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A ADDITIONAL DEFINITIONS

Definition 3: A function f(·) is L-smooth, if there exists a positive constant L such that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2, ∀x, y ∈ X .

Definition 4: A convex function f(·) is λ-strongly convex with respect to some norm ‖ · ‖, if there
exists a positive constant λ such that

f(y) + 〈∇f(y), x− y〉+ λ

2
‖x− y‖2 ≤ f(x), ∀x, y ∈ X .

Definition 5: A function f(·) is Lipschitz continuous with factor G if for all x and y in X , the
following holds:

|f(x)− f(y)| ≤ G‖x− y‖, ∀x, y ∈ X .

B PROOF OF LEMMA 1

Consider single-step mirror descent update as follows:

x = argmin
y∈X

{
ft(x

′) + 〈∇ft(x′), y − x′〉+
1

α
Dr(y, x

′)

}
. (7)

Strong convexity of the above minimization objective implies

ft(x
′) + 〈∇ft(x′), x− x′〉+

1

α
Dr(x, x

′) ≤ (8)

ft(x
′) + 〈∇ft(x′), y − x′〉+

1

α
Dr(y, x

′)− 1

α
Dr(y, x), ∀y ∈ X .

Furthermore, from the smoothness condition, we have

ft(x) ≤ ft(x′) + 〈∇ft(x′), x− x′〉+
L

2
‖x− x′‖2. (9)

Substituting equation 9 into equation 8, and setting y = x∗t , we obtain

ft(x)−
L

2
‖x− x′‖2 + 1

α
Dr(x, x

′) ≤ (10)

ft(x
′) + 〈∇ft(x′), x∗t − x′〉+

1

α
Dr(x

∗
t , x
′)− 1

α
Dr(x

∗
t , x).

Since α ≤ 1
L , and regularization function r(·) is 1-strongly convex, we have

1

α
Dr(x, x

′) ≥ LDr(x, x
′) ≥ L

2
‖x− x′‖2. (11)

Next, we exploit the strong convexity of the cost function, i.e.,

ft(x
′) + 〈∇ft(x′), x∗t − x′〉 ≤ ft(x∗t )− λDr(x

∗
t , x
′). (12)

Combining equation 10, equation 11, and equation 12, we obtain

ft(x) ≤ ft(x∗t )− λDr(x
∗
t , x
′) +

1

α
Dr(x

∗
t , x
′)− 1

α
Dr(x

∗
t , x). (13)

Next, we use the result of (Hazan & Kale, 2014), which states that for evey λ-strongly convex function
ft(.), the following bound holds:

ft(x)− ft(x∗t ) ≥ λDr(x
∗
t , x), (14)

where x∗t = argminx∈X ft(x). Combining the above with equation 13, we obtain

Dr(x
∗
t , x) ≤ βDr(x

∗
t , x
′), (15)

where β = 1− 2λα
1+λα . �
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C PROOF OF THEOREM 2

C.1 KEY LEMMAS

The following two lemmas pave the way for our regret analysis leading to Theorem 2. Lemma 7
presents an alternative form for the mirror descent update.

Lemma 7 Suppose there exists zt+1 that satisfies ∇r(zt+1) = ∇r(xt) − α∇ft(xt), for some
strongly convex function r(·), and step size α. Then, the following updates are equivalent

xt+1 = argmin
x∈X

Dr(x, zt+1), (16)

xt+1 = argmin
x∈X

{
〈∇ft(xt), x〉+

1

α
Dr(x, xt)

}
. (17)

Proof. We begin by expanding equation 16 as follows:

xt+1 = argmin
x∈X

{r(x)− r(zt+1)− 〈∇r(zt+1), x− zt+1〉}

= argmin
x∈X

{r(x)− 〈∇r(zt+1), x〉}

= argmin
x∈X

{r(x)− 〈∇r(xt)− α∇ft(xt), x〉}

= argmin
x∈X

{α〈∇ft(xt), x〉+ r(x)− r(xt)− 〈∇r(xt), x− xt〉}

= argmin
x∈X

{〈∇ft(xt), x〉+
1

α
Dr(x, xt)}. (18)

