
Nonparametric Instrumental Regression via Kernel
Methods is Minimax Optimal

Abstract

We provide a theoretical convergence analysis of kernel-based nonparametric instrumental variable
(NPIV) regression (Singh et al., 2019), a nonparametric approach to IV regression using kernel features in
two stages. First, we relax the assumption that the structural function is uniquely identified through the
instrument by proposing a minimum norm solution. This relaxation is crucial, as the uniqueness assumption
is often violated in practical scenarios. Additionally, we introduce a novel approach to characterize the
smoothness of the target function that does not rely on the instrument, instead leveraging a new description
of the projected subspace size, which is closely related to the link condition in inverse learning literature.
With the subspace size description and under standard kernel learning assumptions, we derive, for the
first time, the minimax optimal learning rate for kernel NPIV even when the solution is non-unique. Our
results demonstrate that the strength of the instrument, measured by the choice of the kernel, is essential in
achieving efficient learning.

1 Introduction

In this paper, we consider the nonparametric instrumental variable (NPIV) regression problem (Angrist
and Imbens, 1995; Newey and Powell, 2003; Darolles et al., 2011). Specifically, let X, Y and Z be three random
variables. In the context of IV estimation, X stands for endogenous variables, Y is an outcome variable, and Z
stands for exogenous instrument variables. The model can be described as follows

Y = h0(X) +U, E(U ∣Z) = 0, (1)

where h0 is the structural function defined in the L2-space with respect to the marginal distribution of X,
denoted as L2(X). U represents the unmeasured, confounding noise. Alternatively, NPIV is characterized
through the following functional equation (Darolles et al., 2011; Bennett et al., 2023b):

T h = r0, (2)

where r0(Z) ≐ E[Y ∣Z] and T ∶ L2(X)→ L2(Z) is the bounded linear operator that maps every h ∈ L2(X) to
E[h(X)∣Z] ∈ L2(Z). The aim of the NPIV estimation is to solve for this possibly under-determined system.
The structural function h0 is uniquely identified as a solution of Eq. (2) if and only if the operator T is injective
(Darolles et al., 2011).

NPIV estimation has many applications, such as causal inference (Angrist and Imbens, 1995; Newey and Powell,
2003), missing data problems (Wang et al., 2014; Miao et al., 2015) and reinforcement learning (Liao et al., 2021;
Uehara et al., 2021; Xu et al., 2020). However, NPIV estimation, as an ill-posed inverse problem, is notoriously
difficult. For example, the solution of the IV problem often might not be unique given the instrument at hand.
Specifically, uniqueness is often violated if instrumental variables are under identified (see e.g., Andrews and

1



Stock, 2005; Andrews et al., 2019). Hence, many estimation methods require the unique solution assumption
(Darolles et al., 2011; Chen and Reiss, 2011; Singh et al., 2019). Moreover, even when the solution is unique, a
small perturbation of the outcome can cause the estimator to be infinitely far from the true solution, as T −1 is
typically not continuous (Carrasco et al., 2007). There has been a surge in interest to address these difficulties.
Existing attempts proposed for NPIV regression can be largely categorized into two classes: conditional moment
methods (Muandet et al., 2020; Liao et al., 2020; Dikkala et al., 2020; Bennett et al., 2019, 2023a,c) and
two-stage estimation methods (Newey and Powell, 2003; Carrasco et al., 2007; Horowitz, 2011; Darolles et al.,
2011; Chen and Christensen, 2015; Chen, 2007; Singh et al., 2019; Xu et al., 2020; Hartford et al., 2017).

Conditional moment methods consider a saddle-point optimization problem of the form minf∈Hmaxg∈G L(f, g)
for some function classes H and G, and risk function L. While conditional moment methods can relax the
uniqueness assumption on the structural function, obtaining estimators from samples are often difficult since
the solutions are typically saddle-points. Moreover, many estimators studied in this direction cannot obtain
convergence in the metric of interest: the L2(X) metric (Bennett et al., 2023a). Finally, the minimax optimality
of conditional moment methods is under-explored due to a lack of lower bounds. On the other hand, two-stage
methods split the NPIV regression into the following steps. First, depending on the specific method, Stage
1 estimates either the conditional expectation operator T or the conditional density P (X ∣ Z) estimation.
Second, Stage 2 then performs a regression of the outcome on the estimators obtained in Stage 1. When both
stages involve a least-squares problem, a two-stage method is called a two-stage least-squares (2SLS) regression.
Comparing with conditional moment methods, two-stage estimation provides more stable algorithms since it
avoids saddle-point optimization. However, existing two-stage methods suffer from the following drawbacks.
First, two-stage methods often require the solution of the NPIV to be unique, which may not hold in practical
settings. Second, most of the existing two-stage algorithms can only obtain the upper bound on the learning
risk, while the information theoretical lower bound is unknown. Third, the instances where minimax optimal
learning rate is obtained are restricted to sieve and wavelet estimators (Chen and Reiss, 2011; Chen and
Christensen, 2015), there is a need to extend minimax analysis to a wider class of estimators.

In this paper, we focus on the kernel-based 2SLS estimation proposed by Singh et al. (2019). The theory
developped in Singh et al. (2019) suffers from the following limitations. First, identification of the structural
function is required; second, the learning risk is studied in a pseudo-metric rather than the L2(X)-metric;
third, the smoothness of the structural function is expressed with respect to the instrument and is therefore
uninterpretable. In light of this, we address the above concerns by making the following contribution.

• Removing Uniqueness: As we mentioned before, most NPIV algorithms, including kernel NPIV in Singh
et al. (2019), require h0 to be uniquely identified. In this paper, we relax the uniqueness assumption
through introducing the minimum norm solution.

• Subspace Measure: For general 2SLS problems including NPIV estimation, Stage 2 learning is often
performed in a subspace of the proposed hypothesis space. As such, quantifying the size of the subspace
is vital to study the theoretical properties of estimators from 2SLS, in particular kernel NPIV. In light
of this, we propose a novel way to measure the size of certain subspaces to study the behavior of the
learning risk. Our results reveal that the larger the subspace relative to the constructed hypothesis, the
faster the learning rate.

• Minimax Optimality: With the help of the subspace measure, we obtain a refined analysis of the learning
risk for kernel 2SLS estimators, under standard kernel regression assumptions. In particular, we show that
kernel NPIV is minimax optimal for a wide class of estimators under mild assumptions, contrasting with
existing methods that only study specific estimators such as sieve or wavelet-based estimators. Moreover,
we demonstrate that the kernel NPIV estimator is minimax optimal even when the solution is not unique.
To our knowledge, this is the first result that achieve this. All our bound hold in the strong L2(X)-norm.
This is in contrast with kernel NPIV in Singh et al. (2019) and other NPIV algorithms (Dikkala et al.,
2020, see e.g.,) where they only achieve guarantees in the pseudo-metric ∥T (⋅)∥L2(Z).
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1.1 Related Works

NPIV is an important estimation problem that has received intensive research interest. Regression-based NPIV
learning includes series-based estimators (Ai and Chen, 2003; Hall and Horowitz, 2005; Blundell et al., 2007;
Darolles et al., 2011; Chen and Pouzo, 2012; Florens et al., 2011), kernel-based estimators (Hall and Horowitz,
2005; Horowitz, 2007; Singh et al., 2019) and neural networks based estimators (Hartford et al., 2017; Xu et al.,
2020; Li et al., 2024b). Recently, there has been a growing interest in employing the min-max optimization
approach to solve the NPIV problem, notable examples include Lewis and Syrgkanis (2018); Bennett et al.
(2019); Dikkala et al. (2020); Liao et al. (2020); Muandet et al. (2020); Bennett et al. (2022, 2023b).

While there are many algorithms proposed to address the NPIV estimation problem, theoretical understanding
of these algorithms is less explored. Among the above mentioned works, Darolles et al. (2011); Singh et al.
(2019); Xu et al. (2020); Dikkala et al. (2020); Liao et al. (2020); Bennett et al. (2022); Li et al. (2024b) provide
consistency results on the algorithms, either in L2 rate or in the pseudo-metric sense. However, the learning
rates obtained in these papers are often slow with deeper questions such as whether the obtained learning rate
is optimal and what is the information-theoretic lower bound remaining unknown.

In econometric literature, Horowitz (2011); Chen and Reiss (2011); Chen and Christensen (2018) demonstrate
that their estimator can achieve the minimax optimal rate. However, these papers often suffer the following two
problems: first, they require strong assumptions on the instrument such that the structural function can be
uniquely identified. As we discussed, uniqueness can be easily violated in many practical scenarios. Secondly,
their convergence rate derivation often relies on restrictive assumptions on the data distribution such as uniform
marginal distribution. We finally note that when deep learning is embedded into conditional moment methods
or 2SLS there is a need to study optimization guarantees. Works in this direction are obtained in Petrulionyte
et al. (2024) where they study the joint optimization of 2SLS and in Chen et al. (2024) where they study online
stochastic optimization for a conditional moment approach.

In our paper, we show that with or without the uniqueness assumption and under very general kernel learning
setting, we can achieve minimax optimal learning rate for a large class of kernel estimators.

2 Background

We introduce the notation and necessary basics of RKHS theory in this section. Most of the background is
established in Li et al. (2022a, 2024a); Meunier et al. (2024) and we provide this for ease of reference.

2.1 Notation and Tensor Product of Hilbert Spaces

Throughout the paper, we consider three random variables: X (the covariate), Y (the outcome) and Z (the
instrument). Y is defined on R while X and Z are defined respectively on the second countable locally compact
Hausdorff spaces EX and EZ endowed with their respective Borel σ-field FEX

and FEZ
. We let (Ω,F ,P) be

the underlying probability space with expectation operator E. Let P be the pushforward of P under (X,Y,Z)
and πW for W ∈ {X,Y,Z, (X,Y ), (Z,Y ), (X,Z)} denotes the marginal distributions. We use the Markov kernel
p ∶ EZ ×FEX

→ R+ to define the conditional distribution:

P[X ∈ A∣Z = z] = ∫
A
p(z, dx),

for all z ∈ EZ and events A ∈ FEX
. We denote the space of real-valued Lebesgue square-integrable func-

tions on (EX ,FEX
) with respect to πX as L2(EX ,FEX

, πX), abbreviated L2(X), and similarly for πZ as
L2(EZ ,FEZ

, πZ), abbreviated L2(Z). We introduce some notation related to linear operators on Hilbert spaces
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and vector-valued integration; formal definitions can be found in Appendix A for completeness, or we refer
the reader to Weidmann (1980); Diestel and Uhl (1977). Let H be a separable real Hilbert space with inner
product ⟨⋅, ⋅⟩H . L2(EZ ,FEZ

, πZ ;H), abbreviated L2(Z;H), is the space of strongly FEZ
−FH measurable and

Bochner 2-integrable functions from EZ to H equipped with the norm ∥ ⋅ ∥2L2(Z;H) = ∫EZ
∥ ⋅ ∥2H dπZ . We write

L(H,H ′) as the Banach space of bounded linear operators from H to another Hilbert space H ′, equipped with
the operator norm ∥ ⋅ ∥H→H′ . When H =H ′, we simply write L(H) instead. We write S2(H,H ′) as the Hilbert
space of Hilbert-Schmidt operators from H to H ′ and S1(H,H ′) as the Banach space of trace class operators
(see Appendix A for a complete definition). For two Hilbert spaces H,H ′, we say that H is (continuously)
embedded in H ′ and denote it as H ↪H ′ if H can be interpreted as a vector subspace of H ′ and the inclusion
operator i ∶ H → H ′ performing the change of norms with ix = x for x ∈ H is continuous; and we say that H
is isometrically isomorphic to H ′ and denote it as H ≃ H ′ if there is a linear isomorphism between H and
H ′ which is an isometry. For any linear operator A, R(A) denotes its range and N (A) its null space. For
any bounded linear operator A, A∗ denotes its adjoint. For any subspace M ⊆H, M⊥ denotes the orthogonal
complement.

Tensor Product of Hilbert Spaces (Aubin, 2000, Section 12): Denote H ⊗H ′ the tensor product of Hilbert
spaces H, H ′. The element x⊗ x′ ∈H ⊗H ′ is treated as the linear rank-one operator x⊗ x′ ∶H ′ →H defined
by y′ → ⟨y′, x′⟩H′x for y′ ∈H ′. Based on this identification, the tensor product space H ⊗H ′ is isometrically
isomorphic to the space of Hilbert-Schmidt operators from H ′ to H, i.e., H ⊗H ′ ≃ S2(H ′,H). We will hereafter
not make the distinction between these two spaces, and treat them as being identical.

Remark 1 (Aubin, 2000, Theorem 12.6.1). Consider the Bochner space L2(Z;H) where H is a separable
Hilbert space. One can show that L2(Z;H) is isometrically identified with the tensor product space H ⊗L2(Z),
and we denote as Ψ the isometric isomorphism between the two spaces. See Appendix A for more details.

2.2 Reproducing Kernel Hilbert Spaces and Conditional Mean Embedding

Scalar-valued Reproducing Kernel Hilbert Space (RKHS). We let kX ∶ EX ×EX → R be a symmetric
and positive definite kernel function and HX be a vector space of functions from EX to R, endowed with a
Hilbert space structure via an inner product ⟨⋅, ⋅⟩HX

. We say kX is a reproducing kernel of HX if and only if
for all x ∈ EX we have kX(⋅, x) ∈HX and for all x ∈ EX and f ∈HX , we have f(x) = ⟨f, kX(x, ⋅)⟩HX

. A space
HX which possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS; Berlinet and
Thomas-Agnan, 2011). We denote the canonical feature map of HX as ϕX(x) = kX(⋅, x). Similarly for EZ , we
consider a RKHS HZ with symmetric and positive definite kernel kZ ∶ EZ ×EZ → R and canonical feature map
denoted as ϕZ .

Assumption 1. We require some technical assumptions on the previously defined RKHSs and kernels:

1. HX and HZ are separable, this is satisfied if kX , kZ are continuous, given that EX ,EZ are separable1;

2. kX(⋅, x) and kZ(⋅, z) are measurable for πX-almost all x ∈ EX and πZ-almost all z ∈ EZ ;

3. kX(x,x) ⩽ κ2
X for πX-almost all x ∈ EX and kZ(z, z) ⩽ κ2

Z for πZ-almost all z ∈ EZ .

The above assumptions are not restrictive in practice, as well-known kernels such as the Gaussian, Laplace
and Matérn kernels satisfy them on Rd (Sriperumbudur et al., 2011). We now introduce some facts about
the interplay between HX and L2(X), which has been extensively studied by Smale and Zhou (2004, 2005),
De Vito et al. (2006) and Steinwart and Scovel (2012). We first define the (not necessarily injective) embedding
IX ∶ HX → L2(X), mapping a function f ∈ HX to its πX -equivalence class [f]X . The embedding is a well-
defined compact operator since its Hilbert-Schmidt norm can be bounded as (Steinwart and Scovel, 2012,

1This follows from Steinwart and Christmann (2008, Lemma 4.33). Note that the lemma requires separability of EX ,EZ , which
is satisfied since we assume that EX ,EZ are second countable locally compact Hausdorff spaces.
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Lemma 2.2 & 2.3) ∥IX∥S2(HX ,L2(X))
⩽ κX . The adjoint operator SX ≐ I∗X ∶ L2(X)→HX is an integral operator

with respect to the kernel kX , i.e. for f ∈ L2(X) and x ∈ EX we have (Steinwart and Christmann, 2008,
Theorem 4.27)

(SXf) (x) = ∫
EX

kX (x,x′) f (x′)dπX (x′) .

Next, we define the self-adjoint, positive semi-definite and trace class integral operators

LX ≐ IXSX ∶ L2(X)→ L2(X) and CX ≐ SXIX ∶HX →HX .

By the spectral theorem for self-adjoint compact operators, there exists an at most countable index set I, a
non-increasing sequence (µX,i)i∈I > 0, and a family (eX,i)i∈I ∈ HX , such that ([eX,i]X)i∈I is an orthonormal
basis (ONB) of R(IX) ⊆ L2(X), (µ1/2

X,iei)i∈I is an ONB of N (IX)⊥ ⊆HX , and we have

LX =∑
i∈I

µX,i⟨⋅, [eX,i]X⟩L2(X)[eX,i]X , CX =∑
i∈I

µX,i⟨⋅, µ
1
2

X,ieX,i⟩HX
µ

1
2

X,ieX,i. (3)

We similarly define IZ , SZ , LZ ,CZ , (µZ,i)i∈I , (eZ,i)i∈I for the RKHS HZ .

Vector-valued Reproducing Kernel Hilbert Space (vRKHS). Let K ∶ EZ × EZ → L(HX) be an
operator valued positive definite kernel (Carmeli et al., 2006, Definition 2.2). Fix z ∈ EZ , and h ∈ HX , then
(Kzh) (⋅) ≐K(⋅, z)h defines a function from EZ to HX . The completion of

Gpre ≐ span{Kzh ∣ z ∈ EZ , h ∈HX}

with inner product on Gpre defined on the elementary elements as ⟨Kzh,Kz′h
′⟩G ≐ ⟨h,K (z, z′)h′⟩Y , defines a

vRKHS denoted as G. For a more complete overview of the vector-valued reproducing kernel Hilbert space, we
refer the reader to Carmeli et al. (2006), Carmeli et al. (2010) and Li et al. (2023, Section 2). In the following,
we will denote G as the vRKHS induced by the kernel K ∶ EZ ×EZ → L(HX) with

K(z, z′) ≐ kZ(z, z′) IdHX
, z, z′ ∈ EZ . (4)

We emphasize that this family of kernels is the de-facto standard for high- and infinite-dimensional applications
(Grünewälder et al., 2012b,a; Park and Muandet, 2020; Ciliberto et al., 2016, 2020; Singh et al., 2019; Mastouri
et al., 2021; Kostic et al., 2022, 2023) due to the crucial representer theorem which gives a closed-form solution
to estimators derived from this family of kernels.

