
A PROOFS

In this appendix, we present the proofs for Section 2 in A.1, the proofs and other details for Algorithm
1 in Section A.2, and the proofs and other details for Algorithm 2 in Section A.3.

A.1 PROOFS FOR SECTION 2

Proof of Proposition 2. To show V ∗(s|θ1) ≥ V ∗(s|θ2), it suffices to prove that there exists π ∈ Π
such that V π(s|θ1) ≥ V ∗(s|θ2). Denote π∗,θ2 the optimal deterministic policy such that π∗,θ2 =
argmaxπ∈Π V π(s|θ2). Based on π∗,θ2 , we are going to construct a randomized policy π̃θ1 such
that V π̃θ1

(s|θ1) = V ∗(s|θ2), and in the end, we will conclude the proof by showing V ∗(s|θ1) ≥
V π̃θ1

(s|θ1).

For any h ∈ [H] and s ∈ S, with a slight abuse of notation denote a = π∗,θ2
h (s), the deterministic

action of policy π∗,θ2
h . If a = defer, the randomized advice policy π̃θ1 is defined as π̃θ1

h (s) = defer;
if a ̸= defer, we have

π̃θ1
h (s) =

{
a, with probability θ2(s,a)−πH(a|s)

θ1(s,a)−πH(a|s)

defer, with probability 1− θ2(s,a)−πH(a|s)
θ1(s,a)−πH(a|s)

where we have assumed that θi(s, a) ≥ πH
h(a|s), i.e, the advice has no negative effect on the human’s

probability of taking action a at state s for i = 1, 2. Next, we have to verify V π̃θ1
(s|θ1) = V ∗(s|θ2)

by showing that for any (a, s, h) ∈ (Ā,S, [H]),

P π̃θ1

h (aH = a|s, θ1) = P
π
∗,θ2
h

h (aH = a|s, θ2). (9)

To see this, for a = π∗,θ2
h (s) and a ̸= defer, we have

P π̃θ1
(aH = a|s, θ1) =

θ2(s, a)− πH
h(a|s)

θ1(s, a)− πH
h(a|s)

θ1(s, a) +

(
1− θ2(s, a)− πH

h(a|s)
θ1(s, a)− πH

h(a|s)

)
πH
h(a|s)

= θ2(s, a)

= P
π
∗,θ2
h

h (aH = a|s, θ2).

For a′ ̸= π∗,θ2
h (s) and a ̸= defer, we have

P π̃θ1
(aH = a′|s, θ1) =

θ2(s, a)− πH
h(a|s)

θ1(s, a)− πH
h(a|s)

· (1− θ1(s, a)) ·
πH
h(a

′|s)
1− πH

h(a|s)

+

(
1− θ2(s, a)− πH

h(a|s)
θ1(s, a)− πH

h(a|s)

)
πH
h(a

′|s)

= (1− θ2(s, a))
πH
h(a

′|s)
1− πH

h(a|s)

= P
π
∗,θ2
h

h (aH = a′|s, θ2).

For the last case, it is obvious that if π∗,θ2
h (s) = defer, the dynamics of choosing defer are independent

of θ, and this concludes proving (9).

By showing (9), we know that V π̃θ1
(s|θ1) = V π

∗,θ2
h (s|θ2) = V ∗(s|θ2). Because we are working on

a finite-horizon discrete MDP, from Bellman’s equation, we know that the optimal value functions
for the class of deterministic policies will be the same as those for the class of random policies.
Therefore, we have V ∗(s|θ1) ≥ V π̃θ1

(s|θ1), and this concludes the proof.

Proof of Proposition 1. From the Bellman’s equation, we know that if a = argmaxa∈Ā Q∗
h,β(s, a)

and a ̸= defer, we have rMh(s, a)− β +
∑

s′∈S pMh(s
′|s, a)V ∗

h+1(s
′) ≥ V πH

h,β(s), and therefore

β ≤ rMh(s, a) +
∑
s′∈S

pMh(s
′|s, a)V ∗

h+1,β(s
′)− V πH

h,β(s).
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By observing that V πH

β = V πH

(always deferring has no penalty), and V ∗
β ≤ V ∗, we have

β ≤ rMh(s, a) +
∑
s′∈S

pMh(s
′|s, a)V ∗

h+1(s
′)− V πH

h (s)

= Q∗
h(s, a)− V πH

h (s).

A.2 SUPPLEMENTARY MATERIALS FOR ALGORITHM 1

In this section, we first formally state the parameter updating rules in Algorithm 1 and define the
related functions and parameters within the algorithm in Section A.2.1. Subsequently, in Section
A.2.2, we present several useful lemmas to sketch the proof for Theorem 1. Then, in Section A.2.3,
we prove all statements under E1.

A.2.1 NOTATIONS OF ALGORITHM 1

In this section, we first state the parameter updating rules in Algorithm 1 under E1 as follows:

θ̂t(s, a) =
1

nt(s, a)

t∑
i=1

H∑
h=1

I(sih = s, aM,ih = a, aH,ih = a),

where nt(s, a) =
t∑

i=1

H∑
h=1

I(sih = s, aM,ih = a) for all s ∈ S, a ∈ A and t ≤ T.

θ̄t(s, a) = min

1, θ̂t(s, a) +
C
(
θ̂t(s, a), nt(s, a), T, δ

)
√
nt(s, a)

 ,

where

C (θ, n, T, δ) = min

{
2
√
log(12SAT/δ),

√
2θ(1− θ) log

12SAT

δ
+

7
√
n

3n− 1
· log 12SAT

δ
,


1 +

√
1 + 4

(
max

{
0,
√

θ(1− θ)−
√

2 log(SAT/δ)
n−1

})2

2
− θ

 · √n
 .

Here, by definition θ̄t(s, a) becomes the largest element in the following set

{θ ∈ [0, 1] : |θ − θ̂t(s, a)| ≤ 2

√
log(12SAT/δ)

nt(s, a)
, (10)

|θ − θ̂t(s, a)| ≤

√
2θ̂t(s, a)(1− θ̂t(s, a))

nt(s, a)
log

12SAT

δ
+

7

3nt(s, a)− 1
· log 12SAT

δ

|
√

θ(1− θ)−
√
θ̂t(s, a)t(1− θ̂t(s, a)| ≤ 2 log(SAT/δ)

nt(s, a)− 1

}
,

for any state-action pair (s, a) ∈ S ×A and t ≤ T . Lemma 1, which we will introduce later, states
that the true adherence level θt(s, a) is also in this set with high probability, and thus, θ̄t(s, a) is an
upper bound for the true adherence level for all s, a, h and t ≤ T .

We point out that our algorithm needs to have a pre-determined episode upper bound T as the input.
The reason is that Algorithm 1 updates the estimation of the rewards and the adherence levels at the
end of all episodes, which requires us to take a union probability bound from Hoeffding’s inequality
for T episodes. In order to alleviate the effect of T in the probability union bound, we need to
consider T in the design of the algorithm.
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A.2.2 ALGORITHM ANALYSIS

In this section, we prove Theorem 1 for Algorithm 1 under E1, where the human policy is known
while the adherence level is unknown. While the proof is inspired by the proof of Theorem 1 in Dann
and Brunskill (2015), our proof can achieve a better sample complexity bound than theirs in our
setting, where the transition probability pMh is known but depends on the time horizon for all h ∈ [H],
and the adherence level θ is unknown but independent of h. Specifically, applying Theorem 1 in
Dann and Brunskill (2015) can only achieve an O(H3S2A/ϵ2) sample complexity bound. On the
contrary, we establish an O(H2S2A/ϵ2) sample complexity bound, which improves the order of the
length of the time horizon in the bound.