Thus, the update in equation 16 is equivalent to equation 17. �

Lemma 8 Under the same convexity and smoothness condition stated in Theorem 2, let xt be the
sequence of decisions generated by OMMD. Then, the following bound holds:

‖xt+1 − x∗t ‖ ≤
√
LrβM‖xt − x∗t ‖, (19)

where Lr is the smoothness factor of the regularization function r(·), and β is the shrinking factor
obtained in Lemma 1.

Proof. Using the result of Lemma 1, OMMD with M mirror descent steps guarantees

Dr(x
∗
t , xt+1) ≤ βMDr(x

∗
t , xt). (20)

Since the regularization function r(·) is 1-strongly convex, we have

‖x∗t − xt+1‖2

2
≤ r(x∗t )− r(xt+1)− 〈∇r(xt+1), x

∗
t − xt+1〉. (21)

Next, we exploit the smoothness condition of the regularization function r(·), i.e.,

r(x∗t )− r(xt)− 〈∇r(xt), x∗t − xt〉 ≤
Lr
2
‖x∗t − xt‖2. (22)

By combining the above with equation 20, and equation 21, and using the definition of Bregman
divergence, we obtain

‖xt+1 − x∗t ‖2 ≤ LrβM‖xt − x∗t ‖2. (23)

Taking the square root on both sides of equation 23 completes the proof. �
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C.2 PROOF OF THE THEOREM

Now, we are ready to present the proof of Theorem 2. In this proof, we will use the following
properties of Bregman divergence.

(a) By direct substitution, the following equality holds for any x, y, z ∈ X ,

〈∇r(z)−∇r(y), x− y〉 = Dr(x, y)−Dr(x, z) +Dr(y, z). (24)

(b) If x = argminx′∈X Dr(x
′, z), i.e., x is the Bregman projection of z into the set X , then for any

arbitrary point y ∈ X , we have

Dr(y, z) ≥ Dr(y, x) +Dr(x, z). (25)

To bound the dynamic regret, we begin by using the strong convexity of the cost function ft(·), i.e.,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt), xt − x∗t 〉 − λDr(x
∗
t , xt)

≤ 1

α
〈∇r(xt)−∇r(zt+1), xt − x∗t 〉 − λDr(x

∗
t , xt)

≤ 1

α

(
Dr(x

∗
t , xt)−Dr(x

∗
t , zt+1) +Dr(xt, zt+1)

)
− λDr(x

∗
t , xt)

≤ 1

α

(
Dr(x

∗
t , xt)−Dr(x

∗
t , xt+1)−Dr(xt+1, zt+1) +Dr(xt, zt+1)

)
− λDr(x

∗
t , xt)

≤
( 1
α
− λ
)
Dr(x

∗
t , xt) +

1

α

(
Dr(xt, zt+1)−Dr(xt+1, zt+1)

)
≤
( 1
α
− λ
)(ft(xt)− ft(x∗t )

λ

)
+

1

α

(
Dr(xt, zt+1)−Dr(xt+1, zt+1)

)
, (26)

where in the second line we have used the alternative mirror descent update stated in Lemma 7, i.e.,
∇ft(xt) = (1/α)(∇r(xt) − ∇r(zt+1)). To obtain the third line, we have utilized the Bregman
divergence property in equation 24. We have used the Bregman projection property in equation 25 in
the fourth line. By omitting some negative terms, and using equation 14, we obtain the right-hand
side of equation 26.

