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Abstract

A general belief in fair classification is that fair-
ness constraints incur a trade-off with accuracy,
which biased data may worsen. Contrary to this
belief, Blum & Stangl (2019) show that fair clas-
sification with equal opportunity constraints even
on extremely biased data can recover optimally
accurate and fair classifiers on the original data
distribution. Their result is interesting because it
demonstrates that fairness constraints can implic-
itly rectify data bias and simultaneously overcome
a perceived fairness-accuracy trade-off. Their
data bias model simulates under-representation
and label bias in underprivileged population, and
they show the above result on a stylized data distri-
bution with i.i.d. label noise, under simple condi-
tions on the data distribution and bias parameters.

We propose a general approach to extend the re-
sult of Blum & Stangl (2019) to different fairness
constraints, data bias models, data distributions,
and hypothesis classes. We strengthen their result,
and extend it to the case when their stylized dis-
tribution has labels with Massart noise instead of
i.i.d. noise. We prove a similar recovery result for
arbitrary data distributions using fair reject option
classifiers. We further generalize it to arbitrary
data distributions and arbitrary hypothesis classes,
i.e., we prove that for any data distribution, if the
optimally accurate classifier in a given hypothesis
class is fair and robust, then it can be recovered
through fair classification with equal opportunity
constraints on the biased distribution whenever
the bias parameters satisfy certain simple condi-
tions. Finally, we show applications of our tech-
nique to time-varying data bias in classification
and fair machine learning pipelines.
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1. Introduction
Fairness in machine learning has been an important qualita-
tive and quantitative research topic for more than a decade
(Barocas et al., 2019; Mehrabi et al., 2021). Several quan-
titative fairness metrics and various bias mitigation tech-
niques developed over the years are available to practition-
ers as open-source fairness toolkits (Bellamy et al., 2018).
Fairness-accuracy trade-offs often seem inevitable, and bias
mitigation guarantees can fail when there is a mismatch
between train and test data distributions; it is a double
whammy when we get neither the desired accuracy nor
the desired fairness on deployment. Hence, it is important
to understand the role of fair classification and fairness con-
straints when the training data in machine learning pipelines
has systematic biases (Blum & Stangl, 2019; Konstantinov
& Lampert, 2022; Schrouff et al., 2022).

Blum & Stangl (2019) propose a model for data bias that
simulates systematic under-representation of the underprivi-
leged group and label bias/flip on the underprivileged pos-
itive population. Applying this data bias model to a styl-
ized data distribution with i.i.d. label noise, they prove a
recovery result that makes the following high-level point:
careful choice of fairness constraints can implicitly rectify
even extreme data bias and overcome a perceived fairness-
accuracy trade-off. Formally, for their stylized distribu-
tion with i.i.d. label noise, they prove that the optimal fair
classifier satisfying equal opportunity on a biased (or bias-
induced) data distribution coincides with the Bayes optimal
classifier (that also happens to be perfectly fair) on the orig-
inal data distribution, if the bias parameters satisfy certain
simple conditions. Their proof is tailored to equal opportu-
nity constraints and uses a careful case analysis and iterative
argument that is not amenable to arbitrary distributions or
hypothesis classes. They also show a specific distribution
where a similar result fails to hold if we use demographic
parity constraints instead of equal opportunity constraints.

We take a significantly different approach and observe that
the regression function for group-aware classification (i.e.,
the positive class probability conditioned on the input fea-
tures and sensitive attribute) undergoes a linear fractional
transformation when we apply various data bias models,
including the one proposed by Blum & Stangl (2019). This
observation plays an important role in our proofs because
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the optimal group-aware fair classifier among the hypoth-
esis class of all binary classifiers can be mathematically
characterized by group-dependent thresholds on the regres-
sion function (Menon & Williamson, 2018; Chzhen et al.,
2019). Under the conditions on the data distribution and
bias parameters as in Blum & Stangl (2019), we show that
the fairness-corrected thresholds applied to a linear frac-
tional transformation recover the Bayes optimal classifier
on the stylized distribution of Blum & Stangl (2019) with
i.i.d. label noise. Our proof uncovers a stronger version of
their result that these conditions on the bias parameters are
both necessary and sufficient. Moreover, our proof readily
extends to the case when the above distribution has Massart
or malicious label noise (Massart & Nédélec, 2006; Rivest
& Sloan, 1994; Sloan, 1996) instead of i.i.d. label noise. We
extend our recovery result to arbitrary data distributions by
considering reject option classifiers (Bartlett & Wegkamp,
2008; Cortes et al., 2016) that can abstain from prediction
on a small fraction of inputs by paying a penalty. We further
generalize our results to allow arbitrary data distribution as
well as arbitrary hypothesis class. Generalizing our ideas
beyond threshold-based arguments, we show that on arbi-
trary data distributions, if the optimal classifier in a given
arbitrary hypothesis class is fair and robust, then it can be
recovered through fair classification on the biased distribu-
tion, whenever the bias parameters satisfy certain simple
conditions. Finally, we propose multi-step models to cap-
ture time-varying data bias and machine learning pipeline,
and investigate necessary conditions on the data distribution
and bias parameters for similar recovery results in the finite
and infinite time horizons. Now we outline the organization
of our results in the paper.

• Section 3 contains our theoretical setup for data bias
and group-aware fair classification. In Subsection 3.1,
we describe some recently studied data bias models in
fair classification (Blum & Stangl, 2019; Dai & Brown,
2020; Wang et al., 2021; Biswas et al., 2019) (see Ex-
amples 3.1, 3.2, & 3.3), and show that all of them
result in a linear fractional transformation of the regres-
sion function. Subsection 3.2 captures how fairness
constraints and threshold-based characterizations of
optimal fair classifiers change under data bias. We
focus on equal opportunity constraints and the data
bias model of Blum & Stangl (2019) (Examples 3.1)
as an illustrative example running through the rest of
our paper.

• In Section 4, we extend the result of Blum & Stangl
(2019) to the case when their stylized distribution has
Massart label noise instead of i.i.d. label noise (The-
orem 4.1). We strengthen their result (Theorem 4.2)
and prove its analog for demographic parity constraints
replacing equal opportunity (Theorem 4.3).

• In Section 5, we show that our proof technique based
on threshold classifiers extends to arbitrary data dis-
tributions, if we allow reject option classifiers that can
abstain from prediction on a small fraction of inputs.

• In Section 6, we invent clever workarounds to gen-
eralize our results further to recover the optimal fair
and robust hypothesis in an arbitrary hypothesis class
simply by fair classification on the biased version of
an arbitrary data distribution (Theorem 6.2).

• Finally, in Section 7, we propose time-varying data
bias models (also applicable to multi-stage machine
learning pipelines) and investigate necessary condition
for extending our recovery results above to the finite
and infinite time horizon (Theorems 7.2 & 7.3).

2. Related Work
There has been a plethora of recent work on fairness-
accuracy trade-offs and data bias (Menon & Williamson,
2018; Wick et al., 2019; Blum & Stangl, 2019; Dutta et al.,
2020; Maity et al., 2021), but the closest to our work is
the result of Blum & Stangl (2019) that we strengthen and
generalize in many ways. Though we take equal opportunity
constraints (Hardt et al., 2016) and the data bias model of
Blum & Stangl (2019) for under-representation and label
bias as an illustrative example running through our paper,
our techniques readily extend to other popular fairness con-
straints such as demographic parity (Dwork et al., 2012) and
other recent data bias models (Dai & Brown, 2020; Wang
et al., 2021; Biswas & Mukherjee, 2021); many possible ex-
tensions are covered in the Appendix. Our proof techniques
in Section 4 & 5 lean heavily on threshold-based characteri-
zations of optimal fair classifiers known in previous work
(Menon & Williamson, 2018; Chzhen et al., 2019; Zeng
et al., 2022a;b).

Now we describe recent related works that complement our
approach to rectify data bias in fair classification. Feasibility
of fair classification under data corruption and malicious
noise in training data has been studied in Konstantinov &
Lampert (2022); Blum et al. (2023). Recent work has stud-
ied fair classification with noisy sensitive attributes (Lamy
et al., 2019; Ghosh et al., 2023; Celis et al., 2021), noisy
labels (Fogliato et al., 2020), feature-dependent label bias
(Jiang & Nachum, 2020), sample selection bias (Du & Wu,
2021; Zhu et al., 2023), subpopulation shift (Maity et al.,
2021), and causal models of data bias (Plecko & Barein-
boim, 2022; Madras et al., 2019; Cheong et al., 2023). All
of them propose algorithmic modifications to the vanilla fair
classification to rectify noisy or biased data. Complement-
ing the theoretical aspects, recent work has also empirically
investigated the effect of data bias and choice of fairness
constraints on the accuracy and fairness of various fair clas-
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sifiers (Islam et al., 2022; Akpinar et al., 2022; Sharma et al.,
2023; Ghosh et al., 2023).

3. Data Bias Models & Fair Classification
Let (X,A, Y ) be a random data point from the joint dis-
tribution D over X × A × Y , where X ,A,Y denote the
set of features, the set of sensitive attributes, and the set of
class labels, respectively. We assume the feature space
X to be discrete. We consider group-aware classifiers
f : X × A → Y and assume, for simplicity, binary sen-
sitive attributes A = {0, 1} and binary class labels Y =
{0, 1}. The binary classifier of maximum accuracy h∗ =
argmaxhPr (h(X,A) = Y ) is known as the Bayes optimal
classifier, and is given by h∗(x, a) = I (η(x, a) ≥ 1/2),
where η(x, a) = Pr (Y = 1|X = x,A = a) (Zeng et al.,
2022a). This function η is known as the regression function
in statistical machine learning; see Chapter 2 of Devroye
et al. (1996). Binary classifiers that apply a threshold on
the regression function η play a key role in our work as
well as other recent works on classification beyond accuracy
(Elkan, 2001; Singh & Khim, 2022) and fair classification
(Menon & Williamson, 2018; Chzhen et al., 2019; Zeng
et al., 2022b).

We use D̃ to denote the biased joint distribution over fea-
tures, sensitive attributes and class labels, and use (X̃, Ã, Ỹ )
to denote a random data point from the biased distribution
D̃. If X (or A) in the joint distribution remains unchanged
when we go from D to D̃, then we simply use X (or A) in
the place of X̃ (or Ã).

3.1. Regression Functions on Biased Data

Below we list some data bias models from recent works on
fair classification from biased data (Blum & Stangl, 2019;
Dai & Brown, 2020; Biswas & Mukherjee, 2021). We make
a key observation that for all of these data bias models, the
regression function on the biased distribution η̃(x, a) =

Pr
(
Ỹ = 1|X̃ = x, Ã = a

)
can be expressed as a linear

fractional transformation of the regression function on the
original distribution η(x, a) = Pr (Y = 1|X = x,A = a).
In other words,

η̃(x, a) =
Pη(x, a) +Q

Rη(x, a) + S
, for some P,Q,R, S ∈ R.

Please refer to Propositions A.1, A.2 and A.3 in Appendix
A.2.

Example 3.1. (Blum & Stangl, 2019) Consider a biased
distribution D̃ obtained from the original distribution D by
the following process defined by under-representation and
label bias parameters βp, βn, ν ∈ (0, 1). A random data
point (X,A, Y ) from D with A = 1 remains unchanged,
the points with A = 0, Y = 1 survive independently with

probability βp, and the points with A = 0, Y = 0 survive
independently with probability βn. Finally, the survived
points with A = 0, Y = 1 keep their class label 1 with
probability 1 − ν, and it gets flipped to 0 with probability
ν. For the privileged group A = 1, we have η̃(x, 1) =
η(x, 1), for all x ∈ X , whereas for the underprivileged

group A = 0, we prove that η̃(x, 0) =
(1− ν)η(x, 0)

(1− c)η(x, 0) + c
,

where c =
βn

βp
in Proposition A.1.

Example 3.2. (Dai & Brown, 2020; Wang et al.,
2021) Consider a biased distribution D̃ obtained from
the original distribution D by introducing a group-
dependent label flip from (X,A, Y ) to (X,A, Ỹ )

where ϵ1a = Pr
(
Ỹ = 0|Y = 1, A = a

)
and ϵ0a =

Pr
(
Ỹ = 1|Y = 0, A = a

)
, with 0 ≤ ϵ1a + ϵ0a < 1. For

this data bias model, we show that η̃(x, a) = (1 − ϵ1a −
ϵ0a)η(x, a) + ϵ0a in Proposition A.2.

Example 3.3. (Biswas & Mukherjee, 2021) Consider a
biased distribution D̃ obtained from the original distribu-
tion D by introducing a group-dependent prior probability
shift such that Ã = A and Pr

(
X̃ = x|Ỹ = i, A = a

)
=

Pr (X = x|Y = i, A = a), for any i, a ∈ {0, 1}, but
Pr
(
Ỹ = i|A = a

)
̸= Pr (Y = i|A = a). For this data

bias model, we prove that η̃(x, a) =
η(x, a)

(1− α)η(x, a) + α
,

where α =
Pr
(
Ỹ = 0|A = a

)
Pr (Y = 1|A = a)

Pr
(
Ỹ = 1|A = a

)
Pr (Y = 0|A = a)

in

Proposition A.3.

