
Under review as a conference paper at ICLR 2021

CONTENTS

1 Introduction 1

2 Perturbation-based robustness: approaches and limitations 2

3 A new robustness paradigm: model-based robust deep learning 3
3.1 Models of natural variation . 3

3.2 Model-based robust training formulation . 4

4 Model-based training algorithms 4

5 Experiments 5
5.1 Out-of-distribution robustness . 5

5.2 Model-based robustness on the shift from ImageNet to ImageNet-c 6

5.3 Robustness to simultaneous distributional shifts 6

5.4 Transferability of model-based robustness . 7

5.5 Model-based robust deep learning for unsupervised domain adaptation 7

6 Related work 8

7 Conclusion 8

A On the quality and representational power of (learned) models of natural variation 15
A.1 A geometric interpretation of models of natural variation 15

A.2 A statistical interpretation of models of natural variation 16

A.3 On the choice of the MUNIT architecture in this paper 16

A.4 On the choice to learn G(x, �) offline . 17

A.5 Quantifying the ability of learned models of natural variation to generate realistic
images . 17

A.6 A gallery of models of natural variation . 18

B Further discussion of MAT, MRT, and MDA 23
B.1 Further descriptions of MAT, MRT, and MDA . 23

B.2 Sampling vs. adversarial mindset . 23

B.3 Varying k in the model-based algorithms . 25

C Training details 26
C.1 Selecting the dimension of the nuisance parameter space � 26

C.2 Selecting the radius of the nuisance parameter space � 26

C.3 Classifier architecture and hyperparameter selection 26

C.4 MUNIT framework overview . 27

C.5 Hyperparameters and implementation of MUNIT 28

13

Under review as a conference paper at ICLR 2021

D Details concerning datasets and domains 29
D.1 An overview of the datasets used in this paper . 29

D.2 Datasets introduced in this paper . 29

D.3 Natural vs. synthetic variation in data . 31

D.3.1 Naturally-occurring variation . 31

D.3.2 Artificially-generated variation . 31

14

Under review as a conference paper at ICLR 2021

(a) Perturbation-based robustness. In perturbation-
based adversarial robustness, an adversary can per-
turb a datum x into a perceptually similar datum
xadv := x + �. When � is constrained to lie in a
set � := {� 2 Rd : ||�||p  ✏}, the underlying ge-
ometry of the problem can be used to find worst-case
additive perturbations.

(b) Model-based robustness. When data can vary-
ing with respect to a nonlinear nuisance transforma-
tion such as the weather conditions in an image, de-
fenses cannot easily exploit the linearity or geometry
of the underlying problem. Indeed, there may be no
analytic form for the transformation G(x, �) for the
transformation from sunny to snowy weather.

Figure 3: Geometry of adversarial and model-based robustness. When a form of natural variation
in data can be described by a simple analytic expression, it is often possible to take advantage of this
form to derive adversarial training algorithms. However, when data can vary according to nonlinear
natural or physical phenomena, one must devise different schemes for providing robustness.

A ON THE QUALITY AND REPRESENTATIONAL POWER OF (LEARNED)
MODELS OF NATURAL VARIATION

A.1 A GEOMETRIC INTERPRETATION OF MODELS OF NATURAL VARIATION

To provide geometric intuition for the model-based robust training formulation, consider Figure
3. The geometry of the classical perturbation-based adversarial training is captured in Figure 3a,
wherein each datum x can be perturbed to any other datum xadv contained in a small ✏-neighborhood
around x. That is, the data can be additively perturbed via x 7! xadv := x+ � where � is constrained
to lie in a set � := {� 2 Rd : ||�||p  ✏}. On the other hand, Figure 3b shows the geometry of
the model-based robust training paradigm. Let us consider a task in which our goal is to correctly
classify images of street signs in varying weather conditions. In our model-based paradigm, we are
equipped with a model G(x, �) of natural variation that can naturally vary an image x by changing
the nuisance parameter � 2 �. For example, if our data contains images x in sunny weather, the
model G(x, �) may be designed to continuously vary the weather conditions in the image without
changing the scene or the street sign. More generally, such model-based variations around x have a
manifold-like structure and belong to B(x) := {x0 2 Rd : x0 = G(x, �) for some � 2 �}. Note
that in many models of natural variation, the dimension of model parameter � 2 �, and therefore
the dimension of manifold B(x), will be significantly lower than the dimension of data x 2 Rd. In
other words, B(x) will be comprised of submanifolds around x in the data space Rd.

One subtle underlying assumption in the classical adversarial robustness formulation for classifica-
tion tasks is that the additive perturbation x + � must preserve the label y of the original datum x.
For instance, in Figure 3, it is essential that the mapping x 7! x + � where ||�||p  ✏ produces
an example xadv = x + � which has the same label as x. Similarly, in this paper we restrict our
attention to models G(x, �) that preserve the semantic label of the input datum x for any � 2 �. In
other words, we focus on models G(x, �) that can naturally vary data x using nuisance parameter �

15

Under review as a conference paper at ICLR 2021

(e.g. weather conditions, contrast, background color) while leaving the label of the original datum
unchanged. In Figure 3b, this corresponds to all points x0 2 B(x) with varying snowy weather
having the same label y as the original input datum x.

