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ABSTRACT

While Diffusion Models (DM) exhibit remarkable performance across various im-
age generative tasks, they nonetheless reflect the inherent bias presented in the
training set. As DMs are now widely used in real-world applications, these bi-
ases could perpetuate a distorted worldview and hinder opportunities for minority
groups. Existing methods on debiasing DMs usually requires model re-training
with a human-crafted reference dataset or additional classifiers, which suffer from
two major limitations: (1) collecting reference datasets causes expensive annota-
tion cost; (2) the debiasing performance is heavily constrained by the quality of
the reference dataset or the additional classifier. To address the above limitations,
we propose DebiasDiff, a plug-and-play method that learns attribute latent direc-
tions in a self-discovering manner, thus eliminating the reliance on such reference
dataset. Specifically, DebiasDiff consists of two parts: a set of attribute adapters
and a distribution indicator. Each adapter in the set aims to learn an attribute latent
direction, and is optimized via noise composition through a self-discovering pro-
cess. Then, the distribution indicator is multiplied by the set of adapters to guide
the generation process towards the prescribed distribution. Our method enables
debiasing multiple attributes in DMs simultaneously, while remaining lightweight
and easily integrable with other DMs, eliminating the need for re-training. Exten-
sive experiments on debiasing gender, racial, and their intersectional biases show
that our method outperforms previous SOTA by a large margin.

1 INTRODUCTION

State-of-the-art Text-to-Image Diffusion Models (DMs) such as Stable Diffusion (Rombach et al.,
2022), DALL-E 3 (Ramesh et al., 2022) and Imagen (Saharia et al., 2022) have demonstrated re-
markable performance in generating high-quality images. With the rapid development of DMs, an
increasing number of individuals and corporations are choosing to utilize them to serve their own
purposes. For instance, Stable Diffusion v1.5 has been downloaded over 8 million times on the
Huggingface repository, and Midjourney is used by over a million users (Fatunde & Tse, 2022).
However, existing DMs have been found to generate biased content across various demographic
factors, such as gender and race (Luccioni et al., 2023), which could have harmful effects on society
when these models are implemented in real-world applications.

In Figure 1, we randomly generate several images of four occupations using Stable Diffusion v2.1.
Given the prompt of ‘A photo of a CEO’ or ‘A photo of a doctor’, the generated images predom-
inantly depict male figures, reinforcing the stereotype that leadership roles and highly respected
professions, such as CEOs and doctors, are male-dominated. On the contrary, when the prompt is
‘A photo of an executive assistant’ or ‘A photo of a nurse’, the majority of generated images depict
female figures, reflecting the bias that administrative or supportive roles are traditionally associated
with women. Regarding racial bias, we randomly generate 1000 images using Stable Diffusion v2.1
with the prompt ‘A photo of a worker’. The statistic of 1000 images depicted in Figure 2 shows
a strong bias in racial representation, with White individuals making up 71% of the total, while
minority groups like Middle Eastern, Latino, Black, and Indian each account for only 3-4%. This
bias in DM, produce less accurate or fair results for underrepresented populations. We further in-
vestigate such bias situation across across different versions of DMs. We randomly generate 1000
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(a) Prompt: ‘A photo of a CEO’

(c) Prompt: ‘A photo of an executive assistant’

(b) Prompt: ‘A photo of a doctor’

(d) Prompt: ‘A photo of nurse’

Figure 1: Illustration of gender bias associated with different occupations in Stable Diffusion
v2.1. The leadership roles and respected professions such as CEOs and doctors are biased
towards male figures, whereas administrative or supportive roles such as executive assistant and
nurses are biased towards female figures.
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Figure 2: Racial bias in randomly gener-
ated 1000 images with the prompt ‘A photo
of a worker’ using Stable Diffusion v2.1.
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Figure 3: Gender bias in randomly generated 1000 im-
ages with the prompt ‘A photo of a CEO’ using Stable
Diffusion v1.3, v1.4, v1.5, v2.0, and v2.1.

images with the prompt of ‘A photo of a CEO’ using five versions of DMs: Stable Diffusion v1.3
(Rombach, 2022a), v1.4 (Rombach, 2022b), v.1.5 (Rombach, 2022c), v2.0 (Rombach, 2022d)and
v2.1 (Rombach, 2022e). Figure 3 demonstrates that gender bias exists across all versions of DMs.