For classifiers that apply a threshold on η(x, a) or η̃(x, a), it
is important to understand when the above linear fractional
transformations are order-preserving.

Proposition 3.4. Suppose S ≥ 0, R + S ≥ 0, and PS −

QR ≥ 0, then the transformation η̃(x, a) =
Pη(x, a) +Q

Rη(x, a) + S
is order-preserving, i.e., η(x1, a) ≤ η(x2, a) iff η̃(x1, a) ≤
η̃(x2, a).

The proof is provided in Appendix A.1. Note that all of
the above data bias models satisfy the order-preservation
property. For the rest of the paper, we exclusively focus on
the under-representation and label bias model in Example
3.1 (Blum & Stangl, 2019) as an illustrative example. Our
techniques are flexible and can be applied to obtain similar
results for other data bias models.

3.2. Fair Classification on Biased Data

Demographic Parity (equal group-wise positivity rates) and
Equal Opportunity (equal group-wise true positive rates)
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are two most popular fairness constraints in classification.
It is easy to see that the true positive rates (TPRs) and the
true negative rates (TNRs) for a classifier on the biased data
distribution can be expressed as linear combinations of its
TPRs and TNRs on the original data distribution.

Proposition 3.5. Let D be any distribution on X ×A× Y
and let D̃ be its biased version defined using any of the
data bias models defined in Subsection 3.1. Let h be any
hypothesis, and let TPRa(h) and T̃PRa(h) be its true pos-
itive rates according to D and D̃, respectively, conditioned
on the underprivileged group A = a. Let TNRa(h) and
T̃NRa(h) be the true negative rates defined similarly. Then

1. T̃PRa(h) = Pr
(
Y = 1|Ỹ = 1, A = a

)
TPRa(h)+

Pr
(
Y = 0|Ỹ = 1, A = a

)
FPRa(h), and

2. T̃NRa(h) = Pr
(
Y = 0|Ỹ = 0, A = a

)
TNRa(h)+

Pr
(
Y = 1|Ỹ = 0, A = a

)
FNRa(h).

The proof of Proposition 3.5 is given in Appendix A.3, and
we get the following interesting corollary for the data bias
model in Example 3.1 (Blum & Stangl, 2019).

Corollary 3.6. Let D be any distribution and D̃ be its
biased version as in Example 3.1. Given any hypothesis
class H, let Hfair, EO be its subset that satisfies equal op-
portunity on the original distribution D, i.e., Hfair, EO =
{f ∈ H : TPR0(f) = TPR1(f)}. Similarly, let
H̃fair, EO = {f ∈ H : T̃PR0(f) = T̃PR1(f)} be
the subset of H satisfying equal opportunity on the bi-
ased distribution D̃. Then T̃PR0(h) = TPR0(h) and
T̃PR1(h) = TPR1(h), and hence, Hfair, EO = H̃fair, EO.

Remark 3.7. Corollary 3.6 can be easily extended to other
fairness metrics such as demographic parity as well as the
hypothesis class of approximately fair classifiers that satisfy
fairness constraints up to a small additive or multiplicative
error. However, we focus on exact equal opportunity as in
Blum & Stangl (2019) for a direct, illustrative application.
Please see Appendix A.3 for additional results.

The optimal fair classifier for equal opportunity (similarly,
demographic parity) on a given data distribution can be ex-
pressed by group-dependent thresholds applied to the regres-
sion function (Menon & Williamson, 2018; Chzhen et al.,
2019). Since the regression function η̃(x, a) on the biased
distribution D̃ is an order-preserving linear fractional trans-
formation of η(x, a), the optimal fair classifier for equal
opportunity on D̃ is equivalent to applying group-dependent
thresholds to η(x, a).

Proposition 3.8. For any distribution D and its biased
version D̃ described in Example 3.1, let h̃EO be a classifier

of the maximum accuracy among all binary classifiers that
satisfy equal opportunity on D̃. Then there exists λ∗ ∈ R
such that h̃EO(x, a) = I (η(x, a) ≥ ta), where

ta =



1

1 +
1− 2ν

c
+

λ∗

βnPr (Y = 1, A = 0)

, for a = 0

1

2− λ∗

Pr (Y = 1, A = 1)

, for a = 1.

The Proof of Proposition is given in Appendix A.3. We can
similarly derive the optimal threshold with the biased distri-
bution for the Demographic parity constraint (Proposition
A.4 in Appendix A.3).

4. Recovering Optimal Classifier from Biased
Data for Massart Label Noise

Blum & Stangl (2019) consider a stylized distribution D
with i.i.d. label noise and show that the optimal fair classifier
h̃EO on the biased distribution D̃ (defined in Example 3.1)
recovers the Bayes optimal (and fair) classifier h∗ on the
original distribution D, if the bias parameters satisfy certain
simple conditions. Note that this does not require knowing,
estimating, or correcting for data bias explicitly, and their
result holds even for extreme under-representation and label
bias in D̃. We first demonstrate the utility of our technique
by generalizing the recovery result of Blum & Stangl (2019)
to the case of Massart noise (Massart & Nédélec, 2006).
We describe the distribution setup below, give a sketch of
our proof, and point out the generality of our technique
compared to Blum & Stangl (2019).

4.1. Generalizing Blum & Stangl (2019) Recovery
Result for Massart Noise

Assume any arbitrary data distribution D on X × A. Let
Pr (A = 0) = r and Pr (A = 1) = 1 − r, for some
0 < r < 1. Let h : X ×A → Y be any hypothesis that satis-
fies Pr (h(X,A) = 1|A = 0) = Pr (h(X,A) = 1|A = 1).
Let δ < 1/2, and extend the distribution to X ×A× Y as
follows. Y |X = x,A = a takes value h(x, a) with prob-
ability 1 − δ(x, a), and ¬h(x, a) with probability δ(x, a),
for some δ(x, a) ≤ δ. Let D be the resulting distribution
on X ×A×Y . This type of bounded noise in class label is
popularly known as Massart noise1 in literature, based on a
noise model proposed by Massart and Nédélec(Massart &
Nédélec, 2006). We assume that the Massart noise is added
in a way that equalizes the base rates on the two protected
groups, i.e., Pr(Y = 1|A = 0) = Pr(Y = 1|A = 1) = q.
Since δ < 1/2, the Bayes optimal classifier h∗ on the distri-

1Equivalently known as malicious classification noise in previ-
ous work (Rivest & Sloan, 1994; Sloan, 1996).
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bution D coincides with h and satisfies Equal Opportunity.
Theorem 4.1. For any distribution D defined as above and
its biased version D̃ defined as in Example 3.1 using the
bias parameters βp, βn, ν ∈ (0, 1). If the data distribution
and bias parameters satisfy

(1− r)(1− 2δ) + r ((1− δ)βp(1− 2ν)− δβn) > 0

and

(1− r)(1− 2δ) + r ((1− δ)βn − δβp(1− 2ν)) > 0,

then the optimal equal opportunity classifier on the biased
distribution D̃ recovers the Bayes optimal classifier on the
original distribution D, i.e., h̃EO ≡ h∗.

The proof of Theorem 4.1 is given in Appendix A.4. The
same proof also works for group-dependent Massart noise,
i.e., there exist δ0, δ1 < 1/2 such that δ(x, a) ≤ δa, for all
(x, a) ∈ X ×A.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

βp

βn

Figure 1. Recovery region for βp, βn ∈ (0, 1] given by the con-
straints (1 − r)(1 − 2δ) + r ((1− δ)βp(1− 2ν)− δβn) > 0
and (1 − r)(1 − 2δ) + r ((1− δ)βn − δβp(1− 2ν)) > 0 as in
Theorem 4.1, when r = 0.25, ν = 0.05, and δ = 0.45. We can
recover optimal and fair classifiers for a large range of data biases,
including extreme under-representation, i.e., region close to the
origin (0, 0), by applying just equal opportunity constraints.

The conditions in Theorem 4.1 above are identical to those
in the recovery result of Blum & Stangl (2019) (Theorem
4.1 in their paper) that only works for the special case when
δ(x, a) = δ, for all (x, a) ∈ X ×A. Their proof is arguably
less flexible to other models of label noise and data bias,
as it relies on clever, iterative modifications of an initial
fair classifier until its accuracy cannot be improved further.
For their special case δ(x, a) = δ, for all (x, a) ∈ X × A,
our technique gives a stronger statement that the conditions
in Theorem 4.1 are in fact both necessary and sufficient.
Figure 1 illustrates the recovery conditions in Theorem 4.1
for reasonably chosen group proportion parameter r, label
bias ν and δ.
Theorem 4.2. (a slightly stronger version of Theorem 4.1
in Blum & Stangl (2019)) For the data distribution D
described above with δ(x, a) = δ, for all (x, a) ∈ X × A,
and its biased version D̃ as described in Example 3.1, the
data distribution and bias parameters satisfy

(1− r)(1− 2δ) + r((1− δ)βp(1− 2ν)− δβn) > 0

and

(1− r)(1− 2δ) + r((1− δ)βn − (1− 2ν)δβp) > 0,

if and only if the optimal equal opportunity classifier on
D̃ recovers the Bayes optimal classifier on D, i.e., h̃EO ≡
hEO ≡ h∗.

Similarly, we can also obtain necessary and sufficient condi-
tions for when the optimal demographic parity classifier on
D̃ recovers h∗. Blum & Stangl (Blum & Stangl, 2019) only
give a specific example where such a recovery is impossi-
ble via demographic parity constraints (see Subsection 3.1
of (Blum & Stangl, 2019)) but do not prove any analog of
Theorem 4.2 (see Table 1 in (Blum & Stangl, 2019)).

Theorem 4.3. For the data distribution D described above
with δ(x, a) = δ, for all (x, a) ∈ X × A, and its biased
version D̃ as described in Example 3.1, the data distribution
and bias parameters satisfy βp(1−δ)(1−2δ−2r(ν−δ))+
δβn(1 − 2δ − 2r(1 − δ)) > 0 and βpδ(1 − 2r(1 − ν) −
2δ(1− r)) + (1− δ)βn(1− 2δ(1− r)) > 0, if and only if
the optimal demographic parity classifier on D̃ recovers the
Bayes optimal classifier on D, i.e., h̃DP ≡ hDP ≡ h∗.

Appendix A.4 contains the proofs of Theorems 4.2 & 4.3.

4.2. Proof Sketches

We briefly outline our proof technique for Theorems 4.1,
4.2, 4.3 to explain an important technical contribution of our
paper. We write fairness constrained accuracy maximization
using a Lagrange multiplier λ. Proposition 3.8 characterizes
h̃EO as h̃EO(x, a) = I (η(x, a) ≥ ta) that applies group-
dependent thresholds ta on η(x, a), where the threshold ta
is actually a function of the optimal Lagrange multiplier λ∗,
the data distribution parameters, and the bias parameters.
We show (see Lemma A.5) that as long as these thresholds
ta applied to η(x, a) for both the groups a = 0 and a = 1
lie within the interval (δ, 1 − δ), we have h̃EO ≡ h∗. We
show that the possible choices of λ∗ are narrowed down
to allow only h̃EO ≡ h∗ using the given conditions on
the data distribution and bias parameters, and the fairness
constraint on the resulting threshold classifier. We prove that
the conditions in Theorem 4.2 are necessary and sufficient
for the optimal λ∗ parameter in Proposition 3.8 to satisfy
that the group-dependent thresholds t0 and t1 lie in the
interval (δ, 1− δ), and equivalently, h̃EO ≡ h∗.

5. Recovery of Optimal Reject Option
Classifiers from Biased Data for Arbitrary
Data Distributions

A major limitation of Theorems 4.1 and 4.2 is that they work
only on stylized distributions, where the label noise is either
i.i.d. or Massart. In this section, we remove this limitation
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by proving a similar recovery result for arbitrary data distri-
butions. Massart or i.i.d. label noise creates a clear separa-
tion between η(x, a) values (or high-risk and low-risk), and
allows a small interval margin for the group-wise thresholds
to recover h∗. To mimic this in an arbitrary data distribu-
tion, we consider reject option classifiers that are allowed
to abstain from prediction by paying a penalty (Bartlett &
Wegkamp, 2008; Cortes et al., 2016; Charoenphakdee et al.,
2021; Schreuder & Chzhen, 2021; Franc et al., 2023). Mod-
els that abstain from prediction play an important role in
responsible machine learning, as predictions of high uncer-
tainty can be overseen by a human-in-the-loop. As a result,
many recent papers have studied reject option classifiers for
fair classification (Madras et al., 2018; Schreuder & Chzhen,
2021; Shah et al., 2022).

