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1. Introduction
Point defects are localised imperfections that

break the symmetry of a crystalline material, some-
times leading to drastic changes in physical and
structural properties. Although there has been con-
siderable effort to characterize and manipulate de-
fects for commercial applications, the huge compu-
tational cost of defect modelling has been a consid-
erable bottleneck. This study explores the use of
machine learning methods as a low-cost alternative,
focusing on predicting formation energies of point
defects using a property-driven approach. In doing
so, we introduce a novel, high-fidelity database built
from results calculated purely with hybrid-level den-
sity functional theory (DFT) and extensive ground-
state structural validation.

2. Database
Thus far, DFT has been the primary method to

obtain energetic and structural information about
point defects, and offers an excellent point of com-
parison to experimental results. However, a high
level of theory is necessary to accurately compute
the electronic structure. This increases the com-
putational cost exponentially, limiting analysis for
complex systems [1]. Furthermore, recent results
have shown that using DFT with standard single-
relaxation gradient-descent optimisation is unreli-
able in sampling complex energy landscapes, ne-
cessitating advanced structural searching methods
that further drive up the computational cost [2, 3].
These constraints render DFT impractical in viable
high-throughput workflows, an essential criterion
for large-scale screening of the vast chemical space
of dopants.
Instead, the use of machine learning (ML) in a

property-driven approach can bypass the often com-
plex stages of structural relaxations, mappingmulti-
dimensional relationships between the input site of
the defect in a host material and its formation en-
ergy. This will cut the computational expense sig-

nificantly and gives insights into the physical fea-
tures governing defect formation. However, to build
a ML model that is sufficiently accurate and univer-
sal, a highly diverse and accurate database is first re-
quired. Thus, this study involves the construction
of a point defect database consisting of over 1200+
intrinsic and extrinsic defect configurations ranging
frombinary to quarternary host systems, as well as a
wide range of different charge states. All datapoints
were calculated with hybrid-DFT and targeted bond
distortion analysis using the doped [4] and Shak-
eNBreak [5] codes, and compared with experimen-
tal results where possible. Some statistics on this
dataset are given in Table 1, and the diversity of the
database is shown in Figure 1. This database repre-
sents an excellent and reliable starting point to un-
derstand the relationships governing defect forma-
tion.

Fig. 1: Elemental diversity in the database.
Red represents elements present inhostmaterials,
whereas blue represents its presence as a dopant.

3. Feature space
The main target for the model is Ecombined, a sum

of all terms associated with only the structural re-
laxation of the defect supercell. This is the sum of
difference in energy between the pristine and defect
supercell (EX,q−EH ) and the charge correction term
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Table 1: Unique values for features in the dataset.
Unique defects refers to individual charge states for
each defect. Some defects have the same forma-
tion energies to other, unrelated defects, hence
the smaller count of f.e. than datapoints.

Feature Unique values

Host formula 23
Charge State 13
Unique defects 1231
Defect Formation En-
ergy

944

Space Group 14
Bandgap (eV) 23
Supercell Size 10

Ecorr(q). The other terms normally calculated for
the defect formation energy, as shown in Figure 2,
can either be inferred from the information of the
bulk material (qEF ), or rely on other adjacent cal-
culations not entirely related to the structural relax-
ation (Σniµi).
Excluding these terms does increase the y-range

(Ecombined) significantly, affecting model accuracy,
but limits information leakage between the training
and test sets and improves bias. As for the input fea-
ture space, features were defined to encode as much
atomic, electronic and structural information about
the defect atom and bulk outgoing/incoming sites.
Explicit labeling of the atomic numbers or names
was avoided to avoid biasing the model towards any
particular elements, instead encouraging learning
of physical trends. All input features were extracted
prior to the structural relaxation of the defect super-
cellwithmethodsbasedon theDOPED [4], pymatgen
[6, 7] and pydefect [8] open-source packages. A few
different structural representationswere also tested,
with best performance coming from the SOAP [9]
representation (n = 2, l = 2).

Fig. 2: DFT-calculated terms that constitute the de-
fect formation energies for point defects. Training
of themodelwas performed only on theEX,q−EH

and Ecorr terms. Adapted with permission from
Goyal et al. [10]

4. Performance
Upon considering prediction universality of the

model, the training, test and validation splits of the
dataset are fundamentally important. This study fo-

cused on maximising performance for four main
types of Ecombined prediction splits considering this;
(1) new charge states for a previously trained defect,
(2) new defects of a previously studied hostmaterial,
(3) previously unseen extrinsic defects (dopant), (4)
previously unseen host materials. Obtaining robust
accuracy for any of these alleviates significant com-
putational expense.
Figure 3 shows the performance of XGBoost [11]

model in prediction type (1), where the test set con-
tains charge states of defects that are excluded from
the training set. This is performed without any en-
coding of structural information, only containing
’metadata’ of the bulk and defect atoms and their
atomic features. This model achieves an average
MAE of 0.306 eV for new charge states. Considering
a range of ~22 eV of (lowest) defect formation en-
ergies Eformation, and a lack of structural informa-
tion, this is a promising result. As expected, per-
formance drops upon increasing blindness of the
test/validation sets from the training sets (going to
prediction types 2,3, and 4), and is increasingly de-
pendent on dataset splits. However, the standard
error observed for these (without explicit structural
encoding) is still relatively low compared to the typ-
ical range ofEformation, and there is much potential
for use as a screening study if not to replace the cal-
culations outright.

Fig. 3: Parity plot of current model performance us-
ing only "metadata". The energy range shown is
that of Ecombined, not Eformation.

Naturally, themodel’s performance will grow bet-
ter with (ongoing) additions to the input dataset, as
well as a more physically meaningful feature space.

4.1 Related work
While there have been a number of previous

studies aiming investigating this problem, most are
limited by the reliability of energies in their input
datasets. To create large datasets, these studies forgo
the necessary level of theory in their calculations,
minimising computational expense. With the high-
fidelity data implemented for this study, this issue is
not encountered. Further, ourmethodology extends
upon the excellent efforts of studies byWitman et al.
[12] and Kumagai et al. [8] to ensure an accurate in-
vestigation.
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