Thus, if α > 1
2λ , we have

ft(xt)− ft(x∗t ) ≤
λ

2αλ− 1

(
Dr(xt, zt+1)−Dr(xt+1, zt+1)

)
(a)

≤ λK

2αλ− 1
‖xt+1 − xt‖

≤ λK

2αλ− 1

(
‖xt+1 − x∗t ‖+ ‖xt − x∗t ‖

)
(b)

≤ λK

2αλ− 1
(1 +

√
LrβM )‖xt − x∗t ‖, (27)

where we have used the Lipschitz continuity of Bregman divergence to obtain inequality (a), and we
have applied Lemma 8 to obtain inequality (b). Summing equation 27 over time, we have

RegdT =

T∑
t=1

ft(xt)− ft(x∗t ) ≤
λK

2αλ− 1
(1 +

√
LrβM )

T∑
t=1

‖xt − x∗t ‖. (28)

Now, we proceed to bound
∑T
t=1 ‖xt − x∗t ‖ as follows:

T∑
t=1

‖xt − x∗t ‖ = ‖x1 − x∗1‖+
T∑
t=2

‖xt − x∗t ‖

≤ ‖x1 − x∗1‖+
T∑
t=2

‖xt − x∗t−1‖+ ‖x∗t−1 − x∗t ‖

(a)

≤ ‖x1 − x∗1‖+
T∑
t=2

√
LrβM‖xt−1 − x∗t−1‖+

T∑
t=2

‖x∗t − x∗t−1‖, (29)
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where we used the result of Lemma 8 to obtain inequality (a). If M ≥ d
(
1
2 + 1

2αλ

)
logLre, we have

βM =

(
1− 2αλ

1 + αλ

)M
≤ exp

(
−2Mαλ

1 + αλ

)
<

1

Lr
, (30)

which implies LrβM < 1. Therefore, by combining equation 29 and equation 30, we have

T∑
t=1

‖xt − x∗t ‖ ≤
‖x1 − x∗1‖

1−
√
LrβM

+

∑T
t=2 ‖x∗t − x∗t−1‖
1−

√
LrβM

. (31)

Finally, substituting equation 31 into equation 28 completes the proof. �

D PROOF OF THEOREM 3

In order to bound the dynamic regret, we begin by the smoothness condition of the cost function
ft(.), i.e.,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(x∗t ), xt − x∗t 〉+
L

2
‖xt − x∗t ‖2

≤ ‖∇ft(x∗t )‖∗‖xt − x∗t ‖+
L

2
‖xt − x∗t ‖2. (32)

Next, we use the fact

‖∇ft(x∗t )‖∗‖xt − x∗t ‖ ≤
‖∇ft(x∗t )‖2∗

2θ
+
θ‖xt − x∗t ‖2

2
, (33)

for any arbitrary positive constant θ > 0. Thus, we have

ft(xt)− ft(x∗t ) ≤
‖∇ft(x∗t )‖2∗

2θ
+

(L+ θ)‖xt − x∗t ‖2

2
. (34)

Summing equation 34 over time, we obtain

RegdT =

T∑
t=1

ft(xt)− ft(x∗t ) ≤
T∑
t=1

‖∇ft(x∗t )‖2∗
2θ

+
L+ θ

2

T∑
t=1

‖xt − x∗t ‖2. (35)

Now, we proceed by bounding
∑T
t=1 ‖xt − x∗t ‖2 as follows:

T∑
t=1

‖xt − x∗t ‖2 = ‖x1 − x∗1‖2 +
T∑
t=2

‖xt − x∗t−1 + x∗t−1 − x∗t ‖2

≤ ‖x1 − x∗1‖2 +
T∑
t=2

(
2‖xt − x∗t−1‖2 + 2‖x∗t−1 − x∗t ‖2

)
≤ ‖x1 − x∗1‖2 + 2βMLr

T∑
t=1

‖xt − x∗t−1‖2 + 2

T∑
t=2

‖x∗t−1 − x∗t ‖2. (36)

We note that if M ≥ d
(
1
2 + 1

2αλ

)
log 2Lre, then 2βMLr < 1. Therefore, from equation 36 we can

obtain

T∑
t=1

‖xt − x∗t ‖2 ≤
‖x1 − x∗1‖2

1− 2βMLr
+

2

1− 2βMLr

T∑
t=2

‖x∗t − x∗t−1‖2. (37)

Substituting equation 37 into equation 35 completes the proof. �
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E PROOF OF THEOREM 5

The proof of Theorem 5 initially follows the first half of the proof of Theorem 2, which is repeated
here for completeness.