This bias arises from two main factors. First, the training data sourced from the web is inherently
biased. Second, the bias is partly inherited from the CLIP (Radford et al., 2021) model used in the
generation process. Biases in the generated data are even more pronounced in large text-to-image
DMs, where models often produce content that associates specific genders with particular profes-
sions. Several work has attempted to mitigate the bias in DMs by re-training the model (Shen et al.,
2024) or training-free approaches (Parihar et al., 2024; Gandikota et al., 2023; Orgad et al., 2023). In
training-based methods, Shen et al. (2024) propose to manually curate a reference dataset and match
the distribution of generated images with that of the reference dataset. Among training-free ap-
proaches, Parihar et al. (2024) exploit the rich demographic information embedded in the latent fea-
tures of the denoising U-Net to guide the generation. Although this method avoids re-training DMs,
it depends on training an MLP-based Attribute Distribution Predictor using pseudo labels generated
from existing attribute classifiers. This reliance on accurate attribute classifiers for training h-space
classifiers significantly limits its debiasing performance. Additionally, Gandikota et al. (2023) and
Orgad et al. (2023) employ closed-form editing to adjust concepts within DMs without re-training.
However, training-based methods heavily depend on gathering annotated reference datasets, which
are both expensive and constrained by the dataset’s quality. Despite the implementation efficiency
of training-free methods, they tend to be less effective than training-based approaches.

To address these limitations, we propose DebiasDiff, a plug-and-play method that automatically
learns attribute latent directions, removing the dependency on reference datasets. DebiasDiff is
composed of two components: a set of attribute adapters and a distribution indicator. Each adapter
is trained to learn an attribute-specific latent direction, optimized through noise composition in a
self-discovering manner, i.e., our method automatically learns attribute latent directions without re-
lying on a labeled reference dataset. Through noise composition, our method explores and optimizes
attribute directions directly from the model’s latent space, uncovering patterns without external su-
pervision. At inference stage, the distribution indicator is then applied to select attribute-specific
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adapters, guiding the generative process towards the desired distribution. We comprehensively eval-
uate the effectiveness of our approach in debiasing gender, racial, and intersectional biases using
occupational prompts. Experimental results demonstrate that our method not only achieves state-of-
the-art performance in single and multiple attribute debiasing tasks but also preserves the generation
quality of DM. Furthermore, we show that once DebiasDiff is trained on one diffusion model, it can
be seamlessly integrated into other models without re-tuning. Thanks to its strong transferability
and plug-and-play functionality, our method offers a practical solution for both individual users and
organizations, facilitating the responsible use of diffusion models in future applications.

To summarize, our main contributions are as following:
• We propose DebiasDiff, a novel method for debiasing DMs by learning attribute latent direc-

tions in a self-discovering manner, eliminating the reliance on the reference dataset or classifier,
and thus significantly reduce the cost.

• DebiasDiff is lightweight, plug-and-play and shows good transferability across different DMs,
making it more convenient to deploy in the real world.

• Extensive experiments show that our method achieves SOTA performance across diverse debi-
asing tasks while retaining the image generation quality.

2 RELATED WORK

Bias in Diffusion Models. Diffusion models for text-to-image generation (T2I) have been ob-
served to produce biased and stereotypical images, even when given neutral prompts. Cho et al.
(2023) found that Stable Diffusion (SD) tends to generate images of males when prompted with
occupations, with skin tones predominantly centered around a few shades from the Monk Skin
Tone Scale (Monk, 2023). Seshadri et al. (2023) noted that SD reinforces gender-occupation biases
present in its training data. In addition to occupations, Bianchi et al. (2023) discovered that simple
prompts involving character traits and other descriptors also result in stereotypical images. Luccioni
et al. (2023) created a tool to compare generated image collections across different genders and eth-
nicities. Moreover, Wang et al. (2023) introduced a text-to-image association test and found that SD
tends to associate females more with family roles and males more with career-related roles.