First, we seek to build an analysis framework for a simpler problem: the reward function is determin-
istic. This is because if the reward function is stochastic, we can adopt the idea used in the proof of
Lemma 3 and analyze an additional error term for the estimation of the reward. By doing so, we can
obtain a similar result with the same order with respect to H , S, and A but with different universal
constants.

Therefore, in the following, we only analyze the case where the reward function of the machine and
the human policy is deterministic. Then, the challenge lies in estimating the adherence levels. Recall
that the estimator for the adherence level is

θ̂t(s, a) =
1

nt(s, a)

t∑
i=1

H∑
h=1

I(sih = s, aM,ih = a, aH,ih = a),

where nt(s, a) =
t∑

i=1

H∑
h=1

I(sih = s, aM,ih = a) for all s ∈ S, a ∈ A and t ≤ T.

Next, we briefly summarize our proof. In general, we follow a similar proof structure as in Theorem
1 of Dann and Brunskill (2015). However, our setting features two differences from theirs as listed
below.

Higher updating frequency.

The first difference is that we update the estimation of the transition kernels, or the adherence levels
at the end of each episode for all states and actions, while Dann and Brunskill (2015) only update
the estimation once after several episodes for only one state-action pair. Although a slower updating
rule makes their algorithm slow, the problem of frequent updates is that we are exposed to a larger
probability of observing some outliers such that the true adherence level might not be captured by the
confidence set (10). Therefore, the probability bound developed by Lemma 1 in Dann and Brunskill
(2015) will fail in our setting.

Non-Stationarity.

Our setting is non-stationary in the sense that the transition probability pMh is different for different
h = 1, ...,H even if the adherence level is independent of the horizon. However, Dann and Brunskill
(2015) consider a stationary setting where the transition kernels depend only on the state-action pairs
and are the same for all different h = 1, ...,H . As a result, we cannot directly apply their Lemma
C.5 to bound several parameters (those two parameters are c1(s, a) and c2(s, a) on page 20 in Dann
and Brunskill (2015)) directly.

To address those two problems, we show the following two lemmas. For the first problem, Lemma 1
states that even with higher frequent updates, the confidence set (10) can still cover the true adherence
level with high probability, and thus, Proposition 2 implies that our estimated Q-values are upper
bounds for the corresponding true Q-values for all empirical optimal policy π̂t at all episodes t ≤ T
for any pre-determined constant T in Algorithm 1.

Lemma 1. For any fixed T ≥ 0, with probability at least 1 − δ
2 , the set (10) contains the true

adherence level θ(s, a) for any state-action pairs (s, a) ∈ S ×A and episode t ≤ T .

For the second problem, Lemma 2 transfers the concentration of the non-stationary transition kernels
to that of the stationary adherence levels that are independent of the horizon H and, establishes a
Bernstein-like bound for all non-stationary transition kernels.
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Lemma 2. The following inequalities

∣∣pMh(s′|s, a)− p̄M,th (s′|s, a)
∣∣ ≤

∣∣∣∣∣∣∣
πh(s

′|s, a)−

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

 (θ(s, a)− θ̂t(s, a))

∣∣∣∣∣∣∣
≤

√
8p̂M,th (s′|s, a)(1− p̂M,th (s′|s, a))

nt(s, a)
log(12SAT/δ) +

26

3nt(s, a)− 3
log(12SAT/δ)

hold with probability no less than 1− δ for all s, s′ ∈ S, a ∈ A and t ≤ T .

Then, based on those two above lemmas, the proof can be shown in a similar approach as in Dann
and Brunskill (2015).

Before we prove the main theorem, we need some notations. As in Dann and Brunskill (2015), denote
wt(s, a) the expected visitation frequency of the (s, a)-pair under policy πt, i.e.,

wt(s, a) =

H∑
h=1

P
(
sh = s, πt

h (sh) = a
)
.

Next, we denote ιt(s, a) the importance of (s, a): its relative weight compared to wmin := ϵ
4H|S| on

a log-scale

ιt(s, a) := min

{
zi : zi ≥

wt(s, a)

wmin

}
∈ {0, 1, 2, 4, 8, . . .} where z1 = 0 and zi = 2i−2 ∀i = 2, 3, . . .

Intuitively, ιt(s, a) is an integer indicating the influence of the state-action pair on the value function
of πt. Similarly, we define the knownness

κt(s, a) := max

{
zi : zi ≤

nt(s, a)

mwt(s, a)

}
∈ {0, 1, 2, 4, . . .},

which indicates how often (s, a) has been observed relative to its importance. The constant m is
defined as

m = 512(log2 log2 H)2
CH2

ϵ2
log22

(
8H2S2

ϵ

)
log

(
6CSA log22(4S

2H2/ϵ)

δ

)
,

where C = maxs∈S,a∈Ā C(s, a), and C(s, a) denotes possible successor states of state s and action
a for s ∈ S and a ∈ A. Thus, we also have C ≤ S. We can now categorize (s, a)-pairs into subsets

Xt,κ,ι := {(s, a) ∈ Xt : κt(s, a) = κ, ιt(s, a) = ι} and X̄t = S ×A\Xt

where Xt = {(s, a) ∈ S ×A : ιt(s, a) > 0} is the active set and X̄t the set of state-action pairs that
are very unlikely under the current policy.

The proof can be summarized in a few steps:

1. The true MDP is in the confidence set of MDPs (those with adherence level in (10)) for all
episodes t < T with probability at least 1− δ/2 (we can ensure this property by Lemma 1).

2. In every episode t, the optimistic Q-functions V̂ π̂t

(·|θ̄t) is higher than V ∗(·|θ) at least
1− δ/2, which is ensured by Proposition 2.

3. If m = Ω̃
(

H2

ϵ ln |S|
δ

)
(which is true by our definition of m), the number of episodes with

|Xt,κ,ι| > κ for some κ and ι are bounded by Õ(|S ×A|m) with probability at least 1−δ/2.
To show this step, we can apply Lemma 2 in Dann and Brunskill (2015).

4. If |Xt,κ,ι| ≤ κ for all κ, ι, i.e., relevant state-action pairs are sufficiently known and m =

Ω̃
(

CH2

ϵ2 ln 1
δ1

)
, then the optimistic values V̂ π̂t

(s1|θ̄t) and V π̂t

(s1|θt) are ϵ-close to the

true MDP value. Together with part 2, we get that with high probability, the policy π̂t is
ϵ-optimal in this case. To prove this, we can use our Lemma 2 combined with Lemma 3 in
Dann and Brunskill (2015)
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5. From parts 3 and 4 , we can show that with probability 1−δ, at most Õ
(

C|S×A|H2

ϵ2 ln 1
δ

)
=

Õ
(

H2S2A
ϵ2 ln 1

δ

)
episodes are not ϵ-optimal.

In the following, we show the proof of Theorem 1, Lemmas 1 and 2.

A.2.3 PROOF RELATED TO THEOREM 1

In this section, we first prove Theorem 1, and then prove Lemmas 1 and 2 that are used in the proof.

Proof of Theorem 1. In our case, the statements of Lemmas 2 and 3 in Dann and Brunskill (2015)
still hold. Lemma 2 can be shown without any modifications, and for their Lemma 3, we can show
the same statement by applying Lemma 2 to establish c1(s, a) and c2(s, a) on page 20 of Dann and
Brunskill (2015) for our non-stationary case.