Let D be an arbitrary distribution on X × A × Y , with
A = {0, 1} and Y = {0, 1}. A reject option classifier
g : X × A → {0, 1,⊥} either rejects or abstains from
prediction on an input (x, a), denoted by g(x, a) = ⊥,
or it predicts g(x, a) = h(x, a) using a binary classifier
h : X × A → {0, 1}. Let H denote the hypothesis class
of all binary classifiers h : X × A → {0, 1}, and let Hrej

be the hypothesis class of all g : X ×A → {0, 1,⊥}. For
rejection penalty given by δ > 0, the optimal reject option
classifier is defined as

hrej = argmin
g∈Hrej

Pr (g(X,A) ̸= Y, g(X,A) ̸= ⊥)

+ δ Pr (g(X,A) = ⊥) .

Proposition 5.1 characterizes the optimal reject option clas-
sifier on any distribution D, which is a generalization of the
known forms of Optimal reject option classifiers (Section
1 in Bartlett & Wegkamp (2008), Section 2 in Cortes et al.
(2016)).

Proposition 5.1. Let D be any distribution on X ×A× Y ,
with A = {0, 1} and Y = {0, 1}. Let δ ∈ [0, 1/2) denote
the rejection penalty and hrej be the optimal reject option
classifier defined as above. Then

hrej(x, a) =


0, if η(x, a) ≤ δ

⊥, if η(x, a) ∈ (δ, 1− δ)

1, if η(x, a) ≥ 1− δ,

where η(x, a) = Pr (Y = 1|X = x,A = a).

The proof of Proposition 5.1 is given in Appendix A.5.
Proposition 5.1 shows how reject option induces a separa-
tion between high and low η(x, a) values similar to the case
of i.i.d. or Massart label noise. A larger separation has
an obvious trade-off with a larger fraction of inputs being
turned away for model prediction.

Now assume that the optimal reject option classifier hrej

satisfies equal opportunity on the non-rejected part of the

distribution D, i.e., Pr
(
hrej(X,A) = 1|Y = 1, A = 0

)
=

Pr
(
hrej(X,A) = 1|Y = 1, A = 1

)
. Theorem 5.2 shows

that the optimal equal opportunity classifier on the biased
distribution D̃ recovers hrej on the non-rejected inputs, if
the data distribution and bias parameters satisfy the same
conditions as in Theorems 4.1 & 4.2.
Theorem 5.2. Let D be an arbitrary distribution on X ×
A× Y , with A = {0, 1} and Y = {0, 1}. Let δ ∈ [0, 1/2)
be the rejection penalty and suppose the optimal reject op-
tion classifier hrej defined above satisfies equal opportunity
on the non-rejected part of distribution D. Let D̃ be a bi-
ased version of D defined as in Example 3.1 using bias
parameters βp, βn, ν ∈ (0, 1), and let h̃EO be the optimal
equal opportunity classifier on D̃. If the data distribution
and bias parameters satisfy

(1− r)(1− 2δ) + r ((1− δ)βp(1− 2ν)− δβn) > 0

and

(1− r)(1− 2δ) + r ((1− δ)βn − δβp(1− 2ν)) > 0,

then h̃EO(x, a) = hrej(x, a) whenever hrej(x, a) ̸= ⊥.

A complete proof of Theorem 5.2 can be found in Ap-
pendix A.5. Note that if we consider the entire distri-
bution D instead of only the non-rejected inputs, then
Pr
(
h̃EO(X,A) ̸= hrej(X,A)

)
≤ Pr

(
hrej(X,A) = ⊥

)
.

In other words, if Pr
(
hrej(X,A) = ⊥

)
is small, then h̃EO

matches hrej on distribution D with high probability.

6. Recovering Robust Hypothesis under Data
Bias for Arbitrary Data Distributions and
Arbitrary Hypothesis Classes

In this section, we remove the restriction on hypothesis
class H, assumed to be the class of all group-aware binary
classifiers in Sections 4 & 5. Note that the characterization
of optimal fair classifiers using group-aware thresholds on
the regression function η(x, a) plays an important role in
our proofs from Sections 4 & 5. For an arbitrary hypothesis
class H, even the classifier h∗ ∈ H that maximizes accuracy
on D need not be a threshold classifier on η(x, a). To work
around this, we make an assumption that the optimal (and
fair) classifier that we want to recover under data bias must
be robust under small perturbations to the data distribution
D. Our definition of ϵ-robustness is motivated by the linear
fractional transformations of regression function observed
in various data bias models earlier (see Section 3).

Let D be any distribution on X ×A× Y , with A = {0, 1}
and Y = {0, 1}. Let Pr (A = 0) = r, Pr (A = 1) = 1− r,
and let Pr (Y = 1|A = 0) = Pr (Y = 1|A = 1) = q. Let
h∗ be the most accurate classifier in H, i.e.,

h∗ = argmax
h∈H

Pr (h(X,A) = Y )

6
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= argmax
h∈H

E
(X,A)

[h(X,A)(2η(X,A)− 1)] .

Note that, for an arbitrary hypothesis class H, the
optimal h∗ need not be a threshold classifier on
η(x, a). As in the previous sections, we assume
that h∗ satisfies equal opportunity on the distri-
bution D, i.e., Pr (h∗(X,A) = 1|Y = 1, A = 0) =
Pr (h∗(X,A) = 1|Y = 1, A = 1).

Definition 6.1. We define h∗ ∈ H to be ϵ-robust if, for any
distribution D′ with random data points (X,A, Y ′) s.t.

η′(x, a) = Pr (Y ′ = 1|X = x,A = a) =
Paη(x, a) +Qa

Raη(x, a) + Sa
,

with Sa = 1, |Ra| ≤ ϵ, |Qa| ≤ ϵ, 1 − ϵ ≤ Pa ≤ 1 + ϵ,
and PaSa −QaRa ≥ 0, the optimal classifier h∗ remains
unchanged, i.e., h∗ = h′ = argmax

h∈H
Pr (h(X,A) = Y ′).

The above conditions give a scale-invariant proxy to
say that the linear fractional transformation defined by
Pa, Qa, Ra, Sa is order-preserving and when it is appro-
priately scaled to make Sa = 1, it is ϵ-close to the identity
transformation. Definition 6.1 says that the classifier h∗

of maximum accuracy in H is robust to small near-identity
perturbations of the data distribution D.

Now we are ready to state our result for recovering robust,
fair hypothesis from biased data on arbitrary data distribu-
tions and arbitrary hypothesis classes.

Theorem 6.2. For any distribution D and any hypothesis
class H, if the optimal classifier h∗ ∈ H is ϵ-robust and
the bias parameters βp, βn, ν satisfy (1 − ϵ)βn ≤ βp ≤
(1 + ϵ)βn,

r ((1− ν)βp − (1− ϵ)βn) + ϵ(1− r) ≥ 0

and

r ((1 + ϵ)βn − (1− ν)βp) + ϵ(1− r) ≥ 0,

then the optimal equal opportunity classifier from H on the
biased distribution D̃ recovers the optimal classifier from
H on the original distribution D, i.e., h̃EO ≡ h∗.

We prove Theorem 6.2 in Appendix A.6. Our proof reuses
the basic characterization of optimal fair classifiers using
Lagrange multipliers, and although it uses the class proba-
bilities η(x, a)’s in a crucial way, it circumvents the need
for threshold-based arguments completely. Figure 2 illus-
trates the recovery conditions in Theorem 6.2, for reason-
ably chosen group proportion parameter r, label bias ν and
hypothesis robustness parameter ϵ.

7. Recovering from Time-Varying Data Bias
Data biases arise commonly in machine learning pipelines
where data changes for downstream applications and over

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

βp

βn

Figure 2. Recovery region for βp, βn ∈ (0, 1] given by the
constraints r ((1− ν)βp − (1− ϵ)βn) + ϵ(1 − r) ≥ 0 and
r ((1 + ϵ)βn − (1− ν)βp) + ϵ(1 − r) ≥ 0 as in Theorem 6.2,
when r = 0.2, ν = 0.1, and ϵ = 0.05. Even for arbitrary distri-
butions and hypothesis classes, optimal and fair classifiers can be
recovered from extreme under-representation and for a large range
of data biases using just equal opportunity constraints.

time. As an application of our techniques, we demon-
strate how we can obtain recovery guarantees in data bias
pipelines, i.e., when at every time step, we obtain a new
shifted distribution. We model time-varying data bias as
repeated applications of single-step data bias model (e.g.,
Example 3.1 used in previous sections).

Let D̃t be the biased data distribution obtained from an
original distribution D, when the data bias model described
in Example 3.1 gets applied repeatedly t times with pos-
sibly different bias parameters (βp,i, βn,i, νi) at i-th time

step, and let ci =
βn,i

βp,i
. Since the composition of linear

fractional transformations remains a linear fractional trans-
formation, we obtain the following generalization for how
the regression function changes over time.

Proposition 7.1. Let (X,A, Y ) denote a random data
point from any given distribution D and let (X,A, Ỹt)
be a random data point from its corresponding bi-
ased distribution D̃t after applying the multi-stage
time-varying data bias model described above. Let
η(x, a) = Pr (Y = 1|X = x,A = a) and η̃t(x, a) =

Pr
(
Ỹt = 1|X = x,A = a

)
. Then

η̃t(x, 0) =
η(x, 0)

t∑
i=1

 1− ci
1− νi

t∏
j=i+1

cj
1− νj

 η +

t∏
i=1

ci
1− νi

,

where
t∏

j=t+1

cj
1− νj

def
= 1.

Note that D̃t conditioned on A = 1 remains unchanged,
and therefore, η̃t(x, 1) = η(x, 1), since we are looking at
the data bias model in Example 3.1. The proof of Propo-
sition 7.1 is by simple induction on t. As a result of

7
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Proposition 7.1, η̃t(x, a) can be expressed as another single-
step data bias model that directly transforms η(x, a) into
η̃t(x, a) using a linear fractional transformation with P =

0, Q = 0, R =

t∑
i=1

 1− ci
1− νi

t∏
j=i+1

cj
1− νj

 , and S =

t∏
i=1

ci
1− νi

. The above P,Q,R, S obey the conditions in

Proposition 3.4, so the corresponding linear fractional trans-
formation is order-preserving.

7.1. Repeated Data Bias & Infinite Time Horizon

As a warm-up, we first study a simpler case where the bias
parameters do not change at each time step, i.e., βp,i = βp,
βn,i = βn, and νi = ν, for all i ∈ [t]). Equivalently,
the same data bias model with the same bias parameters
gets applied repeatedly t times. We work with the original
distribution D described as in Theorem 4.2 for the ease of
analysis, and assume that Pr (A = 0) = r, Pr (A = 1) =
1 − r and Pr (Y = 1|A = 0) = Pr (Y = 1|A = 1) = q.
First, we show Theorem 7.2 about when the optimal equal
opportunity classifier h̃EO,t on the biased distribution D̃t

can recover h∗ for the infinite time horizon as t → ∞, and
the necessary conditions on the data distribution and bias
parameters to allow that. The proof of Theorem 7.2 is given
in Appendix A.7.

Theorem 7.2. Let D̃t be the biased distribution obtained by
applying the bias model in Example 3.1 repeatedly t times
with βp,i = βp, βn,i = βn, and νi = ν, for all i ∈ [t] on
a given distribution D defined as in Theorem 4.2. Let h∗

be the Bayes optimal classifier on D and let h̃EO,t be the
optimal equal opportunity classifier on D̃t.

• If βn < 1 then as t → ∞, we have η(x, 0) → 0, for all
x ∈ X . Thus, we cannot have h̃EO,t ≡ h∗ as t → ∞.

• If βn = 1 and h̃EO,t ≡ h∗ as t → ∞, then the data
distribution and bias parameters must satisfy

1− (1− 2δ)

(1− δ)r
<

νβp

1− βp(1− ν)
< 1 +

(1− 2δ)

δr
.

7.2. Time-Varying Data Bias Pipeline with Finite Steps

Now we generalize the necessary conditions in Theorem
4.2 for repeated application of the data bias model from
Example 3.1, with possibly different bias parameters at each
time step. We assume that the bias parameters can vary but
are bounded.

Theorem 7.3. Let D be a data distribution described as
in Theorem 4.2 and D̃t be the resulting biased distribu-
tion after repeated application of the data bias model from
Example 3.1 to D in t steps, with bounded but possibly dif-
ferent bias parameters in each step as βn,t ∈ [βn, 1], βp,t ∈
[βp, 1] and νt ∈ [0, ν], where ν < 1/2. Let h∗ be the Bayes

optimal classifier on D and let h̃EO,t be the optimal equal
opportunity classifier on D̃t. If h̃EO,t ≡ h∗, then the data
distribution and bias parameters must satisfy

(1− 2δ)(1− r)

(1− δ)r
− δ

1− δ
>

1

βt
n

− 2βt
p(1− ν)t and

(1− 2δ)(1− r)

δr
> (1− ν)tβt

p(1− βp)
1− βt

p(1− ν)t

1− βp(1− ν)

−βt
n

δ
− 2.

The proof of Theorem 7.3 is given in Appendix A.7. The
first condition in Theorem 7.3 can be used to get the
following upper bound on the time horizon up to which
h̃EO,t ≡ h∗ is possible.

Corollary 7.4. The conditions in Theorem 7.3 above

are satisfied only if t <
logKD

log(1/βn)
, where KD =

(1− 2δ)(1− r)

(1− δ)r
− δ

1− δ
+ 2.