Debiasing Diffusion Models by retraining. Before DMs, previous approaches mainly focus on
debiasing GAN models by assuming access to the labels of sensitive attributes and aim to debias
the models, ensuring no correlation exists between the decision attribute and the sensitive attribute.
(Nam et al., 2023; Xu et al., 2018; van Breugel et al., 2021; Sattigeri et al., 2019; Yu et al., 2020;
Choi et al., 2020; Teo et al., 2023; Um & Suh, 2023). More recently, regarding DMs, Shen et al.
(2024) propose a distributional alignment loss to guide the characteristics of the generated images
towards target distribution and use adjusted direct finetuning to directly optimize losses on the gen-
erated images. Their method requires a reference training dataset to complete the retraining process,
whereas our method does not need such reference dataset, which largely reduce annotation costs.

Debiasing Diffusion Models without training. Parihar et al. (2024) propose Distribution Guid-
ance (DG), which guides the generated images to follow the prescribed attribute distribution. Al-
though DG does not require retraining of DMs, it requires training an Attribute Distribution Predictor
(ADP), which is a small MLP that maps the latent features to the distribution of attributes. Since
ADP is trained with pseudo labels generated from existing attribute classifiers, the performance of
DG is largely constrained by the accuracy of attribute classifiers. Gandikota et al. (2023) and Orgad
et al. (2023) use closed-form editing approach to edits concepts inside DM without training. Despite
being easy to implement, its effectiveness is weaker compared with training-based approach.

3 PRELIMINARY

Latent Diffusion Models (LDMs) (Rombach et al., 2022), also known as Stable Diffusion (SD),
perform the diffusion process within the latent space. During training, noise is added to the encoded
latent representation of the input image x, resulting in a noisy latent code zt at each time step t.

In the pretraining stage, an autoencoder framework is employed to map images into a lower-
dimensional latent space via an encoder: z = E(x). The decoder then reconstructs images from
these latent codes: x ≈ D(E(x)). This process ensures that the latent space retains the essential
semantic information of the image.
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Figure 4: Overview of DebiasDiff’s training pipeline. Attribute-specific adapters (M ) are attached
to the cross-attention layers in the denoising UNet. Target group and attribution direction are fed
into the DM for composing the noise predictions (Eq. 5), which is used as self-discovering attribute
direction guidance to optimize the adapters.

The training objective of the diffusion model in the latent space is given by:

LLDM = Ez∼E(x),c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, c, t)∥22

]
, (1)

where ϵ is Gaussian noise sampled from a normal distribution N (0, 1), ϵθ is the denoising network,
and c represents any conditioning embeddings (e.g., text or class labels).

At the inference stage, a latent code zT is sampled from Gaussian noise at the initial timestep T . The
denoising network ϵθ is then applied iteratively to remove the noise over several steps, generating
a denoised latent representation z0. Finally, the pretrained decoder reconstructs the image from the
denoised latent code: x̂0 ≈ D(z0), where x̂0 is the generated output image.

Classifier-free Guidance (Ho & Salimans, 2022) aim to modulate image generation by steering
the probability distribution towards data that is more probable according to an implicit classifier
p(c | zt). It operates at inference phase and the model is jointly trained on both conditional and
unconditional denoising tasks. During inference, both the conditional and unconditional denoising
scores are derived from the model. The final score ϵ̃θ(zt, c, t) is then adjusted by weighting the
conditioned score more heavily relative to the unconditioned score using a guidance scale α > 1.

ϵ̃θ(zt, c, t) = ϵθ(zt, t) + α(ϵθ(zt, c, t)− ϵθ(zt, t)) (2)

The inference process begins with sampling a latent variable zT ∼ N (0, 1), which is subsequently
denoised using ϵ̃θ(zt, c, t) to obtain zt−1. The denoising is performed iteratively until obtaining z0.
Finally, the decoder transforms the latent representation z0 back into image space: x0 ← D(z0).

4 METHOD

Given a Diffusion Model, we aim at reducing the bias in the DM by attaching and learning a set of
light-weight adapters, each of which represents a category of an attribute (e.g., female of gender),
guiding the DM towards an attribute latent direction. Unlike previous work that relies on additional
reference datasets and has to finetune the whole DM (Shen et al., 2024), we instead optimize the
attached adapters via noise composition through a self-discovering process (detailed in Section 4.2).
This significantly reduces the cost in computation and data. During the inference stage, given a
predefined target distribution (e.g., uniform), we introduce a distribution indicator implemented by a
gating function to select one corresponding adapter which will be attached to the DM for generating
image. In this way, the set of generated images will follow the predefined target distribution, and thus
are not biased to some categories of an attribute (if the predefined target distribution is uniform). Our
training and inference diagrams are illustrated in Figure 4 and Figure 5. In the following sections,
we start elaborating our method in single attribute settings and then extend it to more general ones.
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Figure 5: Overview of DebiasDiff’s inference pipeline. The distribution indicator is generated ac-
cording the prescribed distribution. Then, it is multiplied by the set of attribute adapters matrices
to select attribute matrix adapter. The selected adapter is integrated to the DM with no overhead,
guiding the generation towards the prescribed distribution.