Remark 2 (General multiplicative kernel). Without loss of generality, we provide our results for the vRKHS
G induced by the operator-valued kernel given by K = kZ IdHX

. However, with suitably adjusted constants
in the assumptions, our results transfer directly to the more general vRKHS G̃ induced by the more general
operator-valued kernel

K̃(z, z′) ≐ kZ(z, z′)Q, z, z′ ∈ EZ ,

where Q ∶ HX → HX is any positive-semidefinite self-adjoint operator. The precise characterization of the
adjusted constants is given by Li et al. (2023, Section 4.1).

An important property of G is that it is isometrically isomorphic to the space of Hilbert-Schmidt operators
between HZ and HX (Li et al., 2023, Corollary 1). Similarly to the scalar case, we can map every element in G
into its πZ−equivalence class in L2(Z;HX) and we use the shorthand notation [F ] = [F ]Z;X (see Definition 6
in Appendix A for more details).

Theorem 1 (vRKHS isomorphism). (Li et al., 2023, Corollary 1) For every function F ∈ G there exists a
unique operator C ∈ S2(HZ ,HX) such that F (⋅) = CϕZ(⋅) ∈ HX with ∥C∥S2(HZ ,HX) = ∥F ∥G and vice versa.
Hence G ≃ S2(HZ ,HX) and we denote the isometric isomorphism between S2(HZ ,HX) and G as Ψ̄. It follows
that G can be written as G = {F ∶ EZ →HX ∣ F = CϕZ(⋅), C ∈ S2(HZ ,HX)}.
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Conditional Mean Embedding: A particular advantage of kernel methods is its convenience of operating
probability distributions (see e.g., Muandet et al., 2017; Sejdinovic et al., 2013). In particular, kernel methods
allow us to deal with the conditional distributions through conditional mean embedding, defined in Park and
Muandet (2020); Klebanov et al. (2020).

Definition 1. The HX-valued conditional mean embedding (CME) for the conditional distribution of X given
Z, is defined as

F∗(⋅) ≐ ∫
EX

ϕX(x)p(⋅, dx) = E [ϕX(X)∣Z = ⋅] ∈ L2(Z;HX).

By the reproducing property, we have E[f(X)∣Z = z] = ⟨f,F∗(z)⟩HX
, for all f ∈ HX and z ∈ EZ . Therefore,

the CME allows us to easily compute conditional expectations through an inner product, which as we will see
below is a crucial step in kernel NPIV. The approximation of F∗ with Tikhonov regularization (also known as
vector-valued kernel ridge regression) is a key concept in kernel methods and is extensively studied in Park and
Muandet (2020); Li et al. (2022b, 2023), where learning F∗ is formulated as the following optimization problem
at the population level:

Fξ ≐ argmin
F ∈G

EX,Z ∥ϕX(X) − F (Z)∥2HX
+ ξ∥F ∥2G , (5)

which can be expressed in closed-form as

Fξ(⋅) ≐ CξϕZ(⋅) ∈ G, Cξ ≐ CXZ (CZ + ξ IdHZ
)−1 ∈ S2(HZ ,HX).

Tikhonov regularization in Eq. (5) is known to exhibit the saturation effect where it fails to benefit from
high smoothness of the target function F∗. This was recently verified in Meunier et al. (2024) in the context
of vector-valued regression. To avoid saturation, we therefore generalize Tikhonov regularization to general
spectral regularization (see also Mollenhauer and Koltai (2020); Mollenhauer et al. (2022)). General spectral
regularization typically starts with defining a filter function, i.e., a function on an interval which is applied on
self-adjoint operators to each individual eigenvalue via the spectral calculus.

Definition 2 (Filter function). Let Λ ⊆ R+. A family of functions gξ ∶ [0,∞) → [0,∞) indexed by ξ ∈ Λ is
called a filter with qualification ρ ⩾ 0 if it satisfies the following two conditions:

1. There exists a positive constant E such that, for all ξ ∈ Λ

sup
θ∈[0,1]

sup
x∈[0,κ2

Z
]

ξ1−θxθgξ(x) ⩽ E

2. There exists a positive constant ωρ <∞ such that

sup
θ∈[0,ρ]

sup
ξ∈Λ

sup
x∈[0,κ2

Z
]

∣1 − gξ(x)x∣xθξ−θ ⩽ ωρ.

One may think of the above definition as a class of functions approximating the inversion map x↦ 1/x while
still being defined for x = 0 in a reasonable way. As examples, with gξ(x) = (x+ξ)−1, we retrieve ridge regression
with ρ = 1 and with gξ(x) = x−11[x ⩾ ξ] we obtain kernel principal component regression with ρ = +∞. We
refer to Appendix A.3 for other examples of spectral methods such as gradient descent, iterated Tikhonov and
gradient flow.

Given a filter function gξ, we call gξ(CZ) the regularized inverse of CZ . We may think of the regularized inverse
as approximating the pseudoinverse of CZ (see e.g. Engl et al. (2000)) when ξ → 0. We define the regularized
population solution with filter function gξ as

Cξ ≐ CXZgξ(CZ) ∈ S2(HZ ,HX), Fξ(⋅) ≐ CξϕZ(⋅) ∈ G. (6)
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Empirical solution: Given a dataset D1 = {(z̃i, x̃i)}mi=1, the empirical analogue of Eq. (6) is

Ĉξ ≐ ĈXZgξ(ĈZ), F̂ξ(⋅) ≐ ĈξϕZ(⋅) ∈ G, (7)

where ĈXZ , ĈZ are empirical covariance operators define as

ĈZ ≐
1

m

m

∑
i=1

ϕZ(z̃i)⊗ ϕZ(z̃i) ĈXZ ≐
1

m

m

∑
i=1

ϕX(x̃i)⊗ ϕZ(z̃i).

The closed-form formula is obtained in Meunier et al. (2024) using a generalization of the representer theorem .
It will allow us to obtain a closed-form expression for our estimator of the structural function (see Section 3.1).

3 Instrumental Variable Regression with RKHS

In this section, we illustrate how kernel-based algorithms can solve the NPIV problem. We recall that a solution
to NPIV satisfies the following functional equation:

T h = r0.

A common condition required in the NPIV literature is that r0 ∈ R(T ), i.e., the true structural function is
in the range of the conditional expectation operator. It simply states that there exists at least one solution
satisfying the integral equation. However, even equipped with this assumption, NPIV remains a challenge
because it is an ill-posed inverse problem. In particular, the solution to the above equation might not be unique.
To address this, most of existing literature assumes injective T , enforcing the solution to be unique. However,
injectivity is a strong assumption as it may not hold in many practical settings. Specifically, uniqueness is
violated if we have weak instrumental variables (see e.g., Andrews and Stock, 2005; Andrews et al., 2019). For
example, when both X and Z are discrete random variables and the cardinality of X exceeds Z, we cannot
have injective T . Kallus et al. (2021) further demonstrates various examples where uniqueness is violated in
the proximal causal inference setting. When T is not injective, the NPIV problem becomes even more ill-posed
and obtaining an L2-convergence rate is much more difficult. In particular, it is even not clear whether existing
estimators converge to any particular solution, since there might be infinitely many solutions. Consequently,
recent works (see e.g., Chen, 2021; Bennett et al., 2023a,c; Li et al., 2024b) in NPIV propose to consider the
solution that achieves the least L2-norm, which is shown to be uniquely defined (e.g., Lemma 5 Bennett et al.,
2023c). Following this direction, in our work, we propose to target the solution with the minimum RKHS norm.
Specifically, let T̃ ≐ T ○ IX ∶HX → L2(Z) and denote

Nr0(T̃ ) ≐ {h ∈HX ∶ T̃ h = r0}

Assumption 2 (Well-specifiedness of solutions). Nr0(T̃ ) ≠ ∅.

The RKHS HX encompasses our a priori belief on the properties that should satisfy the structural function.
Assumption 2 states that there is at least one function in HX satisfying the integral equation. Note that
Assumption 2 is stronger than r0 ∈R(T ) as HX can be seen as a subset of L2(X). However, for a universal
RKHS, HX is dense in L2(X) under L∞ norm (see e.g., Steinwart and Christmann, 2008, Chapter 4.6). Since
T is not guaranteed to be injective, T̃ is also not guaranteed to be injective. The minimum RKHS norm
solution is then defined as

h∗ ≐ argmin
h∈Nr0

(T̃ )

∥h∥HX
. (8)

h∗ can also be seen as the pseudo-inverse of the linear system: h∗ = (T̃ )
†
r0. The next proposition shows that

h∗ is uniquely defined, the proof is postponed to Appendix B.
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Proposition 1. Under Assumption 2, h∗ uniquely exists and {h∗} = N (T̃ )⊥ ∩Nr0(T̃ ).

Remark 3. We remark that our construction guarantees the uniqueness of the target solution for both injective
and non-injective T i.e., h∗. We will see that the kernel-based NPIV algorithm ensures its estimator converging
to h∗ under both scenarios. In this way, we relax the strong injectivity assumption imposed in the classical
NPIV literature (see e.g., Newey and Powell, 2003; Chen and Reiss, 2011; Darolles et al., 2011, and references
therein).

3.1 The Kernel NPIV Estimator

Under Assumption 2, h∗ ∈HX , and using the reproducing property, we see that for all z ∈ EZ ,

[T̃ h∗] (Z) = E [⟨h∗, ϕX(X)⟩HX
∣ Z] = ⟨h∗, F∗(Z)⟩HX

. (9)

Singh et al. (2019) then suggests a two-stage least-squares estimation procedure with a sample splitting strategy,
where we use m samples for the stage 1 regression and n samples for the stage 2 regression.

1. estimate F∗ with vector-valued regression using dataset D1 ≐ {(z̃i, x̃i)}mi=1 and spectral regularization;

2. estimate h∗ through regressing Y on F∗(Z) using dataset D2 ≐ {(zi, yi)}ni=1.

Instead of using Tiknohov regularization for stage 1 as in Singh et al. (2019), below we employ a learning
procedure with general spectral algorithms for stage 1.

Stage 1. Using D1 we apply Eq. (7) to obtain the empirical estimator F̂ξ.

Stage 2. The algorithm at the population level can be written as

hλ ≐ argmin
h∈HX

EY,Z (Y − T̃ h(Z))
2 + λ∥h∥2HX

= argmin
h∈HX

EY,Z (Y − ⟨h,F∗(Z)⟩HX
)2 + λ∥h∥2HX

(10)

Empirically, we use the estimated F̂ξ from stage 1 to learn h∗ with D2

ĥλ ≐ argmin
h∈HX

1

n

n

∑
i=1

(yi − ⟨h∗, F̂ξ(zi)⟩HX
)
2
+ λ∥h∥2HX

.

Kernel NPIV admits a closed-form solution as derived in Singh et al. (2019). We provide a new version with
spectral algorithms in Appendix D.

We also introduce h̄λ, a theoretical estimator for stage 2 that would access the true CME:

h̄λ = argmin
h∈HX

1

n

n

∑
i=1

(yi − ⟨h,F∗(zi)⟩HX
)2 + λ∥h∥2HX

, (11)

Remark 4 (Spectral Algorithm). We remark that one can employ the spectral regularization for stage 2,
instead of Tikhonov regularization. However, the interplay between the qualification of the spectral regularization
with our smoothness assumptions (see Assumption SRCX below) is far from trivial. We therefore leave this
investigation for future work. A first step in that direction is obtained in Bennett et al. (2023c) where they
study how iterated Tikhonov regularization can be incorporated in a conditional moment model.
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4 Measure of Subspace Size

Our next step is to characterize the behavior of the finite sample estimator ĥλ, i.e., ∥ĥλ − h∗∥L2(X). To this
end, we first note that stage 1 in 2SLS aims at estimating the CME F∗. The CME F∗ induces a subspace of
HX . Specifically, if we introduce the following covariance operator

CF ≐ E[F∗(Z)⊗ F∗(Z)], (12)

we then have CF = T̃ ∗T̃ and R(CF ) ⊆ R(CX) since CF ⪯ CX by Jensen’s inequality2. Therefore, by
Proposition 1, h∗ ∈ N (T̃ )⊥ =R(T̃ ∗) =R(CF ) ⊆R(CX). As estimating h∗ is conducted in R(CF ), the size of
the subspace R(CF ) plays a pivotal role in the stage 2 regression learning. Intuitively, if the subspace is large
with respect to HX , we should expect a fast learning rate in stage 2. As such, we propose a novel measure of
subspace size to formalize this intuition.

Assumption 3. Define γ0, γ1 ∈ [1,+∞). We say that CF and CX satisfy the link condition, written
LINK(γ0, γ1) if:

R0∥Cγ0/2
X f∥HX

⩽ ∥C1/2
F f∥HX

, ∀f ∈R(CF ),
∥C1/2

F f∥HX
⩽ R1∥Cγ1/2

X f∥HX
, ∀f ∈HX ,

(LINK)

for some universal constants R0,R1 ⩾ 0.

Notice that, since CF ⪯ CX , we can always take γ1 = 1. However, there are some settings where it is not possible
to find γ0 < +∞, for example if CX and CF share the same eigenvectors with respective eigenvalues λX,i = i−2
and λF,i = e−i, i ⩾ 1. This specific scenario is refereed to as the “severely ill-posed” setting and is tackled for
example in (Theorem 1 Chen and Reiss, 2011). In this work, however, we only focus on the mildly ill-posed
setting.

Remark 5 (Subspace size). In kernel regression, we often use the eigenvalue decay rate of CX to describe the
size of the RKHS HX (see e.g., Steinwart et al., 2009; Fischer and Steinwart, 2020, and references therein).
The faster the decay rate, the smaller the space HX . The eigenvalue decay rate therefore determines the kernel
regression learning rate.

In our definition, the pair (γ0, γ1) characterizes the eigenvalue decay rate of CF , relative to the decay rate of
CX . When both γ0 and γ1 are large, the eigenvalue decay is fast. The pair (γ0, γ1) hence can be understood as
describing precisely the size of the subspace R(CF ). We will see in next section that the final learning rate of
kernel NPIV depends on both γ0 and γ1. Finally, since the important parameters are γ0 and γ1 in describing
the subspace size, from now on, we will without loss of generality assume that R0 = R1 = 1.

Remark 6 (Link condition in inverse problem). We point out that Assumption (LINK) is closely related to the
link condition widely used in the inverse problem literature (see e.g., Chen and Reiss, 2011; Nair et al., 2005,
and references therein). In particular, Theorem 2 in Chen and Reiss (2011) essentially makes the following link
assumption to obtain minimax optimal rate

∥C1/2
F f∥HX

=M1∥φ(CX)1/2f∥HX
, ∀f ∈HX (13)

where φ(⋅) ∶ R→ R is a function that applies pointwise to the spectrum of CX . For example, we retrieve our link
assumption if φ(x) = xγ1 and γ0 = γ1. Therefore, the link conditions used in the inverse problem is similar to
our (LINK). However, we do point out two important differences, which make our assumption less restrictive.

First, in all previous works, CF is assumed to be injective. This is because these works impose that the solution
to NPIV is unique. However, we do not have such a restriction. This is because we aim to study the convergence

2
⪯ denotes the partial order of self-adjoint operators.
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of NPIV for both the injective and non-injective case. In order to do so, we adapt the link condition to take into
account potential non-injectivity. Specifically, for the inequality involving γ0, we only require that the condition
holds for the functions f ∈R(CF ). In this way, we enable the study of the convergence for non-injective CF .

Secondly, as pointed out in Chen and Reiss (2011), there might not be a single function φ such that the equality
holds in (13). Even when CF is injective, it might be the case that we need φ1 and φ2 to upper and lower
bound ∥C1/2

F f∥HX
. This is precisely why we need the (γ0, γ1) pair to characterize the eigenspectrum of CF with

respect to CX .

The next proposition demonstrates some key properties of our proposed subspace size measure and plays a
pivotal role in deriving the kernel NPIV learning rate. The proof is postponed to Appendix B.

Proposition 2. Let PF be the orthogonal projection on R(CF ). Under Assumption (LINK) with γ0, γ1 ∈
[1,+∞), we have the following properties

a) 1 ⩽ γ1 ⩽ γ0.
b) γ0, γ1 can be equivalently characterized respectively as PFC

γ0

X PF ⪯ CF and CF ⪯ Cγ1

X .

c) γ0, γ1 can be equivalently characterized respectively as R(C1/2
F ) ⊆ R(C

γ1/2
X ) and R((PFC

γ0

X PF )
1/2) ⊆

R(C1/2
F ).

5 Minimax Optimal Learning Rates

In this section, we establish the minimax optimality of the kernel NPIV estimator for both injective and
non-injective T . Before listing our assumptions below, we first briefly introduce the interpolation space- a
concept which is often used to deal with misspecified learning. The readers are referred to Appendix A.4 for
full details.

We start with scalar-valued functions. Given β ⩾ 0 and a squared-integrable scalar-valued function f ∈ L2(Z),
the β−interpolation norm is defined as

∥f∥β ≐ ∥L
−β/2
Z f∥L2(Z).

The subset of f ∈ L2(Z) for which ∥f∥β < +∞ is denoted [HZ]β . [HX]β ⊆ L2(X) is defined similarly with LX .

Vector-valued interpolation norms and spaces introduced in Li et al. (2022a) generalize the above interpolation
space definitions to spaces of vector-valued functions. Given β ⩾ 0 and a vector-valued function F ∈ L2(Z;HX)
since L2(Z;HX) is isometric to S2(L2(Z),HX) (see e.g., Corollary 1 in Li et al., 2023), there is an operator
C ∈ S2(L2(Z),HX) such that ∥F ∥L2(Z;HX) = ∥C∥S2(L2(Z),HX). The vector-valued β−interpolation norm is then
defined as

∥F ∥β ≐ ∥C∥β ≐ ∥CL
−β/2
Z ∥S2(L2(Z),HX). (14)

The space of F ∈ L2(Z;HX) such that ∥F ∥β < +∞ is denoted [G]β . For details regarding vector-valued
interpolation spaces, we refer to Appendix A.4.

