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A APPENDIX: PROOFS OF LEMMA 1 AND THEOREM 1

Let us consider M and Mr as the approximated and real MDP with dynamics model fφ and f
respectively. Let the total variation distance between them be bounded by εf (see (Janner et al.,
2019)). This dynamics model predicts both the next state distribution and rewards. The corre-
sponding MPC objective is represented as J and Jr respectively. Here, J denotes that the costs are
calculated from the approximated reward function setting whereas Jr is obtained from rollouts in
the true MDP. Now, we will derive the bounds on the performance improvement in a similar way
as demonstrated in (Janner et al., 2019) and (Morgan et al., 2021), however with consideration and
assumptions related to the convexity of the losses.

Proof 1 (Proof of Lemma 1) For any stochastic dynamics model f and reward function r, consid-
ering the cost of a trajectory in an MDP with policy πη and value function Vζ is given by,

C (xt,ut) =

H−1∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H) (16)

where, γ is the discount factor, c(xt,h, ut,h) = −r(xt,h, ut,h) and cH is the terminal cost calculated
as −Vζ(xt,H). Let cmax be the bound on this cost.

Now, to realize the maximum improvement in the approximated MDP while using the policy param-
eters (η̃t), obtained from the shift model, we use a formulation motivated by the bound formulated
in Lemma B.3 in (Janner et al., 2019). We consider pφ as the discounted state-action visitation
corresponding to fφ (similarly p for f ) and superscript h to resemble the notations of (Janner et al.,
2019).

J (xt, η̃t)− Jr (xt, η̃t)

= Eut∼πη̃t ,xt∼fφ

[
H∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H)

]

− Eut∼πη̃t ,xt∼f

[
H∑
h=0

γhc(xt,h, ut,h) + γHcH(xt,H)

]
=

∑
xt,ut

(pφ(x, u)− p(x, u)) c(x, u)

≤
∑
xt,ut

H−1∑
h=0

γh (phφ(xt,h, ut,h)−ph(xt,h, ut,h)) c(xt,h, ut,h)

+ γH (pHφ (xt,H , ut,H)− pH(xt,H , ut,H))Vζ(xt,H)

≤2 cmax

H−1∑
h=0

γh hεf + γH2 VmaxHεf

=2 cmax
(H − 1)γH+1 −HγH + γ

(1− γ)2
εf + γH2 VmaxHεf

where, |(ph(x, u) − phφ(x, u))| ≤ hεf is inherited from Lemma B.2 in (Janner et al., 2019), the
uncertainty in dynamics approximation.

Proof 2 (Proof of Theorem 1) From Lemma-1, we know that,

J (η̃t) ≤ Jr (η̃t) +Rf,H (17)

and subtracting Jr (η?t ) from both sides of Eq (4) results in

J (η̃t)− Jr (η?t ) ≤ Jr (η̃t)− Jr (η?t ) +Rf,H (18)

where LHS corresponds to the instantaneous regret incurred by rollouts on approximate MDP (with
J) using shifted parameters (η̃t) and on true MDP (with Jr) using the DMD-optimized parame-
ters (ηt).
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Now, to get the cumulative regret for T decision steps, both sides of Eq (5) should be summed over
T and can be shown as,

T∑
t=0

(J (η̃t)− Jr (η?t )) ≤
T∑
t=0

(Jr (η̃t)− Jr (η?t )) +

T∑
t=0

Rf,H (19)

ReT (ηT ) ≤
T∑
t=0

(Jr (η̃t)− Jr (η?t )) + T Rf,H (20)

Based on (Hall & Willett, 2013), the DMD update rule directly results in

T∑
t=0

(J (η̃t)− Jr (η?t )) ≤ Dmax

αT+1
+

4M

αT
WΦt (ηT ) +

G2
`

2σ

T∑
t=1

αt (21)

Substituting Eq (8) in Eq (7), we finally get the bound on the maximum regret as

ReT (ηT ) ≤ Dmax

αT+1
+

4M

αT
WΦt (ηT ) +

G2
`

2σ

T∑
t=1

αt + T Rf,H ,

which completes the proof.
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