4.1 ATTACHING LIGHT-WEIGHT ATTRIBUTE-SPECIFIC ADAPTERS

To debias a DM for generating images of a given attribute that contains several categories (e.g.,
male and female are two categories of gender attribute), we first aim at equip the DM with skills of
generating images for each category. To achieve this, we attach a light-weight adapter per category
in each layer of the DM inspired by parameter-efficient fine-tuning (PEFT) instead of finetuning the
whole model to acheive a good trade-off between performance and computational cost. In this work,
we use the 1-dim adapter (Lyu et al., 2024) and only add the adapter to each cross-attention layers
of the denoising U-Net, as shown in Figure 4 as we find that attaching adapters to all layers does not
help and will also increase the computational cost.

Specifically, for the i-th cross-attention layer parameterized by Wi ∈ Rm×n in the denoising U-
Net, we attach an adapter to the layer to guide the attribute towards a certain category. The adapter
consists of two 1-dim vectors: p ∈ Rm and q ∈ Rn. The forward process of the i-th cross-attention
layer would be updated from yi = Wixi to yi = Wixi + (qT

i xi) · pi. xi ∈ Rn and yi ∈ Rm

represent the input and output of the layer, and superscript T indicates transposition. Thus, adapters
in all (r) cross-attention layers for an attribute category d are:

Md = QTP , (3)

where Q = [q1, q2, . . . , qr] ,P = [p1,p2, . . . ,pr] . Each column vector in Q and P , we pad 0 to
their end if their dimensions are not the same.

4.2 OPTIMIZING ADAPTERS VIA SELF-DISCOVERING PROCESS

One straightforward way to optimize the attached adapters is to collect a unbiased reference dataset
as in prior work (Shen et al., 2024). However, it is expensive to collect such dataset and the quality
of the dataset would also limites the performance. To this end, we propose to train the adapters in a
self-discovering manner.

Given a target group gt (for example, ‘CEO’) and model θ, we want to optimize the adapters such
that the model attached with the adapters generate image X towards certain attribute category d (for
example, ‘male’ or ’female’ ) when conditioned on gt:

Pθ∗(X|gt)← Pθ(X|gt) (Pθ(d|X))
η
, (4)

where Pθ(X|gt) represents the distribution generated by the original model when conditioned on
gt, and θ∗ represents the new model equipped with the adapters of d. Note that gt can be set to an
empty string ‘’ so that the model will be debiased for all possible groups.

Applying the Bayes Formula, P (d|X) = P (X|d)P (d)
P (X) to Eq. 4, taking logarithm on both sides, we

are able to derive that the gradient of the log probability∇ logPθ∗(X|gt) would be proportional to:

∇ logPθ(X|gt) + η (∇ logPθ(X|d)−∇ logPθ(X|gt)) (5)

5
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Based on Tweedie’s formula (Efron., 2011) and the reparametrization trick of Classifier-free guid-
ance (Ho & Salimans, 2022), we introduce a time-varying noising process and represent each score
(gradient of log probability) as a denoising prediction ϵ(Xt, ct, t), which leads to our learning ob-
jective for adapters of category d of an attribute.

ϵθ∗(Xt, gt, t)← ϵθ(Xt, gt, t) + η (ϵθ(X, d, t)− ϵθ(Xt, gt, t)) (6)

Therefore, the guidance loss for optimizing adapters of category d can be defined as follows:

LGuidance = Lxt,t

[
∥ϵθ∗(Xt, gt, t)− ϵL∥2

]
,

ϵL = ϵθ(Xt, gt, t) + η (ϵθ(Xt, d, t)− ϵθ(Xt, gt, t))
(7)

where the goal is to align the noise ϵθ∗(Xt, gt, t) of the θ∗ (DM with adapters of category d) and the
noise composition ϵL of group gt and category d from the frozen DM θ. And hence, our adapters
optimization does not require any additional data.