5.1 Assumptions for Stage 1

The analysis of stage 1 convergence is essentially studied in Li et al. (2022a, 2024a). We here provide the results
to ease our discussion later.
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Assumption 4 (Eigenvalue decay for stage 1). For some constants c1 > 0 and pZ ∈ (0,1] and for all i ∈ I,

µZ,i ⩽ c1i−1/pZ . (EVDZ)

Assumption 5 (Embedding into L∞ for stage 1). There exists αZ ∈ [pZ ,1] such that the inclusion map
IαZ ,∞
Z ∶ [H]αZ

Z ↪ L∞(Z) is continuous and there is a constant AZ > 0 such that,

∥IαZ ,∞
Z ∥[HZ]

αZ→L∞(Z) = AZ . (EMBZ)

Assumption 6 (Source condition for stage 1). There exists βZ ⩾ αZ and a constant BZ ⩾ 0 such that,

∥F∗∥βZ
= ∥C∗L

−
βZ
2

Z ∥S2(L2(Z),HX) ⩽ BZ , (SRCZ)

where C∗ ≐ Ψ−1(F∗) ∈ S2(L2(Z),HX) (see Remark 1 for the definition of Ψ).

(EVDZ) is a classical assumption that characterizes the size of the RKHS HZ equipped with the marginal
distribution πZ . (SRCZ) characterizes the smoothness of the target function F∗. Property (EMBZ) is referred
to as the embedding property in Fischer and Steinwart (2020). It can be shown that it holds if and only if
there exists a constant AZ ⩾ 0 with ∑i∈I µ

α
i e

2
Z,i(z) ⩽ A2

Z for π-almost all z ∈ EZ (Fischer and Steinwart, 2020,
Theorem 9). Since we assume kZ to be bounded, the embedding property always hold true with αZ = 1.
Furthermore, (EMBZ) implies a polynomial eigenvalue decay of order 1/αZ , which is why we take αZ ⩾ pZ . For
an in-depth discussion of these assumptions, we refer the reader to Li et al. (2023). Under (EVDZ), (SRCZ),
(EMBZ), Meunier et al. (2024) demonstrates that the estimator in Eq. (7) converges to F∗. The following
informal result is from Meunier et al. (2024, Theorem 4), we refer to Theorem 15 in Appendix H for the formal
statement. The L2−rate is tight as it matches the lower bound provided in Li et al. (2023). Finally, it is
important to note that the convergence with minimax rate can still be maintained in the misspecified regime,
indeed if αZ ⩽ βZ < 1, then F∗ ∉ G.

Theorem 2. Let gξ be a filter function with qualification ρ ⩾ 1 used to build the estimator F̂ξ on D1 with
Eq. (7). Let Assumptions 1, (EVDZ), (SRCZ) and (EMBZ) hold with βZ ∈ (αZ ,2ρ] and 0 < pZ ⩽ αZ ⩽ 1.
Taking ξm = Θ (m−

1
βZ+pZ ), there are constants J, J ′ > 0 such that with high probability,

∥F̂ξ − F∗∥
2

L2(Z,HX)
⩽ Jm−

βZ
βZ+pZ & ∥F̂ξ − F∗∥

2

L∞(Z,HX)
⩽ J ′m−

βZ−αZ
βZ+pZ .

We draw a comparison between Theorem 2 and the stage 1 rate achieved in Singh et al. (2019) in the context
of Tikhonov regularization. Theorem 2 is more general in the following ways. First, instead of assuming
well-specified setting in Singh et al. (2019), Theorem 2 allows for a more general misspecified setting where
F∗ ∉ G. Secondly, obtained rates in Singh et al. (2019) are in RKHS norm (∥ ⋅ ∥G) only. Finally, learning rates
in Singh et al. (2019) is slow in the sense that they did not consider the eigenvalue decay of the operator CZ

(which corresponds to setting pZ = 1 in (EVDZ)).

5.2 Assumptions for Stage 2

Assumption 7 (Eigenvalue decay for stage 2). For some constants c2 > 0 and pX ∈ (0,1] and for all i ∈ I,

µX,i ⩽ c2i−1/pX . (EVDX)

Assumption 8 (Source condition for stage 2). There exists βX ⩾ 1 and a constant BX ⩾ 0 such that

∥h∗∥βX
= ∥L−

βX
2

X h∗∥
L2(X)

⩽ BX . (SRCX)
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Assumption 9 (MOM). There are constants σ,L > 0 such that

E [∣Y −E[h∗(X) ∣ Z]∣m ∣ Z] ⩽
1

2
m!σ2Lm−2. (MOM)

(EVDX) and (SRCX) plays the same role as for stage 1, the former charaterizes the size of the space HX

equipped with the marginal distribution πX while the latter characterizes the smoothness of the target funciton

h∗. Note that (SRCX) can be equivalently stated as ∥C−
βX−1

2

X h∗∥
HX

⩽ BX . Finally, the (MOM) condition on

the conditional distribution is a Bernstein moment condition used to control the noise of the observations (see
Caponnetto and De Vito, 2007; Fischer and Steinwart, 2020 for more details).

Remark 7 (Misspecified Setting). Our (SRCX) requires βX ⩾ 1, corresponding to the well-specified case, e.g.,
h∗ ∈ HX . We conjecture that convergence of ĥλ to h∗ is still achievable in the mis-specified setting where
h∗ ∉HX . However, a rigorous theoretical investigation is left as future work.

Under these assumptions, our next theorem provides an upper bound on the learning risk ∥ĥλ − h∗∥L2(X). The
proof is in Appendix E.

Theorem 3. Let Assumptions 1, 2, (EVDX), (SRCX), (MOM) and (LINK) hold with pX ∈ (0,1] and
1 ⩽ βX ⩽ γ0 + 1 and let Assumptions (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . For any τ ⩾ 1, λ > 0 and
sufficiently large m and n, with Pn-probability over 1 − 12e−τ

∥ĥλ − h∗∥L2(X) ⩽ J0λ
1−cF
2γ0

−1 ⎛
⎝
∥F∗ − F̂ξ∥L2(Z;HX)

+
∥F̂ξ − F∗∥αZ√

n

⎞
⎠
(∥h̄λ∥HX

+ 1)

+J1 (λ
βX
2γ0 +

√
1 + 1

nλ
1−

pX
γ1

√
1

nλ
1− 1

γ0
+

pX
γ1

)

where J0, J1 only depend on σ,L,AZ ,BZ , κZ , αZ , βZ , pX , κX ,BX , and cF ≐ 1N (CF )≠{0}.

Theorem 3 provides a detailed upper bound of ∥ĥλ − h∗∥L2(X). While the first term on the r.h.s corresponds to
the generalization error in stage 1, the second term is due to stage 2. The mathematical statement hidden
behind “for sufficiently large m and n is provided in Appendix E, Theorem 6. We provide specific learning
rates depending on the ratio of stage 1 and 2 samples in the next corollary.

Corollary 1. Let the assumptions of Theorem 3 hold together with Assumption (EVDZ). Let a > 0 control
the trade-off between stage 1 and stage 2 samples: m = na. Let ξm = Θ (m−

1
βZ+pZ ). We consider two different

scenarios.

Case A. αZ(βX − 1 + 2γ0 + cF ) ⩽ βZ(βX − 1 + γ0 + γ0

γ1
pX).

• a ⩾ βZ+pZ

βZ

βX−1+2γ0+cF
βX−1+γ0+

γ0
γ1

pX
, λ = Θ(n

−
γ0

βX−1+γ0+
γ0
γ1

pX ), ∥ĥλ − h∥2L2(X)
= OP

⎛
⎝
n
−

βX

βX−1+γ0+
γ0
γ1

pX
⎞
⎠
.

• a ⩽ βZ+pZ

βZ

βX−1+2γ0+cF
βX−1+γ0+

γ0
γ1

pX
, λ = Θ(n−a⋅

βZ
βZ+pZ

⋅
2γ0

βX−1+2γ0+cF ), ∥ĥλ − h∥2L2(X)
= OP (n−a⋅

βZ
βZ+pZ

⋅
βX

βX−1+2γ0+cF ) .

Case B. αZ(βX − 1 + 2γ0 + cF ) ⩾ βZ(βX − 1 + γ0 + γ0

γ1
pX)
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• a ⩾ βZ+pZ

βZ−αZ

γ0(1−
pX
γ1
)+cF

βX−1+γ0+
γ0
γ1

pX
, λ = Θ(n

−
γ0

βX−1+γ0+
γ0
γ1

pX ), ∥ĥλ − h∥2L2(X)
= OP

⎛
⎝
n
−

βX

βX−1+γ0+
γ0
γ1

pX
⎞
⎠
.

• βZ+pZ

αZ
⩽ a ⩽ βZ+pZ

βZ−αZ

γ0(1−
pX
γ1
)+cF

βX−1+γ0+
γ0
γ1

pX
, λ = Θ(n−

a(βZ−αZ )+1+pz
2βZ+pZ

⋅
2γ0

βX−1+2γ0+cF ),

∥ĥλ − h∥2L2(X)
= OP (n−

a(βZ−αZ )+1+pz
2βZ+pZ

⋅
βX

βX−1+2γ0+cF ) .

• a ⩽ βZ+pZ

βZ

βX−1+2γ0+cF
βX−1+γ0+

γ0
γ1

pX
, λ = Θ(n−a⋅

βZ
βZ+pZ

⋅
2γ0

βX−1+2γ0+cF ), ∥ĥλ − h∥2L2(X)
= OP (n−a⋅

βZ
βZ+pZ

⋅
βX

βX−1+2γ0+cF ).

Corollary 1 demonstrates that by choosing optimal regularization parameters and given enough stage 1 data,

kernel NPIV achieves OP (n
−

βX

βX−1+γ0+
γ0
γ1

pX ) learning rate. This learning rate recovers the classical minimax

optimal learning rate for kernel ridge regression: OP (n−
βX

βX+pX ), when γ0 = 1 (since γ0 ⩾ γ1 ⩾ 1). However, for
general γ0, we can see that the learning rate of kernel NPIV is slower than that of kernel regression. Our
minimax lower bound below affirms that kernel NPIV achieves a strictly worse rate than kernel ridge regression.
Before we state the minimax lower bound, we introduce the following additional assumption

Assumption 10. For some constants c2, c3 > 0 and pX ∈ (0,1] and for all i ∈ I,

c3i
−1/pX ⩽ µX,i ⩽ c2i−1/pX (EVDX+)

The above assumption is needed so that we can have a precise description of the hypothesis space HX .

Theorem 4. Let kX be a kernel on EX such that Assumption 1 hold and πX be a probability distribution on
EX such that (EVDX+) holds with 0 < pX ⩽ 1. Then for all parameters 1 ⩽ βX and all constants σ,L,BX ⩾ 0,
there exist constants J0, J, θ > 0 such that for all learning methods D → ĥD (D ≐ {(xi, zi, yi)}ni=1), all τ > 0,
and all sufficiently large n ⩾ 1 there is a distribution over variables (X,Z,Y ) inducing a model of the form of
Eq. (1), used to sample D, with marginal distribution π on EX , such that (SRCX) with respect to BX , βX and
(MOM) with respect to σ,L are satisfied, and with Pn-probability not less than 1 − J0τ1/θ,

∥ĥD − h∗∥
2

L2(X)
⩾ τ2Jn−

βX
βX+γ1−1+pX .

Remark 8 (Minimax Optimal). Theorem 4 states that under standard kernel learning assumptions, no learning

method can achieve a learning rate better than n
−

βX
βX+γ1−1+pX . In particular, we can see that when γ0 = γ1, we

obtain mimimax optimal learning rate for kernel NPIV

n
−

βX
βX+γ1−1+pX .

To our knowledge, this is the first minimax optimal rate obtained for kernel two-stage regression in the context
of instrumental variable regression.

Beyond kernel methods, previous works such as Chen and Reiss (2011); Hall and Horowitz (2005); Hoffmann
and Reiss (2008) have achieved similar minimax optimal rates in the NPIV setting. Our approach is significantly
less restrictive for the following two reasons however. First, while Chen and Reiss (2011); Hall and Horowitz
(2005); Hoffmann and Reiss (2008) require the operator T to be injective, we are the first to establish that
kernel NPIV methods achieve minimax optimal rate under both injective and non-injective T . Moreover,
previous works often impose stringent conditions on the density of πZ and the conditional density p(x ∣ z).
For instance, Chen and Reiss (2011) assume that πZ is continuous, bounded away from zero, and that the
eigenvalues of CF are bounded and not vanishing. In contrast, our method imposes no assumptions on these
density functions, and the eigenvalue of CF is only controlled by in terms of (γ0, γ1) and CX , which allows the
vanishing case.
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6 Conclusion

In conclusion, we provide a comprehensive theoretical analysis of the kernel nonparametric instrumental
variables (NPIV) regression method. Our key contributions include relaxing the injectivity assumption of the
operator T by introducing the minimum Reproducing Kernel Hilbert Space (RKHS) norm solution, which
ensures that the kernel NPIV algorithm converges to the minimum norm solution even when T is not injective.

We also introduce a novel measure of subspace size, characterized by the parameters γ0 and γ1, which plays
a crucial role in determining the learning rate of the kernel NPIV estimator. These parameters describe the
eigenvalue decay rate of the covariance operators defined through conditional mean embedding, which in turn
influence the efficiency of the learning process. Finally our theoretical results demonstrate that the proposed
kernel NPIV method achieves a minimax optimal learning rate under standard assumptions.

Our study highlights the limitations and potential inefficiencies of the kernel NPIV method compared to kernel
ridge regression. Our findings suggest that the inefficiency is proportional to the subspace size measure defined
by the (γ0, γ1) pair, indicating that a data adaptive methods for Stage 1 learning such as deep neural network
based algorithms (Xu et al., 2020) could potentially lead to improved learning rates.
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Appendices

In Section A, we provide additional background material. In Section B, we provide the proof of Proposition 1.
In Section C, we provide the proof of Proposition 2. In Section D, we provide a closed-form expression for
the Kernel NPIV estimator ĥλ. In Section E, we provide a proof sketch (Section E.1) followed by the detailed
proof (Section E.2) for the upper bound presented in Theorem 3. In Section F, we prove the lower bound given
in Theorem 4. In Section G, we provide additional bounds used in the main proofs. Finally, in Section H, we
collect some technical supporting results.

A Additional Background

A.1 Hilbert spaces and linear operators

Definition 3 (Bochner Lq−spaces, e.g. Diestel and Uhl (1977)). Let H be a separable Hilbert space. For
1 ⩽ q ⩽ ∞, Lq(EZ ,FEZ

, πZ ;H), abbreviated Lq(Z;H), is the space of strongly FEZ
− FH measurable and

Bochner q-integrable functions from EZ to H, with the norms

∥F ∥q
Lq(Z;H)

= ∫
EZ

∥F ∥qH dπZ , 1 ⩽ q <∞, ∥F ∥L∞(Z;H) = inf {C ⩾ 0 ∶ πZ{∥F ∥H > C} = 0} .

Definition 4 (q-Schatten class, e.g. Weidmann (1980)). Let H,H ′ be separable Hilbert spaces. For 1 ⩽ q ⩽∞,
Sq(H,H ′), abbreviated Sq(H) if H =H ′, is the Banach space of all compact operators Q from H to H ′ such
that ∥Q∥Sq(H,H′) ≐ ∥(σi(Q))i∈I∥ℓq is finite. Here ∥ (σi(Q))i∈I ∥ℓq is the ℓq−sequence space norm of the sequence
of the strictly positive singular values of Q indexed by the at most countable set I. For q = 2, we retrieve the
space of Hilbert-Schmidt operators, for q = 1 we retrieve the space of Trace Class operators, and for q = +∞,
∥ ⋅ ∥S∞(H,H′) corresponds to the operator norm ∥ ⋅ ∥H→H′ .

Definition 5 (Tensor Product of Hilbert Spaces, Aubin (2000)). Let H,H ′ be Hilbert spaces. The Hilbert
space H ⊗H ′ is the completion of the algebraic tensor product with respect to the norm induced by the inner
product ⟨x1 ⊗ x′1, x2 ⊗ x′2⟩H⊗H′ = ⟨x1, x2⟩H⟨x′1, x′2⟩H′ for x1, x2 ∈ H and x′1, x

′
2 ∈ H ′ defined on the elementary

tensors of H ⊗H ′. This definition extends to span{x ⊗ x′∣x ∈ H,x′ ∈ H ′} and finally to its completion. The
space H ⊗H ′ is separable whenever both H and H ′ are separable. If {ei}i∈I and {e′j}j∈J are orthonormal basis
in H and H ′ respectively, {ei ⊗ e′j}i∈I,j∈J is an orthonormal basis in H ⊗H ′.

Theorem 5 (Isometric Isomorphism between L2(Z;H) and S2(L2(Z),H), Theorem 12.6.1 Aubin (2000)). Let
H be a separable Hilbert space. The Bochner space L2(Z;H) is isometrically isomorphic to S2(L2(Z),H) and
the isometric isomorphism is realized by the map Ψ ∶ S2(L2(Z),H)→ L2(Z;H) acting on elementary tensors
as Ψ(f ⊗ h) = (ω → f(ω)h).

A.2 RKHS embedding into L2

Recall that IZ ∶ HZ → L2(Z) is the embedding that maps every function in HZ into its πZ-equivalence
class in L2(Z) and that we used the shorthand notation [f]Z = IZ(f) for all f ∈ HZ . We define similarly
IZ;X ∶ G → L2(Z;HX) as the embedding that maps every function in G into their πZ-equivalence class in
L2(Z;HX).
Definition 6 (Embedding G into L2(Z;HX)). Let IZ;X ≐ IdHX

⊗IZ be the tensor product of the operator IdHX

with the operator IZ (see Aubin (2000, Definition 12.4.1.) for the definition of tensor product of operators).
IZ;X maps every function in G into their πZ-equivalence class in L2(Z;HX). We then use the shorthand
notation [F ]Z;X = IZ;X(F ) for all F ∈ G.
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A.3 Spectral regularization

1. Ridge regression. From the Tikhonov filter function gξ(x) = (x + ξ)−1, we obtain the ridge regression
algorithm introduced in Eq. (5). In this case, we have E = ρ = ωρ = 1.