A.2 A STATISTICAL INTERPRETATION OF MODELS OF NATURAL VARIATION

Our approach toward formalizing the idea of learning G(x, �) from data is to view G as a mechanism
that transforms the distribution of data in the source domain A so that it resembles the distribution of
data in the target domain B. More formally, let PA and PB be the data distributions corresponding
to domains A and B respectively. Our objective is to find a mapping G that takes as input a datum
x ⇠ PA and a nuisance parameter � 2 � and then produces a new datum x0 ⇠ PB . Statistically
speaking, the nuisance parameter � represents the extra randomness or variation required to generate
x0 from x. For example, when considering images with varying weather conditions, the randomness
in the nuisance might control whether an image of a sunny scene is mapped to a corresponding image
with a dusting of snow or to an image in an all-out blizzard. In this way, we without loss of generality
we assume that the nuisance parameter is independently generated from a simple distribution P�

(e.g. uniform or Gaussian) to represent the extra randomness required to generate x0 from x.1 Using
this formalism, we can view G(·, ·) as a mapping that transforms the distribution PA ⇥ P� into the
distribution PB . More specifically, G pushes forward the measure PA ⇥ P�, which is defined over
A⇥�, to PB , which is defined over B. That is, PB = G#(PA ⇥ P�), where # denotes the push-
forward measure. Now in order to learn a model of natural variation G, we consider a parametric
family of models G := {G✓ : ✓ 2 ⇥} defined over a parameter space ⇥ ⇢ Rm. We can express
the problem of learning a model of natural variation G✓⇤ parameterized by ✓⇤ 2 ⇥ that best fits the
above formalism in the following way:

✓⇤ = argmin
✓2⇥

d (PB , G✓ #(PA ⇥ P�)). (4)

Here d(·, ·) is an appropriately-chosen distance metric that measures the distance between two prob-
ability distributions (e.g. the KL-divergence, total variation, etc.). This formulation has received
broad interest in the machine learning community thanks to the recent advances in generative mod-
eling. In particular, in the fields of image-to-image translation and style-transfer, learning mappings
between unpaired image domains is a well-studied problem (Huang et al., 2018; Zhu et al., 2017b;
Yi et al., 2017). In the next section, we will show how the breakthroughs in these fields can be used
to learn a model of natural variation G that approximates underlying natural phenomena.

A.3 ON THE CHOICE OF THE MUNIT ARCHITECTURE IN THIS PAPER

Importantly, a number of methods have been designed toward achieving the goal detailed in Section
A.2. In the fields of unsupervised, non-conditional image-to-image translation, such methods in-
clude CycleGAN (Zhu et al., 2017a), DualGAN (Yi et al., 2017), Augmented CycleGAN (Almahairi
et al., 2018), BicycleGAN (Zhu et al., 2017b), CSVAE (Klys et al., 2018), UNIT (Liu et al., 2017),
MUNIT (Huang et al., 2018), DRIT (Lee et al., 2018), MSGAN (Mao et al., 2019), StarGAN (Choi
et al., 2018), StarGAN v2 (Choi et al., 2020). Among these methods, CSVAE, BicycleGAN, Aug-
mented CycleGAN, and MUNIT, DRIT, MSGAN, and StarGAN seek to learn multimodal mappings
that disentangle the semantic content of a datum (e.g. its label and characterizing features) from the
nuisance content (e.g. background color, weather conditions) by solving the statistical problem of
equation 4. We highlight these methods because learning a multimodal mapping is a concomitant
property toward learning models that can produce images with varying nuisance content.

While performing the experiments for this paper, we tested three different architectures for G in
our MRDEL framework: CSVAE, MUNIT, and StarGAN v2. However, we could not get CSVAE
to produce high-quality images corresponding to different shifts in natural variation. Similarly,
the performance of StarGAN was also poor; StarGAN v2 suffered mode collapse on nearly every
dataset we ran it on. On the other hand, we found that the MUNIT framework consistently produced
realistic, naturally-varying images, which motivated our decision to exclusively use the MUNIT
framework in our final experiments.

1The role of the nuisance parameter is similar to the role of the noise variable in generative adversarial
networks (Goodfellow et al., 2014a).

16

Under review as a conference paper at ICLR 2021

(a) Original.

(b) 10. (c) 100. (d) 250. (e) 500

(f) 1000. (g) 2000. (h) 3000. (i) 4000.

Output images from models in G. We
show an example image from domain A in
(a), and subsequently show the correspond-
ing output images for each G 2 G for a ran-
domly chosen � 2 � in (b)-(i).

(j) MRT using models from G. For each model in G, we
run MRT for five trials and show the resulting test accuracy
on samples from the test set from Domain B. Note that the
robustness of the trained classifier increases as the number of
training steps used to train the model increases.

Figure 4: A better model implies more robustness. By learning a family of models G that are
trained for different numbers of steps, we show empirically that models that can more accurately
model distribution shifts engender classifiers with higher levels of robustness.

However, we do not claim that MUNIT is the optimal framework for model-based robust deep learn-
ing. Indeed, in future work we plan to compare the efficacy of using different architectures for G. To
this end, another interesting direction for future work is to leverage class-conditional information in
G. That is, by extending the definition of a model of natural variation to G : Rd ⇥R[k] ⇥Rq ! Rd

so that G(x, y, �) maps a datum, its label, and a nuisance parameter to a new image, we could lever-
age the literature surrounding conditional image-to-image translation, including BasisGAN (Wang
et al., 2019) and MAD-GAN (Li et al., 2019).

