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A THE CARTPOLE REINFORCEMENT LEARNING BENCHMARK

A.1 THE ENVIRONMENT

Figure 7: The cartpole
environment.

The Cartpole swing-up environment is characterized by a five-
dimensional state space and a single-dimensional action space. The ac-
tion in this environment consists of applying a horizontal force to the
base of the cart, with the force ranging from -1 to 1. The task horizon
is set to 1000. The reward function is designed to encourage the system
to remain upright and centered, with small action and velocity values.
The observables for this environment include the x-coordinate, the co-
sine and sine of the pole angle, the x velocity, and the pole’s angular
velocity. These parameters collectively define the dynamics and objec-
tives of the Cartpole swing-up task.

A.2 THE OFFLINE CARTPOLE DATASETS

In this section, we introduce the different datasets that are used to evaluate the multi-timestep models
on the Cartpole (swingup) environment. These datasets are collected using some behaviour policies
that are considered unknown to the agent (the combination of the world model and the actor that is
using it for planning). All the datasets consist of 50 episodes (50k steps) split randomly as following:
36 episodes for training, 4 episodes for validation, and the remaining 10 episodes are used for testing.

Figure 8: A comparison of the distribution of returns across the considered datasets.

We dispose of four datasets:

• random. This dataset is collected using a random policy (a policy that samples actions
uniformly from the action space).

• medium. This is an intermediate between the two. It is collected by an unstable SAC agent
that sometimes reaches near-optimal behaviour and sometimes doesn’t manage to.

• expert. This is the full learning trace of an expert-policy (a Soft Actor-Critic -SAC- that is
trained on an autoregressive mixture density network until convergence).

• expert noisy. This is the full learning trace of the expert policy in the noisy Cartpole
environment.

To understand the differences between these datasets we propose to analyze the variance of each
state dimension of the Cartpole observables. We can see from Figure 9 that the expert dataset has
very little variance as it converges quickly (around episode 8) and all the remaining episodes are
almost identical. Similarly, the random dataset has little variance as it keeps exploring the same
region around the initial state. The medium dataset, and naturally the expert noisy dataset are the
most diverse among the four, and we believe it would be insightful to evaluate the multi-timestep
models against these different challenges, both in terms of the predictive error, and the final return
of the underlying agents.

B IMPLEMENTATION DETAILS

For all the models, we use a neural network composed of a common number of hidden layers and
two output heads (with Tanh activation functions) for the mean and standard deviation of the learned
probabilistic dynamics (The standard deviation is fixed when we want to use the MSE loss). We
use batch normalization (?), Dropout layers (?) (p = 10%), and set the learning rate of the Adam
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Figure 9: A comparison of the distribution of the state observables across the considered datasets.

optimizer (?) to 0.001, the batch size to 64, the number of common layers to 2, and the number of
hidden units to 256 based on a hyperparameter search executed using the RAMP framework (?). The
evaluation metric of the hyperparameter optimization is the aggregated validation R2 score across
all the offline datasets.

For the offline and iterated-batch RL experiments, we use SAC agents from the open-source library
StableBaselines3 (?) while keeping its default hyperparameters. In the offline setting, we train the
SAC agents for 500k steps on a fixed model, and evaluate them by rolling-out an episode in the
real environment. In the iterated-batch setting, the episodes generated from the evaluation of SAC
are added to the current data buffer and used to retrain the model from scratch. For both these
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setups, we modify the dynamics models to predict the state difference rather than the raw next state:
st+1 ;̂p(st, at) + st. This simple technique has been proved to improve the results of MBRL
algorithms (Chua et al., 2018).

C GRADIENT COMPUTATION

In this section we want to compute the analytic derivative of the generalized loss:
Lα
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From this we can compute the gradient of the loss d
dθLα:
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We start by observing that the terms featuring in the product are cumulative as we go further in the
horizon. We thus compute the ratio between two consecutive loss terms L(j−1) and L(j):
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Given equation 5, we can write a formula for d
dθLα that only depends on the prediction one-step

ahead and its gradient. We denote the error ratio between horizons k and l: Err(k,l) =
(p̂l
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;

And the gradient of the prediction function evaluated at the k-th horizon: Gk = d
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(
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)
. We

use the convention that G0 = 1 and Err(0,1) = 1.

Let’s refactor the expression of the gradient d
dθLα in equation 4 using the ratio from equation 5:
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This formulation expresses the generalized loss derivative as a linear function of the derivative of
the loss one-step ahead. The latter is relatively cheap and can be computed with one forward (and
backward) pass through the model. Consequently, we can think of approximation schemes to reduce
the computational burden O(n×Cost(L(1))) that comes with computing the full derivative: d

dθLα.
We leave the exploration of this idea to a future follow-up work.
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