Then, by Lemma 2 in Dann and Brunskill (2015), we can bound the number of episodes satisfying
|Xt,κ,ι| > κ for some κ, ι by 6mSA · log2 4H2S

ϵ log2 S = O(C ·H2SA/ϵ2) with probability at least
1− δ/2. Their Lemma 3 states that ∣∣∣V π̂t(s1)− V̂ π̂t(s1)

∣∣∣ < ϵ (11)

for all other episodes. In addition, combining Lemma 1 and Proposition 2, we know that

V̂ π̂t

≥ V π∗
≥ V π̂t

(12)

holds with probability at least 1− δ/2. Thus, we can draw the conclusion that 1− δ, with at least
T −O(C ·H2SA/ϵ2) episodes, the corresponding policy π̂t satisfies

V π̂t

(s1) + ϵ ≥ V̂ π̂t

(s1) ≥ V π∗
(s1) ≥ V π̂t

(s1),

which implies that the corresponding π̂t is ϵ-optimal. Here, the first inequality comes from (11), and
others come from (12). Moreover, recall that C is the maximum number of possible successor states
from any state and action pair, implying C ≤ S. Thus, at most O(C ·H2SA/ϵ2) = O(H2S2A/ϵ2)
episodes are not ϵ-optimal, as our statement of Theorem 1.

Proof of Lemma 1. The proof is similar to the proof of Lemma 1 in Dann and Brunskill (2015).
Given the total visiting number nt(s, a) of a state-action pair (s, a) and the corresponding visiting
horizons and episodes {(hl, tl)}n

t(s,a)
l=1 such that sth = s and aM,ih = a, we have

E

 1

nt(s, a)

nt(s,a)∑
l=1

I(stlhl
= s, aM,tlhl

= a, aH,tlh = a)

 = θ(s, a) (13)

by the definition of θ(s, a) (recall the definition nt(s, a) =
t∑

i=1

H∑
h=1

I(sih = s, aM,ih = a)). Then, by

the Azuma–Hoeffding’s inequality, with given nt(s, a) and {(hl, tl)}n
t(s,a)

l=1 , the following inequality
holds with probability no less than 1− δ

12SAT∣∣∣θ̂t(s, a)− θ(s, a)
∣∣∣ = ∣∣∣∣∣ 1

nt(s, a)

t∑
i=1

H∑
h=1

I(sih = s, aM,ih = a, aH,ih = a)− θ(s, a)

∣∣∣∣∣ ≤ 2

√
log(12SAT/δ)

nt(s, a)

(14)

holds for all s ∈ S, a ∈ A and t. Here, the first step comes from the definition of θ̂t(s, a), and the
second line comes from Hoeffding’s inequality and (13). Consequently, taking a union bound for all
s, a and t ≤ T , we have that with probability no less than 1− δ

12∣∣∣θ̂t(s, a)− θ(s, a)
∣∣∣ ≤ 2

√
log(12SAT/δ)

nt(s, a)
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holds for all (s, a) ∈ S × A at the end of any episode t ≤ T . Similarly, by applying Bernstein’s
inequality and taking union bound, we have∣∣∣θ̂t(s, a)− θ(s, a)

∣∣∣ ≤√2θ(s, a)(1− θ(s, a)) log(12SAT/δ)√
nt(s, a)

+
1

3nt(s, a)
log(6SAT/δ), (15)

which holds also for all s, a and t ≤ T with probability no less than 1− δ
12 . In addition, by applying

Theorem 10 in Dann and Brunskill (2015), we can have that with probability no less than 1− δ
12HST ,∣∣∣∣√θ(s, a)(1− θ(s, a))−

√
θ̂t(s, a)(1− θ̂t(s, a))

∣∣∣∣ ≤
√

2 log(12SAT )

nt(s, a)
. (16)

Thus, combining the three probability bounds (14), (15), and (16), we finally have that with probability
no less than 1− δ

4 , the true adherence level θ(s, a) satisfies all three inequalities in (10) for all s, a
and t ≤ T .

Additionally, we remark that our construction in Algorithm 1 is compatible with the setting where the
reward function rM is unknown and can be random. Even if the reward function is random, we can
follow the same proof as for the adherence level to show that the estimated average reward functions
in Algorithm 1 is an upper bound of the true average reward function with probability no less than
1 − δ

4 , and the difference between them is in the order of O(1/
√

nt(s, a)) for all s, a and t ≤ T .
Therefore, with probability no less than 1− δ

2 , our estimated reward function and the adherence level
are larger than the corresponding true values, and the convergence rate is O(1/

√
nt(s, a)) for all s, a

and t ≤ T .

Proof of Lemma 2. By applying the definition of pMh and pM,th , we have

pMh(s
′|s, a) =

πh(s
′|s, a)−

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

 θ(s, a) +

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

,

(17)

p̂M,th (s′|s, a) =

πh(s
′|s, a)−

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

 θ̄t(s, a) +

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

.

Then, inequalities in (17) imply the first inequality in Lemma 2 for all s′, s ∈ S, a ∈ A and t.

Next, we prove the second inequality. For reading convenience, we let ζ1 and ζ2 be

ζ1 =

πh(s
′|s, a)−

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

 , ζ2 =

∑
a′ ̸=a

πh(s
′|s, a′)πH

h(a
′|s)

1− πH
h(a|s)

,

for any fixed state-action pair s, a and fixed t. Here, by definition, we have ζ1 ∈ [−1, 1] and
ζ2 ∈ [0, 1]. Then, we have∣∣pMh(s′|s, a)− p̂M,th (s′|s, a)

∣∣ = |ζ1||θ(s, a)− θ̄t(s, a)|.

Now, we first show

|ζ1|θ̄t(s, a)(1− θ̄t(s, a)) ≤ p̂M,th (s′|s, a)(1− p̂M,th (s′|s, a)). (18)

If ζ1 ≥ 0, (18) is equivalent to

(ζ21 − ζ1)(θ̄
t(s, a))2 + 2ζ1ζ2θ̄

t(s, a) + ζ22 − ζ1 ≤ 0,

which can be obtained by checking the non-positivity of the discriminant for the quadratic equation.
Specifically, the discriminant is

−4ζ1 − 4ζ2 + 4ζ1ζ
2
2 + 4ζ21ζ2,
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which is no more than 0 since ζ1, ζ2 ≤ 1. If ζ1 ≤ 0, we can similarly prove that the discriminant is
still non-positive. Therefore, (18) holds. Then, by Lemma C.5 in Dann and Brunskill (2015), we
have on the event of Lemma 1,

|θ(s, a)− θ̄t(s, a)| ≤

√
8θ̄t(s, a)(1− θ̄t(s, a))

nt(s, a)
log(12SAT/δ) +

26

3nt(s, a)− 3
log(12SAT/δ).

(19)

Combining (19) and (18), and plugging them into (17), we arrive to∣∣pMh(s′|s, a)− p̂M,th (s′|s, a)
∣∣ = |ζ1||θ(s, a)− θ̄t(s, a)|

≤ |ζ1|

√
8θ̄t(s, a)(1− θ̄t(s, a))

nt(s, a)
log(12SAT/δ) +

26|ζ1|
3nt(s, a)− 3

log(12SAT/δ)

≤

√
8|ζ1|θ̄t(s, a)(1− θ̄t(s, a))

nt(s, a)
log(12SAT/δ) +

26

3nt(s, a)− 3
log(12SAT/δ)

≤

√
8p̂M,th (s′|s, a)(1− p̂M,th (s′|s, a))

nt(s, a)
log(12SAT/δ) +

26

3nt(s, a)− 3
log(12SAT/δ),

where the first line comes from (17), the second line comes from (18), the third line comes from the
fact that |ζ1| ≤ 1, and the last line comes from (19). The proof of this inequality holds for all s ∈ S ,
a ∈ A and t ≤ T on the event of Lemma 1, which holds with probability no less than 1− δ. Thus,
we finish the proof.