A.4 ON THE CHOICE TO LEARN G(x, �) OFFLINE

In this paper, the paradigm that we developed assumes that a model G is learned offline before
training a classifier. Indeed, in our experiments, we show that by decoupling the process of training
the model of natural variation and the classifier, models of natural variation can be reused on new
datasets and can be composed to provide robustness against multiple sources of natural variation.
However, this decision to learn G offline is not essential to the success of our paradigm. Indeed, an
interesting direction for future work is design an algorithm that learns a suitable model of natural
variation and a classifier simultaneously. Similar ideas have been used frequently in the domain
adaptation literature (Tzeng et al., 2017; Wang & Deng, 2018).

A.5 QUANTIFYING THE ABILITY OF LEARNED MODELS OF NATURAL VARIATION TO
GENERATE REALISTIC IMAGES

An essential yet so far undiscussed piece of the efficacy of the model-based paradigm is the impact
of the model quality on the robustness we are ultimately able to provide. In scenarios where we
don’t have access to a known model, the ability to provide any sort of meaningful robustness relies
on learned models that can accurately render realistic looking data with varying nuisances. To this
end, it is reasonable to expect that models that can more effectively render realistic yet challenging
data should result in classifiers that are more robust to shifts in natural variation.

To examine the impact of models in our paradigm, we consider the task of Section 5.5 on SVHN,
in which we learned a model that mapped low-contrast samples, which comprised domain A, to
high-contrast samples, which comprised domain B. While learning this model, we saved snapshots

17

Under review as a conference paper at ICLR 2021

Table 6: Passing samples from other datasets through a model learned on MNIST. The first
row of images in this table are samples taken from colorized versions of Q-MNIST, E-MNIST, K-
MNIST, Fashion-MNIST, and USPS. The second row of images shows samples passed through a
model trained on the original MNIST dataset to change the background color from blue to red.

QMNIST EMNIST KMNIST Fashion-MNIST USPS

Domain A

Domain B

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 5: ImageNet-c brightness (no!yes). Used in: Table 3, row 3; Table 2, row 1.

of the model at various points during the training procedure. In particular, we collected a family of
intermediate models

G = {G10, G100, G250, G500, G1000, G2000, G3000, G4000},

where the index denotes the MUNIT iteration number. In Figure 4j, we show the result of training
classifiers with MRT using each model G 2 G. Note that the models that are trained for more
training steps engender classifiers that provide higher levels of robustness against the shift in nui-
sance variation. In other words, better models provide improved test accuracy for classifiers using
model-based robust training.

A.6 A GALLERY OF MODELS OF NATURAL VARIATION

We conclude this section by showing images corresponding to the many distributional shifts used
in the experiments section. Furthermore, we show images generated by passing domain A images
through learned models of natural variation.

18

Under review as a conference paper at ICLR 2021

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 6: ImageNet-c contrast (no!yes). Used in: Table 3, rows 2, 5; Table 2, row 2.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 7: ImageNet-c brightness (low!high). Used in: Table 3, rows 2-4; Table 2, row 3.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 8: ImageNet-c fog (no!yes). Used in: Table 3, rows 4-5; Table 2, row 4.

19

Under review as a conference paper at ICLR 2021

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 9: ImageNet-c frost (no!yes). Used in: Table 2, row 5.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 10: SVHN brightness (low!high). Used in: Table 3, row 1; Table 5, row 1.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 11: SVHN contrast (low!right). Used in: Table 3, row 1; Table 5, row 2.

20

Under review as a conference paper at ICLR 2021

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 12: GTSRB brightness (low!high). Used in Table 5, row 3.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 13: GTSRB contrast (low!high). Used in: Table 5, row 4.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 14: CURE-TSR snow (no!yes). Used in: Table 3, row 7; Table 5, row 5.

21

Under review as a conference paper at ICLR 2021

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 15: CURE-TSR haze (no!yes). Used in: Table 1, row 2; Table 5, row 6.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 16: CURE-TSR rain (no!yes). Used in: Table 5, row 7.

(a) Domain A images. (b) Domain B images.

(c) Domain A images from (a) passed through a
learned model of natural variation G(x, �).

(d) One image x from domain A (left) and six images
generated by passing x through G(x, �) for randomly
sampled � vectors.

Figure 17: CURE-TSR decolorization (no!yes). Used in: Table 1, row 3.

22

Under review as a conference paper at ICLR 2021

B FURTHER DISCUSSION OF MAT, MRT, AND MDA

B.1 FURTHER DESCRIPTIONS OF MAT, MRT, AND MDA

To supplement Section 4, we provide pseudocode for MAT and MDA in Algorithms 2 and 3. In the
remainder of this section, we discuss each of the algorithms in further detail.

Model-based Adversarial Training (MAT). At first look, the sampling-based approach used by
MRT may not seem as powerful as a first-order (i.e. gradient-based) approach, which has been
shown to be effective at improving perturbation-based robustness (Athalye et al., 2018). Indeed,
under the assumption that our model G(x, �) is differentiable, it is natural to extend these first
order methods to our model-based paradigm. In particular, by replacing lines 3-11 in Algorithm
2 with a subroutine that performs k rounds of projected gradient ascent on the empirical batched
loss

Pm
j=1 `(G(x(j), �), y(j);w) with respect to � 2 �, we seek to more accurately solve the inner

maximization problem to find a loss-maximizing nuisance parameter �adv. We then augment Dn

with instance-labels pairs (G(x(j), �adv), y(j)) and solve the outer problem in the same way as in
MRT. To emphasize the role of the number of gradient steps k used to find �adv 2 �, we will often
refer to this algorithm as MAT-k.