To analyze the dynamic regret, we first use the strong convexity of the cost function ft(·), i.e.,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt), xt − x∗t 〉 − λDr(x
∗
t , xt)

≤ 1

α
〈∇r(xt)−∇r(zt+1), xt − x∗t 〉 − λDr(x

∗
t , xt)

≤ 1

α

(
Dr(x

∗
t , xt)−Dr(x

∗
t , zt+1) +Dr(xt, zt+1)

)
− λDr(x

∗
t , xt)

≤ 1

α

(
Dr(x

∗
t , xt)−Dr(x

∗
t , xt+1)−Dr(xt+1, zt+1) +Dr(xt, zt+1)

)
− λDr(x

∗
t , xt)

≤
( 1
α
− λ
)
Dr(x

∗
t , xt) +

1

α

(
Dr(xt, zt+1)−Dr(xt+1, zt+1)

)
≤
( 1
α
− λ
)(ft(xt)− ft(x∗t )

λ

)
+

1

α

(
Dr(xt, zt+1)−Dr(xt+1, zt+1)

)
, (38)

where in the second line we have used the alternative mirror descent update stated in Lemma 7, i.e.,
∇ft(xt) = (1/α)(∇r(xt) − ∇r(zt+1)). To obtain the third line, we have utilized the Bregman
divergence property in equation 24. We have used the Bregman projection property in equation 25 in
the fourth line. By omitting some negative terms, and using equation 14, we obtain the right-hand
side of equation 38.

Therefore, if α > 1
2λ , we have

ft(xt)− ft(x∗t ) ≤
λ

2αλ− 1
(Dr(xt, zt+1)−Dr(xt+1, zt+1)) . (39)

Now we continue to bound Dr(xt, zt+1). By the definition of Bregman divergence, we have

Dr(xt, zt+1) +Dr(zt+1, xt) = 〈∇r(xt)−∇r(zt+1), xt − zt+1〉
= 〈α∇ft(xt), xt − zt+1〉
≤ ‖α∇ft(xt)‖∗‖xt − zt+1‖

≤ α2

2
‖∇ft(xt)‖2∗ +

‖xt − zt+1‖2

2
. (40)

The strong convexity of the regularization function implies

‖xt − zt+1‖2

2
≤ r(zt+1)− r(xt)− 〈∇r(xt), zt+1 − xt〉 = Dr(zt+1, xt). (41)

Combining the above with equation 40, we obtain

Dr(xt, zt+1) ≤
α2

2
‖∇ft(xt)‖2∗. (42)

By substituting equation 42 into equation 40, and summing over time, we have

RegdT =

T∑
t=1

ft(xt)− ft(x∗t ) ≤
α2λ

4αλ− 2
‖∇ft(xt)‖2∗. (43)

�

F CLOSED-FORM UPDATE FOR MIRROR DESCENT

In this section, we derive the close-form mirror descent update in equation 6.
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Let r(y) =
∑d
j=1 yj log(yj) be the negative entropy. Then, we have

Dr(y, y
i
t) =

d∑
j=1

[
yj log(yj)− yit,j log(yit,j)− (log(yit,j) + 1)(yj − yit,j)

]
=

d∑
j=1

yj log(
yj
yit,j

) + 〈1, y − yit〉 = DKL(y, y
i
t), (44)

where yit,j denotes the j-th component of the decision vector yit, and DKL(y, y
i
t) represents the KL

divergence between y and yit.

Now consider the update in equation 5, which can be written as follows:

minimizey∈X 〈∇ft(yit), y〉+
1

α

d∑
j=1

yj log(
yj
yit,j

) (45)

subject to 〈1, y〉 = 1, y ≥ 0.