A.3 SUPPLEMENTARY MATERIALS FOR ALGORITHM 2

In this section, we first provide definitions of the estimations of the transition kernels and rewards in
Algorithm 2, which can be found in Section A.3.1. In Section A.3.2, we will present the proof for
Theorem 2 and Corollary 1. In section A.3.3, we prove important ancillary lemmas for Theorem 2.

A.3.1 DEFINITIONS IN ALGORITHM 2

We first formally define the empirical estimation p̂M,th in Algorithm 2 as follows:

p̂M,th (s′|s, a) =
nt
h(s, a, s

′)

nt
h(s, a)

if nt
h(s, a) > 0 and p̂M,th (s′|s, a) =

1

S
otherwise,

where nt
h(s, a) =

∑t
i=1 I

{(
sih, a

M,i
h

)
= (s, a)

}
is the number of times in the first t

episodes at the time step h, state s, and the machine gives advice a; nt
h(s, a, s

′) =∑t
i=1 I

{(
sih, a

M,i
h , sih+1

)
= (s, a, s′)

}
is the number of times at time h, state s, the machine gives

advice a, and reached state s′ at time h+ 1 in the first t episode. Similarly, the empirical reward is
defined as

r̂M,th (s, a) =

∑t
i=1 r

i(s, a)I
{(

sih, a
M,i
h

)
= (s, a)

}
nt
h(s, a)

if nt
h(s, a) > 0 and r̂M,th (s, a) = 0 otherwise.

A.3.2 PROOF OF THEOREM 2 AND COROLLARY 1

To prove Theorem 2, we first state the algorithm and develop the corresponding sample complexity
bound (with probability 1− δ) for the no-penalty case, where the reward falls within the interval [0, 1].
Next, we show Theorem 2 by extending the above results into the case with the penalty β ∈ (0, H),
which can be addressed by scaling the penalized reward in the range (0, H) to the range [0, 1].

To solve the no-penalty case, as mentioned in the remark after Theorem 2, we change THRESHOLD
from ϵ/H to ϵ/2. The algorithm is summarized in Algorithm 3, and we define τ1 as the corresponding
stopping time. In the following, we characterize the upper bound of τ1 and V ∗

1 (s1)− V π̂τ1

1 (s1) when
there is no penalty.

19



Algorithm 3 : RFE-ADvice

1: Input: ϵ, δ
2: Stage 1: Reward-free exploration
3: Initialize t = 1, THRESHOLD = ϵ/2, and W t

h(s, a) = H for all (s, a) ∈ S ×A
4: Compute πt so that πt

h(s) = argmaxa∈A W t
h(s, a) (see (5))

5: while W t
1(s1, π

t(s1)) + 4e
√

W t
1(s1, π

t(s1)) > THRESHOLD do
6: Sample trajectory zt = {st1, a

M,t
1 , aH,t1 , rt1, · · · , stH , aM,tH , aH,tH , rtH} following πt

7: update t← t+ 1, D ← D ∪ {zt}, p̂M,th (s′|s, a), r̂M,th (s, a), and W t
h(s, a)

8: end while
9: Stage 2: Policy identification

10: Use planning algorithms to output optimal advice policy π̂τ1 for
(
S, Ā, H, p̂M, r̂M

)
Upper bounds of τ1 and V ∗

1 (s1)− V π̂τ1

1 (s1).

To establish the upper bound for τ1, our approach is similar to the proof of Theorem 1 in Ménard
et al. (2021). First notice that

V ⋆
1 (s1)− V π̂τ1

1 (s1) = V ⋆
1 (s1)− V̂ τ1,π

⋆

1 (s1) + V̂ τ1,π
⋆

1 (s1)− V̂ τ1,π̂
τ1

1 (s1) + V̂ τ1,π̂
τ1

1 (s1)− V π̂τ1

1 (s1)

≤
∣∣∣V ⋆

1 (s1)− V̂ τ1,π
⋆

1 (s1)
∣∣∣+ ∣∣∣V̂ τ1,π̂

τ1

1 (s1)− V π̂τ1

1 (s1)
∣∣∣ ,

where the second inequality is because V̂ τ1,π
⋆

1 (s1)− V̂ τ1,π̂
τ1

1 (s1) ≤ 0. Therefore, we need to show
that the empirical MDP is close to the original MDP so that the value function of the same policy is
bounded by ϵ/2. To motivate this, recall the Bellman equation of the true Q-values and the empirical:

Qπ
h(s, a) = rMh(s, a) +

∑
s′∈S

pMh(s
′|s, a)Qπ

h+1(s
′, πh+1(s

′)), (20)

Q̂t,π
h (s, a) = r̂M,th (s, a) +

∑
s′∈S

p̂M,th (s′|s, a)Q̂t,π
h+1(s

′, πh+1(s
′)),

where Qπ
H+1(s, a) = Q̂t,π

H+1(s, a) = 0 for all staet s, action a, episode t, and policy π.

Denote êt,πh (s, a; r) = |Q̂t,π
h (s, a; r̂)−Qπ

h(s, a; r)| the difference between the empirical and the real
Q-value for the machine with respect to any policy π, state s, action a, reward r (r̂ is the sample
estimation of r in episode t), and horizon h at the t-th episode, where the empirical Q-value is
evaluated by the estimated transition kernels p̂M,th and reward function r̂th at the t-th episode. We
immediately have the following bound∣∣∣V ⋆

1 (s1)− V̂ τ1,π
⋆

1 (s1)
∣∣∣+∣∣∣V̂ τ1,π̂

τ1

1 (s1)− V π̂τ1

1 (s1)
∣∣∣ ≤ êt,π

∗

1 (s1, π
∗(s1); r

M)+êt,π̂
τ1

1 (s1, π̂
τ1(s1); r

M).

Notice that here, our definition of êt,πh (s, a; r) incorporates random reward functions, and is different
from that of Ménard et al. (2021). Next, we show the following uniform bound for êt,π1 (s1, π(s1); r).
Lemma 3. With probability at least 1− δ, for any episode t, policy π, and reward function r that is
in [0, 1],

êt,π1 (s1, π(s1); r) ≤ 4e
√
max
a∈A

W t
1(s1, a) + max

a∈A
W t

1(s1, a).

Recall W t
1(·, ·) is defined by equation (5) and it is a function of δ (we omit the dependence of δ in W

for notation simplicity). With Lemma 3, we know that for our quantity of interest, we just need to
bound 4e

√
maxa∈A W t

1(s1, a) + maxa∈A W t
1(s1, a) with the following lemma.

Lemma 4. For ϵ > 0 and δ > 0, with probability at least 1− δ, we have

4e
√

max
a∈A

W τ1
1 (s1, a) + max

a∈A
W τ1

1 (s1, a) ≤ ϵ/2

and the terminating time τ1 is bounded by

τ1 ≤
H3SA

ε2
(log(4SAH/δ) + S)C1 + 1,

where C1 = 9000e6 log2
(
e18 (log(4HSAT/δ) + S) H4SA

ϵ

)
.
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With Lemma 4, we know that with probability 1− δ,

V ⋆
1 (s1)− V π̂τ1

1 (s1) ≤
∣∣∣V ⋆

1 (s1)− V̂ τ1,π
⋆

1 (s1)
∣∣∣+ ∣∣∣V̂ τ1,π̂

τ1

1 (s1)− V π̂τ1

1 (s1)
∣∣∣

≤ êt,π
∗

h (s1, π
∗(s1); r

M) + êt,π̂
τ1

h (s1, π̂
τ1(s1); r

M)

≤ 2

(
4e
√
max
a∈A

W t
1(s1, a) + max

a∈A
W t

1(s1, a)

)
≤ ϵ.