2. Gradient Descent. From the Landweber iteration filter function given by

gk(x) ≐ τ
k−1

∑
i=0

(1 − τx)i for k ≐ 1/ξ, k ∈ N

we obtain the gradient descent scheme with constant step size τ > 0, which corresponds to the population
gradient iteration given by Fk+1 ≐ Fk − τ

2
∇F (EX,Z ∥ϕX(X) − F (Z)∥2HX

) (Fk) for k ∈ N. In this case, we have
E = 1 and arbitrary qualification with ωρ = 1 whenever 0 < ρ ⩽ 1 and ωρ = ρρ otherwise. Gradient schemes with
more complex update rules can be expressed in terms of filter functions as well (Mücke et al., 2019; Lin and
Cevher, 2018; Lin et al., 2020).

3. Kernel principal component regression. The truncation filter function gξ(x) = x−11[x ⩾ ξ] yields kernel
principal component regression, corresponding to a hard thresholding of eigenvalues at a truncation level ξ. In
this case we have E = ωρ = 1 for arbitrary qualification ρ.

4. Iterated Tikhonov. Mixture between Landweber iteration and Tikhonov regularization. Unlike Tikhonov
regularization which has finite qualification and cannot exploit the regularity of the solution beyond a certain
regularity level, iterated Tikhonov overcomes this problem by means of the following regularization: gξ,ν(x) =
(x+ξ)ν−ξν

x(x+ξ)ν
with ν > 0. In this case we have E = ωρ = 1 and ρ = ν. For ν = 1, we retrieve the standard Tikhonov

regularization and for ν ∈ N we can show that applying gξ,ν corresponds to the following iterative procedure:

gξ,1 = (x + ξ)−1

gξ,k = (1 + ξgξ,k−1)gξ,1.

5. Gradient Flow. If we fix the total distance in the Landweber iteration to ξ−1 ∶= τk and take τ → 0+, we
obtain the gradient flow filter function gξ(x) = (1 − e−

x
ξ )x−1. In this case we have E = 1 and ωρ = (τ/e)τ for

arbitrary qualification ρ.

A.4 Interpolation spaces

The interpolation spaces [HZ]β , [HX]β and [G]β introduced previously correspond to the Hilbert scale generated
by the operator LZ , LX and IdHX

⊗LZ respectively (see e.g. Steinwart and Scovel (2012) and Fischer and
Steinwart (2020)). We know give more details on their construction.

For β ⩾ 0, we define the β-interpolation space (Steinwart and Scovel, 2012) by

[HZ]β ≐ {∑
i∈I

aiµ
β/2
Z,i [eZ,i]Z ∶ (ai)i∈I ∈ ℓ2} ⊆ L2(Z),

equipped with the inner product

⟨∑
i∈I

ai(µβ/2
Z,i [eZ,i]Z),∑

i∈I

bi(µβ/2
Z,i [eZ,i]Z)⟩

β

=∑
i∈I

aibi.

The β-interpolation space is a separable Hilbert space with ONB (µβ/2
Z,i [eZ,i]Z)

i∈I
. For β = 0, we have

[HZ]0 =R(IZ) ⊆ L2(Z) with ∥ ⋅ ∥0 = ∥ ⋅ ∥L2(Z). For β = 1, we have [HZ]1 =R(IZ) and [HZ]1 is isometrically
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isomorphic to the closed subspace (N (IZ))⊥ of HZ via IZ , i.e. ∥[f]Z∥1 = ∥f∥HZ
for f ∈ (N (IZ))⊥. For

0 < β < α, we have

[HZ]α ↪ [HZ]β ↪ [HZ]0 ⊆ L2(Z).

For β > 0 and f ∈R(IZ), the β-interpolation space is given by the image of the fractional integral operator,

[HZ]β =R(Lβ/2
Z ) and ∥f∥β = ∥L

−β/2
Z f∥L2(Z).

For a vector-valued function F ∈ L2(Z;HX) since L2(Z;HX) is isometric to S2(L2(Z),HX), there is an
operator C ∈ S2(L2(Z),HX) such that ∥F ∥L2(Z;HX) = ∥C∥S2(L2(Z),HX). For C ∈ S2(R(IZ),HX), we define
the vector-valued β−interpolation norm as

∥F ∥β ≐ ∥C∥β ≐ ∥CL
−β/2
Z ∥S2(L2(Z),HX).

For details regarding vector-valued interpolation spaces, we refer to Li et al. (2022a, 2023).

Remark 9. The interpolation space [HX]β is defined similarly to [HZ]β.

B Proof of Proposition 1

By Assumption 2, Nr0(T̃ ) ⊆HX is not empty. Fix h an element of Nr0(T̃ ). Since HX = N (T̃ )⊕N (T̃ )⊥ there
exists a unique pair (h′, h′′) ∈ N (T̃ )⊥ ×N (T̃ ) such that h = h′ +h′′. Since h ∈ Nr0(T̃ ) and h′′ ∈ N (T̃ ), we have:

r0 = T̃ h = T̃ h′ + T̃ h′′ = T̃ h′.

Therefore h′ ∈ Nr0(T̃ ). Furthermore, ∥h∥2HX
= ∥h′∥2HX

+ ∥h′′∥2HX
⩾ ∥h′∥HX

. This proves that the minimum
norm solution in HX exists and is uniquely defined as h′ and belongs to N (T̃ )⊥ ∩Nr0(T̃ ). To conclude, we
show that N (T̃ )⊥ ∩Nr0(T̃ ) only contains one element. Assume that there exists h, h̃ ∈ N (T̃ )⊥ ∩Nr0(T̃ ), then
T̃ (h − h̃) = r0 − r0 = 0, therefore h − h̃ ∈ N (T̃ ). But since we also have h − h̃ ∈ N (T̃ )⊥, it implies h = h̃.

C Proof of Proposition 2

Proposition 3. Let PF be the orthogonal projection on R(CF ). Under Assumption (LINK) with γ0, γ1 ∈
[1,+∞), we have the following properties

a). 1 ⩽ γ1 ⩽ γ0.
b). γ0, γ1 can be equivalently characterized respectively as PFC

γ0

X PF ⪯ CF and CF ⪯ Cγ1

X .

c). γ0, γ1 can be equivalently characterized respectively as R(C1/2
F ) ⊆ R(C

γ1/2
X ) and R((PFC

γ0

X PF )
1/2) ⊆

R(C1/2
F ).

d). For any τ ∈ [0,1], we have PFC
τγ0

X PF ⪯ Cτ
F ⪯ C

τγ1

X .

Proof. For Part a), by (LINK), for all f ∈R(CF ), ⟨f,Cγ0

X f⟩HX
⩽ ⟨f,Cγ1

X f⟩HX
. Let us reason by contradiction

and assume that we have γ1 > γ0, we can then find f ∈ R(CF ) such that ⟨f,Cγ1

X f⟩HX
< ⟨f,Cγ0

X f⟩HX
which

yields a contradiction. We hence have γ1 ⩽ γ0.
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Part b) is obtained directly by definition of γ0 and PF .

To prove c), we apply Proposition 6.

Part d). Note that γ1 is characterized by CF ⪯ Cγ1

X . Therefore, the second inequality is obtained using the fact
that the map x↦ xτ is operator monotone for τ ∈ [0,1] (Löwner-Heniz theorem Heinz (1951)).

For the first inequality, since by part b), γ0 is characterized by PFC
γ0

X PF ⪯ CF , using again the Löwner-Heniz
theorem (Heinz, 1951), we obtain that ∀f ∈HX and any τ ∈ (0,1),

⟨f, (PFC
γ0

X PF )
τ
f⟩HX

⩽ ⟨f,Cτ
F f⟩HX

.

Choosing f = PF g for any g ∈HX , we then have

⟨PF g, (PFC
γ0

X PF )
τ
PF g⟩HX

⩽ ⟨PF g,C
τ
FPF g⟩HX

. (15)

This proves that PF (PFC
γ0

X PF )
τ
PF ⪯ PFC

τ
FPF . Furthermore, by Jensen’s Operator Inequality (Theorem 2.1

Hansen and Pedersen (2003)), for any operator concave function h, every self-adjoint operator A with spectrum
in I and every λ in I, we have

Ph(PAP + λ(1 − P ))P ⩾ Ph(A)P.
We apply this result to λ = 0, A = Cγ0

X and h(x) = xτ , which is operator concave for τ ∈ [0,1] (Example 3.6 i
Chansangiam (2013), Bhatia (2013)). Applying this to Eq. (15), we obtain

PF (Cγ0

X )
τ
PF ⪯ PF (PFC

γ0

X PF )
τ
PF ⪯ PFC

τ
FPF = Cτ

F .

D Explicit Solutions of Kernel NPIV

The closed-form solution for kernel NPIV is already studied in (Algorithm 1 Singh et al., 2019). However, they
employ the Tikhonov regularization for both stages. We here provide the closed-form solution where we allow
general regularization scheme for stage 1. Stage 2, on the other hand, remains with Tikhonov regularization.

Stage 1. Recall that in Stage 1, we obtain the following estimator with D1 and ξ > 0 (see Eq. (7) and the
definition of G): F̂ξ(⋅) = ĈX ∣Z,ξϕZ(⋅), with

ĈX ∣Z,ξ =
1

m
ΦT

X̃
ΦZ̃gξ (

1

m
ΦT

Z̃
ΦZ̃) , (16)

with

ΦZ̃ ∶HZ → Rm ΦZ̃ = [ϕZ(z̃1), . . . , ϕZ(z̃m)]∗

ΦX̃ ∶HX → Rm ΦX̃ = [ϕX(x̃1), . . . , ϕX(x̃m)]∗

The solution can also be written in the following dual form (see Meunier et al. (2024)):

ĈX ∣Z,ξ =
1

m
ΦT

X̃
gξ (

KZ̃Z̃

m
)ΦZ̃ ,

where we introduce the Gram matrix

KZ̃Z̃ =ΦZ̃Φ
T
Z̃
, [KZ̃Z̃]ij = ⟨ϕZ(z̃i), ϕZ(z̃j)⟩HZ

i, j ∈ [m].
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Stage 2. Recall from Eq. (21) that

ĥλ = (
1

n
ΦT

F̂
ΦF̂ + λ Id)

−1 1

n
ΦT

F̂
Y = (ĈF̂ + λ Id)

−1 1

n
ΦT

F̂
Y,

which we can write in dual form as follows:

ĥλ =ΦT
F̂
[F + nλ Id]−1 Y, Y = [y1, . . . , yn]T ∈ Rn

Fij = [ΦF̂Φ
T
F̂
]ij = ⟨F̂ξ(zi), F̂ξ(zj)⟩HX

i, j ∈ [n]

By Eq. (16) and using F̂ξ(⋅) = ĈX ∣Z,ξϕZ(⋅), we obtain, F and ΦT
F̂

in closed form:

F =KZ̃Z̃ [KZ̃Z̃ +mξ Id]−1KX̃X̃ [KZ̃Z̃ +mξ Id]−1KZ̃Z̃

ΦT
F̂
=KZ̃Z̃ [KZ̃Z̃ +mξ Id]−1ΦX̃

KX̃X̃ =ΦX̃ΦT
X̃
, [KX̃X̃]ij = ⟨ϕX̃(x̃i), ϕX̃(x̃j)⟩HX

i, j ∈ [n]

Therefore, introducing J ≐KZ̃Z̃ [KZ̃Z̃ +mξ Id]−1, for a new test point x ∈ EX , we have,

ĥλ(x) = ⟨ĥλ, ϕX(x)⟩HX
= Y T [JKX̃X̃J + nλ Id]−1ΦF̂ϕX(x),

with
ΦF̂ϕX(x) = (⟨F̂ξ(zi), ϕX(x)⟩HX

)ni=1 = JΦX̃ϕX(x), ΦX̃ϕX(x) = (kX(x̃i, x))ni=1.

E Proof of Theorem 3

In this section we prove Theorem 3, which we give in full detail in Theorem 6 below. We prove a more general
version by bounding the error ĥλ−h∗ in γ−norm (γ ∈ [0, 1]), see Section 5.1. For γ = 0, we retrieve the L2−norm
and for γ = 1 we retrieve the HX−norm.

Theorem 6. For τ ⩾ 1 and λ > 0, we define

NF (λ) ≐ Tr (CF (CF + λ IdHX
)−1)

gλ ≐ log(2eNF (λ)
∥CF ∥HX→HX

+ λ
∥CF ∥HX→HX

)

Aλ,τ ≐ 8τgλκ2
Xλ−1,

(17)

Let Assumptions 1, 2, (EVDX), (SRCX), (MOM) and (LINK) hold with pX ∈ (0,1] and 1 ⩽ βX ⩽ γ0 + 1 and
let Assumptions (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . For sufficiently large m and n such that

n ⩾ 8τgλκ2
Xλ−1

J
√
τ∥F∗ − F̂ξ∥αZ

λ
√
n

⩽ 1

12
,

J∥F∗ − F̂ξ∥L2(Z;HX)

λ
⩽ 1

12
,

∥F∗ − F̂ξ∥L2(Z;HX) ⩽ 1 ∥F∗ − F̂ξ∥αZ
⩽ 1,

(18)
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where J depends on AZ ,BZ , κZ , αZ , βZ is given in , with Pn-probability over 1 − 12e−τ

∥ĥλ − h∗∥γ ⩽ J0τλωγ−1
⎛
⎝
∥F∗ − F̂ξ∥L2(Z;HX)

+
∥F̂ξ − F∗∥αZ√

n

⎞
⎠
(∥h̄λ∥HX

+ 1)

+J1
⎛
⎝
λ

βX−γ

2γ0 + τ
√

1 + 1

nλ
1−

pX
γ1

¿
ÁÁÀ 1

nλ
1− 1−γ

γ0
+

pX
γ1

⎞
⎠

where J0, J1 only depend on σ,L,AZ ,BZ , κZ , αZ , βZ , pX , κX ,BX and ωγ ≐ 1−γ
2γ0

1N (CF ) = {0}.

E.1 Analysis Outline

Fix γ ∈ [0,1]. The starting point is the following decomposition:

∥ĥλ − h∗∥γ = ∥ĥλ − h̄λ + h̄λ − h∗∥γ
⩽ ∥ĥλ − h̄λ∥γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Stage 1 Error

+ ∥h̄λ − h∗∥γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Stage 2 Error

.

The stage 1 error measures the loss of performance in using features F̂ξ instead of F∗. This quantity will
be bounded by a function of m (the number of samples for stage 1), via the difference F̂ξ − F∗, and n (the
number of samples for stage 2). On the other hand, stage 2 error only depends on n and measures how well we
approximate h∗ by regressing Y on F∗(Z).

E.1.1 Stage 1 Error

We start with the observation that we always have

∥ĥλ − h̄λ∥γ ⩽ ∥C
1−γ
2

X (ĥλ − h̄λ)∥HX
⩽ κ1−γ

X ∥ĥλ − h̄λ∥HX
⩽ λ−1/2κ1−γ

X ∥(CF + λ Id)1/2 (ĥλ − h̄λ) ∥HX
, (19)

where we used ∥CX∥HX→HX
⩽ κ2

X and Fischer and Steinwart (2020, Lemma 12). Alternatively, we would like
to use the Assumption (LINK), however, we generally cannot ensure that ĥλ ∈R(CF ) except if R(CF ) =HX ,
i.e. N (CF ) = {0}. In that case, we are guaranteed that ĥλ ∈ R(CF ) and by Assumption (LINK) combined
with Proposition 3 d), we have,

∥ĥλ − h̄λ∥γ = ∥C
1−γ
2

X (ĥλ − h̄λ)∥HX
⩽ ∥C

1−γ
2γ0

F (ĥλ − h̄λ)∥HX
⩽ λ

1−γ
2γ0
− 1

2 ∥(CF + λ Id)1/2 (ĥλ − h̄λ) ∥HX
, (20)

where we used Lemma 4 to obtain ∥C
1−γ
2γ0

F (CF + λ Id)−1/2∥HX→HX
⩽ λ

1−γ
2γ0
− 1

2 . To go further, we use that ĥλ, h̄λ,
admit the following closed-form expressions:

ĥλ = (
1

n
Φ∗

F̂
ΦF̂ + λ Id)

−1 1

n
Φ∗

F̂
Y = (ĈF̂ + λ Id)

−1 1

n
Φ∗

F̂
Y (21)

h̄λ = (
1

n
Φ∗FΦF + λ Id)

−1 1

n
Φ∗FY = (ĈF + λ Id)

−1 1

n
Φ∗FY, (22)

where,

ΦF̂ ∶HX → Rn ΦF̂ = [F̂ξ(z1), . . . , F̂ξ(zn)]∗

ΦF ∶HX → Rn ΦF = [F∗(z1), . . . , F∗(zn)]∗,
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and,

ĈF̂ =
1

n
Φ∗

F̂
ΦF̂ =

1

n

n

∑
i=1

F̂ξ(zi)⊗ F̂ξ(zi) ĈF =
1

n
Φ∗FΦF =

1

n

n

∑
i=1

F∗(zi)⊗ F∗(zi).

Let us define cλ,γ ≐ κ1−γ
X λ−1/21N (CF )≠{0} + λ

1−γ
2γ0
− 1

2 1N (CF )={0}. We therefore have, combining Eq. (19), Eq. (20),
Eq. (21) and Eq. (22),

∥ĥλ − h̄λ∥γ ⩽ cλ,γ ∥(CF + λ Id)1/2 ((ĈF̂ + λ Id)
−1 1

n
Φ∗

F̂
Y − (ĈF + λ Id)

−1 1

n
Φ∗FY )∥

HX

⩽ cλ,γ (S−1 + S0) ,

where,

S−1 ≐ ∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1 ( 1

n
Φ∗

F̂
Y − 1

n
Φ∗FY )∥

HX

(23)

S0 ≐ ∥(CF + λ Id)1/2 ((ĈF̂ + λ Id)
−1 1

n
Φ∗FY − (ĈF + λ Id)

−1 1

n
Φ∗FY )∥

HX

. (24)

S−1 and S0 are bounded respectively in Theorem 11 and Theorem 12. Putting them together, we obtain the
following bound for the stage 1 error.