The above corollary can be obtained by noting that the term
2βt

p(1 − ν)t is upper bounded by 2 since it converges to
1, and any t greater than the value in the corollary violates
the first inequality in Theorem 7.3. We derive similar time-
varying bias recovery conditions for demographic parity in
Theorem A.6 given in Appendix A.7.

8. Conclusion and Future Directions
In this paper, we investigate the phenomenon of using fair
classification (in particular, equal opportunity constraints)
to recover optimal and fair classifiers even from extremely
biased version of the original data. We generalize the result
of Blum & Stangl (2019) in many ways, for arbitrary distri-
butions and arbitrary hypothesis classes, and develop tech-
niques that are flexible and may be of independent interest
in studying other fair classification problems and data bias
models. Note that our approach based on Blum & Stangl
(2019) does not require knowing, estimating, or correcting
the data bias explicitly. Previous work has studied alternate
approaches to get around data bias through reweighing and
loss adjustment by estimating the extent of data bias (Biswas
& Mukherjee, 2021; Dai & Brown, 2020; Wang et al., 2021).
Rectifying data bias for fair classification in practice would
require the best combination of both these approaches.

Given the flexibility of our technique, it would be interesting
to investigate the applicability and limitations of our results
to different data bias models (Dai & Brown, 2020; Wang
et al., 2021; Biswas & Mukherjee, 2021; Konstantinov &
Lampert, 2022; Blum et al., 2023) and a variety of fairness
constraints (e.g., predictive parity (Zeng et al., 2022b)). A
pragmatic future direction is to study the effect of data bias
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on the sample complexity for fair classification (Donini
et al., 2018; Tolbert & Diana, 2023).

An important question related to time-varying data bias
models is to study the case when bias parameters at time t
are a function of the model performance at time t− 1, using
ideas such as performative prediction (Perdomo et al., 2020;
Brown et al., 2022)

Impact Statement
This paper presents work that aims to advance the field of
Machine Learning. Our work has many potential societal
consequences; pinpointing specific ones will be difficult
here. Our work theoretically investigates the feasibility
of using fair classification on extremely biased data as a
method to recover optimal and fair classifiers on the original
data. Historical, socio-cultural, implicit biases and other
systematic biases in real-world data are results of complex
interactions over time, and the simplistic data bias models
studied in our work are insufficient to represent them truth-
fully. Our work underlines the need to study various possible
ways to rectify data biases in algorithmic decision-making
with societal consequences.
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A. Proofs
A.1. Proof of Proposition 3.4

Proof. η̃(x1, a) ≤ η̃(x2, a) iff (Pη(x1, a)+Q)(Rη(x2, a)+S) ≤ (Pη(x2, a)+Q)(Rη(x1, a)+S), using Rη(x, a)+S ≥ 0,
for all 0 ≤ η(x, a) ≤ 1. By canceling the common terms, the above inequality holds iff (PS − QR)η(x1, a) ≤
(PS −QR)η(x2, a), or equivalently η(x1, a) ≤ η(x2, a) because PS −QR ≥ 0.

A.2. Derivations for linear fractional transforms of Data Bias models

Proposition A.1. Consider a biased distribution D̃ obtained from the original distribution D by the following process defined
by bias parameters βp, βn, ν ∈ (0, 1) (Blum & Stangl, 2019). A random data point (X,A, Y ) from D with A = 1 remains
unchanged, the points with A = 0, Y = 1 have an independent survival probability of βp, and the points with A = 0, Y = 0
have an independent survival probability of βn. Finally, the survived points with A = 0, Y = 1 keep their class label 1 with
probability 1− ν, and it gets flipped to 0 with probability ν. For the privileged group A = 1, we have η̃(x, 1) = η(x, 1), for
all x ∈ X , whereas for the underprivileged group A = 0 we have η̃(x, 0) = (1−ν)η(x,0)

(1−c)η(x,0)+c , where c = βn

βp
..

Proof.

η̃(x, 0) = Pr
(
Ỹ = 1|X = x,A = 0

)
=

(1− ν)βpη(x, 0)

βpη(x, 0) + βn(1− η(x, 0))

=
(1− ν)βpη(x, 0)

(βp − βn)η(x, 0) + βn

=
(1− ν)η(x, 0)

(1− c)η(x, 0) + c
, where c =

βn

βp
.

Since no bias acts on group A = 1, η̃(x, 1) = η(x, 1).

Proposition A.2. Consider a biased distribution D̃ obtained form the original distribution D by introducing a group
dependent label flip rate (Dai & Brown, 2020; Wang et al., 2021): ϵ1a = Pr

(
Ỹ = 0|Y = 1, A = a

)
and ϵ0a =

Pr
(
Ỹ = 1|Y = 0, A = a

)
, with 0 ≤ ϵ1a + ϵ0a < 1. Then, the observed labels in D̃ obey the following relationship:

ỹi = yi with 1− ϵ
I(yi=1)
ai probability and ỹi = ¬yi with probability ϵ

I(yi=1)
ai . In terms of a linear fractional transform:

η̃(x, a) = (1− ϵ1a − ϵ0a)η(x, a) + ϵ0a

Proof.

η̃(x, 0) = Pr
(
Ỹ = 1|X = x,A = 0

)
=

Pr
(
Ỹ = 1, Y = 0, X = x,A = a

)
+ Pr

(
Ỹ = 1, Y = 1, X = x,A = a

)
Pr (X = x,A = a)

= Pr
(
Ỹ = 1|Y = 0, A = a

)
(1− η(x, a)) + Pr

(
Ỹ = 1|Y = 1, A = a

)
η(x, a)

= (1− ϵ1a − ϵ0a)η(x, a) + ϵ0a

Proposition A.3. (Biswas & Mukherjee, 2021) Consider a biased distribution D̃ obtained from the original distribu-
tion D by introducing a group-dependent prior probability shift such that Ã = A and Pr

(
X̃ = x|Ỹ = i, A = a

)
=

Pr (X = x|Y = i, A = a), for any i, a ∈ {0, 1}, but Pr
(
Ỹ = i|A = a

)
̸= Pr (Y = i|A = a). For this data bias model,

we prove that η̃(x, a) =
η(x, a)

(1− α)η(x, a) + α
, where α =

Pr
(
Ỹ = 0|A = a

)
Pr (Y = 1|A = a)

Pr
(
Ỹ = 1|A = a

)
Pr (Y = 0|A = a)

.

12
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Proof.

η̃(x, a) = Pr
(
Ỹ = 1|X̃ = x,A = a

)
=

Pr
(
Ỹ = 1, X̃ = x,A = a

)
Pr
(
X̃ = x,A = a

)
Since Pr

(
X = x|Ỹ = 1, A = a

)
= Pr (X = x|Y = 1, A = a) from the definition of the bias model, we can write:

=
Pr
(
X = x|Ỹ = 1, A = a

)
Pr
(
Ỹ = 1|A = a

)
Pr
(
X = x|Ỹ = 1, A = a

)
Pr
(
Ỹ = 1|A = a

)
+ Pr

(
X = x|Ỹ = 0, A = a

)
Pr
(
Ỹ = 0|A = a

)
=

1

1 +
Pr
(
X = x|Ỹ = 0, A = a

)
Pr
(
Ỹ = 0|A = a

)
Pr
(
X = x|Ỹ = 1, A = a

)
Pr
(
Ỹ = 1|A = a

)
.

Thus,

1

η̃(x, a)
− 1 =

Pr
(
X = x|Ỹ = 0, A = a

)
Pr
(
Ỹ = 0|A = a

)
Pr
(
X = x|Ỹ = 1, A = a

)
Pr
(
Ỹ = 1|A = a

) .
Similarly,

1

η(x, a)
− 1 =

Pr (X = x|Y = 0, A = a) Pr (Y = 0|A = a)

Pr (X = x|Y = 1, A = a) Pr (Y = 1|A = a)
.

Hence,

1

η̃(x, a)
− 1 = α

(
1

η(x, a)
− 1

)
, where α =

Pr
(
Ỹ = 0|A = a

)
Pr (Y = 1|A = a)

Pr
(
Ỹ = 1|A = a

)
Pr (Y = 0|A = a)

.

In other words,

η̃(x, a) =
η(x, a)

(1− α)η(x, a) + α
.

A.3. Proofs for Section 3.2

Given any classifier h : X ×A → Y , let TPRa(h) and T̃PRa(h) denote its true positive rates conditioned on A = a for
distributions D and D̃, respectively. Then

TPRa(h) =
Pr (h(X, a) = 1, A = a, Y = 1)

Pr (Y = 1, A = a)
=

E
X|A=a

[h(X, a)η(X, a)]

E
X|A=a

[η(X, a)]
,

and

T̃PRa(h) =
Pr
(
h(X, a) = 1, A = a, Ỹ = 1

)
Pr
(
Ỹ = 1, A = a

) =

E
X|A=a

[h(X, a)η̃(X, a)]

E
X|A=a

[η̃(X, a)]
.

We can now prove Proposition 3.5.

13
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Proof. (Proof of Proposition 3.5)

T̃PRa(h) = Pr
(
h(X, a) = 1|Ỹ = 1, A = a

)
=

Pr
(
h(X, a) = 1, Ỹ = 1|A = a

)
Pr
(
Ỹ = 1|A = a

)
=

Pr (Y = 0|A = a) Pr
(
h(X, a) = 1, Ỹ = 1|Y = 0, A = a

)
Pr
(
Ỹ = 1|A = a

)
+

Pr (Y = 1|A = a) Pr
(
h(X, a) = 1, Ỹ = 1|Y = 1, A = a

)
Pr
(
Ỹ = 1|A = a

)
=

Pr (Y = 0|A = a) Pr
(
Ỹ = 1|h(X, a) = 1, Y = 0, A = a

)
Pr (h(X, a) = 1|Y = 0, A = a)

Pr
(
Ỹ = 1|A = a

)
+

Pr (Y = 1|A = a) Pr
(
Ỹ = 1|h(X, a) = 1, Y = 1, A = a

)
Pr (h(X, a) = 1|Y = 1, A = a)

Pr
(
Ỹ = 1|A = a

)
=

Pr (Y = 0|A = a) Pr
(
Ỹ = 1|Y = 0, A = a

)
Pr (h(X, a) = 1|Y = 0, A = a)

Pr
(
Ỹ = 1|A = a

)
+

Pr (Y = 1|A = a) Pr
(
Ỹ = 1|Y = 1, A = a

)
Pr (h(X, a) = 1|Y = 1, A = a)

Pr
(
Ỹ = 1|A = a

)
because Ỹ depends only on A and Y

=
Pr
(
Ỹ = 1, Y = 0|A = a

)
Pr
(
Ỹ = 1|A = a

) FPRa(h) +
Pr
(
Ỹ = 1, Y = 1|A = a

)
Pr
(
Ỹ = 1|A = a

) TPRa(h)

= Pr
(
Y = 0|Ỹ = 1, A = a

)
FPRa(h) + Pr

(
Y = 1|Ỹ = 1, A = a

)
TPRa(h).

Similarly, we show that T̃NRa(h) can be written as a linear combination of TNRa(h) and FNRa(h).

T̃NRa(h)

= Pr
(
h(X, a) = a|Ỹ = 0, A = a

)
=

Pr
(
h(X, a) = 0, Ỹ = 0|A = a

)
Pr
(
Ỹ = 0|A = a

)
=

Pr (Y = 0|A = a) Pr
(
h(X, a) = 0, Ỹ = 0|Y = 0, A = a

)
Pr
(
Ỹ = 0|A = a

)
+

Pr (Y = 1|A = a) Pr
(
h(X, a) = 0, Ỹ = 0|Y = 1, A = a

)
Pr
(
Ỹ = 0|A = a

)
14
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=
Pr (Y = 0|A = a) Pr

(
Ỹ = 0|h(X, a) = 0, Y = 0, A = a

)
Pr (h(X, a) = 0|Y = 0, A = a)

Pr
(
Ỹ = 0|A = a

)
+

Pr (Y = 1|A = a) Pr
(
Ỹ = 0|h(X, a) = 0, Y = 1, A = a

)
Pr (h(X, a) = 0|Y = 1, A = a)

Pr
(
Ỹ = 0|A = a

)
=

Pr (Y = 0|A = a) Pr
(
Ỹ = 0|Y = 0, A = a

)
Pr (h(X, a) = 0|Y = 0, A = a)

Pr
(
Ỹ = 0|A = a

)
+

Pr (Y = 1|A = a) Pr
(
Ỹ = 0|Y = 1, A = a

)
Pr (h(X, a) = 0|Y = 1, A = a)

Pr
(
Ỹ = 0|A = a

)
because Ỹ depends only on A and Y

=
Pr
(
Ỹ = 0, Y = 0|A = a

)
Pr
(
Ỹ = 0|A = a

) TNRa(h) +
Pr
(
Ỹ = 0, Y = 1|A = a

)
Pr
(
Ỹ = 0|A = a

) FNRa(h)

= Pr
(
Y = 0|Ỹ = 0, A = a

)
TNRa(h) + Pr

(
Y = 1|Ỹ = 0, A = a

)
FNRa(h).