4.3 INFERENCE WITH DISTRIBUTION INDICATOR.

After the optimization, we obtain a set of adaptersM = {M1,M2, . . . ,Mt} for t categories of a
given attribute. For instance, t = 2 for gender bias and t = 4 for racial bias in our case. As shown
in Figure 5, at the inference stage, we introduce a distribution indicator h. Given a prescribed
distribution fa

θ (e.g., uniform distribution), we define its Probabilistic Mass Function (PMF) as
follows:

P (X = x) = fa
θ (x) =

{
1
t for x ∈ {1, 2, . . . , t},
0 otherwise,

(8)

where t is the number of possible categories for each attribute, and {1, 2, . . . , t} represents the set of
all possible values for the random variable X . The parameter θ controls the shape of the prescribed
distribution, and in the case of the uniform distribution, θ implies that all outcomes in the set have
equal probability, i.e., 1

t .

Then, we randomly sample an index k from the prescribed distribution fa
θ . The distribution indicator

h ∈ Rt is formulated to reflect the chosen index k as follows:

hi :=

{
1 if i = k,

0 if i ̸= k,
(9)

where i ∈ {1, 2, . . . , t}, and k is the sampled index based on the distribution fa
θ . The indicator h is a

one-hot vector, where the k-th element is 1, indicating the sampled outcome, and all other elements
are 0. After obtaining the distribution indicator, it is multiplied by the set of trained attribute matrix
adapters. Subsequently, the final weight change ∆W is given by:

∆W = h · M. (10)

And the model is updated as W ←W +α∆W , where α is a scaling factor controlling the strength
of the guidance.

4.4 DEBIASING MULTIPLE ATTRIBUTES (INTERSECTIONAL DEBIASING)

Our method can be inherently extended to debiasing multiple attributes in diffusion models (DM).
Specifically, in the case of multiple attribute debiasing, the adapter for each attribute should not
interfere with the others. Otherwise, the most recently trained adapter could degrade the perfor-
mance of previously learned adapters. For each attribute to be debiased, we denote a set of adapter
parameters as {Pt,Qt}. We have Pt =

[
p1
t ,p

2
t , . . . ,p

r
t

]
,Qt =

[
q1
t , q

2
t , . . . , q

r
t

]
.

To avoid interference between attribute adapters, we extend Eq. 7 by introducing an orthogonal
regularization loss that regularizes the vector subspace spanned by each Pt and Qt to be orthogonal
to each other:

Lorth =

t−1∑
i=1

(Pi × Pt +Qi ×Qt) . (11)

L = LGuidance + γLorth. (12)
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Table 1: Comparisons of our method to the
SOTA methods in gender bias over two prede-
fined distributions: f1

θ = (0.5, 0.5) and f2
θ =

(0.2, 0.8), representing the probability of male
and female respectively.

Method FD ↓ CLIPsim ↑ BRISQUE ↑
f1
θ f2

θ f1
θ f2

θ f1
θ f2

θ

Original SD 0.424 0.847 0.38 0.38 38.65 38.69

F4Fair 0.165 0.387 0.36 0.35 38.21 37.64
H Guidance 0.118 0.398 0.31 0.32 38.54 38.65
UCE 0.284 0.536 0.36 0.29 37.12 36.54
Ours 0.003 0.005 0.38 0.38 38.46 38.72

Table 2: Comparisons of our method to the
SOTA methods in racial bias over two distribu-
tions: f1

θ = (0.25, 0.25, 0.25, 0.25) and f2
θ =

(0.4, 0.3, 0.2, 0.1), representing probability of
WMELH, Asian, Black, and Indian respectively.

Method FD ↓ CLIPsim ↑ BRISQUE ↑
f1
θ f2

θ f1
θ f2

θ f1
θ f2

θ

Original SD 0.384 0.497 0.46 0.41 38.94 38.65

F4Fair 0.220 0.305 0.43 0.40 38.80 38.45
H Guidance 0.150 0.285 0.41 0.37 38.65 38.60
UCE 0.290 0.460 0.45 0.39 37.90 37.80
Ours 0.095 0.150 0.46 0.41 38.96 38.66

5 EXPERIMENT

In this section, we first describe the implementation details, evaluation metrics and baseline methods
in this work, then present a quantitative and qualitative analysis of our method.