Model-based Robust Training (MRT). The idea behind the MRT algorithm is to sample k differ-
ent nuisance parameters � 2 � for each instance-label pair (x(j), y(j)) and among those sampled
values, find the nuisance parameter �adv that gives the highest empirical loss for G(x(j), �adv) under
`. Indeed, this approach is not designed to find an exact solution to the inner maximization problem;
rather it aims to find a difficult example by sampling in the nuisance space of the model. Once we
approximately solve the inner problem by obtaining �adv, this nuisance parameter is used to perform
data augmentation. That is, we treat (G(x(j), �adv), y(j)) as a new instance-label pair that we use to
supplement Dn. These training data can be used together with first-order optimization methods (e.g.
SGD, Adam (Kingma & Ba, 2014), Adadelta (Zeiler, 2012), etc.) to solve the outer minimization
problem to a locally optimal solution w⇤. Algorithm 2 shows the pseudocode for this approach. To
make clear the role of the number k of nuisance parameters sampled per instance, we will often refer
to Algorithm 2 as MRT-k.

Model-based Data Augmentation (MDA). Both MRT and MAT adhere to the philosophy of aug-
menting Dn with loss-maximizing, model-generated data. One alternative to this adversarial ap-
proach is to expose classifiers to a diversity of model-generated data during training. More specifi-
cally, in MDA we perform data augmentation by choosing k randomly sampled nuisance parameters
from � and creating new instance-label pairs (G(x(j), �), y(j)) with each of these k values of �.
Thus each classifier will be exposed to k copies of the same image, where each copy has a different
level of the same source of natural variation. To make this explicit, we will refer to this algorithm as
MDA-k.

B.2 SAMPLING VS. ADVERSARIAL MINDSET

From an optimization perspective, we can group our model-based algorithms into two categories:
sampling (zeroth-order) methods and adversarial (first-order) methods. Sampling-based methods
refer to those that seek to solve the inner maximization term in (2) by querying the model. This
is particularly important for models that are not differentiable. Both MRT and MDA are sampling
(zeroth-order) methods in that we obtain new data by sampling different nuisance parameters � 2 �
for each batch in the training set. On the other hand, the technique used to obtain new data in the
MAT algorithm is an adversarial (first-order) method, as we statistically approximate the gradient of
the modelr�G(x, �) to perform the optimization–i.e. search for the worst-case nuisance parameter.
If the model G is differentiable (which is not required in our framework), then one can directly
compute the gradient of the model r�G(x, �).

Throughout the experiments, in general we see that the sampling algorithms presented in this paper
achieve higher levels of robustness against almost all sources of natural variation. This finding stands
in contrast to field of perturbation-based robustness, in which adversarial methods have been shown
to be the most effective in improving the robustness against small, norm-bounded perturbations
(Athalye et al., 2018). Going forward, an interesting research direction is not only to consider new

23

Under review as a conference paper at ICLR 2021

Algorithm 2 Model-based Robust Training (MRT)
Input: data sample Dn = {(x(j), y(j))}nj=1, number of steps k
Output: learned weight w

1: repeat
2: for minibatch Bm := {(x1, y1), (x2, y2) , . . . , (xm, ym)} ⇢ Dn do
3: Initialize max loss 0 and �adv := (�adv

1 , �adv
2 , . . . , �adv

m) (0q, 0q, . . . , 0q)
4: for k steps do
5: Sample �j randomly from � for j = 1, . . . ,m
6: current loss

Pm
j=1 ` (G (xj , �j) , yj ;w)

7: if current loss > max loss then
8: max loss current loss
9: �adv

j �j for j = 1, . . . ,m
10: end if
11: end for
12: g rw

Pm
j=1[`(G(xj , �adv

j), yj ;w) + � · `(xj , yj ;w)]
13: w Update(g, w) # Update function could be SGD, Adam, Adadelta, etc.
14: end for
15: until convergence

Algorithm 3 Model-Based Data Augmentation (MDA)
Input: data sample Dn = {(xj , yj)}nj=1, number of steps k
Output: learned weight w

1: repeat
2: for minibatch Bm := {(x1, y1) , (x2, y2) , . . . , (xm, ym)} ⇢ Dn do
3: Initialize x(j)

i 0d for i = 1, . . . , k and for j = 1, . . . ,m
4: for k steps do
5: Sample �j randomly from � for j = 1, . . . ,m

6: x(j)
i G(xj , �j) for j = 1, . . . ,m

7: end for
8: g rw

mP
j=1


kP

i=1
`
⇣
x(j)
i , yj ;w

⌘
+ � · ` (xj , yj ;w)

�

9: w Update(g, w) # Update function could be SGD, Adam, Adadelta, etc.
10: end for
11: until convergence

algorithms but also to understand whether sampling-based or adversarial techniques provide more
robustness with respect to a given model.