Theorem 7. Let Assumptions 1, (MOM), (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . Let γ ∈ [0,1]. For
sufficiently large m and n such that Eq. (18) hold, we have with Pn-probability over 1 − 8e−τ , for some τ ⩾ 1,

∥ĥλ − h̄λ∥γ ⩽ c0τλωγ−1
⎛
⎝
∥F∗ − F̂ξ∥L2(Z;HX)

+
∥F̂ξ − F∗∥αZ√

n

⎞
⎠
(∥h̄λ∥HX

+ 1) ,

with ωγ ≐ 1−γ
2γ0

1N (CF ) = {0} and c0 depending on σ,L,AZ ,BZ , κZ , αZ and βZ .

Therefore, we have upper bounded the stage 1 error by the error F̂ξ − F∗. This error has been thoroughly
investigated in Meunier et al. (2024) and we can directly plug-in their results (see Theorem 15).

E.1.2 Stage 2 Error

To analyze the stage 2 error, we assume a known conditional distribution for X ∣ Z (or equivalently a known
F∗ or T ). Recall that the NPIV model is given by

Y = h∗(X) +U, E[U ∣Z] = 0. (NPIV)

As T is known, we can reformulate (NPIV) to obtain the nonparametric indirect regression (NPIR)
model (Chen and Reiss, 2011),

Y = T h∗(Z) + ξ, E[ξ∣Z] = 0, (NPIR)

where ξ ≐ h∗(X) − T h∗(Z) +U . (NPIR) was first used by Chen and Reiss (2011) to obtain a lower bound for
(NPIV). In this section, we use (NPIR) to study the stage 2 error in a straightforward manner. (NPIR) is a
typical inverse statistical learning problem , where we observe the image of a function through a known
linear operator (here T ) at i.i.d. random design points, superposed with an additive noise (see Loustau (2013)
and references therein). When restricted to the class of functions HX for h∗ (and under Assumption 2), using
the reproducing property, Eq. (NPIR) reduces to

Y = ⟨h∗, F∗(Z)⟩HX
+ ξ, E(ξ∣Z) = 0.
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In this context of learning with RKHSs it was obtained in Blanchard and Mücke (2018) that the inverse
statistical learning problem can be converted to a “standard” statistical learning problem by defining a new
RKHS HF . This will then allow us to apply standard kernel ridge regression results, for example Fischer and
Steinwart (2020), to bound the stage 2 error.

To give the reader some insights on how the new RKHS is constructed, we first recall that the ideal estimator
for stage 2 (i.e. the estimator built knowing the true CME F∗) is (see Eq. (11))

h̄λ = argmin
h∈HX

1

n

n

∑
i=1

(yi − ⟨h,F∗(zi)⟩HX
)2 + λ∥h∥2HX

.

While the above looks like a kernel ridge regression problem with kernel kF (z, z′) = ⟨F∗(z), F∗(z′)⟩HX
, the

crucial difference here is that HX is not the RKHS generated by kF . In order to apply standard kernel ridge
regression results, we need to find the corresponding RKHS. To this end, consider the operator V ∶ HX →
RZ , h↦ (z ↦ ⟨h,F∗(z)⟩HX

) and the subset of RZ

HF ≐ {f ∶ Z → R ∣ ∃h ∈HX with f(z) = ⟨h,F∗(z)⟩HX
for all z ∈ Z} =R(V ),

The objective for stage 2 can be re-written as

argmin
h∈HX

1

n

n

∑
i=1

(yi − ⟨h,F∗(zi)⟩HX
)2 + λ∥h∥2HX

⇔ argmin
h∈HX

1

n

n

∑
i=1

(yi − V h(zi))2 + λ∥h∥2HX
.

By making the change of variable r = V h, we obtain the following minimization objective

r̄λ = argmin
r∈HF

1

n

n

∑
i=1

(yi − r(zi))2 + λ∥V †r∥2HX
, (25)

where r̄λ = V h̄λ and V † denotes the pseudo-inverse. Introducing the norm

∥r∥HF
≐ ∥V †r∥HX

= inf {∥h∥HX
∶ h ∈HX with r = V h} ,

we obtain that Eq. (25) can be written as

r̄λ = argmin
r∈HF

1

n

n

∑
i=1

(yi − r(zi))2 + λ∥r∥2HF
, (26)

which now looks like a standard kernel ridge regression objective. To verify this, we need to show that HF is
indeed a RKHS. Fortunately, this was studied by Steinwart and Christmann (2008) (see also Blanchard and
Mücke (2018) where this result is applied to inverse regression) and we recall the result in our own notations
for completeness.

Theorem 8 (Theorem 4.21 Steinwart and Christmann (2008)). HF endowed with the norm ∥ ⋅ ∥HF
is the

unique RKHS associated to the kernel kF . Furthermore, the operator V is a partial isometry from HX to HF ,
i.e. an isometry on the orthogonal of its kernel: for all h,h′ ∈ N (V )⊥, ⟨h,h′⟩HX

= ⟨V h,V h′⟩HF
or equivalently

for all r, r′ ∈HF , ⟨r, r′⟩HF
= ⟨V †r, V †r′⟩HX

.

To summarize, we have reduced the inverse regression model (NPIR) into the least-squares problem

Y = r0(Z) + ξ, E[ξ ∣ Z] = 0,

with the goal of approximating r0 ∈ L2(Z) with kernel ridge regression (estimator r̄λ in Eq. (26)) from data
D2 ≐ {(zi, yi)}ni=1.

The generalization error of kernel ridge regression have been thoroughly investigated (Smale and Zhou, 2004,
2005, 2007; Caponnetto and De Vito, 2007). The key quantities that control the upper bounds are the effective
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dimension, controlling the size of the space, and the smoothness of the target function r0 relatively to the
covariance in (HF , πZ). The key difference with the standard kernel ridge regression setting is that our
assumptions (SRCX,EVDX) are expressed with respect to CX the covariance in (HX , πX). However, the
link condition (LINK) allows us to draw a link between (HF , πZ) and (HX , πX). Our analysis departs from
Blanchard and Mücke (2018) where assumptions on the smoothness of r0 and the effective dimension are made
directly on (HF , πZ).

The first step is to identify the covariance operator in (HF , πZ). Let us first look at the canonical feature map
in HF . For all z ∈ EZ we denote the canonical feature map as kF,z ≐ (z′ ↦ kF (z, z′)). By definition of kF it is
clear that for all z ∈ EZ , kF,z = V F∗(z). And therefore the covariance associated to the pair (HF , πZ) is given
by

ΣF ≐ E[kF,Z ⊗ kF,Z] = V E[F∗(Z)⊗ F∗(Z)]V ∗ = V CFV
∗.

We recall that Assumption (LINK) relates CX to CF , both operators acting on HX . The next proposition
shows that CF shares the same eigenspectrum with ΣF and their eigenvectors are related through V , therefore
with Assumption (LINK) we can relate CX to ΣF .

Proposition 4 (Link between CF and ΣF ). Let {(µF,i,
√
µF,ieF,i)}i∈I be the eigensystem of CF (see Def-

inition 9), then {(µF,i,
√
µF,iV eF,i)}i∈I is the eigensystem of ΣF . Therefore, for all λ > 0, NΣ(λ) ≐

Tr ((ΣF + λ IdHF
)−1ΣF ) = Tr ((CF + λ IdHX

)−1CF ) = NF (λ) and ∥ΣF ∥HF→HF
= ∥CF ∥HX→HX

.

Proof. Let us define hF,i ∶=
√
µF,iV eF,i for all i ∈ I. (hF,i, µF,i)i∈I is the eigensystem of CF such that,

µF,i ≠ 0 and ⟨hF,i, hF,j⟩HX
= δij for all i, j ∈ I. (hF,i)i∈I forms an ONB of ker(CF )⊥. It is easy to verify that

(V hF,i, µF,i)i∈I is the eigensystem of ΣF since for all i ∈ I

ΣFV hF,i = V CFV
∗V hF,i = V CFhF,i = µF,iV hF,i,

and for any i, j ∈ I, by the partial isometry property of V ,

⟨V hF,i, V hF,j⟩HF
= ⟨hF,i, hF,j⟩HX

= δij .

Note that we can apply the partial isometry property as hF,i, hF,j ∈ ker(CF )⊥ ⊆ ker(V )⊥.

To apply Theorem 14, that studies the generalization error of kernel ridge regression, to HF , we bound the
effective dimension NΣ(⋅) and characterize the smoothness of r0 with respect to ΣF . For the former, under
Assumption (LINK) combined with (EVDX), by Lemma 3 and Proposition 4,

NΣ(λ) ⩽Dλ
−

pX
γ1 , λ ⩾ 0. (27)

In the next proposition, we show that r0 satisfies a source condition with respect to (HF , πZ) with parameter
βF ≐ βX−1

γ0
+ 1.

Theorem 9. Under Assumptions (LINK) with parameter γ0 ⩾ 1 and (SRCX) with parameter 1 ⩽ βX ⩽ γ0 + 1,

∥Σ−
βF −1

2

F r0∥HF
⩽ BX ,

with βF = βX−1
γ0
+ 1 ∈ [1,2].

Proof. We first notice that r0 is almost surely an element of HF . Indeed, recall that h∗ ∈HX and r0 = E[h∗(X) ∣
Z], therefore, by the reproducing property, for πZ−almost all z ∈ EZ , r0(z) = ⟨h∗, F∗(z)⟩HX

= V h∗(z) . By

Assumption (LINK) and Proposition 3 d) applied with τ = (βX − 1)/γ0 we have PFC
βX−1
X PF ⪯ C

βX−1

γ0

F . Note
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that τ ∈ [0,1] since 1 ⩽ βX ⩽ γ0 + 1. As we have h∗ ∈R(CF ) and h∗ ∈R(C
βX−1

2

X ), we can apply Proposition 7

with A = CβX−1
X and B = C

βX−1

γ0

F to obtain,

∥C
−

βX−1

2γ0

F h∗∥HX
⩽ ∥C−

βX−1

2

X h∗∥HX
⩽ BX .

To conclude, by Proposition 4 and using V †r0 = h∗, it is readily seen that ∥C
−

βX−1

2γ0

F h∗∥HX
= ∥Σ

−
βX−1

2γ0

F r0∥HF
.

We are now ready to apply Theorem 14 to HF .

Theorem 10 (Stage 2 error). Let Assumptions 1, 2, (EMBZ), (SRCZ), (EVDX), (SRCX), (MOM) and
(LINK) hold with 1 ⩽ βX ⩽ γ0 + 1 and 0 < αZ ⩽ βZ . Then for the abbreviations

gλ ≐ log(2eNF (λ)
∥CF ∥HX→HX

+ λ
∥CF ∥HX→HX

)

Aλ,τ ≐ 8τgλκβZ−αZ

Z A2
ZB

2
Zλ
−1,

and τ ⩾ 1,0 < λ ⩽ 1, γ ∈ [0,1], and n ⩾ Aλ,τ , with Pn-probability not less than 1 − 4e−τ , the stage 2 error can be
bounded as

∥h̄λ − h∗∥γ ⩽ c1
⎛
⎝
λ

βX−γ

2γ0 + τ
√

1 + 1

nλ
1−

pX
γ1

¿
ÁÁÀ 1

nλ
1− 1−γ

γ0
+

pX
γ1

⎞
⎠

where c1 only depends on BX , σ,L, κZ ,AZ ,BZ , αZ , βZ and ∥h∗∥HX
.

Proof. We check assumptions 1., 2., 3. and 4. from Theorem 14, applied to HF for the estimation of
r0 = E[Y ∣ Z].

• Assumption 1. By Lemma 12, under (EMBZ) and (SRCZ), for πZ−almost every z ∈ EZ , kF (z, z) ⩽
∥F∗(z)∥2HX

⩽ κ2
F with κF = κ

βZ−αZ
2

Z AZBZ . Therefore we take κ = κF in Theorem 14.

• Assumption 2. is satisfied by Assumption (MOM).

• Assumption 3. is satisfied with p = pX/γ1 by Eq. (27).

• Assumption 4. is satisfied with β = βF = βX−1
γ0
+ 1 ∈ [1,2] and B = BX by Theorem 9.

By Theorem 14, we therefore obtain, for the abbreviations

gλ ≐ log(2eNΣ(λ)
∥ΣF ∥HF→HF

+ λ
∥ΣF ∥HF→HF

) = log(2eNF (λ)
∥CF ∥HX→HX

+ λ
∥CF ∥HX→HX

)

Aλ,τ ≐ 8τgλκβZ−αZ

Z A2
ZB

2
Zλ
−1,

and 0 ⩽ θ ⩽ 1, τ ⩾ 1,0 < λ ⩽ 1, and n ⩾ Aλ,τ , that the following bound is satisfied with Pn-probability not less
than 1 − 4e−τ ,

∥Σ
1−θ
2

F (r̄λ − r0) ∥2HF
⩽ J (λβF−θ + τ2

nλ
θ+

pX
γ1

(1 + 1

nλ
1−

pX
γ1

)) , (28)

where J is a constant depending on BX , σ,L, κZ ,AZ ,BZ , αZ , βZ and ∥r0∥HF
. Note that ∥r0∥HF

= ∥h∗∥HX
.

28



Finally, by Assumption (LINK),

∥h̄λ − h∗∥γ = ∥C
1−γ
2

X (h̄λ − h∗)∥HX
⩽ ∥C

1−γ
2γ0

F (h̄λ − h∗)∥HX
= ∥Σ

1−γ
2γ0

F (r̄λ − r0)∥HF
,

where the last equality follows from Proposition 4 and using h̄λ = V †r̄λ, h∗ = V †r0. Plugging θ = 1 − 1−γ
γ0

and
βF = βX−1

γ0
+ 1 and βX−1

γ0
+ 1 in Eq. (28) concludes the proof.

Theorem 3 is then obtained by combining Theorem 7 and 10, which study the stage 1 and 2 error respectively.

E.2 Detailed Proof

E.2.1 Stage 1 Error

The following theorem provides an upper bound on Eq. (23), term S−1.

Theorem 11. Let Assumptions 1, (MOM), (SRCZ) and (EMBZ) hold with αZ ⩽ βZ , we have with Pn-
probability over 1 − 8e−τ , for some τ > 0, and sufficiently large m and n such that Eq. (18) is satisfied,

S−1 ⩽ c
τ√
λ
(∥F̂ξ − F∗∥αZ√

n
+ ∥F∗ − F̂ξ∥L2(Z;HX)) ,

with c depending on σ,L,AZ ,BZ , κZ , αZ and βZ .

Proof. We start with the following decomposition,

∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1 ( 1

n
Φ∗

F̂
Y − 1

n
Φ∗F∗Y )∥

HX

⩽ ∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1/2∥

HX→HX

∥(ĈF̂ + λ Id)
−1/2 (ĈF + λ Id)

1/2∥
HX→HX

(29)

⋅∥(ĈF + λ Id)
−1/2 ( 1

n
Φ∗

F̂
Y − 1

n
Φ∗F∗Y )∥

HX

(30)

Apply Lemma 10, we obtain with probability over 1 − 6e−τ and sufficiently large m and n such that the
constraints in Eq. (18) are satisfied,

∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1/2∥

HX→HX

⩽ 3.

For the second term in Eq. (29), under the constraints of Eq. (18), by Lemma 9, with probability over 1 − 4e−τ

∥(ĈF̂ + λ Id)
−1/2 (ĈF + λ Id)

1/2∥
HX→HX

⩽
√

6

5
,

and therefore

Eq. (29) ⩽ 3
√

6

5
⩽ 4.
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For Eq. (30)

∥(ĈF + λ Id)
−1/2 ( 1

n
Φ∗

F̂
Y − 1

n
Φ∗F∗Y )∥

HX

= ∥(ĈF + λ Id)
−1/2 1

n
(ΦF̂ −ΦF∗)

∗
Y ∥
HX

= ∥(ĈF + λ Id)
−1/2 1

n
(ΦF̂ −ΦF∗)

∗ (Y −ΦF∗h∗ +ΦF∗h∗)∥
HX

⩽ ∥(ĈF + λ Id)
−1/2 1

n
(ΦF̂ −ΦF∗)

∗ (Y −ΦF∗h∗)∥
HX

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

+∥(ĈF + λ Id)
−1/2 1

n
(ΦF̂ −ΦF∗)

∗
ΦF∗h∗∥

HX

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

. (31)

For term I, we notice that

∥(ĈF + λ Id)
−1/2 1

n
(ΦF̂ −ΦF∗)

∗ (Y −ΦF∗h∗)∥
HX

⩽ λ−1/2 ∥ 1
n
(ΦF̂ −ΦF∗)

∗ (Y −ΦF∗h∗)∥
HX

= λ−1/2 ∥ 1
n

n

∑
i=1

(F̂ξ(zi) − F∗(zi)) (yi − ⟨h∗, F∗(zi)⟩HX
)∥
HX

,

Let us define θ(z, y) = (F̂ξ(z) − F∗(z)) (y − ⟨h∗, F∗(z)⟩HX
) and note that θ(Z,Y ) is centered. For m ⩾ 2,

E ∥θ(Z,Y )∥mHX
= ∫

EZ

∥F̂ξ(z) − F∗(z)∥
m

HX
∫
R
(y − ⟨h∗, F∗(z)⟩HX

)mP (dy ∣ z)dπZ(z)

⩽ (AZ∥F̂ξ − F∗∥αZ
)m ∫

R
(y − ⟨h∗, F∗(z)⟩HX

)mP (dy ∣ z),

where we used Lemma 12. Using (MOM) yields

∫
R
(y − ⟨h∗, F∗(z)⟩HX

)mP (dy ∣ z) ⩽ 1

2
m!σ2Lm−2.

We therefore have

E ∥θ(Z,Y )∥mHX
⩽ 1

2
m! (σAZ∥F̂ξ − F∗∥αZ

)2 (LAZ∥F̂ξ − F∗∥αZ
)m−2 .

Using Theorem 16, we have with Pn-probability over 1 − 2e−τ ,

∥ 1
n

n

∑
i=1

θ(zi, yi)∥
HX

⩽
√
32

τ√
n
(σAZ∥F̂ξ − F∗∥αZ

+ LAZ∥F̂ξ − F∗∥αZ√
n

) , (32)

and therefore,

I ⩽
√
32λ−1/2AZ∥F̂ξ − F∗∥αZ

τ(σ +L)√
n

.