Upper bounds of τ and V ∗
1,β(s1)− V

π̂τ
β

1,β (s1).

To establish the result for τ , we first scale the reward from [0, H] to [0, 1]. From Algorithm 2
and Lemma 4, by setting the threshold to ϵ/(2H), we know that with probability 1 − δ, τ =

Õ(H3S2A/(ϵ2/H2)) = Õ(H5S2A/ϵ2). The rest is to show that we have for all β ∈ (0, H),

V ∗
1,β(s1)− V

π̂τ
β

1,β (s1) ≤ ϵ.

With an analysis similar to that of τ1, for any β ∈ [0, H), when we scale back the reward to [0, H]
(notice the multiplier H in the last inequality), we have

V ⋆
1,β (s1)− V

π̂τ
β

1,β (s1) = V ⋆
1,β (s1)− V̂

τ,π⋆
β

1,β (s1) + V̂
τ,π⋆

β

1,β (s1)− V̂
τ,π̂τ

β

1,β (s1) + V̂
τ,π̂τ

β

1,β (s1)− V
π̂τ
β

1,β (s1)

≤
∣∣∣V ⋆

1,β (s1)− V̂
τ,π⋆

β

1,β (s1)
∣∣∣+ ∣∣∣V̂ τ,π̂τ

β

1,β (s1)− V
π̂τ
β

1,β (s1)
∣∣∣

≤ ê
τ,π∗

β

1 (s1, π
∗
β(s1); r

M
β) + ê

τ,π̂τ
β

1 (s1, π̂
τ
β(s1); r

M
β)

≤ 8e
√
max
a∈A

W τ
1 (s1, a) + 2max

a∈A
W τ

1 (s1, a) ≤ 2Hϵ/(2H) = ϵ.

To conclude the proof, we just have to notice that 8e
√
maxa∈A W τ

1 (s1, a) + 2maxa∈A W τ
1 (s1, a)

is a bound for any reward function rMβ with β ∈ [0, H).

Proof for Corollary 1.

Recall that we have the following CMDP and sample CMDP defined as

max
π

Eπ

[
H∑

h=1

rM(sh, ah)

]
s.t. Eπ

[
H∑

h=1

I{ah ̸= defer}

]
≤ D, (21)

max
π

Êπ

[
H∑

h=1

r̂M,τ (sh, ah)

]
s.t. Êπ

[
H∑

h=1

I{ah ̸= defer}

]
≤ D, (22)

where Ê denotes that the transition kernel follows p̂M,τ , and π∗
D and π̂τ

D are the corresponding
solutions for the above CMDP problems.

From the standard primal-dual theorem, there exists non-negative β∗
D, which is the optimal dual

variable for the constraint E[
∑H

h=1 I{ah ̸= defer}] ≤ D, such that β∗
D and the optimal policy for

(21) solve the following saddle point problem

min
β≥0

max
π∈Π

(
Eπ

[
H∑

h=1

rM(sh, ah)

]
+ β

(
D − Eπ

[
H∑

h=1

I{ah ̸= defer}

]))
= min

β≥0
max
π∈Π

(
V π
β (s1) + βD

)
.

We observe that the optimal policy for (21) is the same as the optimal policy that maximize V π
β∗
D

.
Therefore, adding penalty β for advice and solving V ∗

β are equivalent to imposing constraint to the
original MDP and solving the corresponding CMDP problem.

Now let us start the proof. For the proof of constraint violation, from the results for τ1, we can
view Eπ

[∑H
h=1 I{ah ̸= defer}

]
and Êπ

[∑H
h=1 I{ah ̸= defer}

]
as value functions under transition

21



kernels p̂M,τ and pM. Therefore by knowing that∣∣∣∣∣Eπ̂τ
D

[
H∑

h=1

I{ah ̸= defer}

]
− Êπ̂τ

D

[
H∑

h=1

I{ah ̸= defer}

]∣∣∣∣∣ ≤ ϵ

H
, and Êπ̂τ

D

[
H∑

h=1

I{ah ̸= defer}

]
≤ D,

we have

Eπ̂τ
D

[
H∑

h=1

I{ah ̸= defer}

]
≤ D + ϵ.

To show the ϵ-optimal property of the objective function, by observing that Eπ
[∑H

h=1 r
M(sh, ah)

]
=

V π
1 (s1), we can get the following decomposition

V
π∗
D

1 (s1)− V
π̂τ
D

1 (s1) = V
π∗
D

1 (s1)− V̂
π∗
D

1 (s1) + V̂
π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1) + V̂
π̂τ
D

1 (s1)− V
π̂τ
D

1 (s1)

≤
∣∣∣V π∗

D
1 (s1)− V̂

π∗
D

1 (s1)
∣∣∣+ ∣∣∣V̂ π̂τ

D
1 (s1)− V

π̂τ
D

1 (s1)
∣∣∣+ V̂

π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1)

≤ 2ϵ

H
+ V̂

π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1) ,

where in the last inequality, we have the bound ϵ/H because the reward is in the scale (0, 1) and the
terminating time is τ . For the term V̂

π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1), we note that from the primal-dual property,
based on the primal problem (22), there exists β̂D ∈ [0, H) such that π̂τ

D = argmaxπ∈Π V̂ π
β̂D

(s).
Therefore, we know that

V̂
π̂τ
D

β̂D
(s1) ≥ V̂

π∗
D

β̂D
(s1),

which implies

V̂
π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1) ≤ β̂D

(
Êπ∗

D

[
H∑

h=1

I{ah ̸= defer}

]
− Êπ̂τ

D

[
H∑

h=1

I{ah ̸= defer}

])
.

Next, we discuss different cases on β̂D. If β̂D = 0, this means that Êπ̂τ
D

[∑H
h=1 I{ah ̸= defer}

]
< D

and the constrained optimization problem can be treated as an unconstrained one. Therefore we have
V̂

π̂τ
D

1 (s1) being the optimal solution for the unconstrained problem, and V̂
π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1) ≤ 0.

For the case where β̂D ∈ (0, H), we have Êπ̂τ
D

[∑H
h=1 I{ah ̸= defer}

]
= D and

V̂
π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1) ≤ β̂D

(
Êπ∗

D

[
H∑

h=1

I{ah ̸= defer}

]
−D

)
.

By viewing Êπ∗
D

[∑H
h=1 I{ah ̸= defer}

]
as value function, from the property of τ and the original

CMDP (21) we know that∣∣∣∣∣Êπ∗
D

[
H∑

h=1

I{ah ̸= defer}

]
− Eπ∗

D

[
H∑

h=1

I{ah ̸= defer}

]∣∣∣∣∣ ≤ ϵ

H
, and Eπ∗

D

[
H∑

h=1

I{ah ̸= defer}

]
≤ D.

Therefore, we have Êπ∗
D

[∑H
h=1 I{ah ̸= defer}

]
≤ D + ϵ/H , and V̂

π∗
D

1 (s1) − V̂
π̂τ
D

1 (s1) ≤
H(ϵ/H) = ϵ. Finally, we conclude the proof by observing that (using the convention H > 1)

V
π∗
D

1 (s1)− V
π̂τ
D

1 (s1) ≤
2ϵ

H
+ V̂

π∗
D

1 (s1)− V̂
π̂τ
D

1 (s1) ≤
2ϵ

H
+ ϵ ≤ 2ϵ.