Table 7: Impact of varying k in the model-based algorithms. We study the impact of varying k
for each of the model-based algorithms on the brightness (low!high) shift on SVHN. Throughout,
we use a trade-off parameter of � = 1.

k
Test accuracy (top-1)

MAT-k MRT-k MDA-k
1 81.9 81.2 81.7
5 75.6 81.7 81.1

10 75.7 82.6 81.1
20 79.9 83.2 80.3
50 76.3 82.5 79.7

24

Under review as a conference paper at ICLR 2021

B.3 VARYING k IN THE MODEL-BASED ALGORITHMS

As we show in our experiments, each of the three model-based algorithms can be used to provide sig-
nificant out-of-distribution robustness against various sources of natural variation. In this subsection,
we focus on the impact of varying the parameter k in each of these algorithms. In particular, in Table
7, we see that varying k has a different impact for each of the three algorithms. For MAT, we see that
increasing k decreases the accuracy of the trained classifier; one interpretation of this phenomenon
is that larger values of k allow MAT to find more challenging forms of natural variation. On the
other hand, the test accuracy of MRT improves slightly as k increases. Recall that while both MRT
and MAT seek to find “worst-case” natural variation, MRT employs a sampling-based approach to
solving the inner maximization problem as opposed to the more precise, gradient-based procedure
used by MAT. Thus the differences in the impact of varying k between MAT and MRT may be due
to the fact that MRT only approximately solves the inner problem at each iteration. Finally, we see
that increasing k slightly decreases the test accuracy of classifiers trained with MDA.

This study can also be used as an algorithm selection criteria. Indeed, when data presents many
modes corresponding to different levels of natural variation, it may be more efficacious to use MRT
or MDA, which will observe a more diverse set of natural conditions due to their sampling-based
approaches. On the other hand, when facing a single challenging source of natural variation, it may
be more useful to use MAT, which seeks to find “worst-case,” natural, out-of-distribution data.

25

Under review as a conference paper at ICLR 2021

C TRAINING DETAILS

C.1 SELECTING THE DIMENSION OF THE NUISANCE PARAMETER SPACE �

Recall that in the inner maximization problem of (2), we optimize over the space � of so-called
nuisance parameters. For convenience, this inner maximization problem is reproduced below:

�? 2 argmax
�2�

`(G(x, �), y;w) (5)

Given a fixed instance x 2 Rd, � characterizes the set of instances that can be obtained under the
mapping of a model of natural variation G(x, �). Therefore, the dimension of �, henceforth denoted
as dim(�), should be small enough so that � can be efficiently optimized over and large enough
so that it can accurately capture the underlying source of natural variation that the model G(x, �)
seeks to describe. In this sense, dim(�) should reflect the complexity of both the source of natural
variation and indeed of the data itself.

To make this precise, for fixed x, we first define the learned image manifold

B(x) := {x0 2 Rd|x0 = G(x, �) for some � 2 �}

which, more formally, is a paramterized dim(�)-manifold sitting in Rd. Using this notation, we can
rewrite (5) in the following way:

�? 2 argmax
x02B(x)

`(x0, y;w) (6)

This representation of the inner maximization problem elucidates the fact that � must be rich enough
to be able to produce representative images on the learned image manifold. However, in the extreme
case when dim(�) = d, as is the case in much of the adversarial robustness literature, it is well
known that � is difficult to efficiently optimize over (Madry et al., 2017).

To this end, throughout our experiments, we generally scale dim(�) with d. For low-dimensional
data (e.g. MNIST, SVHN, etc.), we found that dim(�) = 2 sufficed toward capturing the underlying
source of natural variation effectively. However, we found that on datasets such as GTSRB, for
which we rescaled instances into 64⇥64⇥3 arrays, we found that dim(�) = 8 was more appropriate
for capturing the full range of natural variation. Indeed, on ImageNet, which contains instances of
size 224 ⇥ 224 ⇥ 3, we found that dim(�) = 8 still produced images that captured the essence of
the underlying source of natural variation.

C.2 SELECTING THE RADIUS OF THE NUISANCE PARAMETER SPACE �

Given the preceeding discussion concerning the dimension of the nuisance space �, a concomitant
question is how to pick the radius of the set �. In every experiment described in this paper, we let
� := {x 2 Rq|� 1 � x � 1} where q = dim(�). This choice is not fundamental, and indeed we
plan to explore varying this radius in future work.

C.3 CLASSIFIER ARCHITECTURE AND HYPERPARAMETER SELECTION

Here we use the following conventions for describing architectures. c32-3 refers to a 2D convo-
lutional operator with 32 kernels, each of which has shape 3 ⇥ 3. p2 refers to a max-pooling layer
with kernel size 2. d0.25 refers to a dropout layer, which drops an activation with probability 0.25.
flat refers to a flattening layer. fc-128 refers to a fully-connected layer mapping into R128.

When training classifiers for MNIST, Q-MNIST, E-MNIST, K-MNIST, Fashion-MNIST, USPS,
SVHN, GTSRB, and CURE-TSR we use a simple CNN architecture with two convolutional layers
and two feed forward layers. More specifically, the architecture can be described in the following
way:

c32-3, c64-3, p2, c128-3, p2, d0.25, flat, fc128, d0.5, fc10.

For each of these experiments, we use the Adadelta (Zeiler, 2012) optimizer with a learning rate
of 1.0. We also use a batch size of 64. Images from MNIST, Q-MNIST, E-MNIST, K-MNIST,

26

Under review as a conference paper at ICLR 2021

Fashion-MNIST, USPS, SVHN, and CURE-TSR are resized to 32⇥ 32⇥ 3; for grayscale datasets
such as MNIST, we repeat the channels three times. Images from GTSRB are resized to 64⇥64⇥3.
We train each classifier for 100 epochs.