Proof. (Proof of Proposition 3.8) We begin with a known technique that uses Lagrange duality to give threshold-based
characterization of optimal equal opportunity classifiers (Menon & Williamson, 2018; Chzhen et al., 2019). We define
h̃EO = argmax

h∈H̃fair, EO

Pr
(
h(X,A) = Ỹ

)
. By Lagrange duality, we can write

h̃EO = argmax
h∈H

min
λ∈R

Pr
(
h(X,A) = Ỹ

)
+ λ Pr

(
h(X,A) = 1|Ỹ = 1, A = 0

)
− λ Pr

(
h(X,A) = 1|Ỹ = 1, A = 1

)
= argmax

h∈H
min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

[h(X, a)(2η̃(X, a)− 1)] +
(−1)I(a=1) λ

E
X|A=a

[η̃(X, a)]
E

X|A=a
[h(X, a)η̃(X, a)]

= argmax
h∈H

min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

h(X, a)

2 +
(−1)I(a=1)λ

Pr
(
Ỹ = 1, A = a

)
 η̃(X, a)− 1


= min

λ∈R
argmax

h∈H

1∑
a=0

Pr (A = a) E
X|A=a

h(X, a)

2 +
(−1)I(a=1)λ

Pr
(
Ỹ = 1, A = a

)
 η̃(X, a)− 1

 ,

by Sion’s minimax theorem as the objective is linear in λ and h. Thus, there exists λ∗ ∈ R such that the objective on h splits
group-wise with the optimal solution given by

h̃EO(x, a) = I

η̃(x, a) ≥ 1

2 +
(−1)I(a=1)λ∗

Pr
(
Ỹ = 1, A = a

)


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=



I

 (1− ν)η(x, 0)

(1− c)η(x, 0) + c
≥ 1

2 +
λ∗

Pr
(
Ỹ = 1, A = 0

)
 , for a = 0 (Example 3.1)

I

η(x, 1) ≥ 1

2− λ∗

Pr (Y = 1, A = 1)

 , for a = 1

=



I

η(x, 0) ≥ c

1− 2ν + c+
λ∗(1− ν)

Pr
(
Ỹ = 1, A = 0

)

 , for a = 0

I

η(x, 1) ≥ 1

2− λ∗

Pr (Y = 1, A = 1)

 , for a = 1

Let Pr (A = 0) = r and Pr (A = 1) = 1 − r, and let Pr (Y = 1|A = 0) = Pr (Y = 1|A = 1) = q. Then
Pr (Y = 1, A = 1) = Pr (A = 1)Pr (Y = 1|A = 1) = (1− r)q and

Pr
(
Ỹ = 1, A = 0

)
= Pr (A = 0)Pr (Y = 1|A = 0)Pr

(
Ỹ = 1|Y = 1, A = 0

)
+ Pr (A = 0)Pr (Y = 0|A = 0)Pr

(
Ỹ = 1|Y = 0, A = 0

)
= rqβp(1− ν).

Therefore,

h̃EO(x, a) =



I

η(x, 0) ≥ c

1− 2ν + c+
λ∗

βprq

 , for a = 0

I

η(x, 1) ≥ 1

2− λ∗

(1− r)q

 , for a = 1

.

Equivalently, we can also write

h̃EO(x, a) =



I

η(x, 0) ≥ 1

1 +
1− 2ν

c
+

λ∗

βnrq

 , for a = 0

I

η(x, 1) ≥ 1

2− λ∗

(1− r)q

 , for a = 1.

.

We can derive similar results for demographic parity (Menon & Williamson, 2018; Chzhen et al., 2019).
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Proposition A.4. For any distribution D and its biased version D̃ described above, let h̃DP be a classifier of the maximum
accuracy among all binary classifiers that satisfy demographic parity on D̃. Then there exists λ∗ ∈ R such that

h̃DP (x, a) =


I
(
η(x, 0) ≥ c(r − λ∗)

2r(1− ν)− (1− c)(r − λ∗)

)
, for a = 0

I
(
η(x, 1) ≥ 1

2
+

λ∗

2(1− r)

)
, for a = 1

Proof. Similar to previous work that gives a threshold-based characterization of optimal demographic parity classi-
fiers using Lagrange duality (Menon & Williamson, 2018), we use the same idea on the biased distribution. h̃DP =

argmax
h∈H̃fair, DP

Pr
(
h(X,A) = Ỹ

)
. By Lagrange duality, we can write

h̃DP = argmax
h∈H

min
λ∈R

Pr
(
h(X,A) = Ỹ

)
+ λ Pr (h(X,A) = 1|A = 0)− λ Pr (h(X,A) = 1|A = 1)

= argmax
h∈H

min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

[h(X, a)(2η̃(X, a)− 1)] + (−1)I(a=1) λ E
X|A=a

[h(X, a)]

= argmax
h∈H

min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

[
h(X, a)

(
2η̃(X, a)− 1 +

(−1)I(a=1) λ

Pr (A = a)

)]

= min
λ∈R

argmax
h∈H

1∑
a=0

Pr (A = a) E
X|A=a

[
h(X, a)

(
2η̃(X, a)− 1 +

(−1)I(a=1) λ

Pr (A = a)

)]
,

by Sion’s minimax theorem as the objective is linear in λ and h. Thus, there exists some optimal λ∗ ∈ R such that the
objective on h splits group-wise with the optimal solution given by

h̃DP (x, a) = I
(
η̃(x, a) ≥ 1

2
− (−1)I(a=1)λ∗

2Pr (A = a)

)

=


I
(

(1− ν)η(x, 0)

(1− c)η(x, 0) + c
≥ 1

2
− λ∗

2Pr (A = 0)

)
, for a = 0 (Example 3.1)

I
(
η(x, 1) ≥ 1

2
+

λ∗

2Pr (A = 1)

)
, for a = 1

=


I
(
η(x, 0) ≥ c(r − λ∗)

2r(1− ν)− (1− c)(r − λ∗)

)
, for a = 0

I
(
η(x, 1) ≥ 1

2
+

λ∗

2(1− r)

)
, for a = 1

A.4. Proofs for Section 4.1

For the distribution D described in Section 4.1, the following result holds:

Lemma A.5. Let h : X × A → {0, 1} be a deterministic classifier. Let Y |X = x,A = a be a random variable that
takes value h(x, a) with probability 1 − δ(x, a) and ¬h(x, a) with probability δ(x, a), for some δ(x, a) ≤ δ < 1/2. Let
η(x, a) = Pr (Y = 1|X = x,A = a) and let g(x, a) be a threshold classifier given by g(x, a) = I (η(x, a) ≥ ta), using
group-dependent thresholds t0 and t1, respectively. If t0, t1 ∈ (δ, 1− δ) then g ≡ h ≡ h∗, where h∗ is the Bayes optimal
classifier for the joint distribution on X ×A× Y .

Proof. It is folklore that the (group-aware) Bayes optimal classifier is given by h∗(x, a) = I (η(x, a) ≥ 1/2) (Zeng et al.,
2022b). One of the ways by which we can recover the Bayes Optimal classifier with the biased distribution D̃ is when
the Bayes optimal classifier on the original distribution D does not change around the vicinity of 1/2. Consider the
following two cases for h(x, a). If h(x, a) = 0, then Y |X = x,A = a takes value 0 with probability δ(x, a) ≤ δ, and
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hence, I (η(x, a) ≥ ta) = I (δ(x, a) ≥ ta) = I (δ(x, a) ≥ 1/2) = 0, for δ(x, a) ≤ δ < 1/2 and ta ∈ (δ, 1 − δ). On
the other hand, if h(x, a) = 1, then Y |X = x,A = a takes value 1 with probability 1 − δ(x, a) ≥ 1 − δ, and hence,
I (η(x, a) ≥ ta) = I (1− δ(x, a) ≥ ta) = I (1− δ(x, a) ≥ 1/2) = 1, for δ(x, a) ≤ δ < 1/2 and ta ∈ (δ, 1−δ). Therefore,
g ≡ h ≡ h∗.

We now describe the proof of Theorem 4.3. The proof for Theorem 4.2 is clubbed with the proof of Theorem 4.1 later in this
section.

Proof. (Proof of Theorem 4.3) We use the characterization optimal demographic parity classifier obtained in Proposition
A.4 for D̃, i.e., there exists λ∗ ∈ R such that

h̃DP (x, a) =


I
(
η(x, 0) ≥ c(r − λ∗)

2r(1− ν)− (1− c)(r − λ∗)

)
, for a = 0

I
(
η(x, 1) ≥ 1

2
+

λ∗

2(1− r)

)
, for a = 1.

Step 1: If the given conditions on the bias parameters hold, then there exists a λ ∈ R such that hλ = h∗. From Lemma

A.5, we know that the threshold on η(x, 1) lies in the interval (δ, 1 − δ) if and only if δ <
1

2
+

λ∗

2(1− r)
< 1 − δ, or

equivalently, (2δ − 1)(1− r) < λ∗ < (1− 2δ)(1− r). Similarly, the threshold on η(x, 0) lies in the interval (δ, 1− δ) if

and only if δ <
c(r − λ∗)

2r(1− ν)− (1− c)(r − λ∗)
< 1− δ, or equivalently,

r

(
1− 2(1− δ)(1− ν)

c+ (1− c)(1− δ)

)
< λ∗ < r

(
1− 2δ(1− ν)

δ(1− c) + c

)
.

There exists λ∗ that simultaneously satisfies both sets of constraints given above if and only if

r

(
1− 2(1− δ)(1− ν)

c+ (1− c)(1− δ)

)
< (1− 2δ)(1− r) and (2δ − 1)(1− r) < r

(
1− 2δ(1− ν)

δ(1− c) + c

)
.

Using c = βn/βp, the above conditions can be simplified as

βp(1− δ)(1− 2δ − 2r(ν − δ)) + δβn(1− 2δ − 2r(1− δ)) > 0 and
βpδ(1− 2r(1− ν)− 2δ(1− r)) + (1− δ)βn(1− 2δ(1− r)) > 0

Step 2: If the given conditions on the bias parameters hold, then there cannot exist any λ ∈ R such that both the group-
wise thresholds applied to η(x, a) in hλ are at most δ, or both the thresholds are at least 1− δ. (Thresholds lying on

the same side) The threshold on η(x, 1) is at most δ if and only if
1

2
+

λ

2(1− r)
≤ δ, or equivalently, λ ≤ (2δ − 1)(1− r).

Similarly, the threshold on η(x, 0) is at most δ if and only if
c(r − λ)

2r(1− ν)− (1− c)(r − λ)
≤ δ, or equivalently, λ ≥

r

(
1− 2δβp(1− ν)

βn(1− δ) + δβp

)
. If both were to hold simultaneously, then r

(
1− 2δβp(1− ν)

βn(1− δ) + δβp

)
≤ (2δ − 1)(1 − r), or

equivalently, βpδ(1− 2r(1− ν)− 2δ(1− r)) + (1− δ)βn(1− 2δ(1− r)) ≤ 0, which would violate the second condition
in our theorem.

On the other hand, the threshold on η(x, 1) is at least interval 1− δ if and only if
1

2
+

λ

2(1− r)
≥ 1− δ, or equivalently,

λ ≥ (1− 2δ)(1− r). Similarly, the threshold on η(x, 0) is at least
c(r − λ)

2r(1− ν)− (1− c)(r − λ)
≥ 1− δ, or equivalently,

λ ≤ r

(
1− 2(1− δ)(1− ν)

c+ (1− c)(1− δ)

)
. If both were to hold simultaneously, then (1−2δ)(1−r) ≤ r

(
1− 2(1− δ)(1− ν)

c+ (1− c)(1− δ)

)
,

or equivalently, βp(1− δ)(1− 2δ − 2r(ν − δ)) + δβn(1− 2δ − 2r(1− δ)) ≤ 0, which would violate the first condition in
our theorem.
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Step 3: For any λ, if the group-wise thresholds on η(x, a) in hλ have one of them at most δ and another at least
1 − δ, then hλ cannot satisfy demographic parity unless hλ = h∗. (Thresholds lying on opposite sides) We know
that h∗ satisfies demographic parity. Let PRa(hλ) = Pr (hλ = 1|A = a) (group positive rate). For demographic parity,
we require PR0 = PR1. Suppose the threshold of hλ on η(x, 0)(call it t0) and the threshold on η(x, 1)(call it t1) are
separated by either δ or 1 − δ. WLOG assume t0 < t1. Suppose t0 ≤ δ ≤ t1. Since there is no input (x, a) with
η(x, a) ∈ (δ, 1− δ), we get PR0(h̃λ) ≥ PR0(h

∗) and PR1(h
∗) ≥ PR1(h̃λ). Since h∗ satisfies demographic parity on

the original distribution D, we have PR0(h
∗) = PR1(h

∗). If hλ satisfies demographic parity on the biased distribution
D̃, we have P̃R0(hλ) = P̃R1(hλ), and since P̃Ra(hλ) = PRa(hλ) by Corollary 3.6, it implies PR0(hλ) = PR1(hλ).
Combining the two observations above, we get PR0(hλ) = PR0(h

∗) = PR1(h
∗) = PR1(hλ), which is possible only if

hλ ≡ h∗ (as both are group-wise threshold classifiers). The other case t0 ≤ 1− δ ≤ t1 can be argued similarly.