A.3.3 PROOF OF ESSENTIAL LEMMAS FOR THEOREM 2

In this section, we list the proof of lemmas for Theorem 2. First, we need to introduce the high-
probability event to characterize the high-probability bound.
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Denote pM,πh (s, a) the probability that the pair (s, a) is visited under the model’s transition kernel at
time t following policy π, and πt the policy of Algorithm 2 at episode t. We define the pseudo-counts
to be

n̄t
h(s, a) =

t∑
l=1

pM,π
l

h (s, a).

We define the following events that are favorable: E , the event where the empirical transition
probabilities are close to the true ones; Ecnt , the event where the counts are close to pseudo-counts,
their expectations; and Er, the event where the estimation of reward function is close to the expected
reward function within sufficient large episodes. More specifically

E ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : KL

(
p̂M,th (· | s, a), pMh(· | s, a)

)
≤ β (nt

h(s, a), δ)

nt
h(s, a)

}
,

Ecnt ≜
{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : nt

h(s, a) ≥
1

2
n̄t
h(s, a)− βcnt(δ)

}
,

Er ≜

{
∀t ≤ 410e12S11A11H11/(ϵ12δ12),∀h ∈ [H],∀(s, a) ∈ S ×A : |rMh(s, a)− r̂Mh(s, a)| ≤

√
βr (nt

h(s, a))

nt
h(s, a)

}
(23)

where KL(·, ·) is the KL-divergence of two distributions. We define the β functions and show the
high probability events in the following lemma

Lemma 5. For the following choices of functions β,

ϕ(n, δ) = 6 log(4eSAH/(ϵδ)) + S log(8e(n+ 1)),

βcnt(δ) = 6 log(4eSAH/(ϵδ)),

βr (δ) = 6 log(4eSAH/(ϵδ)),

it holds that
P (E) ≥ 1− δ/3, P

(
Ecnt

)
≥ 1− δ/3, and P (Er) ≥ 1− δ/3

With Lemma 5 that characterize the high probability event E ∩Ecnt ∩Er, we are able to prove lemma
3 and 4.

Proof of Lemma 3. The proof is similar to the proof of Lemma 1 in Ménard et al. (2021), and the
difference is that we further analyze the estimation error for the rewards while they assume that the
reward function is known and deterministic. From lemma 5, the event E ∩ Er has probability at least
1− δ, and in this proof every computation is carried out assuming under E ∩ Er. For any policy π,
we have

êt,πh (s, a; r) =|Q̂t,π
h (s, a; r)−Qπ

h(s, a; r)|

≤|rMh(s, a)− r̂M,th (s, a)|+

∣∣∣∣∣∑
s′∈S

pMh(s
′|s, a)Qπ

h+1(s
′, πh+1(s

′))−
∑
s′∈S

p̂M,th (s′|s, a)Q̂t,π
h+1(s

′, πh+1(s
′))

∣∣∣∣∣ ,
≤|rMh(s, a)− r̂M,th (s, a)|+

∣∣∣∣∣∑
s′∈S

(pMh(s
′|s, a)− p̂M,th (s′|s, a))Qπ

h+1(s
′, πh+1(s

′))

∣∣∣∣∣ (24)

+

∣∣∣∣∣∑
s′∈S

p̂M,th (s′|s, a)(Qπ
h+1(s

′, πh+1(s
′))− Q̂t,π

h+1(s
′, πh+1(s

′)))

∣∣∣∣∣
≤|rMh(s, a)− r̂M,th (s, a)|+

∑
s′∈S

∣∣pMh(s′|s, a)− p̂M,th (s′|s, a)
∣∣Qπ

h+1(s
′, πh+1(s

′))

+
∑
s′∈S

p̂M,th (s′|s, a)
∣∣∣Qπ

h+1(s
′, πh+1(s

′))− Q̂t,π
h+1(s

′, πh+1(s
′))
∣∣∣ ,

(25)
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where the first step comes from the definition of êt,πh (s, a; r), the second step comes from the recursive
definition of the Q-values (20), and the last step comes from the triangle inequality for the absolute
value. Next, we will apply empirical Bernstein’s inequality to the terms above. Specifically,

≤ |rMh(s, a)− r̂M,th (s, a)|+ 3

√√√√Varp̂M,th (·|s,a)(V̂
t,π
h+1)

H2

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)
+ 15H2ϕ(n

t
h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′∈S

p̂M,th (s′|s, a)êt,πh+1(s
′, πh+1(s

′); r).

≤

√
βr(nt

h(s, a))

nt
h(s, a)

+ 3

√√√√Varp̂M,th (·|s,a)(V̂
t,π
h+1)

H2

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)
+ 15H2ϕ(n

t
h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′∈S

p̂M,th (s′|s, a)êt,πh+1(s
′, πh+1(s

′); r), (26)

where the first inequality follows in Ménard et al. (2021) page 8 (the readers can also see there how
the high probability event E is used in page 8 and Lemma 10 there), and the second comes from Er.
Then, observe that βr(n) ≤ ϕ(n, δ), and we have√

ϕ(nt
h(s, a), δ)

nt
h(s, a)

=

√
1

H2

H2ϕ(nt
h(s, a), δ)

nt
h(s, a)

≤

√
1

H2

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)
+

1

H

H2ϕ(nt
h(s, a), δ)

nt
h(s, a)

,

for the reason that
√
x ≤ x if x ≥ 1. Therefore, we have

êt,πh (s, a; r) ≤

 1

H
+ 3

√
Varp̂M,th (·|s,a)(V̂

t,π
h+1)

H2

√(H2β (nt
h(s, a), δ)

nt
h(s, a)

∧ 1

)
+ 16H2ϕ(n

t
h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′∈S

p̂M,th (s′|s, a)êt,πh+1(s
′, πh+1(s

′); r).

(27)
Then, we can recursively define an upper bound for êt,πh (s, a; r) based on (27) as follows:

Zt,π
h (s, a; r) =min

H,

 1

H
+ 3

√
Varp̂M,th (·|s,a)(V̂

t,π
h+1)

H2

√(H2β (nt
h(s, a), δ)

nt
h(s, a)

∧ 1

)

+16H2ϕ(n
t
h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′∈S

p̂M,th (s′|s, a)Zt,π
h+1(s

′, πh+1(s
′); r)

}
.

Then, consider the following two sequences

Y t,π
h (s, a; r) =

 1

H
+ 3

√
Varp̂M,th (·|s,a)(V̂

t,π
h+1)

H2

√(H2β (nt
h(s, a), δ)

nt
h(s, a)

∧ 1

)

+

(
1 +

1

H

)∑
s′∈S

p̂M,th (s′|s, a)Y t,π
h+1(s

′, πh+1(s
′); r),

W t,π
h (s, a; r) =min

{
H, 16H2ϕ(n

t
h(s, a), δ)

nt
h(s, a)

(
1 +

1

H

)∑
s′∈S

p̂M,th (s′|s, a)Zt,π
h+1(s

′, πh+1(s
′); r)

}
.

We can prove by induction that for all h, s, a,

êt,πh (s, a; r) ≤ Zt,π
h (s, a; r) ≤ Y t,π

h (s, a; r) +W t,π
h (s, a).