When training on ImageNet, we use the ResNet-50 (He et al., 2016) architecture. We note that
architectural choices are possible and will be explored in future work. For each of the experiments
on ImageNet, we use SGD with an initial learning rate of 0.05; we decay the learning rate linearly
to 0.001 over 100 epochs. We use a batch size of 64.

When training with PGD (Madry et al., 2017), we use a step size of 0.01, we set ✏ = 8/255, and we
allow the adversary to take 10 steps per iteration. When training with the model-based algorithms,
we use fixed choices for k throughout the experiments. For MDA, we use k = 1; for MRT, we use
k = 10; for MAT, we use k = 10. We discuss the impact of k in Appendix B. We use a trade-off
parameter of � = 1 throughout.

C.4 MUNIT FRAMEWORK OVERVIEW

For completeness, we give a brief overview of the MUNIT framework (Huang et al., 2018) and
described the architecture we used for MUNIT in this paper.

To begin, let xA 2 A and xB 2 B be images from two unpaired image domains A and B; in
the notation of the previous section, we assume that these images are drawn from two marginal
distributions PA and PB . Further, the MUNIT model assumes that each image from either domain
can be decomposed into two components: a style code s that contains information about factors
of natural or nuisance variation, and a content code c that contains information about higher level
features such as the label of the image. Further, it is assumed that the content codes for images
in either domain are drawn from a common set C, but that the style codes are drawn from domain
specific sets SA and SB . In this way, a pair of corresponding images (xA, xB) are of the form
xA = DecA(c, sA) and xB = DecB(c, sB), where c 2 C, sA 2 SA, sB 2 SB , and where DecA
and DecB are unknown decoding networks corresponding to domains A and B respectively. The
authors of (Huang et al., 2018) call this setting a partially shared latent space assumption.

The MUNIT model consists of an encoder-decoder pair (EncA,DecA) and (EncB ,DecB) for each
image domain A and B. These encoder-decoder pairs are trained to learn a mapping that reconstructs
its input. That is, xA ⇡ DecA(EncA(xA)) and xB ⇡ DecB(EncB(xB)). More specifically, EncA :
A! C⇥SA is trained to encode xA into a content code c 2 C and a style code sA 2 SA. Similarly,
EncB : B ! C ⇥ SB is trained to encode xB into c 2 C and sB 2 SB . Then the decoding networks
DecA : C ⇥ SA ! A and DecB : C ⇥ SB ! B are trained to reconstruct the encoded pairs (c, sA)
and (c, sB) into the respective images xA and xB .

Inter-domain image translation is performed by swapping the decoders. In this way, to map an
image xA from A to B, xA is first encoded into EncA(xA) = (c, sA). Then, a new style vector sB
is sampled from SB from a prior distribution ⇡B on the set SB and the translated image xA!B is
equal to DecB(c, sB). The translation of xB from B to A can be described via a similar procedure
with EncB , DecA, and a prior ⇡A supported on SA. In this paper, we follow the convention used
in (Huang et al., 2018) as use a Gaussian distribution for both ⇡A and ⇡B with zero mean and an
identity covariance matrix.

Training an MUNIT model involves considering four loss terms. First, the encoder-decoder pairs
(EncA,DecA) and (EncB ,DecB) are trained to reconstruct their inputs my minimizing the following
loss:

`recon = ExA⇠PA ||DecA(EncA(xA))� xA||1 + ExB⇠PB ||DecB(EncB(xB))� xB ||1
Further, when translating an image from one domain to another, the authors of (Huang et al., 2018)
argue that we should be able to reconstruct the style and content codes. By rewriting the encoding
networks as EncA(xA) = (EnccA(xA),EncsA(xA)) and EncB(xB) = (EnccB(xB),EncsB(xB)), the
constraint on the content codes can be expressed in the following way:

`crecon = EcA⇠P(cA)
sB⇠⇡B

||EnccB(DecB(cA, sB))� cA||1 + EcB⇠P(cB)
sA⇠⇡A

||EnccA(DecA(cB , sA))� cB ||1

where P(cA) is the distribution given by cA = EnccA(xA) where xA ⇠ PA and P(cB) is the distri-
bution given by cB = EnccB(xB) where xB ⇠ PB . Similar, the constraint on the style codes can be

27

Under review as a conference paper at ICLR 2021

Table 8: MUNIT hyperparameters.

Name Value
Number of iterations 10000

Batch size 1
Weight decay 0.0001

Weight initialization Kaiming
Learning rate 0.0001

Learning rate policy Step
� (learning rate decay amount) 0.5

�x 10
�c 1
�s 1

written as

`srecon = EcA⇠P(cA)
sB⇠⇡B

||EncsB(DecB(cA, sB))� sB ||1 + EcB⇠P(cB)
sA⇠⇡A

||EncsA(DecA(cB , sA))� sA||1 .