The Lagrangian of the above problem is given by

L(y, λ, γ) = 〈∇ft(yit), y〉+
d∑
j=1

[ 1
α
yj log(

yj
yit,j

) + λyj − γjyj
]
− λ, (46)

where λ ∈ R and γ ∈ Rd+ are Lagrange multipliers corresponding to the constraints. Next, we take
derivative with respect to y to obtain

∂

∂yj
L(y, λ, γ) = ∇ft(yit)j +

1

α
log(yj) +

1

α
− 1

α
log(yit,j) + λ− γj . (47)

Setting the above to zero results in the following closed-form update:

yi+1
t,j =

yit,j exp(−α∇ft(yit,j))∑d
j=1 y

i
t,j exp(−α∇ft(yit,j))

. (48)

�

G ADDITIONAL EXPERIMENTS

In this section, we present additional experiments to study the performance of OMMD. In the first
experiment, we use the MNIST dataset. In the second experiment, we consider a switching problem
where the cost function switches between two quadratic functions after a specific number of rounds.

First, we consider the well-known MNIST digits dataset, where every data sample ω is an image of
size 28× 28 pixel that can be represented by a 784-dimensional vector, i.e., d = 784. Each sample
corresponds to one of the digits in {0, 1, . . . , 9}, and thus, there are c = 10 different classes. The
goal of the learner is to classify streaming digit images in an online fashion.

We consider a robust regression problem, where the cost function for each data sample is given by

f(x, (ωi, zi)) = ‖ωTi x− zi‖21,

where x is the optimization variable, belonging to the constraint set is X = {x : x ∈ Rn+, ‖ x ‖1= 1}.
We use the negative entropy regularization function, i.e., r(x) =

∑d
i=1 xi log(xi), which is strongly

convex with respect to the l1−norm. We set the step size α = 0.1.

From Fig. 3, we again observe that OMMD consistently outperforms the other alternatives. In
particular, compared with DMD, applying M = 10 steps of mirror descent can reduce the dynamic
regret up to 20%. We also see that the dynamic regret grows linearly with the number of rounds,
which is a natural consequence of steady fluctuation in the sequence of dynamic minimizers x∗t as
explained before.
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Figure 3: Dynamic regret comparison on
MNIST dataset.
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Figure 4: Dynamic regret comparison for
switching cost.

Next, we consider the case where the cost function switches between two functions. Both functions
are in the quadratic form ft(x) = ‖Atx− bt‖22, where At ∈ Rd×d, and bt ∈ Rd. In particular, we
assume that the parameter At is chosen among

A
(1)
t = diag(

1

tp1
,
1

tp1
, . . . ,

1

tp1︸ ︷︷ ︸
d1

, 0, 0, . . . , 0︸ ︷︷ ︸
d2

), and A
(2)
t = diag(0, 0, . . . , 0︸ ︷︷ ︸

d1

,
1

tp1
,
1

tp1
, . . . ,

1

tp1︸ ︷︷ ︸
d2

),

such that d1 + d2 = d, and bt = [ 1
tp2 , . . . ,

1
tp2 ]
′. Therefore, at each round the cost function is either

f
(1)
t (x) = ‖A(1)

t x− bt‖22 or f (2)t (x) = ‖A(2)
t x− bt‖22. We assume that the cost function switches

between f (1)t (·) and f (2)t (·) every τ rounds. In our experiment, we set d1 = 10, d = 1000, p1 = 0.9,
and p2 = 0.1. We further set the switching period τ = 10, and parameter α = 0.02. The dynamic
regret roughly reflects the accumulated mismatch error over time.

In Fig. 4, we compare the performance of OMMD with that of other alternatives in terms of the
dynamic regret. OMMD with M = 10 nearly halves the dynamic regret of DMD after 300 rounds.
Furthermore, the benefit of applying multiple steps of mirror descent can be significant even for
smaller values of M .
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