For term II, using the same proof technique as in Lemma 7, we have, with Pn probability over 1 − 2e−τ ,

∥(ĈF + λ Id)
−1/2 1

n
(ΦF̂ −ΦF∗)

∗
ΦF∗∥

HX→HX

⩽
κ

βZ−αZ
2

Z AZBZ√
λ

(AZ∥F̂ξ − F∗∥αZ

√
τ

n
+ ∥F∗ − F̂ξ∥L2(Z;HX)) .

This further implies that, with probability at least 1 − 8e−τ ,

S−1 ⩽ 4
⎛
⎜
⎝

√
32AZ∥F̂ξ − F∗∥αZ

τ(σ +L)√
λn

+
κ

βZ−αZ
2

Z AZBZ√
λ

(AZ∥F̂ξ − F∗∥αZ

√
τ

n
+ ∥F∗ − F̂ξ∥L2(Z;HX))

⎞
⎟
⎠

⩽ c τ√
λ
(∥F̂ξ − F∗∥αZ√

n
+ ∥F∗ − F̂ξ∥L2(Z;HX)) ,
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with c depending on σ,L,AZ ,BZ , κZ , αZ and βZ .

The following theorem provides an upper bound on Eq. (24), term S0.

Theorem 12. Let Assumptions 1, (SRCZ) and (EMBZ) hold with αZ ⩽ βZ , for sufficiently large n and m
such that Eq. (18) holds, we have with Pn-probability over 1 − 6e−τ

S0 ⩽ c′
τ√
λ
(∥F̂ξ − F∗∥αZ√

n
+ ∥F∗ − F̂ξ∥L2(Z;HX))∥h̄λ∥HX

,

with c′ depending on AZ ,BZ , αZ , βZ and κZ .

Proof.

∥(CF + λ Id)1/2 ((ĈF̂ + λ Id)
−1 1

n
Φ∗F∗Y − (ĈF + λ Id)

−1 1

n
Φ∗F∗Y )∥

HX

= ∥(CF + λ Id)1/2 ((ĈF̂ + λ Id)
−1 − (ĈF + λ Id)

−1) 1
n
Φ∗F∗Y ∥

HX

= ∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1 (ĈF̂ − ĈF ) (ĈF + λ Id)

−1 1

n
ΦT

F∗Y ∥
HX

⩽ λ−1/2 ∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1/2∥

HX→HX

∥ĈF̂ − ĈF ∥HX→HX
∥h̄λ∥HX

.

For the first term, by Lemma 11, for any τ ⩾ 1, λ > 0 and sufficiently large m and n such that the constraints of
Eq. (18) are satisfied, with probability at least 1 − 2e−τ ,

∥(ĈF + λ Id)
−1/2 (CF + λ Id)1/2∥

HX→HX

⩽ 2.

For the second term, by Lemma 7, under the assumptions that ∥F∗ − F̂ξ∥L2(Z;HX) ⩽ 1, and ∥F∗ − F̂ξ∥αZ
⩽ 1 with

Pn-probability over 1 − 4e−τ , it holds that

∥ĈF − ĈF̂ ∥HX→HX
⩽ J (

√
τ

n
∥F∗ − F̂ξ∥αZ

+ ∥F∗ − F̂ξ∥L2(Z;HX)) ,

where J depends on AZ ,BZ , αZ , βZ and κZ .

F Proof of Theorem 4

We adopt a strategy similar to the one presented in Chen and Reiss (2011). The proof of the lower bound
consists of two steps. First, we re-introduced the nonparametric indirect regression (NPIR) model used to
bound the stage 2 error in Section E.1.2. We show that estimators for NPIR have lower risk compared to the
NPIV model. We then provide a lower bound for the NPIR model, where the target function belongs to a
RKHS. By comparing this to our upper bound for Kernel NPIV, we identify the settings in which minimax
optimality is achieved.

In this section, as we focus on deriving a lower bound, we assume that T is an injective operator. This
assumption corresponds to the completeness assumption commonly used in the NPIV literature (Newey and
Powell, 2003).

Assumption 11 (Completeness). Let X,Z be two random variables taking values in EX and EZ respectively.
We say that (X,Z) satisfies the completeness assumption if the operator T defined in Eq. (2) is injective.
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Note that under the completeness assumption, there is no distinction between the structural function (denoted
h0) and the minimum norm solution to the NPIV model (denoted h∗).

F.1 Relationship Between the NPIR Model and the NPIV Model

Recall that a NPIV model depends on a joint distribution πX,Y,Z , a structural function h0 ∈ L2(X) and takes
the following form:

Y = h0(X) +U, E[U ∣Z] = 0
Under the completeness assumption (Assumption 11) and the assumption that r0 ∈R(T ), h0 is identified as
the unique solution to the integral equation given in Eq. (2): r0 = T h0. We define F̃ , as the set of models
(NPIV) with (πX,Y,Z , h0) such that r0 ∈R(T ) and Assumption 11 hold. We saw in Section E.1.2 that when T
is known, (NPIV) can be reformulated as the NPIR model

Y = T h0(Z) + ξ, ξ = h0(X) − T h0(Z) +U,

where E[ξ∣Z] = 0. To obtain a lower bound for (NPIR), we make the following restriction on the set F̃ .

Definition 7. Let σ0 > 0 be a finite constant and C be a subset of L2(X). Let F be the subset of F̃ such that
for all h0 ∈ C, there is a joint probability distribution πX,Y,Z with (πX,Y,Z , h0) ∈ F such that πY,Z is determined
by πX,Y,Z and h0, and such that

ξ ≐ Y −E[Y ∣ Z] = h0(X) − T h0(Z) +U

given Z is N (0, σ2(Z))-distributed with σ2(Z) ⩾ σ2
0 almost surely.

Example 1. A simple example of building an element in F is to take Z from an arbitrary probability
distribution πZ , followed by generating X according to a conditional density of X given Z. We then sample ξ
from N (0, σ2(Z)) and define

U ≐ T h0(Z) − h0(X) + ξ.

For each (NPIV) model (πX,Y,Z , h0) in F , an (NPIR) model is built, assuming that the operator T is known.
We formally define the NPIR class as follows.

Definition 8. The NPIR model class F0 consists of all model parameters (πZ′ , σ
2(⋅), h0) such that there

is a corresponding (πX,Y,Z , h0) ∈ F with the following properties: πZ = πZ′ , σ2(Z) ⩾ σ2
0 almost surely, the

conditional distribution of X given Z is fully prescribed according to T , and the distribution of U given (X,Z)
is arbitrary among the conditions imposed in F .

We now demonstrate that in order to obtain a lower bound for (NPIV), it suffices to prove a lower bound
for (NPIR). Given data (Xi, Yi, Zi)ni=1, let ĥn((Xi, Yi, Zi)ni=1) be an estimator for the NPIV model. Note
that knowing T is equivalent to knowing the conditional law of X given Z. Let us call the observations
in the NPIR model (Yi, Zi)ni=1 generated by some (πZ′ , σ

2(⋅), h0) ∈ F0. We then generate artificially i.i.d.
observations (Xi)ni=1 according to the conditional law of X ∣ Z = z with Z = zi. Then the observations
(Xi, Yi, Zi)ni=1 follow the law of some (πX,Y,Z , h0) ∈ F by definition of F0 and F . Consequently, the estimator
h̃((Yi, Zi)ni=1) ≐ ĥn((Xi, Yi, Zi)ni=1) for the NPIR model is such that h̃ − h0 under (πZ′ , σ

2(⋅), h0) ∈ F0 is equal
to ĥ − h0 under (πX,Y,Z , h0) ∈ F . This argument shows that (NPIV) in F is statistically more demanding than
learning (NPIR) in F0. This discussion is adapted from the proof of Chen and Reiss (2011, Lemma 1).

F.2 The Lower Bound for Kernel NPIR Model

In this section, we provide a lower bound for the NPIR model, as by Section F.1, it implies a lower bound for
the NPIV model. Our proof differs from Chen and Reiss (2011) in two ways. Firstly, the proof of Chen and
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Reiss (2011, Theorem 1) is based on Assouad’s cube technique (Tsybakov, 2009, Lemma 2.12) and only provides
a lower bound in expectation. To obtain a lower bound with high probability, we instead rely on Tsybakov
(2009, Theorem 2.5) and follow the same template as Fischer and Steinwart (2020) for plain least-squares
regression. Secondly, our proof specializes to the RKHS learning setting, considering both L2−rates and rates
in the interpolation norms. We take C = HX in Definition 7 and we fix parameters βX ⩾ 0, γ ∈ [0,1] and
BX , σ2, L > 0.

Let HX be a RKHS of functions form EX to R equipped with a marginal distribution πX such that As-
sumption (EVDX+) is satisfied. We consider elements (πZ , σ

2(⋅), h0) ∈ F0 with πZ and σ2(⋅) fixed such that
σ2(⋅) ⩾ σ0 =min{σ,L} while h0 ∈HX is a free parameter that we will choose to obtain the lower bound. Given
h ∈HX we write Ph the joint probability for (Y,Z), to indicate the dependence on h.

We recall (see Eq. (3)), that CX admits the following decomposition:

CX = E[ϕX(X)⊗ ϕX(X)] =∑
i⩾1

µX,i
√
µX,ieX,i ⊗

√
µX,ieX,i,

where {√µX,ieX,i}i⩾1 is an ONB of R(CX) ⊆ HX and {[eX,i]}i⩾1 is an ONB of R(IX) ⊆ L2(X). We recall
the definition of the Kullback-Leibler divergence. For two probability measures P1, P2 on some measurable
space (Ω,A) the Kullback-Leibler divergence is given by

KL (P1, P2) ∶= ∫
Ω
log ( dP1

dP2
)dP1

if P1 ≪ P2 and otherwise K (P1, P2) ∶=∞

For ω = {ωi}i⩾1 with ωi ∈ {−1,+1}, 0 < ϵ ⩽ 1 and m ∈ N, we consider the following function in HX :

hω ≐ 2(
8ε

m
)
1/2 m

∑
i=1

ωiµ
γ/2
X,i+meX,i+m.

We distinguish the following steps to obtain the lower bound.

• Step 1: Control the separation in γ−norm between the different hω;

• Step 2: Control the KL divergence between NPIR models induced by the different hω;

• Step 3: Check that hω satisfy the conditions (SRCX) with parameters βX and BX and (MOM);

Step 1. Assume that ∑m
i=1 (ωi − ω′i)

2 ⩾m/8 (this will be ensured later by Lemma 1). Then,

∥hω − hω′∥2γ =
32ϵ

m

m

∑
i=1

(ωi − ω′i)2 ⩾ 4ϵ.

Step 2. Recall that in the NPIR model, given h ∈HX , for all z ∈ EZ , Ph(⋅ ∣ z) = N (⟨h,F∗(z)⟩HX
, σ2(z)) and

σ2(z) ⩾ σ2
0 . For h,h′ ∈HX , we therefore have,

KL(Ph, Ph′) = ∫
EZ

KL(Ph(⋅ ∣ z), Ph′(⋅ ∣ z))dπZ(z)

= 1

2
∫
EZ

⟨h − h′, F∗(z)⟩2HX

σ2(z) dπZ(z)

≤ 1

2σ2
0
∫
EZ

⟨h − h′, F∗(z)⟩2HX
dπZ(z)

= 1

2σ2
0

∥C1/2
F (h − h

′)∥2HX
.
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By Assumptions (LINK) and (EVDX), we have

∥C1/2
F (hω − hω′)∥2HX

⩽ ∥Cγ1/2
X (hω − hω′)∥2HX

= 32ϵ

m

m

∑
i=1

(ωi − ω′i)2µγ1−1+γ
X,i+m

⩽ 32ϵµγ1−1+γ
X,m

⩽ 32cγ1−1+γ
2 ϵm

−
γ1−1+γ

pX

and therefore,
KL(P⊗

n

hω
, P⊗

n

hω′
) ⩽ n

2σ2
0

32cγ1−1+γ
2 ϵm

−
γ1−1+γ

pX .

Step 3. For any h ∈ HX , Assumption (MOM) is satisfied with parameters σ and L. Indeed, under the
NPIR model, for any z ∈ EZ , Y − ⟨h,F∗(z)⟩HX

∼ N (0, σ2(z)) and the conclusion can be obtained as in

Fischer and Steinwart (2020, Lemma 21). We next consider the condition ∥C−
βX−1

2

X hω∥HX
⩽ BX . Using

Assumption (EVDX+), we get

∥C−
βX−1

2

X hω∥2HX
= 32ϵ

m

m

∑
i=1

ω2
i µ
−(βX−γ)
X,i+m ⩽ 32ϵµ−(βX−γ)

X,2m ⩽ 32c−(βX−γ)
1 2

βX−γ

pX ϵm
βX−γ

pX ⩽ B2
X

for m ⩽ Uϵ
−

pX
βX−γ with U ≐ (B2

X/32)
pX

βX−γ cpX

1 /2. We have proved the following: for u = pX

βX−γ
, for all 0 ⩽ βX ,

there are constants U > 0 and 0 < ϵ ⩽ 1 such that for all m ⩽ Uϵ−u the function hω satisfies the bound

∥C−
βX−1

2

X hω∥HX
⩽ BX for all ω ∈ {0,1}m.

To conclude we use the following theorem that is derived from Tsybakov (2009, Proposition 2.3) and (Fischer
and Steinwart, 2020, Theorem 20).

Theorem 13. Let M ⩾ 2, (Ω,A) be a measurable space, P0, P1, . . . , PM be probability measures on (Ω,A) with
Pj ≪ P0 for all j = 1, . . . ,M , and 0 < α∗ <∞ with

1

M

M

∑
j=1

KL (Pj , P0) ⩽ α∗.

Then, for all measurable functions Ψ ∶ Ω→ {0,1, . . . ,M}, the following bound is satisfied

max
j=0,1,...,M

Pj(ω ∈ Ω ∶ Ψ(ω) ≠ j) ⩾
√
M

1 +
√
M
(1 − 3α∗

log(M) −
1

2 log(M)) .

Two obtain the distributions P0, P1, . . . , PM we use the following lemma (Tsybakov, 2009, Lemma 2.9).

Lemma 1 (Gilbert-Varshamov Bound). For m ⩾ 8 there exists some M ⩾ 2m/8 and some binary strings
ω(0), . . . , ω(M) ∈ {0,1}m with ω(0) = (0, . . . ,0) and

m

∑
i=1

(ω(j)i − ω(k)i )
2
⩾m/8

for all j ≠ k, where ω(k) = (ω(k)1 , . . . , ω
(k)
m ).

Define ϵ0 ≐ min{ϵ, (U/9)1/u} and mϵ ≐ ⌊Uϵ−u⌋. Now, we fix an n ⩾ 1 and an 0 < ϵ ⩽ ϵ0. Since mϵ ⩾ 9, the
Gilbert-Varshamov Bound Lemma yields at least Mϵ ≐ ⌈2mϵ/8⌉ ⩾ 3 binary strings ω(0), ω(1), . . . , ω(Mϵ) ∈ {0, 1}mϵ
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satisfying the Gilbert-Varshamov Bound. For j = 0, 1, . . . ,Mϵ, the corresponding functions hj ≐ hω(j) satisfy the

bound ∥C−
βX−1

2

X hj∥HX
⩽ BX . Due to the definitions of Mϵ,mϵ and mϵ ⩾ 9 we get 8U/9ϵ−u ⩽mϵ ⩽ Uϵ−u and

2U/9ϵ
−u

⩽ 2mϵ/8 ⩽Mϵ ⩽ 2mϵ/4 ⩽ 2U/3ϵ
−u

.

We can simplify it as 2C2ϵ
−u ⩽Mϵ ⩽ 23C2ϵ

−u

with C2 ≐ U/9. We have,

1

Mϵ

Mϵ

∑
j=1

KL(P⊗
n

j , P⊗
n

0 ) ⩽
n

σ2
0

16cγ1−1+γ
1 ϵm

−
γ1−1+γ

pX
ϵ .

Furthermore, using mϵ ⩾ 8U/9ϵ−u we find

1

Mϵ

Mϵ

∑
j=1

KL (Pn
j , P

n
0 ) ⩽ C ′nε

1+
γ1−1+γ

βX−γ =∶ α∗

with C ′ ≐ 16c
γ1−1+γ

1 9
γ1−1+γ

pX

σ2
0(8U)

γ1−1+γ
pX

. For a measurable function Ψ ∶ (EZ × R)n → {0,1, . . . ,Mϵ}, since Mϵ ⩾ 2C2ϵ
−u

, it

yields

max
j=0,1,...,Mϵ

Pn
j (D ∶ Ψ(D) ≠ j) ⩾

√
Mϵ

1 +
√
Mϵ

⎛
⎝
1 − 3C ′nϵ

1+
γ1−1+γ

βX−γ

log (Mϵ)
− 1

2 log (Mϵ)
⎞
⎠

⩾
√
Mϵ

1 +
√
Mϵ

(1 − 3C ′

C2 log(2)
nϵ

1+
γ1−1+γ

βX−γ
+u − 1

2 log (Mϵ)
) .

Since 1 + γ1−1+γ
βX−γ

+ u = βX−1+γ1+pX

βX−γ
, we get

max
j=0,1,...,Mϵ

Pn
j (D ∶ Ψ(D) ≠ j) ⩾

√
Mϵ

1 +
√
Mϵ

(1 −C1nϵ
βX−1+γ1+pX

βX−γ − 1

2 log (Mϵ)
) . (33)

for C1 ≐ 3C′

C2 log(2)
. To conclude the proof we follow the general reduction scheme from Tsybakov (2009, Section

2.2). Let D ↦ hD be a (measurable) learning method for NPIR. Set r ≐ βX−γ
βX+γ1+pX−1

, and fix τ > 0 and n ⩾ 1 with
ϵn ≐ τn−r ⩽ ϵ0. It remains to show that there is a distribution P which is difficult to learn for the considered
learning method. For ϵ = ϵn, we take the previous possible candidates P0, P1, . . . , PMn , with Mn ≐Mϵn . Next,
we estimate the left hand side of the inequality in Eq. (33). To this end, we consider the measurable function
Ψ ∶ (EZ ×R)n → {0,1, . . . ,Mn} defined by

Ψ(D) ≐ argmin
j=0,1,...,Mn

∥hD − hj∥γ .