Therefore, to bound êt,π1 (s1, π(s1); r), it suffices to bound Y t,π
h (s1, π(s1); r) + W t,π

h (s1, π(s1)).
Denote p̂M,t,πh (s, a) the probability that the pair (s, a) is visited under the estimated transition kernel
following policy π, we have
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Y t,π
1 (s1, π(s1); r)

=
∑
s,a

H∑
h=1

p̂M,t,πh (s, a)

(
1 +

1

H

)h−1
 1

H
+ 3

√
Varp̂M,th (·|s,a)(V̂

t,π
h+1)

H2

√(H2β (nt
h(s, a), δ)

nt
h(s, a)

∧ 1

)

≤ 3e

√√√√∑
s,a

H∑
h=1

p̂M,t,πh (s, a)
Varp̂M,th (·|s,a)(V̂

t,π
h+1)

H2

√√√√∑
s,a

p̂t,πh=1(s, a)

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)

+ e

√√√√∑
s,a

H∑
h=1

p̂M,t,πh (s, a)
1

H2

√√√√∑
s,a

p̂t,πh=1(s, a)

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)

≤

3e

√√√√√ 1

H2
Eπ,p̂M,th

( H∑
h=1

rh (sh, ah)− V̂ π
1 (s1; r)

)2
+

e√
H


√√√√∑

s,a

H∑
h=1

p̂M,t,πh (s, a)

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)

≤ 4e

√√√√∑
s,a

H∑
h=1

p̂M,t,πh (s, a)

(
H2β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)
≤ 4e

√
W t,π

1 (s1, π(s1)),

Where the second inequality comes from the law of total variance (Ménard et al. (2021) Lemma 7),
and the last inequality comes from page 24 (Step 3) in Ménard et al. (2021). Therefore, we have

êt,πh (s1, π(s1); r) ≤ 4e
√
max
a∈A

W t
1(s1, a) + max

a∈A
W t

1(s1, a).

Proof of Lemma 4. We first provide an upper bound on W t
h(s, a) for all (s, a, h) and t. By definition

(5), if nt
h(s, a) > 0, we have

W t
h(s, a) ≤ 16H2 β (nt

h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′

p̂M,th (s′ | s, a)max
a′

W t
h+1 (s

′, a′)

= 16H2 β (nt
h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′∈S

(
p̂M,th (s′|s, a)− pMh(s

′|s, a)
)
W t

h+1(s
′, πt+1

h+1(s
′))

+

(
1 +

1

H

)∑
s′∈S

pMh(s
′|s, a)W t

h+1(s
′, πt+1

h+1(s
′))

From Lemma 10 in Ménard et al. (2021) and the Bernstein inequality we get (see page 25 in Ménard
et al. (2021) for more details)

W t
h(s, a) ≤ 22H2

(
β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)
+

(
1 +

3

H

)∑
s′∈S

ph(s
′|s, a)W t

h+1(s, π
t+1
h+1(s))

Unfolding the above equation and using (1 + 3/H)H ≤ e3 we have

W t
1

(
s1, π

t+1
1 (s1)

)
≤ 22e3H2

H∑
h=1

∑
s,a

pM,t+1
h (s, a)

(
β (nt

h(s, a), δ)

nt
h(s, a)

∧ 1

)
In this proof, we choose the high probability event to be Ecnt, under which we have (see Ménard
et al. (2021) lemma 8)

W t
1

(
s1, π

t+1
1 (s1)

)
≤ 88e3H2

H∑
h=1

∑
s,a

pM,t+1
h (s, a)

β (n̄t
h(s, a), δ)

n̄t
h(s, a) ∨ 1

, (28)
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where we recall that n̄t
h(s, a) =

∑t
l=1 p

M,πl

h (s, a) is the pseudo-count.

Next, we are going to sum the above inequality over t ≤ T for T < τ . Due to the stopping rule, we
have

ε ≤ 4e
√
W t

1

(
s1, π

t+1
1 (s1)

)
+W t

1

(
s1, π

t+1
1 (s1)

)
.

Summing the over the above inequalities for 0 ≤ t ≤ T , followed by Cauchy-Schwarz inequality, we
have

(T + 1)ε ≤
T∑

t=0

(
4e
√

W t
1

(
s1, π

t+1
1 (s1)

)
+W t

1

(
s1, π

t+1
1 (s1)

))

≤ 4e

√√√√(T + 1)

T∑
t=0

W t
1

(
s1, π

t+1
1 (s1)

)
+

T∑
t=0

W t
1

(
s1, π

t+1
1 (s1)

)
.

Next, from (28), the property that ϕ(·, δ) is increasing and Lemma 9 in Ménard et al. (2021), we have
T∑

t=0

W t
1

(
s1, π

t+1
1 (s1)

)
≤ 88e3H2

T∑
t=0

H∑
h=1

∑
s,a

pM,t+1
h (s, a)

β (n̄t
h(s, a), δ)

n̄t
h(s, a) ∨ 1

≤ 88e3H2ϕ(T, δ)

T∑
t=0

H∑
h=1

∑
s,a

pM,t+1
h (s, a)

1

n̄t
h(s, a) ∨ 1

= 88e3H2ϕ(T, δ)

H∑
h=1

∑
s,a

T∑
t=0

n̄t+1
h (s, a)− n̄t

h(s, a)

n̄t
h(s, a) ∨ 1

≤ 352e3H3SA log(T + 2)ϕ(T, δ)

Therefore, we have

(T + 1)ε ≤ 76e3
√
(T + 1)H3SA log(T + 2)ϕ(T, δ) + 352e3H3SA log(T + 2)ϕ(T, δ)

Lastly, using Lemma 13 in Ménard et al. (2021) we have

τ ≤ H3SA

ε2
(log(4SAH/δ) + S)C1 + 1

where C1 = 9000e6 log2
(
e18 (log(4HSAT/δ) + S) H4SA

ϵ

)
.

Proof of Lemma 5. To prove the probability bound for the first two sets E and Ecnt, we refer to
Lemma 3 in Ménard et al. (2021). To show the probability bound for Er, by Hoeffding’s inequality,
we have with probability at least 1− δ

411e12S12A12H12

|rMh(s, a)− r̂Mh(s, a)| ≤
βr (nt

h(s, a))√
nt
h(s, a)

(29)

for any fixed episode t, step h, and state-action pair (s, a) ∈ S ×A. Then, taking a union bound we
have (29) holds for all state-action pairs, and t ≤ 410e12S11A11H11/(ϵ12δ12) with probability no
less than 1− δ

3 .

We remark here that although we have this episode’s upper bound, our algorithm will stop before
reaching this upper bound. Specifically, by calculations, we have for all H,A, S ≥ 1

410e12S11A11H11

ϵ12δ12
≥ 1048576e12

S11A11H11

ϵ12δ12

≥
(
36 · 104e6 + 32 · 104e8

) H7S4A4

ϵ4δ2

≥ C1
H3SA

ϵ2
· 4SAH

δ
,

which is larger than the bound in Theorem 2. Thus, our choice of βr guarantees that with high
probability, the algorithm will find an ϵ-optimal solution before reaching the maximum number of
episodes.
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B SUPPLEMENTARY MATERIALS FOR EXPERIMENT

B.1 FLAPPY BIRD EXPERIMENT

More details for Figure 2.

We implement three algorithms in Figure 2. For each algorithm, due to the computation efficiency, the
policy will be updated every 5000 episode in Figure 2a (Policy Greedy) and 1000 episode in Figure
2b (Policy Safe), and then apply the updated policies for the next 1000/5000 episode respectively. All
three algorithms are trained by 8×105 for Policy Greedy and 2×105 for Policy Safe. All experiments
are repeated 5 times with the mean of results being reported. More details about implementations are
as follows:

• RFE-ADvice (FRE-AD): Based on the estimated transition kernel and reward from Algo-
rithm 2. At episode t, the algorithm uses planning oracles to obtain the optimal policy π̂t for
the MDP {S, Ā, H, p̂M,t, r}. Note the rewards are known, we replace the reward’s estimators
r̂ used in Algorithm 2 by the true reward r of the environment. For the parameter of the
algorithm, we set δ = 0.1 and we do not set the convergence checking step so no need to
input ϵ. We also use 0.1 · β instead of β to control the "exploration" bonus (note β function
measures the uncertainty of the current state). In Figure 2a, 2b, we evaluate the value gap
between the (estimated) optimal policy π̂t and the optimal policy in every 1000 episode and
use the cumulative sum of 1000× value gap as the "regret" of RFE-AD.