Now, we give a complete proof of Theorem 4.1. Note that Theorem 4.1 implies Theorem 4.2 as i.i.d. noise is a special
case of Massart noise when we have δ(x, a) = δ, for all (x, a) ∈ X ×A. Thus, Theorem 4.1 is a stronger statement than
Theorem 4.2 (the original recovery theorem of Blum & Stangl (Blum & Stangl, 2019)) while having the same necessary and
sufficient conditions on the data and bias parameters.

Proof. (Proof of Theorem 4.1) Let

h̃λ(x, a) =



I

η(x, 0) ≥ 1

1 +
1− 2ν

c
+

λ

βnrq

 , for a = 0

I

η(x, 1) ≥ 1

2− λ

(1− r)q

 , for a = 1.

From the characterization of optimal equal opportunity classifier shown earlier, there exists some optimal λ∗ ∈ R such that
h̃EO = hλ∗ . We will show that if the conditions in Theorem 4.1 of Blum-Stangl hold, then the only possible choices left for
λ∗ ∈ R are the ones that give hλ∗ = h∗.

Step 1: If the given conditions on the bias parameters hold, then there exists a λ ∈ R such that h̃λ = h∗. The threshold

on η(x, 1) lies in the interval (δ, 1− δ) if and only if
1

1− δ
< 2− λ

(1− r)q
<

1

δ
, or equivalently,

−(1− 2δ)(1− r)q

δ
<

λ <
(1− 2δ)(1− r)q

1− δ
. Similarly, the threshold on η(x, 0) lies in the interval (δ, 1− δ) if and only if

1

1− δ
< 1+

1− 2ν

c
+

λ

βnrq
<

1

δ
, or equivalently,

βnrq

(
δ

1− δ
− 1− 2ν

c

)
< λ < βnrq

(
1− δ

δ
− 1− 2ν

c

)
.

There exists λ that simultaneously satisfies both sets of constraints given above if and only if

βnrq

(
δ

1− δ
− 1− 2ν

c

)
<

(1− 2δ)(1− r)q

1− δ

−(1− 2δ)(1− r)q

δ
< βnrq

(
1− δ

δ
− 1− 2ν

c

)
.

Using c = βn/βp, the above conditions can be rewritten as

(1− r)(1− 2δ) + r ((1− δ)βp(1− 2ν)− δβn) > 0 and
(1− r)(1− 2δ) + r ((1− δ)βn − δβp(1− 2ν)) > 0.
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Step 2: If the given conditions on the bias parameters hold, then there cannot exist any λ ∈ R such that both the group-
wise thresholds applied to η(x, a) in hλ are at most δ, or both the thresholds are at least 1− δ. (Thresholds lying on

the same side) The threshold on η(x, 1) is at most δ if and only if 2− λ

(1− r)q
≥ 1

δ
, or equivalently,

−(1− 2δ)(1− r)q

δ
≥

λ. Similarly, the threshold on η(x, 0) is at most δ if and only if 1 +
1− 2ν

c
+

λ

βnrq
≥ 1

δ
, or equivalently, λ ≥

βnrq

(
1− δ

δ
− 1− 2ν

c

)
. If both were to hold simultaneously, then

−(1− 2δ)(1− r)q

δ
≥ βnrq

(
1− δ

δ
− 1− 2ν

c

)
, or

equivalently, (1− r)(1− 2δ) + r ((1− δ)βn − δβp(1− 2ν)) ≤ 0, which would violate the second condition in Theorem
4.1 of Blum-Stangl.

On the other hand, the threshold on η(x, 1) is at least interval 1 − δ if and only if
1

1− δ
≥ 2 − λ

(1− r)q
,

or equivalently, λ ≥ (1− 2δ)(1− r)q

1− δ
. Similarly, the threshold on η(x, 0) is at least 1 − δ if and only if

1

1− δ
≥ 1 +

1− 2ν

c
+

λ

βnrq
, or equivalently, βnrq

(
δ

1− δ
− 1− 2ν

c

)
≥ λ. If both were to hold simultaneously, then

βnrq

(
δ

1− δ
− 1− 2ν

c

)
≥ (1− 2δ)(1− r)q

1− δ
, or equivalently, (1 − r)(1 − 2δ) + r ((1− δ)βp(1− 2ν)− δβn) ≤ 0,

which would violate the first condition in Theorem 4.1 of Blum-Stangl.

Step 3: For any λ, if the group-wise thresholds on η(x, a) in hλ have one of them at most δ and another at least 1− δ,
then hλ cannot satisfy equal opportunity unless hλ = h∗. (Thresholds lying on opposite sides) We know that h∗ satisfies
equal opportunity. Suppose the threshold of hλ on η(x, 0)(call it t0) and the threshold on η(x, 1)(call it t1) are separated by
either δ or 1− δ. WLOG assume t0 < t1. Suppose t0 ≤ δ ≤ t1. Since there is no input (x, a) with η(x, a) ∈ (δ, 1− δ),
we get TPR0(hλ) ≥ TPR0(h

∗) and TPR1(h
∗) ≥ TPR1(hλ). Since h∗ satisfies equal opportunity on the original

distribution D, we have TPR0(h
∗) = TPR1(h

∗). If hλ satisfies equal opportunity on the biased distribution D̃, we have
T̃PR0(hλ) = T̃PR1(hλ), and since T̃PRa(hλ) = TPRa(hλ) by Corollary 3.6, it implies TPR0(hλ) = TPR1(hλ).
Combining the two observations above, we get TPR0(hλ) = TPR0(h

∗) = TPR1(h
∗) = TPR1(hλ), which is possible

only if hλ ≡ h∗ (as both are group-wise threshold classifiers). The other case t0 ≤ 1− δ ≤ t1 can be argued similarly.

Combing Steps 1, 2, and 3 to complete the proof: Finally, from Steps 1, 2, and 3 together, it is clear that if the conditions
in Theorem 4.1 of Blum-Stangl are met then the only possible classifiers h̃λ are the ones for which h̃λ = h∗, and they satisfy
equal opportunity on D̃. So under these conditions, the optimal λ∗ (whatever it may be) gives h̃EO = h̃λ∗ = h∗.

A.5. Proofs for Section 5

Proof. (Proof of Proposition 5.1)

The optimal reject option classifier g : X ×A → {0, 1,⊥} with rejection penalty δ can be thought of as a pair of binary
classifiers ρ and h in H such that:

ρ(x, a) =

{
1, if g(x, a) = ⊥
0, if g(x, a) ̸= ⊥

and g(x, a) = h(x, a) whenever ρ(x, a) = 0 (or equivalently, g(x, a) ̸= ⊥). The optimal reject option classifier is defined
as

hrej = argmin
g∈Hrej

Pr (g(X,A) ̸= Y, g(X,A) ̸= ⊥) + δ Pr (g(X,A) = ⊥) ,

where Hrej be the hypothesis class of all reject option classifiers g : X ×A → {0, 1,⊥}. Equivalently, it can be re-written
as:
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(ρ∗, h∗) = argmin
ρ∈H

argmin
h∈H

Pr (h(X,A) ̸= Y, ρ(X,A) = 0) + δ Pr (ρ(X,A) = 1)

= argmin
ρ∈H

argmin
h∈H

1− Pr (ρ(X,A) = 1)− Pr (h(X,A) = Y, ρ(X,A) = 0) + δ Pr (ρ(X,A) = 1)

= argmax
ρ∈H

argmax
h∈H

Pr (h(X,A) = Y, ρ(X,A) = 0) + (1− δ) Pr (ρ(X,A) = 1)

= argmax
ρ∈H

argmax
h∈H

1∑
a=0

Pr (A = a) E
X|A=a

[
(1− ρ(X, a)) (h(X, a)η(X, a) + (1− h(X, a))(1− η(X, a)))

+ (1− δ)ρ(X, a)

]

= argmax
ρ∈H

1∑
a=0

Pr (A = a) E
X|A=a

[
(1− δ) ρ(X, a)

+ (1− ρ(X, a))

(
1− η(X, a) + argmax

h∈H
h(X, a)(2η(X, a)− 1)

)]
.

We can now focus on obtaining the optimal functions for each group. For any ρ ∈ H, solving the inner optimization gives
the optimal solution hrej(x, a) = I

(
η(x, a) ≥ 1

2

)
whenever ρ(x, a) ̸= 1. Thus, the outer optimization can be written as

ρ∗ = argmax
ρ∈H

E
X|A=a

[
(1− δ) ρ(X, a) + (1− ρ(X, a))

(
1− η(X, a) + I

(
η(X, a) ≥ 1

2

)
(2η(X, a)− 1)

)]
.

The above maximization can be solved point-wise for each x ∈ X in group A = a. Whenever η(x, a) ≥ 1/2 for an input x
from group a, the function inside the expectation becomes (1− δ)ρ(x, a) + (1− ρ(x, a))η(x, a), which is maximized by
ρ∗(x, a) = I (η(x, a) ∈ [1/2, 1− δ)). On the other hand, whenever η(x, a) < 1/2 for an input x, a, the function inside the
expectation becomes (1− δ)ρ(x, a) + (1− ρ(x, a)(1− η(x, a)), which is maximized by ρ∗(x, a) = I (η(x, a) ∈ (δ, 1/2)).
Thus, overall we can write ρ∗(x, a) = I (η(x, a) ∈ (δ, 1− δ)).

Proof. (Proof of Theorem 5.2) From Proposition 3.8, we can write:

h̃λ(x, a) =



I

η(x, 0) ≥ 1

1 +
1− 2ν

c
+

λ

βnrq

 , for a = 0

I

η(x, 1) ≥ 1

2− λ

(1− r)q

 , for a = 1.

We will now attempt to recover a classifier that matches the predictions of hrej, whenever hrej(x, a) ̸= ⊥, but incurs some
penalty while trying to label the points when hrej(x, a) = ⊥. From the characterization of the optimal equal opportunity
classifier shown earlier, there exists some optimal λ∗ ∈ R such that h̃EO = hrej, whenever hrej(x, a) ̸= ⊥. Such a classifier
will not change whenever it lies in the rejection interval (δ, 1− δ).

Step 1: If the given conditions on the bias parameters hold, then there exists a λ ∈ R such that h̃λ = hrej, whenever

hrej(x, a) ̸= ⊥. The threshold on η(x, 1) lies in the interval (δ, 1 − δ) if and only if
1

1− δ
< 2 − λ

(1− r)q
<

1

δ
, or

equivalently,
−(1− 2δ)(1− r)q

δ
< λ <

(1− 2δ)(1− r)q

1− δ
. Similarly, the threshold on η(x, 0) lies in the interval (δ, 1− δ)

if and only if
1

1− δ
< 1 +

1− 2ν

c
+

λ

βnrq
<

1

δ
, or equivalently,
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βnrq

(
δ

1− δ
− 1− 2ν

c

)
< λ < βnrq

(
1− δ

δ
− 1− 2ν

c

)
.

There exists λ that simultaneously satisfies both sets of constraints given above if and only if

βnrq

(
δ

1− δ
− 1− 2ν

c

)
<

(1− 2δ)(1− r)q

1− δ

−(1− 2δ)(1− r)q

δ
< βnrq

(
1− δ

δ
− 1− 2ν

c

)
.

Using c = βn/βp, the above conditions can be rewritten as

(1− r)(1− 2δ) + r ((1− δ)βp(1− 2ν)− δβn) > 0 and
(1− r)(1− 2δ) + r ((1− δ)βn − δβp(1− 2ν)) > 0.

Step 2: If the given conditions on the bias parameters hold, then there cannot exist any λ ∈ R such that both the group-
wise thresholds applied to η(x, a) in hλ are at most δ, or both the thresholds are at least 1− δ. (Thresholds lying on

the same side) The threshold on η(x, 1) is at most δ if and only if 2− λ

(1− r)q
≥ 1

δ
, or equivalently,

−(1− 2δ)(1− r)q

δ
≥

λ. Similarly, the threshold on η(x, 0) is at most δ if and only if 1 +
1− 2ν

c
+

λ

βnrq
≥ 1

δ
, or equivalently, λ ≥

βnrq

(
1− δ

δ
− 1− 2ν

c

)
. If both were to hold simultaneously, then

−(1− 2δ)(1− r)q

δ
≥ βnrq

(
1− δ

δ
− 1− 2ν

c

)
, or

equivalently, (1− r)(1− 2δ) + r ((1− δ)βn − δβp(1− 2ν)) ≤ 0, which would violate the second condition in Step 1.