For j ∈ {0,1, . . . ,Mn} and D ∈ (EZ ×R)n with Ψ(D) ≠ j we have

2
√
ϵn ≤ ∥hΨ(D) − hj∥γ ⩽ ∥hΨ(D) − hD∥γ + ∥hD − hj∥γ ⩽ 2 ∥hD − hj∥γ .

Consequently, for all j = 0,1, . . . ,Mn we find

Pn
j (D ∶ Ψ(D) ≠ j) ⩽ Pn

j (D ∶ ∥hD − hj∥2γ ⩾ εn) .

Therefore, there is h∗ in {h0, . . . , hMn} such that,

Pn (D ∶ ∥hD − h∗∥2γ ⩾ εn) ⩾ max
j=0,1,...,Mn

Pn(D ∶ Ψ(D) ≠ j)

⩾
√
Mn√

Mn + 1
(1 −C1τ

1/r − 1

2 log (Mn)
) .

Since Mn → ∞ for n → ∞ we can choose n sufficiently large such that the right hand side is bounded from
below by 1 − 2C1τ

1/r.
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G Some Bounds

Definition 9 (Spectral decomposition for CF ). By Jensen’s inequality, 0 ⪯ CF ⪯ CX and therefore CF ,defined
in Eq. (12), is a Trace class operator since Tr(CF) ⩽ Tr(CX) < +∞. Therefore there exists an eigensystem
{(µF,i,

√
µF,ieF,i)}i∈I with positive summable eigenvalues such that

CF =∑
i∈I

µF,i
√
µF,ieF,i ⊗

√
µF,ieF,i,

where {√µF,ieF,i}i∈I is an ONB of R(CF ) ⊆HX .

Lemma 2. Let CF be defined as in Eq. (12) with eigensystem {(µF,i,
√
µF,ieF,i)}i∈I given in Definition 9. Let

Assumption (LINK) hold. We then have, for all i ∈ I, µF,i ⩽ µγ1

X,i.

Proof. The proof follows from Lemma 17.

Lemma 3. Define the following quantity, for λ > 0,

NF (λ) = Tr (CF (CF + λ IdHX
)−1)

and let Assumption (EVDX) hold. There is a constant D > 0, independent of λ, such that the following
inequality is satisfied,

NF (λ) ⩽Dλ
−

pX
γ1 .

Proof. From Lemma 2, and using Assumption (EVDX), we see that µF,i ⩽ µγ1

X,i ⩽ c2i
−

γ1
pX for all i ∈ I. Applying

Fischer and Steinwart (2020, Lemma 11) with pX/γ1 yields the final result.

Lemma 4. Let Assumption 1 hold. Then for all λ > 0 and θ ⩾ 1, we have the following bound:

∥C
1
2θ

F (CF + λ Id)−1/2∥HX→HX
⩽ λ 1

2θ−
1
2 .

Proof.

∥C
1
2θ

F (CF + λ Id)−1/2∥HX→HX
=

¿
ÁÁÁÀsup

i∈I

λ
1
θ

F,i

λF,i + λ

⩽ λ 1
2θ−

1
2 ,

where in the inequality we used Lemma 13 with θ−1 ⩽ 1 since θ ⩾ 1.

Lemma 5. Let Assumptions 1, (SRCX) and (LINK) hold with 0 ⩽ βX ⩽ γ0+1. Then for all λ > 0 and θ ∈ [0, 1],
we have the following bound:

∥C
1−θ
2

F (CF + λ Id)−1h∗∥HX
⩽ BXλ

βX−1

2γ0
+ 1−θ

2 −1.
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Proof. Using (SRCX) and the fact that h∗ ∈R(CF ), we have,

∥C
1−θ
2

F (CF + λ Id)−1h∗∥HX
⩽ BX∥C

1−θ
2

F (CF + λ Id)−1PFC
βX−1

2

X ∥HX→HX

= BX∥C
βX−1

2

X PF (CF + λ Id)−1C
1−θ
2

F ∥HX→HX

= BX sup
h∈HX ,∥h∥HX

=1

∥C
βX−1

2

X PF (CF + λ Id)−1C
1−θ
2

F h∥HX

⩽ BX sup
h∈HX ,∥h∥HX

=1

∥C
βX−1

2γ0

F PF (CF + λ Id)−1C
1−θ
2

F h∥HX

= BX sup
i∈I

λ
βX−1

2γ0
+ 1−θ

2

F,i

λF,i + λ

⩽ BXλ
βX−1

2γ0
+ 1−θ

2 −1,

where in the second inequality, we used Assumption (LINK) combined with Lemma 14 for ω = βX−1
γ0
⩽ 1, and in

the last inequality we used Lemma 13 with βX−1
2γ0
+ 1−θ

2
⩽ βX−1+γ0

2γ0
⩽ 1 since βX ⩽ γ0 + 1.

Lemma 6. Let gλ be defined as in Eq. (17),

gλ ≐ log(2eNF (λ)
∥CF ∥HX→HX

+ λ
∥CF ∥HX→HX

) .

Then, for τ ⩾ 1, λ > 0, and n ⩾ 1, the following operator norm bound is satisfied with Pn-probability over 1−2e−τ ,

∥(CF + λ)−1/2 (CF − ĈF ) (CF + λ)−1/2∥
HX→HX

⩽ 4κ2
Xτgλ

3nλ
+
√

2κ2
Xτgλ

nλ
.

For n ⩾ 8τgλκ2
Xλ−1, with probability over 1 − 2e−τ ,

∥(CF + λ)−1/2 (CF − ĈF ) (CF + λ)−1/2∥
HX→HX

⩽ 2

3
.

Proof. The bound is obtained directly from Fischer and Steinwart (2020, Lemma 17) applied to CF with α = 1
and using that almost surely ∥F (Z)∥HX

⩽ E[∥ϕX(X)∥HX
∣ Z] ⩽ κX . For n ⩾ 8τgλκ2

Xλ−1, we obtain that with
probability over 1 − 2e−τ ,

∥(CF + λ Id)−1/2 (CF − ĈF ) (CF + λ Id)−1/2∥
HX→HX

⩽ 4κ2
Xτgλ

3nλ
+
√

2κ2
Xτgλ

nλ

⩽ 4

3
⋅ 1
8
+
√

2 ⋅ 1
8
= 2

3
.

Lemma 7. Let Assumptions (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . Under the assumptions that ∥F∗ −
F̂ξ∥L2(Z;HX) ⩽ 1, and ∥F∗ − F̂ξ∥αZ

⩽ 1 with Pn-probability over 1 − 4e−τ , it holds that

∥ĈF − ĈF̂ ∥HX→HX
⩽ J (

√
τ

n
∥F∗ − F̂ξ∥αZ

+ ∥F∗ − F̂ξ∥L2(Z;HX)) ,

where J depends on AZ ,BZ , αZ , βZ and κZ .
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Proof. We start with the following decomposition, for any z ∈ EZ ,

F∗(z)⊗ F∗(z) − F̂ξ(z)⊗ F̂ξ(z)
= F∗(z)⊗ F∗(z) − F∗(z)⊗ F̂ξ(z) + F∗(z)⊗ F̂ξ(z) − F̂ξ(z)⊗ F̂ξ(z)
= F∗(z)⊗ (F∗(z) − F̂ξ(z)) + (F∗(z) − F̂ξ(z))⊗ F̂ξ(z)
= F∗(z)⊗ (F∗(z) − F̂ξ(z)) + (F∗(z) − F̂ξ(z))⊗ F∗(z) − (F∗(z) − F̂ξ(z))⊗ (F∗(z) − F̂ξ(z)) . (34)

Therefore,

ĈF − ĈF̂ =
1

n

n

∑
i=1

(F∗(zi)⊗ (F∗(zi) − F̂ξ(zi)) + (F∗(zi) − F̂ξ(zi))⊗ F∗(zi) − (F∗(zi) − F̂ξ(zi))⊗ (F∗(zi) − F̂ξ(zi))) ,

we then have,

∥ĈF − ĈF̂ ∥ HX →HX ⩽ ∥
1

n

n

∑
i=1

F∗(zi)⊗ (F∗(zi) − F̂ξ(zi))∥
HX→HX

+ ∥ 1
n

n

∑
i=1

(F∗(zi) − F̂ξ(zi))⊗ F∗(zi)∥
HX→HX

+∥ 1
n
∑
i=1

(F∗(zi) − F̂ξ(zi))⊗ (F∗(zi) − F̂ξ(zi))∥
HX→HX

⩽ 2

n

n

∑
i=1

∥F∗(zi)∥HX
∥F∗(zi) − F̂ξ(zi)∥HX

+ 1

n

n

∑
i=1

∥F∗(zi) − F̂ξ(zi)∥
2

HX

⩽
2κ

βZ−αZ
2

Z AZBZ

n

n

∑
i=1

∥F∗(zi) − F̂ξ(zi)∥HX
+ 1

n

n

∑
i=1

∥F∗(zi) − F̂ξ(zi)∥
2

HX

⩽
2κ

βZ−αZ
2

Z AZBZ

n

n

∑
i=1

(∥F∗(zi) − F̂ξ(zi)∥HX
−E [∥F∗(zi) − F̂ξ(zi)∥HX

] +E [∥F∗(zi) − F̂ξ(zi)∥HX
])

+ 1
n

n

∑
i=1

(∥F∗(zi) − F̂ξ(zi)∥
2

HX
− ∥F∗ − F̂ξ∥2L2(Z;HX)

+ ∥F∗ − F̂ξ∥2L2(Z;HX)
) ,

where we used Lemma 12 in the second inequality. To conclude, we will apply Hoeffding inequality (conditionally
on D1) to Xi ≐ ∥F∗(zi) − F̂ξ(zi)∥HX

, i = 1, . . . , n. Note that by Jensen’s inequality, for i = 1, . . . , n, E[Xi] ⩽
∥F∗ − F̂ξ∥L2(Z;HX), and by (EMBZ), we have,

Xi ⩽ AZ∥F∗ − F̂ξ∥αZ
,

almost surely. Therefore, by Hoeffding inequality, with Pn probability over 1 − 2e−τ ,

∣ 1
n

n

∑
i=1

∥F∗(zi) − F̂ξ(zi)∥HX
−E [∥F∗(zi) − F̂ξ(zi)∥HX

]∣ ⩽ AZ∥F∗ − F̂ξ∥αZ

√
τ

n
.

And a similar reasoning gives us that with Pn probability over 1 − 2e−τ ,

∣ 1
n

n

∑
i=1

∥F∗(zi) − F̂ξ(zi)∥
2

HX
− ∥F∗ − F̂ξ∥2L2(Z;HX)

∣ ⩽ A2
Z∥F∗ − F̂ξ∥2αZ

√
τ

n
.

Under the assumptions that ∥F∗ − F̂ξ∥L2(Z;HX) ⩽ 1 and ∥F∗ − F̂ξ∥αZ
⩽ 1, we conclude with an union bound that

with Pn probability over 1 − 4e−τ ,

∥ĈF − ĈF̂ ∥HX→HX
⩽ J (

√
τ

n
∥F∗ − F̂ξ∥αZ

+ ∥F∗ − F̂ξ∥L2(Z;HX)) ,

where J depends on AZ ,BZ , αZ , βZ and κZ .
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Lemma 8. Let Assumptions (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . For any τ ⩾ 1, λ > 0 and sufficiently
large m and n such that Eq. (18) is satisfied, with probability over 1 − 6e−τ , we have

∥(CF + λ Id)−1/2 (CF − ĈF̂ ) (CF + λ Id)−1/2∥
HX→HX

⩽ 5

6
.

Proof. Let Aλ ≐ (CF + λ Id)−1/2 (CF − ĈF̂ ) (CF + λ Id)−1/2. We have,

∥Aλ∥HX→HX
= ∥(CF + λ Id)−1/2 (CF − ĈF + ĈF − ĈF̂ ) (CF + λ Id)−1/2∥

HX→HX

⩽ ∥(CF + λ Id)−1/2 (CF − ĈF ) (CF + λ Id)−1/2∥
HX→HX

+ ∥(CF + λ Id)−1/2 (ĈF̂ − ĈF ) (CF + λ Id)−1/2∥
HX→HX

⩽ ∥(CF + λ Id)−1/2 (CF − ĈF ) (CF + λ Id)−1/2∥
HX→HX

+ λ−1 ∥(ĈF̂ − ĈF )∥HX→HX
.

Apply Lemma 6 to the first term, for τ ⩾ 1, λ > 0 and n ⩾ 8τgλκ2
Xλ−1, with probability over 1 − 2e−τ ,

∥(CF + λ Id)−1/2 (CF − ĈF ) (CF + λ Id)−1/2∥
HX→HX

⩽ 2

3
.

For the second term, we apply Lemma 7, under the assumptions that ∥F∗− F̂ξ∥L2(Z;HX) ⩽ 1 and ∥F∗− F̂ξ∥αZ
⩽ 1,

with Pn-probability over 1 − 4e−τ , it holds

∥ĈF − ĈF̂ ∥HX→HX
⩽ J (

√
τ

n
∥F∗ − F̂ξ∥αZ

+ ∥F∗ − F̂ξ∥L2(Z;HX)) .

Under the constraints of Eq. (18), it implies that with probability over 1 − 6e−τ ,

∥Aλ∥HX→HX
⩽ 5

6
,

Lemma 9. Let Assumptions (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . For any τ ⩾ 1, λ > 0 and sufficiently
large m and n such that the constraints of Eq. (18) are satisfied, it holds with probability at least 1 − 4e−τ that

∥(ĈF̂ + λ Id)
−1/2 (ĈF + λ Id)

1/2∥
HX→HX

⩽
√

6

5
.

Proof. By Lemma 16, we obtain that

∥(ĈF̂ + λ Id)
−1/2 (ĈF + λ Id)

1/2∥
HX→HX

⩽ (1 − t)−1/2,

where t = ∥(ĈF + λ Id)
−1/2 (ĈF − ĈF̂ ) (ĈF + λ Id)

−1/2∥
HX→HX

⩽ λ−1 ∥ĈF − ĈF̂ ∥HX→HX
. By Lemma 7, under

the assumptions that ∥F∗ − F̂ξ∥L2(Z;HX) ⩽ 1 and ∥F∗ − F̂ξ∥αZ
⩽ 1, with Pn-probability over 1 − 4e−τ , it holds

∥ĈF − ĈF̂ ∥HX→HX
⩽ J (

√
τ

n
∥F∗ − F̂ξ∥αZ

+ ∥F∗ − F̂ξ∥L2(Z;HX)) .

Under the constraints of Eq. (18), it implies that with probability over 1 − 4e−τ , t ⩽ 1
6
, and therefore,

∥(ĈF̂ + λ Id)
−1/2 (ĈF + λ Id)

1/2∥
HX→HX

⩽
√

6

5
.
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Lemma 10. Let Assumptions (SRCZ) and (EMBZ) hold with αZ ⩽ βZ . For any τ ⩾ 1, λ > 0 and sufficiently
large m and n such that the constraints of Eq. (18) are satisfied, it holds with probability at least 1 − 6e−τ that

∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1/2∥

HX→HX

⩽ 3.

Proof. We use Lemma 16 to obtain

∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1/2∥

HX→HX

⩽ (1 − t)−1/2,

when t ≐ ∥Aλ∥HX→HX
< 1, with Aλ ≐ (CF + λ Id)−1/2 (CF − ĈF̂ ) (CF + λ Id)−1/2. By Lemma 8, under the

constraints of Eq. (18), with probability over 1 − 6e−τ , t ⩽ 5/6, and therefore,

∥(CF + λ Id)1/2 (ĈF̂ + λ Id)
−1/2∥

HX→HX

⩽
√
6 ⩽ 3.

Lemma 11. For any τ ⩾ 1, λ > 0 and sufficiently large m and n such that the constraints of Eq. (18) are
satisfied, it holds with probability at least 1 − 2e−τ that

∥(ĈF + λ Id)
−1/2 (CF + λ Id)1/2∥

HX→HX

⩽ 2.

Proof. By Lemma 16,

∥(ĈF + λ Id)
−1/2 (CF + λ Id)1/2∥

HX→HX

⩽ (1 − t)−1/2,

with t = ∥(CF + λ Id)−1/2 (CF − ĈF ) (CF + λ Id)−1/2∥
HX→HX

. By Lemma 6, for τ ⩾ 1, λ > 0 and n ⩾ 8τgλκ2
Xλ−1,

with probability over 1 − 2e−τ ,

∥(CF + λ Id)−1/2 (CF − ĈF ) (CF + λ Id)−1/2∥
HX→HX

⩽ 2

3
,

and therefore,

∥(ĈF + λ Id)
−1/2 (CF + λ Id)1/2∥

HX→HX

⩽
√
3 ⩽ 2.

H Auxiliary Results

The following theorem is adapted from Fischer and Steinwart (2020) and studies the generalization error of
kernel ridge regression.

Theorem 14. Consider a pair of random variables (Y,Z) defined on R ×EZ with conditional mean function
f∗ ∶= E[Y ∣ Z] and marginal distribution πZ for Z. Let H be a RKHS of functions from EZ to R with kernel
k(z, z′) = ⟨kz, kz′⟩H , where kz ∈H denotes the canonical feature map. Given λ > 0 and (zi, yi)ni=1 independently
sampled from the same distribution as (Y,Z), let f̄λ be the kernel ridge estimator:

f̄λ = argmin
f∈H

1

n

n

∑
i=1

(yi − f(zi))2 + λ∥f∥2H .