Finally, two GANs corresponding to the two domains A and B are used to form an adversarial loss
term. The GANs use the decoders DecA and DecB as the respective generators for domains A and
B. By denoting the discriminators for these domains by DA and DB , we can write the GANs as
(DecA, DA) and (DecB , DB). In this way, the final loss term takes the following form:

`GAN = EcA⇠P(cA)
sB⇠⇡B

[log (1�DB(DecB(cA, sB)))] + ExB⇠PB [logDB(xB)]

+ EcB⇠P(cB)
sA⇠⇡A

[log (1�DA(DecA(cB , sA)))] + ExA⇠PA [logDA(xA)]

Using the four loss terms we have described, the MUNIT framework uses first-order methods to
solve the following nonconvex optimization problem:

min
EncA,EncB
DecA,DecB

max
D1,D2

`GAN + �x`recon + �c`
c
recon + �s`

s
recon

C.5 HYPERPARAMETERS AND IMPLEMENTATION OF MUNIT

In this subsection, we discuss hyperparameters and implementation details for MUNIT. In particular,
in Table 8 we record the hyperparameters we used for training MUNIT models of natural variation.
The hyperparameters we selected are generally in line with those suggessted in (Huang et al., 2018).
We use the same architetures for the encoder, decoder, and discriminative networks as are described
in Appendix B.2 of (Huang et al., 2018).

28

Under review as a conference paper at ICLR 2021

Table 9: Dataset descriptions. We provide a brief description of the datasets used in this paper.

Dataset Num. of
classes Format Image

size
MNIST

(LeCun et al., 2010) 10 Grayscale 28

SVHN
(Netzer et al., 2011) 10 RGB 32

GTSRB
(Stallkamp et al., 2011) 43 RGB 15 – 250

CURE-TSR
(Temel et al., 2019) 14 RGB 3 – 277

MNIST-m
(Ganin et al., 2016) 10 RGB 28

Fashion-MNIST
(Xiao et al., 2017) 10 Grayscale 28

E-MNIST
(Cohen et al., 2017) 26 Grayscale 28

K-MNIST
(Clanuwat et al., 2018) 10 Grayscale 28

Q-MNIST
(Yadav & Bottou, 2019) 10 Grayscale 28

USPS
(Hull, 1994) 10 Grayscale 16

ImageNet-1K
(Deng et al., 2009) 1000 RGB 224

ImageNet-C
(Hendrycks & Dietterich, 2019) 1000 RGB 224

(a) Test images from ImageNet. (b) Corresponding images from new dataset.

Figure 18: Brightness and snow. We use the challenge-level 1 transforms from ImageNet-c to
generate an ImageNet test set with shifts in both brightness and snow.

D DETAILS CONCERNING DATASETS AND DOMAINS

D.1 AN OVERVIEW OF THE DATASETS USED IN THIS PAPER

In Table 9, we give an overview of the datasets used in this work. Specifically, we use twelve
distinct datasets over the course of our experiments, including the recently curated ImageNet-c test
set, which contains copies of the original ImageNet test set corrupted by common sources of natural
variation, such as snow, fog, and frost (Hendrycks & Dietterich, 2019).

D.2 DATASETS INTRODUCED IN THIS PAPER

In this paper, we introduced several new datasets which contain multiple simultaneous corruptions,
including show, brightness, contrast, and fog. In particular, we used the transforms used to create
ImageNet-c to add multiple corruptions to the ImageNet test set. To do so, we used the open-source
code from Hendrycks & Dietterich (2019)2. Images of these datasets are shown in Figures 18-21.

2https://github.com/hendrycks/robustness

29

https://github.com/hendrycks/robustness

Under review as a conference paper at ICLR 2021

(a) Test images from ImageNet. (b) Corresponding images from new dataset.

Figure 19: Brightness and contrast. We use the challenge-level 2 transforms from ImageNet-c to
generate an ImageNet test set with shifts in both brightness and contrast.

(a) Test images from ImageNet. (b) Corresponding images from new dataset.

Figure 20: Brightness and fog. We use the challenge-level 1 transforms from ImageNet-c to gener-
ate an ImageNet test set with shifts in both brightness and fog.

(a) Test images from ImageNet. (b) Corresponding images from new dataset.

Figure 21: Contrast and fog. We use the challenge-level 1 transforms from ImageNet-c to generate
an ImageNet test set with shifts in both contrast and fog.

30

Under review as a conference paper at ICLR 2021

SVHN GTSRB
Low Medium High Low Medium High

Brightness B < 60 160 < B < 170 B > 180 B < 40 85 < B < 125 B > 170
Contrast C < 80 90 < C < 100 C > 190 C < 80 140 < C < 200 C > 230

Table 10: Brightness and contrast thresholds. This table shows the thresholds we chose to repre-
sent low, medium, and high values of contrast and brightness for SVHN and GTSRB.

D.3 NATURAL VS. SYNTHETIC VARIATION IN DATA

Throughout our experiments, we demonstrate that our methods are able to provide robustness against
many challenging sources of natural variation. Furthermore, our experiments contain domains with
both naturally-occurring and artificially-generated variation. Notably, every experiment involving
data from SVHN or GTSRB used naturally-occurring variation. In what follows, we discuss both of
these categories.

D.3.1 NATURALLY-OCCURRING VARIATION

Throughout the experiments, we used data from SVHN and GTSRB to train neural networks to be
robust against contrast and brightness variation. To extract naturally-occurring variation from these
datasets, we used simple metrics to threshold the data into subsets corresponding to different levels
of natural variation. Specifically, we defined the brightness B(x) of an RGB image x to be the
mean pixel value of x, and we define the contrast C(x) to be the difference between the largest and
smallest pixel values. Table 10 show the thresholds we chose for contrast and brightness on SVHN
and GTSRB. Note that these thresholds were chosen somewhat subjectively to reflect our perception
of low, medium and high values of brightness and contrast. We intend to experiment with different
thresholds in future work.

