

�
t
= 0 and

hcmd
t 2 [�180�, 180�]. In complete stop,

�
vcmd
x

�
t
= 0, hcmd

t = 0. This scheme is designed to mimic
the distribution of commands the robot sees during operation. We terminate if the pitch exceeds 90�
or if the base or head of the robot collides with an object.

15

Algorithm 1 Pytorch-style pseudo-code for phase 2
Require: Phase 1 policy ⇡1 = (G1, F 1,�), parallel environments E, max iterations M , truncated

timesteps T , learning rate ⌘
Initialize phase 2 policy ⇡2 = (G2, F 2, �) with G2 G1, F 2 F 1.
n 0
while n 6= M do

Loss l 0
t 0
while t 6= T do

s E.observations
a1 ⇡1(s)
a2 ⇡2(s)
l l + ka1 � a2k22
E.step

�
a2
�

t t+ 1
end while

⇥⇡2 ⇥⇡2 � ⌘r⇥⇡2 l
⇡2 ⇡2.detach()
n n+ 1

end while

Observation a b �

Joint angles (left hips) 1.0 0.1 0.01
Joint angles (right hips) 1.0 -0.1 0.01

Joint angles (front thighs) 1.0 0.8 0.01
Joint angles (rear thighs) 1.0 1.0 0.01

Joint angles (calves) 1.0 -1.5 0.01
Joint velocity 0.05 0.0 0.05

Angular velocity 0.25 0.0 0.05
Orientation 1.0 0.0 0.02

Scandots height 5.0 0.0 0.07
Scandots horizontal location – – 0.01

Table 2: During training, ground truth observations ot are shifted , normalized and noised to get
observations o0

t which are passed to the policy. o0
t = a(ot� b)+ ✏ where ✏ ⇠ N (0,�). We tabulate

a, b,� for each kind of observation above. a, b values for scandots horizontal locations are blank
since these locations are fixed with respect to the robot and not passed to the policy.

C Experimental Setup and Implementation Details

C.1 Pseudo-code

Phase 1 is simply reinforcement learning using policy gradients. We describe the pseudo-code for the
phase 2 training in Algorithm 1.

C.2 Hardware

We use the Unitree A1 robot pictured in Figure 2 of the main paper. The robot has 12 actuated joints,
3 per leg at hip, thigh and calf joints. The robot has a front-facing Intel RealSense depth camera in its
head. TThe compute consists of a small GPU (Jetson NX) capable of ⇡0.8 TFLOPS and an UPboard
with Intel Quad Core Atom X5-8350 containing 4GB ram and 1.92GHz clock speed. The UPboard
and Jetson are on the same local network. Since depth processing is an expensive operation we run
the convolutional backbone on the Jetson’s GPU and send the depth latent over a UDP socket to the
UPboard which runs the base policy. The policy operates at 50Hz and sends joint position commands
which are converted to torques by a low-level PD controller running at 400Hz with stiffness Kp = 40
and damping Kd = 0.5.

16

Stairs Slopes

Rough Flat Gaps

Stepping Stones Discrete Obstacles

Figure 5: Set of terrain we
use during training

Name Range

Height map update frequency* [80ms, 120ms]
Height map update latency* [10ms, 30ms]

Added mass [�2kg, 6kg]
Change in position of COM [�0.15m, 0.15m]

Random pushes Every 15s at 0.3m/s
Friction coefficient [0.3, 1.25]

Height of fractal terrain [0.02m, 0.04m]
Motor Strength [90%, 110%]

PD controller stiffness [35, 45]
PD controller damping [0.4, 0.6]

Table 3: Parameter randomization in simulation. * indicates that ran-
domization is increased to this value over a curriculum.

Figure 6: The privileged baseline receives terrain information from all around the robot including
from around the hind feet.

Simulation Setup We use the IsaacGym (IG) simulator with the legged gym library [18] to develop
walking policies. IG can run physics simulation on the GPU and has a throughput of around 2e5
time-steps per second on a Nvidia RTX 3090 during phase 1 training with 4096 robots running in
parallel. For phase 2, we can render depth using simulated cameras calibrated to be in the same
position as the real camera on the robot. Since depth rendering is expensive and memory intensive,
we get a throughput of 500 time-steps per second with 256 parallel environments. We run phase 1 for
15 billion samples (13 hours) and phase 2 for 6 million samples (6 hours).

Environment We construct a large elevation map with 100 sub-terrains arranged in a 20⇥ 10 grid.
Each row has the same type of terrain arranged in increasing difficulty while different rows have
different terrain. Each terrain has a length and width of 8m. We add high fractals (upto 10cm) on flat
terrain while medium fractals (4cm) on others. Terrains are shown in Figure 5 with randomization
ranges described in Table 3.

Policy architecture The elevation map compression module � consists of an MLP with 2 hidden
layers. The GRUs G1, G2 are single layer while the feed-forward networks F 1, F 2 have two hidden
layers with ReLU non-linearities. The convolutional depth backbone � consists of a series of 2D
convolutions and max-pool layers.

17

	1 Introduction
	2 Method: Legged Locomotion from Egocentric Vision
	2.1 Phase 1: Reinforcement Learning from Scandots
	2.2 Phase 2: Supervised Learning

	3 Experimental Setup
	4 Results and Analysis
	5 Related Work
	6 Discussion and Limitations
	A Proof of Theorem 3.1
	B Rewards
	C Experimental Setup and Implementation Details
	C.1 Pseudo-code
	C.2 Hardware