Finally let Σ = E[kZ ⊗ kZ] denotes the covariance associated to (H,πZ), and NΣ(λ) = Tr((Σ + λ IdH)−1Σ),
λ > 0 denotes the effective dimension. Assume the following:
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1. For πZ−almost all z ∈ EZ , k(z, z) ⩽ κ;

2. There exist σ,L > 0 such that for all m ⩾ 2, E[(Y − f∗(Z))m ∣ Z] ⩽ 1
2
m!σ2Lm−2, πZ−almost surely;

3. There exist p ∈ (0,1] and a constant D > 0 such that NΣ(λ) ⩽Dλ−p;

4. There exists β ∈ [1,2] such that ∥Σ− β−1
2 f∗∥H ⩽ B.

Then for the abbreviations

gλ ≐ log(2eNΣ(λ)
∥Σ∥H→H + λ
∥Σ∥H→H

)

Aλ,τ ≐ 8τgλκ2λ−1,

(35)

and 0 ⩽ θ ⩽ 1, τ ⩾ 1,0 < λ ⩽ 1, and n ⩾ Aλ,τ , the following bound is satisfied with Pn-probability not less than
1 − 4e−τ ,

∥Σ 1−θ
2 (f̄λ − f∗) ∥2H ⩽ J (λβ−θ + τ2

nλθ+p
(1 + 1

nλ1−p
)) ,

where J is a constant depending on B,σ,L,D,κ and ∥f∗∥H .

Proof. Let ∥ ⋅ ∥θ be the interpolation norm introduced in Fischer and Steinwart (2020, Section 2). By Fischer
and Steinwart (2020, Lemma 12) and the definition of the interpolation norm, for any element f ∈H and θ ⩾ 0,
we have ∥f∥θ = ∥Σ

1−θ
2 f∥H . Therefore, assumption 4. with β ⩾ 1 is equivalent to assumption (SRC) in Fischer

and Steinwart (2020) (i.e. ∥f∗∥β ⩽ B in their notation). As k is almost surely bounded we take α = 1 and
∥kα∥∞ = κ (see Fischer and Steinwart (2020, Eq. (16))) in assumption (EMB) in Fischer and Steinwart (2020).

Combining an approximation-estimation error decomposition (Fischer and Steinwart, 2020, Eq. (16)), Lemma 14
(for the approximation error) and Theorem 16 (for the estimation error) from Fischer and Steinwart (2020), we
obtain that for 0 ⩽ θ ⩽ 1, τ ⩾ 1, and n ⩾ Aλ,τ , the following bound is satisfied with Pn-probability not less than
1 − 4e−τ ,

∥Σ 1−θ
2 (f̄λ − f∗) ∥2H ⩽ B2λβ−θ + 576τ2

nλθ

⎛
⎝
σ2NΣ(λ) + κ2

∥f∗ − fλ∥2L2(Z)

λ
+ 2κ2

max{L2, ∥f∗ − fλ∥2L∞(Z)}
nλ

⎞
⎠
,

where fλ ≐ argminf∈H E [(Y − f(Z))2] + λ∥f∥2H . Firstly, by Fischer and Steinwart (2020, Lemma 14),

∥f∗ − fλ∥2L2(Z)
⩽ ∥f∗∥2β λ

β ⩽ Bλβ .

Secondly, the expression of fλ can be simplified as follows, using f∗ ∈H and the reproducing property,

fλ = argmin
f∈H

E [(f∗(Z) − f(Z))]2 + λ∥f∥2H

= argmin
f∈H

E [⟨f∗ − f, kZ⟩2H] + λ∥f∥2H

= argmin
f∈H

∥Σ1/2(f∗ − f)∥2H + λ∥f∥2H

= argmin
f∈H

⟨(Σ + λ IdH)f, f⟩H − 2⟨Σf∗, f⟩H

= (Σ + λ IdH)−1Σf∗.

Therefore, f∗ − fλ = λ(Σ + λ IdH)−1f∗, and we obtain the following upper bound,

∥f∗ − fλ∥L∞(Z) ⩽ κ ∥f∗ − fλ∥H = λκ ∥(Σ + λ IdH)
−1f∗∥H ⩽ κ ∥f∗∥H .
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Thirdly, by assumption 3., NΣ(λ) ⩽Dλ−p. We finally obtain that,

∥Σ 1−θ
2 (f̄λ − f∗) ∥2H ⩽ B2λβ−θ + 576τ2

nλθ

⎛
⎝
σ2Dλ−p + κ2B2λβ−1 + 2κ2max{L2, κ2 ∥f∗∥2H}

nλ

⎞
⎠

⩽ B2λβ−θ + 576τ2

nλθ+p

⎛
⎝
σ2D + κ2B2λβ−1+p + 2κ2max{L2, κ2 ∥f∗∥2H}

nλ1−p

⎞
⎠

⩽ B2λβ−θ + 576τ2

nλθ+p

⎛
⎝
σ2D + κ2B2 + 2κ2max{L2, κ2 ∥f∗∥2H}

nλ1−p

⎞
⎠

where in the last step, we use λ ⩽ 1 with β ⩾ 1.

Proposition 5. Let h∗, hλ, h̄λ, be defined in Eq. (8), Eq. (10) and Eq. (11) respectively. Then h∗, hλ ∈R(CF )
and almost surely h̄λ ∈R(CF ).

Proof. It follows from Lemma 15 and Corollary 2.

Lemma 12. Let F ∈ G, then, for πZ-almost all z ∈ EZ , ∥F (z)∥HX
⩽ κZ∥F ∥G .

Alternatively, if (EMBZ) holds and F satisfies (SRCZ) with αZ ⩽ βZ , then for πZ-almost all z ∈ EZ , ∥F (z)∥HX
⩽

AZ∥F ∥αZ
⩽ κ

βZ−αZ
2

Z AZBZ .

Proof. By Theorem 1, since F ∈ G, there is an operator C ∈ S2(HZ ,HX) such that for all z ∈ EZ , F (z) = CϕZ(z)
and ∥F ∥G = ∥C∥S2 . Therefore, for πZ-almost all z ∈ EZ

∥F (z)∥HX
= ∥CϕZ(z)∥HX

⩽ κZ∥C∥HZ→HX
⩽ κZ∥C∥S2 = κZ∥F ∥G ,

where we used Assumption 1: kZ(z, z) ⩽ κ2
Z for πZ-almost all z ∈ EZ .

Under (EMBZ), it is shown in Lemma 4 Li et al. (2022a) that for all functions F ∶ EZ → HX such that
∥F ∥αZ

< +∞,
∥F ∥L∞(Z;HX) ⩽ AZ∥F ∥αZ

.

To conclude we show that since F satisfies (SRCZ) with αZ ⩽ βZ then ∥F ∥αZ
⩽ ∥F ∥βZ

. Indeed, since
F ∈ L2(Z;HX), by Remark 1, there is an operator C ∈ S2(R(LZ),HX) such that F = Ψ(C) and by Eq. (14),
for any θ ⩾ 0,

∥F ∥θ = ∥CL
−θ/2
Z ∥S2(L2(Z),HX).

Since C ∈ S2(R(LZ),HX), exploiting the spectral decomposition of LZ (see Eq. (3)) and using the fact that
{√µX,ieX,i ⊗ [eZ,j]}i∈IX ,j∈IZ is an ONB of S2(R(LZ),HX) (see Definition 5), we have

∥F ∥2αZ
= ∑

i∈IX

∑
j∈IZ

µ−αZ

Z,i ⟨C,
√
µX,ieX,i ⊗ [eZ,j]⟩2S2

= 1

καZ

Z

∑
i∈IX

∑
j∈IZ

( κZ

µZ,i
)
αZ

⟨C,√µX,ieX,i ⊗ [eZ,j]⟩2S2

⩽ 1

καZ

Z

∑
i∈IX

∑
j∈IZ

( κZ

µZ,i
)
βZ

⟨C,√µX,ieX,i ⊗ [eZ,j]⟩2S2

= κβZ−αZ

Z ∥F ∥2βZ
.
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The following theorem provides convergence guarantees for learning the conditional mean embedding F∗.

Theorem 15 (Theorem 4 Meunier et al. (2024)). Let gξ be a filter function with qualification ρ ⩾ 1 used to
build the estimator F̂ξ on D1 with Eq. (7). Let Assumptions 1, (EVDZ) and (EMBZ) hold with 0 < pZ ⩽ αZ ⩽ 1.
With 0 ⩽ γ ⩽ 1, if (SRCZ) is satisfied with max{γ,α} < βZ ⩽ 2ρ, we have, taking ξm = Θ (m−

1
βZ+pZ ), that there

is a constant J > 0 independent of m ⩾ 1 and τ ⩾ 1 such that

∥F̂ξ − F∗∥
2

γ
⩽ τ2Jm−

βZ−γ

βZ+pZ

is satisfied for sufficiently large m ⩾ 1 with Pm-probability not less than 1 − 4e−τ . In particular, by Assump-
tion (EMBZ),

∥F̂ξ − F∗∥
2

L∞(Z;HX)
⩽ A2

Z ∥F̂ξ − F∗∥
2

αZ
⩽ τ2AZJm

−
βZ−αZ
βZ+pZ .

Lemma 13 (Lemma 25 Fischer and Steinwart (2020)). For λ > 0 and 0 ⩽ α ⩽ 1, let the function fλ,α ∶ [0,∞)→ R
be defined by fλ,α(t) ≐ tα/(λ + t). Then,

sup
t⩾0

fλ,α(t) ⩽ λα−1.

In the remainder of this section, we fix H a separable Hilbert space.

Lemma 14 (Löwner-Heniz theorem Heinz (1951)). x↦ xω is operator monotone for ω ∈ [0,1]. Therefore for
any two bounded positive semidefinite operators A,B acting on H, if A ⩽ B, then for any ω ∈ [0,1], Aω ⩽ Bω.

Proposition 6. Let A,B be two bounded, self-adjoint operators acting on H.

1. If there is a constant c < +∞, such that ∥Ax∥H ⩽ c∥Bx∥H for all x ∈ H, then R(A) ⊆ R(B) and
∥B†A∥H→H ⩽ c;

2. If R(A) ⊆R(B), then B†A is a well-defined bounded operator on H and ∥Ax∥H ⩽ c∥Bx∥H for all x ∈H
with c = ∥B†A∥H→H .

For details on the pseudo-inverse B†, see Engl et al. (2000).

Proof. 1. Consider the operator S0 defined on R (B) by S0 (Bx) = Ax. The operator S0 is well-defined since
by assumption the condition Bx = 0 implies Ax = 0. Therefore, if x,x′ ∈H are such that Bx = Bx′, then
Ax = Ax′. Moreover, using the assumption again, S0 is bounded and ∥S0∥H→H ⩽ c. Hence S0 extends
uniquely to a bounded operator S1 ∶ R (B) → R (A) with ∥S1∥H→H = ∥S0∥H→H . Let S be the operator
defined by Sy = S1y if y ∈ R (B) and Sy = 0 if y ∈ R (B)

⊥
. Then S is a bounded operator satisfying

SB = S0B = A. Hence A = BS∗. Thus
R (A) ⊆R (B) .

We conclude by observing that S∗ = B†A and using ∥S∗∥H→H = ∥S∥H→H ⩽ ∥S1∥H→H ⩽ c.

2. Under the assumption that R(A) ⊆ R(B), Q ≐ B†A is well-defined, bounded and such that A = BQ
(Theorem A.1 Klebanov et al., 2021). Therefore A = Q∗B which implies that for all x ∈ H, ∥Ax∥H ⩽
∥Q∗∥H∥Bx∥H = ∥Q∥H∥Bx∥H .

Lemma 15. Let X be a a random variable taking values in H and admitting a Trace class covariance operator
C = E[X ⊗X]. Then, for all f ∈H,

f ∈ N (C) ⇐⇒ ⟨f,X⟩H = 0 almost surely.
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Proof. Assume f ∈ N (C), then
0 = ⟨f,Cf⟩H = E[⟨f,X⟩2H],

and therefore ⟨f,X⟩H = 0 a.e. The reverse direction is treated similarly, assume that ⟨f,X⟩H = 0 a.e., then
re-using

0 = E[⟨f,X⟩2H] = ⟨f,Cf⟩H = ∥C1/2f∥2H
it implies f ∈ N (C1/2) ⊆ N (C), which concludes the proof.

Corollary 2. Let X be a a random variable taking values in H and admitting a Trace class covariance operator
C = E[X ⊗X]. Let X1, . . . ,Xn be i.i.d random variables with the same law as X. Let Ĉn ≐ 1

n ∑
n
i=1Xi ⊗Xi be

the empirical covariance operator. Then,

Pn (R (Ĉn) ⊆R (C)) = 1.

Proof. It is equivalent to show that almost surely, N (C) ⊆ N (Ĉn). Let us take f ∈ N (C). We have,

⟨f, Ĉnf⟩H =
1

n

n

∑
i=1

⟨f,Xi⟩2H = 0,

almost surely, where we used Lemma 15. This implies that f ∈ N (Ĉ1/2
n ) ⊆ N (Ĉn), which concludes the

proof.

Theorem 16 (Theorem 26 Fischer and Steinwart (2020) - Bernstein’s Inequality). Let (Ω,B, P ) be a probability
space and ξ ∶ Ω→H be a random variable with

EP ∥ξ∥mH ⩽
1

2
m!σ̃2L̃m−2

for all m ⩾ 2. Then, for τ ⩾ 1 and n ⩾ 1, the following concentration inequality is satisfied

Pn ⎛
⎝
(ω1, . . . , ωn) ∈ Ωn ∶ ∥ 1

n

n

∑
i=1

ξ (ωi) −EP ξ∥
2

H

⩾ 32τ
2

n
(σ̃2 + L̃2

n
)
⎞
⎠
⩽ 2e−τ

In particular, the above condition is satisfied if the following two bounds hold,

∥ξ∥H ⩽ L̃ a.s.
E [∥ξ∥2H] ⩽ σ̃2.

Lemma 16 (Proposition 7 Rudi et al. (2015)). Let A, B be two bounded positive semidefinite operators acting
on H and λ > 0. Then,

∥(A + λ IdH)−1/2B1/2∥
H→H

⩽ ∥(A + λ IdH)−1/2(B + λ IdH)1/2∥H→H ⩽ (1 − β)
−1/2,

when
β = ∥(B + λ IdH)−1/2(B −A)(B + λ IdH)−1/2∥H→H < 1.

Lemma 17. Let A,B be compact, self-adjoint operators acting on H, whose positive eigenvalues are listed in
decreasing order:

λ1(A) ⩾ λ2(A) ⩾ ⋯ > 0
λ1(B) ⩾ λ2(B) ⩾ ⋯ > 0.

Then if A ⩽ B, for i ⩾ 1, λi(A) ⩽ λi(B).
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Proof. By the Min-Max Theorem, for all i ⩾ 1,

λi(B) =min
Si−1

max
x∈S⊥i−1,∥x∥=1

⟨Bx,x⟩H ⩾min
Si−1

max
x∈S⊥i−1,∥x∥=1

⟨Ax,x⟩H = λi(A),

where the minimum is taken over all subspaces Si−1 ⊂H of dimension n − 1.

Proposition 7. Let A,B be two compact self-adjoint positive semi-definite operators acting on an Hilbert space
H and let P be the orthogonal projection on R(B). If PAP ⩽ B, then for all δ > 0,

P (B + δIH)−1 P ⩽ P (A + δIH)−1 P.

Furthermore, if f ∈R(B) and f ∈R(A1/2), we have

⟨f,B†f⟩H ⩽ ⟨f,A†f⟩H .

Proof. For any t, α > 0 define Ct,α ≐ B + tP +αP⊥. Then if t(α − ∥A∥) ⩾ ∥A∥2, we have A ⩽ Ct,α. Indeed, for all
f ∈H,

⟨f, (Ct,α −A)f⟩H = ⟨Pf + P⊥f, (Ct,α −A)(Pf + P⊥f)⟩H
= ⟨f,Bf⟩H + t⟨Pf,Pf⟩H − ⟨f,PAPf⟩H − 2⟨Pf,AP⊥f⟩H + α⟨P⊥f,P⊥f⟩H − ⟨P⊥f,AP⊥f⟩H
≥ t∥Pf∥2H − 2∥A∥∥Pf∥H∥P⊥f∥H + (α − ∥A∥)∥P⊥f∥2H

= t∥Pf∥2H − 2∥A∥∥Pf∥H∥P⊥f∥H +
∥A∥2
t
∥P⊥f∥2H −

∥A∥2
t
∥P⊥f∥2H + (α − ∥A∥)∥P⊥f∥2H

= (
√
t∥Pf∥H −

∥A∥√
t
∥P⊥f∥H)

2

− ∥A∥
2

t
∥P⊥f∥2H + (α − ∥A∥)∥P⊥f∥2H

⩾ 0.

where the last inequality follows from t(α − ∥A∥) ⩾ ∥A∥2. Since B is compact self-adjoint positive semi-definite,
it admits a decomposition

B =∑
i⩾1

ωibi ⊗ bi,

where for all i ⩾ 1, (ωi, bi) are pairs of eigenvalues and eigenvectors of B such that ωi > 0 and {bi}i⩾1 forms a
orthonormal basis of R(B). Therefore, on one hand,

P (B + tP + δIH)−1P = P (∑
i⩾1

1

δ + t + ωi
bi ⊗ bi +

1

δ
P⊥)P =∑

i⩾1

1

δ + t + ωi
bi ⊗ bi,

and on the other hand,

P (Ct,α + δIH)−1P = P (∑
i⩾1

1

δ + t + ωi
bi ⊗ bi +

1

δ + αP⊥)P =∑
i⩾1

1

δ + t + ωi
bi ⊗ bi.

It follows that, for t(α − ∥A∥) ⩾ ∥A∥2,

P (B + tP + δIH)−1P = P (Ct,α + δIH)−1P ≤ P (A + δIH)−1P.

Let t→ 0+, the result follows: P (B + δIH)−1P ≤ P (A + δIH)−1P.

For the second part, let us consider f ∈R(B). Then Pf = f and

⟨f, (B + δIH)−1f⟩H ⩽ ⟨f, (A + δIH)−1f⟩H ,

by the first part of the proposition. Under the assumption that f ∈R(A1/2), ∥(A1/2)†f∥H < +∞ and taking the
limit with δ → 0+ gives the final result.
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