Figure 22 shows a summary of the subsets of SVHN that we compiled corresponding to brightness.
In particular, Figure 22a shows a histogram of the brightnesses of images in SVHN. We used this
histogram to set thresholds for low, medium, and high brightness, which are given in Table 10. The
images below the histogram correspond to the bins of the histogram; that is, images further to the
left in Figure 22a have lower brightness, whereas images further to the right have high brightness.
In Figures 22b, 22c, and 22d, we show samples from the subsets of low, medium and high contrast
subsets of SVHN that we compiled. Figure 23 tells the same story as 22 for the contrast nuisances in
SVHN. Again, Figure 23a shows a histogram and accompanying images corresponding to different
values of contrast. Figures 23b, 23c, and 23d show samples from the subsets of low, medium, and
high contrast images we compiled.

We repeat this analysis for the brightness and contrast thresholding operations for GTSRB in Figures
24 and 25. Again, the difference between high- and low-brightness samples is remarkable, as is
the difference in the samples corresponding to high- and low-contrast. However, an interesting
difference between the distributions of brightness and contrast on GTSRB vis-a-vis SVHN is that
the distributions for GTSRB are skewed, whereas the distributions for SVHN are close to being
symmetric.

D.3.2 ARTIFICIALLY-GENERATED VARIATION

The remainder of the experiments, including those on MNIST, CURE-TSR, and ImageNet, use
artifically-generated variation. Indeed, one challenge in addressing deep learning’s lack of robust-
ness to natural variation is that relatively few datasets contain labeled forms of naturally-occurring
sources of variation. To this end, an important research challenge is to curate datasets with naturally-
occurring variation; we plan to pursue this goal in future work.

When data with naturally-occurring variation is not available, artificially-generated variation can
be used as an effective proxy for testing the robustness of deep learning against different forms
of variation (Hendrycks & Dietterich, 2019; Hendrycks et al., 2020). Indeed, the recently curated
CURE-TSR (Temel et al., 2019) and ImageNet-c (Hendrycks & Dietterich, 2019) were created using

31

Under review as a conference paper at ICLR 2021

(a) SVHN brightness histogram. The histogram
shows the distribution of pixel brightness for
SVHN. The images below the histogram corre-
spond to the bins of the histogram, meaning sam-
ples to the left have low brightness whereas sam-
ples further to the right have higher brightness.

(b) Low brightness samples.

(c) Medium brightness samples.

(d) High brightness samples.

Figure 22: SVHN brightness thresholding overview.

32

Under review as a conference paper at ICLR 2021

(a) SVHN contrast histogram. The histogram
shows the distribution of pixel contrast for SVHN.
The images below the histogram correspond to the
bins of the histogram, meaning samples to the left
have low contrast whereas samples further to the
right have higher contrast.

(b) Low contrast samples.

(c) Medium contrast samples.

(d) High contrast samples.

Figure 23: SVHN contrast thresholding overview.

33

Under review as a conference paper at ICLR 2021

(a) GTSRB brightness histogram. The his-
togram shows the distribution of pixel brightness
for GTSRB. The images below the histogram cor-
respond to the bins of the histogram, meaning
samples to the left have low brightness whereas
samples further to the right have higher bright-
ness.

(b) Low brightness samples.

(c) Medium brightness samples.

(d) High brightness samples.

Figure 24: GTSRB brightness thresholding overview.

34

Under review as a conference paper at ICLR 2021

(a) SVHN contrast histogram. The histogram
shows the distribution of pixel contrast for SVHN.
The images below the histogram correspond to the
bins of the histogram, mening samples to the left
have low contrast whereas samples further to the
right have higher contrast.

(b) Low contrast samples.

(c) Medium contrast samples.

(d) High contrast samples.

Figure 25: SVHN contrast thresholding overview.

35

Under review as a conference paper at ICLR 2021

pre-defined, artifical transformations of data. While these transformations are synthetic, the images
in Appendix A show that they are indeed quite realistic.

36

	Introduction
	Perturbation-based robustness: approaches and limitations
	A new robustness paradigm: model-based robust deep learning
	Models of natural variation
	Model-based robust training formulation

	Model-based training algorithms
	Experiments
	Out-of-distribution robustness
	Model-based robustness on the shift from ImageNet to ImageNet-c
	Robustness to simultaneous distributional shifts
	Transferability of model-based robustness
	Model-based robust deep learning for unsupervised domain adaptation

	Related work
	Conclusion
	On the quality and representational power of (learned) models of natural variation
	A geometric interpretation of models of natural variation
	A statistical interpretation of models of natural variation
	On the choice of the MUNIT architecture in this paper
	On the choice to learn G(x,) offline
	Quantifying the ability of learned models of natural variation to generate realistic images
	A gallery of models of natural variation

	Further discussion of MAT, MRT, and MDA
	Further descriptions of MAT, MRT, and MDA
	Sampling vs. adversarial mindset
	Varying k in the model-based algorithms

	Training details
	Selecting the dimension of the nuisance parameter space
	Selecting the radius of the nuisance parameter space
	Classifier architecture and hyperparameter selection
	MUNIT framework overview
	Hyperparameters and implementation of MUNIT

	Details concerning datasets and domains
	An overview of the datasets used in this paper
	Datasets introduced in this paper
	Natural vs. synthetic variation in data
	Naturally-occurring variation
	Artificially-generated variation