• UCB-ADherence (UCB-AD): This algorithm is the Algorithm 1 that outputs policy at
different episode t based on the upper confidence bound of the adherence level θ. When
implementing, we use

C(θ, n, T, δ) = 0.4 ∗
√

2 log(n)

n
,

as the function to measure uncertainty. Three subfigures of Figure 2 show the (cumulative)
regret of UCB-AD. To test the robustness of UCB-AD, Figure 2c "zooms in" its regret under
different values of θ for both policies.

• EULER: The algorithm is mainly based on Zanette and Brunskill (2019) with two differences.
(1) Since the reward is known, we replace all estimates of reward r by their true values
(and set the uncertainty bonus as 0) in the algorithm; (2) The algorithm will fail when
the unreachable states, where can not be arrived with probability 1 in the MDP, are not
explicitly revealed. Since such states can not be known because of the unknown policy of
humans, we feed additional 3 × 105 episodes for both policies as the exploration period
(and thus the total number of training episodes is 11× 105 and 5× 105 for EULER), after
which we set the states with 0 observation/count as unreachable states. We further select the
parameter δ = 0.1 used in EULER. In Figure 2, we show the (cumulative) regret only after
the exploration period (3× 105 episode).

More details for Figure 3a.

We implement RFE-β in Figure 3a, which is based on the estimated transition kernel and reward
from Algorithm 2 at episode t, the algorithm uses planning oracles to obtain the optimal policy
{S, Ā, H, p̂M,t, rβ} with β ∈ {0, 0.2, 0.4}, and all the other settings are same as Figure 2. Figure 5
shows the value gaps of RFE-β, where for completeness we also include the copy of 3a.

More details for Figure 3b, 3c.

Environment. We change our environment to illustrate the challenge with advice budget, which is
shown in Figure 6a. We should note to achieve the plotted advice policy, which is optimal without
advice budget constraint for Policy Greedy, we should at least advise twice to make the bird go
through the wall for two stars instead of getting the star at the beginning and hitting the wall. Thus,
setting the advice budget as 1 will make both the policy itself and the learning process harder than
with enough advice budget.

Algorithm Implementation. We implement two algorithms for this environment. For each algorithm,
due to the computation efficiency, the policy will be updated every 50 episodes, and then apply the
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(a) Policy Greedy. (b) Policy Safe.

Figure 5: Value Gaps of RFE-β.

updated policies for the next 50 episode. For Figure 3b and 6b, we evaluate both algorithms for every
50 episodes to compute the value gap and advice count gap. Both algorithms are trained by 1500
episode and all experiments are repeated 5 times with the mean of the results being reported. Details
about implementations are as follows:

• RFE-CMDP: The algorithm is based on the estimated transition kernel and reward from
Algorithm 2 at episode t and it uses planning oracles to obtain the optimal policy π̂t

D for the
CMDP (7). For the algorithm’s parameters, we set them as the same values as in 2.

• UC-CFH: The algorithm is based on Kalagarla et al. (2021). We set its parameter with ϵ = 1
and δ = 0.5 in this experiment.

(a) Environment and optimal tra-
jectory without advice budget.

(b) Advice count gaps w.r.t.
episode.

(c) Advice count gaps when evalu-
ating.

Figure 6: Additional results for RFE-CMDP. (a) shows the environment for testing the algorithms and
one trajectory of optimal advice policy with advising twice: the red line means the machine defers
and the green line means the machine advises. (b) and (c) show the budget violations through the
advice count gap, which is computed by using the advice budget minus expected advising times of
the policy, w.r.t. training episode and when evaluating respectively.

B.2 CAR DRIVING ENVIRONMENT

In our car driving environment, we have three lanes and a horizon of 10. Each cell within the
environment can either be empty, contain a stone, or have a car present. The types of cells follow
independent and identically distributed (i.i.d.) distributions, which will be specified later. The
objective for the driver is to maximize the distance covered by the car. However, colliding with
another car or reaching the boundaries results in the destruction of the car, terminating the episode.
Encountering a stone can also cause minor damage to the car, but the car will still be operating. The
driver’s goal is to drive on the empty road and avoid any obstacles. The experiment is adapted from
Meresht et al. (2020).
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Car Driving MDP.

We assume the machine is myopic up to two rows: It can observe the next two rows at most. Thus, the
state space can be defined by the 9 cells’ types in the current three rows with a total of 39 = 19683
states. The environment can be represented by Figure 7a.

The action space is A = {Left, Straight, Right}. The car will always keep moving to the next row
unless it hits another car or the boundary. Further, the “Left” action will move the car to the left of
the current lane, the “Right” action will move to the right, and the “Straight” action will keep the car
in its current lane.

The car will get a reward of 1 when the current cell where it is located is empty, a reward of 0.5 when
it has a stone, and a reward 0 when it has a car or is out of the boundary (also, the environment will
be terminated). The cell’s type is sampled by (0.4, 0.3, 0.3) for the empty, stone, and car respectively.

Human behavior: πH and θ.

We consider a myopic driver who is only aware of other cars in the next row. Therefore, the driver’s
policy is to avoid the cars in the next row, and if there are multiple equivalent actions it will select
them randomly with an equal probability. We set the adherence level θ as the follows

θ(a, s) =

{
0.9 if a =Straight,
0.7 otherwise.

Thus, the driver will adhere to the advice with probability 0.9 if the advice is “Straight” and otherwise
0.7, and the intuition is that the driver wants to avoid changing the lane too often.

Experiment setting and results.

We train RFE-AD and UCB-AD for the Car Driving environment, with 4× 105 training episodes
and the parameters same as the Flappy Bird environment. We note that because the environment is
E1, UCB-AD is trained with the knowledge of the distribution of the cell’s type. Due to the large
state space of this environment, it makes any planning algorithm computationally intensive. Thus
we update and evaluate the policy for RFE-AD and UCB-AD every 8000 episode. The algorithms’
parameters are the same as Flappy Bird environment. All experiments are repeated 5 times with the
mean of results being reported.

As demonstrated in Figure 7b, UCB-AD not only outperforms RFE-AD but also achieves a near-
optimal policy at a very early stage. We believe the strong performance of UCB-AD comes from the
monotone property of Proposition 2 and that the optimistic policy happens to be the optimal policy
in this setting. In Figure 7c, we further evaluate the RFE-β algorithm for different β’s based on the
estimated transition kernel from 7b for β = 0.1, . . . , 1, and find {V π̂β

β }β>0 close to {V ∗
β }β>0 in a

consistent manner.
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(a) Car Driving Environment. (b) Value gaps w.r.t. episode. (c) Value gaps when evaluating.

Figure 7: Environment and value gaps of algorithms. Car Driving environment (a), the driver needs
to move forward as far as possible. The green cells are observable to the driver and the red cells
(with the green cells) are observable to the machine. For (b) and (c), the value gap is defined as
the difference between optimal value V ∗ (or V ∗

β ) and V π̂ (or V π̂β

β ), with the red dashed line as the
benchmark for 0 loss of the policy. (b) shows the value gaps of RFE-AD and UCB-AD with respect
to the training episode. (c) shows the value gaps when evaluating RFE-β with β = {0.1, 0.2, ..., 1}.
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