On the other hand, the threshold on η(x, 1) is at least interval 1 − δ if and only if
1

1− δ
≥ 2 − λ

(1− r)q
,

or equivalently, λ ≥ (1− 2δ)(1− r)q

1− δ
. Similarly, the threshold on η(x, 0) is at least 1 − δ if and only if

1

1− δ
≥ 1 +

1− 2ν

c
+

λ

βnrq
, or equivalently, βnrq

(
δ

1− δ
− 1− 2ν

c

)
≥ λ. If both were to hold simultaneously, then

βnrq

(
δ

1− δ
− 1− 2ν

c

)
≥ (1− 2δ)(1− r)q

1− δ
, or equivalently, (1 − r)(1 − 2δ) + r ((1− δ)βp(1− 2ν)− δβn) ≤ 0,

which would violate the first condition in Step 1.

Step 3: For any λ, if the group-wise thresholds on η(x, a) in hλ have one of them at most δ and another at
least 1 − δ, then hλ cannot satisfy equal opportunity unless hλ = hrej, whenever hrej(x, a) ̸= ⊥. (Thresholds
lying on opposite sides) From our assumption, we know that hrej satisfies equal opportunity whenever hrej(x, a) ̸= ⊥.
Suppose the threshold of hλ on η(x, 0)(call it t0) and the threshold on η(x, 1)(call it t1) are separated by either δ or
1 − δ. WLOG assume t0 < t1. Suppose t0 ≤ δ ≤ t1. Since there is no input (x, a) with η(x, a) ∈ (δ, 1 − δ), we
get TPR0(hλ) ≥ TPR0(h

∗) and TPR1(h
∗) ≥ TPR1(hλ). Since h∗ satisfies equal opportunity on the original

distribution D, we have TPR0(h
∗) = TPR1(h

∗). If hλ satisfies equal opportunity on the biased distribution D̃, we have
T̃PR0(hλ) = T̃PR1(hλ), and since T̃PRa(hλ) = TPRa(hλ) by Corollary 3.6, it implies TPR0(hλ) = TPR1(hλ).
Combining the two observations above, we get TPR0(hλ) = TPR0(h

∗) = TPR1(h
∗) = TPR1(hλ), which is possible

only if hλ ≡ h∗ (as both are group-wise threshold classifiers). The other case t0 ≤ 1− δ ≤ t1 can be argued similarly.

Combing Steps 1, 2, and 3 to complete the proof: Finally, from Steps 1, 2, and 3 together, it is clear that when the above
conditions are met, then the only possible classifiers h̃λ are the ones for which h̃λ = hrej, whenever hrej(x, a) ̸= ⊥, and they
satisfy equal opportunity on D̃. Furthermore, by our assumption, hrej is EO-fair.
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A.6. Proofs for Section 6

Definition 6.1 of ϵ-robustness of h∗ can be rewritten as

h∗(x) = argmax
h∈H

Pr (h(X,A) = Y ′)

= argmax
h∈H

E
(X,A)

[h(X,A)(2η′(X,A)− 1)]

= argmax
h∈H

1∑
a=0

Pr (A = a) E
X|A=a

[h(X, a)(2η′(X, a)− 1)]

= argmax
h∈H

1∑
a=0

Pr (A = a) E
X|A=a

[
h(X, a)

(
2
Paη(X, a) +Qa

Raη(X, a) + Sa
− 1

)]

= argmax
h∈H

1∑
a=0

Pr (A = a) E
X|A=a

[
h(X, a)

(2Pa −Ra)η(X, a) + (2Qa − Sa)

Raη(X, a) + Sa

]
,

for any Sa = 1, |Ra| ≤ ϵ, |Qa| ≤ ϵ, 1− ϵ ≤ Pa ≤ 1 + ϵ, and PaSa −QaRa ≥ 0.

Proof. (Proof of Theorem 6.2) Let h̃EO = argmax
h∈H̃fair

Pr
(
h(X,A) = Ỹ

)
. By Lagrange duality, we can write

h̃EO = argmax
h∈H

min
λ∈R

Pr
(
h(X,A) = Ỹ

)
+ λ Pr

(
h(X,A) = 1|Ỹ = 1, A = 0

)
− λ Pr

(
h(X,A) = 1|Ỹ = 1, A = 1

)
= argmax

h∈H
min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

[h(X, a)(2η̃(X, a)− 1)] +
(−1)I(a=1) λ

E
X|A=a

[η̃(X, a)]
E

X|A=a
[h(X, a)η̃(X, a)]

= argmax
h∈H

min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

[h(X, a)(2η̃(X, a)− 1)] +
(−1)I(a=1) λ

Pr
(
Ỹ = 1|A = a

) E
X|A=a

[h(X, a)η̃(X, a)]

= argmax
h∈H

min
λ∈R

1∑
a=0

Pr (A = a) E
X|A=a

h(X, a)

2 +
(−1)I(a=1)λ

Pr
(
Ỹ = 1, A = a

)
 η̃(X, a)− 1


= argmax

h∈H
min
λ∈R

r E
X|A=0

[
h(X, 0)

((
2 +

λ

βp(1− ν)rq

)
(1− ν)η(X, 0)

(1− c)η(X, 0) + c
− 1

)]
+ (1− r) E

X|A=1

[
h(X, 1)

((
2− λ

(1− r)q

)
η(X, 1)− 1

)]

= argmax
h∈H

min
λ∈R

r E
X|A=0

h(X, 0)

(
2(1− ν) +

λ

βprq
− (1− c)

)
η(X, 0)− c

(1− c)η(X, 0) + c


+ (1− r) E

X|A=1

[
h(X, 1)

((
2− λ

(1− r)q

)
η(X, 1)− 1

)]

= argmax
h∈H

min
λ∈R

r E
X|A=0

h(X, 0)

(
1− 2ν + c+

λ

βprq

)
η(X, 0)− c

(1− c)η(X, 0) + c


+ (1− r) E

X|A=1

[
h(X, 1)

((
2− λ

(1− r)q

)
η(X, 1)− 1

)]

= argmax
h∈H

min
λ∈R

r E
X|A=0

h(X, 0)

(
1 +

1− 2ν

c
+

λ

βnrq

)
η(X, 0)− 1

1− c

c
η(X, 0) + 1


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+ (1− r) E
X|A=1

[
h(X, 1)

((
2− λ

(1− r)q

)
η(X, 1)− 1

)]
, using c =

βn

βp
.

Now plugging in

(2P0 −R0)η(X, 0) + (2Q0 − S0)

R0η(X, 0) + S0
=

(
1 +

1− 2ν

c
+

λ

βnrq

)
η(X, 0)− 1

1− c

c
η(X, 0) + 1

and

(2P1 −R1)η(X, 1) + (2Q1 − S1)

R1η(X, 1) + S1
=

(
2− λ

(1− r)q

)
η(X, 1)− 1,

we derive

P0 =
1− ν

c
+

λ

2βnrq
, Q0 = 0, R0 =

1− c

c
, S0 = 1,

P1 = 1− λ

2(1− r)q
, Q1 = 0, R1 = 0, S1 = 1.

Step 1: If the given conditions on the bias parameters hold, then there exists a λ ∈ R such that 1− ϵ ≤ P0, P1 ≤ 1+ ϵ,
and therefore, hλ = h∗. They satisfy our ϵ-robustness conditions if and only if

|R0| =
∣∣∣∣1− c

c

∣∣∣∣ = ∣∣∣∣βp − βn

βn

∣∣∣∣ ≤ ϵ,

1− ϵ ≤ P0 =
1− ν

c
+

λ

2βnrq
≤ 1 + ϵ

1− ϵ ≤ P1 = 1− λ

2(1− r)q
≤ 1 + ϵ.

The above conditions also imply PaSa −QaRa ≥ 0, for a ∈ {0, 1}, so we do not need to include these separately. The
first inequality is equivalent to (1 − ϵ)βn ≤ βp ≤ (1 + ϵ)βn. The second and third inequalities above are equivalent
to 2rq ((1− ϵ)βn − (1− ν)βp) ≤ λ ≤ 2rq ((1 + ϵ)βn − (1− ν)βp) and −2ϵ(1 − r)q ≤ λ ≤ 2ϵ(1 − r)q, respectively.
There exists a λ ∈ R that satisfies the above two conditions on λ simultaneously if and only if

2rq ((1− ϵ)βn − (1− ν)βp) ≤ 2ϵ(1− r)q and − 2ϵ(1− r)q ≤ 2rq ((1 + ϵ)βn − (1− ν)βp) ,

or equivalently,

r ((1− ν)βp − (1− ϵ)βn) + ϵ(1− r) ≥ 0 and r ((1 + ϵ)βn − (1− ν)βp) + ϵ(1− r) ≥ 0.

Step 2: If the given conditions on the bias parameters hold, then there cannot exist any λ ∈ R such that max{P0, P1} <
1− ϵ or min{P0, P1} > 1 + ϵ. Suppose max{P0, P1} < 1− ϵ. Then

1− ν

c
+

λ

2βnrq
< 1− ϵ and 1− λ

2(1− r)q
< 1− ϵ.

Thus, λ < 2rq ((1− ϵ)βn − (1− ν)βp) and λ > 2ϵ(1 − r)q. This implies 2rq ((1− ϵ)βn − (1− ν)βp) > 2ϵ(1 − r)q,
or equivalently, r ((1− ν)βp − (1− ϵ)βn) + ϵ(1 − r) < 0, violating one of the conditions in the theorem. The case of
min{P0, P1} > 1 + ϵ can be argued similarly.

Step 3: If the given conditions on the bias parameters hold, then an optimal λ∗ ∈ R cannot correspond to P0 < 1− ϵ
and P1 > 1 + ϵ (or vice versa). Suppose λ∗ ∈ R satisfies P0 < 1− ϵ and P1 > 1 + ϵ, then

P0 =
1− ν

c
+

λ∗

2βnrq
< 1− ϵ and P1 = 1− λ∗

2(1− r)q
> 1 + ϵ,

which implies that λ∗ < 2rq ((1− ϵ)βn − (1− ν)βp) and λ∗ < −2ϵ(1− r)q. We know that

h̃EO = argmax
h∈H

Pr
(
h(X,A) = Ỹ

)
+ λ∗ Pr

(
h(X,A) = 1|Ỹ = 1, A = 0

)
− λ∗ Pr

(
h(X,A) = 1|Ỹ = 1, A = 1

)
.
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Since we consider group-aware classification, when we know the optimal λ∗, the optimal equal opportunity classifier
h̃EO on the biased distribution D̃ can be obtained by optimizing separately on the two groups. Note that h̃EO maximizes
Pr
(
h(X,A) = Ỹ

)
+ λ∗ Pr

(
h(X,A) = 1|Ỹ = 1, A = 0

)
− λ∗ Pr

(
h(X,A) = 1|Ỹ = 1, A = 1

)
over h ∈ H, for the

optimal λ∗ ∈ R. Since we consider group-aware classifiers, h̃EO maximizes the following objective on the underprivileged
group a = 0.

Pr
(
h(X,A) = Ỹ |A = 0

)
+

λ∗

Pr (A = 0)
Pr
(
h(X,A) = 1|Ỹ = 1, A = 0

)
= Pr

(
Ỹ = 1|A = 0

)
T̃PR0(h) + Pr

(
Ỹ = 0|A = 0

)
T̃NR0(h) +

λ∗

r
T̃PR0(h)

= Pr
(
Ỹ = 1|A = 0

)
TPR0(h) + Pr

(
Ỹ = 0, Y = 0|A = 0

)
TNR0(h) + Pr

(
Ỹ = 0, Y = 1|A = 0

)
FNR0(h)

+
λ∗

r
TPR0(h) using Proposition 3.5

=
qβp(1− ν)

qβp + (1− q)βn
TPR0(h) +

(1− q)βn

qβp + (1− q)βn
TNR0(h) +

qβpν

qβp + (1− q)βn
FNR0(h) +

λ∗

r
TPR0(h)

=

(
qβp(1− 2ν)

qβp + (1− q)βn
+

λ∗

r

)
TPR0(h) +

(1− q)βn

qβp + (1− q)βn
TNR0(h) +

qβpν

qβp + (1− q)βn

because FNR0(h) = 1− TPR0(h).

Thus, h̃EO essentially maximizes a weighted linear combination of TPR0(h) and TNR0(h) over h ∈ H, where the ratios
of the weights for TPR0(h) and TNR0(h), respectively, is

qβp(1− 2ν)

(1− q)βn
+

λ∗(qβp + (1− q)βn)

r(1− q)βn
≤ q(1− 2ν)

(1− q)c
+

λ∗

r(1− q)βn
using βp, βn ≤ 1

=
q

1− q

(
1− 2ν

c
+

λ∗

βnrq

)
=

q

1− q

(
2(1− ν)

c
+

λ∗

βnrq
− 1

c

)
<

q

1− q

(
2(1− ϵ)− 1

c

)
using P0 =

1− ν

c
+

λ∗

2βnrq
< 1− ϵ

≤ q

1− q
(1− ϵ) using

∣∣∣∣1− c

c

∣∣∣∣ ≤ ϵ, and hence,
1

c
≥ 1− ϵ

Hence, TPR0(h̃EO) ≤ TPR0(h
∗). Similarly, h̃EO maximizes the following objective on the group a = 1.

Pr
(
h(X,A) = Ỹ |A = 1

)
− λ∗

Pr (A = 1)
Pr
(
h(X,A) = 1|Ỹ = 1, A = 1

)
= Pr

(
Ỹ = 1|A = 1

)
T̃PR1(h) + Pr

(
Ỹ = 0|A = 1

)
T̃NR1(h)−

λ∗

1− r
T̃PR1(h)

= q

(
1− λ∗

(1− r)q

)
TPR1(h) + (1− q) TNR1(h).

Thus, h̃EO essentially maximizes a weighted linear combination of TPR1(h) and TNR1(h) over h ∈ H, where the ratio
of the weights for TPR1(h) and TNR1(h), respectively, is

q

1− q

(
1− λ∗

(1− r)q

)
>

q

1− q
(1 + 2ϵ) using P1 = 1− λ∗

2(1− r)q
> 1 + ϵ.

Hence, TPR1(h̃EO) ≥ TPR1(h
∗).

Combining the two observation TPR0(h̃EO) ≤ TPR0(h
∗) and TPR1(h̃EO) ≥ TPR1(h

∗) above and that h∗ satisfies
equal opportunity, we get TPR0(h̃EO) ≤ TPR0(h

∗) = TPR1(h
∗) ≤ TPR1(h̃EO). However, h̃EO ∈ H̃fair, EO =
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Hfair, EO by Corollary 3.6, so we must have TPR0(h̃EO) = TPR0(h
∗) = TPR1(h

∗) = TPR1(h̃EO). This means that
h̃EO would also maximize accuracy on the original distribution D, and therefore, by the ϵ-robustness property, we must
have h̃EO ≡ h∗.

The case of P0 > 1 + ϵ and P1 < 1− ϵ can be argued similarly.

A.7. Proofs for Section 7

Proof. (Proof for Theorem 7.2) We start with the Bayes Optimal EO classifier at the time step t:

h̃
(t)
EO(x, a) = I

η̃t(x, a) ≥
1

2 +
(−1)I(a=1)λ∗

Pr
(
Ỹt = 1, A = a

)


From Proposition 7.1 we can obtain the transformed η̃t with the same bias parameters at each time step:

=



I

 η(x, 0)

1− c

1− ν − c

(
1−

(
c

1− ν

)t
)
η(x, 0) +

(
c

1− ν

)t
≥ 1

2 +
λ∗

Pr
(
Ỹt = 1, A = 0

)
 , for a = 0

I

η(x, 1) ≥ 1

2− λ∗

Pr (Y = 1, A = 1)

 , for a = 1

=



I

η(x, 0) ≥ 1

1− 2ν − c

1− ν − c

(
1− ν

c

)t

+
λ∗

βt
nrq

+
1− c

1− ν − c

 , for a = 0, using c = βn/βp

I

η(x, 1) ≥ 1

2− λ∗

(1− r)q

 , for a = 1.

So the threshold on η(x, 1) lies in the interval (δ, 1− δ) if and only if δ <

(
2− λ∗

(1− r)q

)−1

< 1− δ, which is equivalent

to
−(1− 2δ)(1− r)q

δ
< λ∗ <

(1− 2δ)(1− r)q

1− δ
. Given this, now let’s analyze the threshold on η(x, 0). If βn < 1, then

as t → ∞ we have λ∗/(βt
nrq) → ∞, and therefore, the threshold on η(x, 0) in the above expression tends to 0, i.e., it

cannot remain within (δ, 1− δ) interval. If βn = 1 then c = βn/βp > 1− ν. Thus, ((1− ν)/c)
t → 0 as t → ∞. Using

this and βn = 1, the above expression becomes

1

1− 2ν − c

1− ν − c

(
1− ν

c

)t

+
λ∗

βt
nrq

+
1− c

1− ν − c

→ 1

λ∗

rq
+

1− c

1− ν − c

as t → ∞.

The threshold on η(x, 1) lies in the interval (δ, 1 − δ) if and only if
−(1− 2δ)(1− r)q

δ
< λ∗ <

(1− 2δ)(1− r)q

1− δ
.

Similarly, the limit expression as t → ∞ for threshold on η(x, 0) lies in the interval (δ, 1 − δ) if and only if
1

1− δ
<

λ∗

rq
+

1− c

1− ν − c
<

1

δ
, or equivalently, rq

(
1

1− δ
− 1− c

1− ν − c

)
< λ∗ < rq

(
1

δ
− 1− c

1− ν − c

)
. There exists a λ∗ that
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simultaneously satisfies the constraints on both the thresholds if and only if

−(1− 2δ)(1− r)q

δ
< rq

(
1

δ
− 1− c

1− ν − c

)
and rq

(
1

1− δ
− 1− c

1− ν − c

)
<

(1− 2δ)(1− r)q

1− δ
.

Thus, the necessary conditions to recover h∗ using equal opportunity fair classification on the biased distribution after t
steps as t → ∞ can be written as βn = 1 and

r − (1− 2δ)(1− r)

(1− δ)r
<

1− c

1− ν − c
<

r + (1− 2δ)(1− r)

δr
.

The above conditions can be further simplified as βn = 1 and 1− (1− 2δ)

(1− δ)r
<

νβp

1− βp(1− ν)
< 1 +

(1− 2δ)

δr
.

Proof. (Proof for Theorem 7.3) Similar to the proof of Theorem 4.2, we begin with η̃(x, a):

h̃EO,t(x, a) = I

η̃t(x, a) ≥
1

2 +
(−1)I(a=1)λ∗

Pr
(
Ỹ = 1, A = a

)


Because the population in group 1 is unaffected, we can obtain the conditions on λ∗. Pr (Y = 1, A = 1) = (1− r)q. From

Lemma A.5, we know that the threshold on η(x, 1) lies in the interval (δ, 1− δ) if and only if
1

1− δ
< 2− λ∗

(1− r)q
<

1

δ
,

or equivalently,
−(1− 2δ)(1− r)q

δ
< λ∗ <

(1− 2δ)(1− r)q

1− δ
. We will now work towards obtaining the set of conditions

on λ∗ by focusing on the quantities inside the indicator on η̃t(x, 0). Using Proposition 7.1:

η̃t(x, 0) =
η(x, 0)

t∑
i=1

 1− ci
1− νi

t∏
j=i+1

cj
1− νj

 η(x, 0) +

t∏
i=1

ci
1− νi

≥ 1

2 +
λ∗

Pr
(
Ỹ = 1, A = 0

)

From previous derivations, we know that Pr
(
Ỹ = 1, A = 0

)
= rq

∏t
i=1(βp,i(1− νi). Simplifying the above expression

gives us the following:

η(x, 0) ≥ 1

2

t∏
i=1

1− νi
ci

+
λ∗

rq
∏t

i=1 βn,i

−
t∑

i=1

1− ci
ci

i−1∏
j=1

1− νj
cj


where

∏i−1
j=1

1−νj

cj
= 1 whenever j > i.

Using similar arguments as in Proposition 4.2, the denominator must lie in the range ((1− δ)−1, δ−1), which gives us the
following inequalities on λ∗:

rq

t∏
i=1

βn,i

1− δ
− 2rq

t∏
i=1

[(1− νi)βp,i] + rq

(
t∏

i=1

[(1− νi)βp,i]

)
t∑

j=1

(
1− cj
cj

j−1∏
k=1

1− νk
ck

)
< λ∗ (1)
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and

λ∗ <

rq

t∏
i=1

βn,i

δ
− 2rq

t∏
i=1

[(1− νi)βp,i] + rq

(
t∏

i=1

[(1− νi)βp,i]

)
t∑

j=1

(
1− cj
cj

j−1∏
k=1

1− νk
ck

)
(2)

To get a tight bound, we can obtain an upper bound on the left side of Equation 1 and a lower bound on the right side of
Equation 2, using the assumed maximal bias of βn,t ∈ [βn, 1], βp,t ∈ [βp, 1] and νt ∈ [0, ν], where ν < 1

2 . This gives us
the following bounds on λ∗:

rq

1− δ
− 2rq(1− ν)tβt

p + rq
1− βt

n

βt
n

< λ∗ <
rqβt

n

δ
− 2rq + rq(1− ν)tβt

p(βp − 1)
1− βt

p(1− ν)t

1− βp(1− ν)
(3)

Comparing this with the conditions on λ∗ found earlier:
−(1− 2δ)(1− r)q

δ
< λ∗ <

(1− 2δ)(1− r)q

1− δ
, we get the

following inequalities:

(1− 2δ)(1− r)

(1− δ)r
− δ

1− δ
>

1

βt
n

− 2βt
p(1− ν)t

and

(1− 2δ)(1− r)

δr
> (1− ν)tβt

p(1− βp)
1− βt

p(1− ν)t

1− βp(1− ν)
− βt

n

δ
− 2

Theorem A.6. Assuming boundedness on data bias parameters at each time step: βn,t ∈ [βn, 1], βp,t ∈ [βp, 1] and νt ∈
[0, ν], where ν < 1

2 ; whenever the following relationships hold:

(1− 3δ)(βp − 1)
1− βt

p(1− ν)t

1− βp(1− ν)
− 2δ − (1− δ)

(
1− βt

n

βt
n

− 2βt
p(1− ν)t

)
> 0 and

1 + δ

(
(βp − 1)

1− βt
p(1− ν)t

1− βp(1− ν)
− 2

βt
n

− (2δ − 1)
1− βt

n

βt
n

)
− 2(δ − 1) > 0,

we have h̃DP,t(x, a) = hDP (x, a) = h∗.

Proof. We again begin with the thresholding results on Demographic Parity from Proposition A.4.

h̃DP (x, a) = I
(
η̃(x, a) ≥ 1

2
− −1I(a=1)λ∗

2

)

(Using Proposition 7.1) =



I


η(x, 0)

t∑
i=1

 1− ci
1− νi

t∏
j=i+1

cj
1− νj

 η(x, 0) +

t∏
i=1

ci
1− νi

≥ 1

2
− λ∗

2

 , for a = 0

I
(
η(x, 1) ≥ 1

2
+

λ∗

2

)
, for a = 1
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=


I

η(x, 0) ≥
(1− λ∗)

∏t
i=1

ci
1− νi

2− (1− λ∗)
∑t

i=1

(
1− ci
1− νi

∏t
j=i+1

cj
1− νj

)
 , for a = 0

I
(
η(x, 1) ≥ 1

2
+

λ∗

2

)
, for a = 1

=


I

η(x, 0) ≥ 1

2

1− λ∗
∏t

i=1

1− νi
ci

−
∑t

i=1

(
1− ci
ci

∏i−1
j=1

1− νj
cj

)
 , for a = 0

I
(
η(x, 1) ≥ 1

2
+

λ∗

2

)
, for a = 1

where
∏i−1

j=1
1−νj

cj
= 1 whenever j > i. From Lemma A.5, we know that the threshold on η(x, 1) lies in the interval

(δ, 1− δ) if and only if δ <
1

2
+

λ∗

2
< 1− δ, or equivalently, 2δ − 1 < λ∗ < 1− 2δ. Similarly, the threshold on η(x, 0)

lies in the interval (δ, 1− δ) if and only if the denominator lies in the range ((1− δ)−1, δ−1) which gives us the following
inequalities on λ∗:

1 + (1− δ)

(∑t
i=1

(
1− ci
ci

∏i−1
j=1

1− νj
cj

)
− 2

∏t
i=1

1− νi
ci

)
1 + (1− δ)

∑t
i=1

(
1− ci
ci

∏i−1
j=1

1− νj
cj

) < λ∗ (4)

λ∗ <

1 + δ

(∑t
i=1

(
1− ci
ci

∏i−1
j=1

1− νj
cj

)
− 2

∏t
i=1

1− νi
ci

)
1 + δ

∑t
i=1

(
1− ci
ci

∏i−1
j=1

1− νj
cj

) (5)

To get a tight bound, we can obtain an upper bound on Equation 4 and a lower bound on Equation 5, using the assumed
maximal bias of βn,t ∈ [βn, 1], βp,t ∈ [βp, 1] and νt ∈ [0, ν], where ν < 1

2 . This gives us the following bounds on λ∗:

1 + (1− δ)

(
1− βt

n

βt
n

− 2βt
p(1− ν)t

)
1 + (1− δ)(βp − 1)

(
1− βt

p(1− ν)t

1− βp(1− ν)

) < 1− 2δ , and

2δ − 1 <

1 + δ

(
(βp − 1)

(
1− βt

p(1− ν)t

1− βp(1− ν)

)
− 2

βt
n

)
1 + δ

1− βt
n

βt
n

Therefore, to have a λ∗ which satisfies both the sets of the inequalities, the following conditions must hold:

(1− 3δ)(βp − 1)
1− βt

p(1− ν)t

(1− βp(1− ν)
− 2δ − (1− δ)

(
1− βt

n

βt
n

− 2βt
p(1− ν)t

)
> 0 (6)

and

1 + δ

(
(βp − 1)

1− βt
p(1− ν)t

(1− βp(1− ν)
− 2

βt
n

− (2δ − 1)
1− βt

n

βt
n

)
− 2(δ − 1) > 0 (7)
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