5.1 EXPERIMENTAL DETAILS

Implementation details. We use Stable Diffusion v2.1 for all methods. We employ the prompt
template “a photo of the face of a {occupation}, a person”. At inference time, for each bias, we
generate 100 images per occupation across 100 occupations, resulting in a total of 10,000 images.
We set η = α = 1, and train for 1000 iterations with a learning rate of 1e-5. For gender bias, we use
the CelebA (Liu et al., 2015) dataset to train a binary classifier with two categories:{male,female}.
For racial bias, we use the FairFace (Joo, 2021) dataset to train a classifier with the following four
categories: WMELH={White, Middle Eastern, Latino Hispanic}, Asian={East Asian, Southeast
Asian}, Black, and Indian. Please refer to supplementary for more details.

Compared methods. In this work, we compare our method with recent state-of-the-art (SOTA)
methods, including a retraining-based method, Finetuning for Fairness (F4Fair) (Shen et al.,
2024), a training-free approach, H-Distribution Guidance (H Guidance) (Parihar et al., 2024), and
a closed-form editing approach, Unified Concept Editing (UCE) (Gandikota et al., 2023). Please
refer to Appendix A.2 for more detailed introduction of these methods.

5.2 EVALUATION METRICS

We evaluate the debias performance of all methods in three metrics:

Fairness Discrepancy (FD). Following prior work(Parihar et al., 2024), we adopt the Fairness Dis-
crepancy (FD) metric. For an attribute a and target distribution paθ , we use a high-accuracy classifier
Ca to compute the fairness performance: ||paθ − Ex∼pθ(x)(y)||2 where y is the softmax output of
Ca(x). The target distribution paθ can be any user-defined vector, typically uniform. A lower FD
score indicates a closer match to the target distribution.

CLIPsim. Besides fairness, the debiased model should maintain the ability to generate images that
are semantically close to their text prompts. Therefore, following (Shen et al., 2024), we report the
CLIP similarity score CLIPsim between the generated image and its prompt.

BRISQUE. The generated image quality is also important as the debiasing process shown not influ-
ence the image generation ability. Thus, we use the BRISQUE metric for evaluate the quality of the
generated images as in the prior work (Parihar et al., 2024).

5.3 RESULTS

Comparisons in gender debiasing. Table 1 demonstrates that our method outperforms others
in mitigating gender bias over two predefined distributions: f1

θ = (0.5, 0.5), representing equal
likelihood of male and female, and f2

θ = (0.2, 0.8), where male and female have a 20% and 80%
probability, respectively. Original SD model exhibits high FD scores (0.424 at f1

θ and 0.847 at f2
θ ),

indicating significant bias towards one gender. While previous methods like F4Fair, H Guidance,
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Male Female

(a) original (b) debiased

Figure 6: Images generated from the original SD (left) and Ours for gender and race (right) with
prompt ‘A photo of a work’. Gendet ratio: Male : Female = 13 : 2→ 8 : 7

and UCE reduce bias to some extent, our method achieves the most reduction, with FD scores of
0.003 at f1

θ and 0.005 at f2
θ . Additionally, our method preserves semantic similarity (CLIPsim of

0.38) and image quality (BRISQUE scores of 38.46 and 38.72), matching or slightly surpassing
the Original SD model. The qualitative results in Figure 6 further demonstrate that our approach
effectively mitigates gender bias without compromising image quality or semantic coherence.

Comparisons in racial debiasing. Table 2 compares methods over two distributions: f1
θ =

(0.25, 0.25, 0.25, 0.25), representing equal probabilities for WMELH, Asian, Black, and Indian,
and f2

θ = (0.4, 0.3, 0.2, 0.1), with higher probabilities for WMELH and Asian, and lower probabil-
ities for Black and Indian. Original SD model shows significant racial bias, with FD scores of 0.384
for f1

θ and 0.497 for f2
θ , indicating poor calibration to either distribution.

Debiasing methods such as F4Fair, H Guidance, and UCE reduce this bias, with H Guidance achiev-
ing relatively lower FD scores. However, our method performs the best, reducing bias to 0.095 for
f1
θ and 0.150 for f2

θ . In terms of semantic similarity, the Original SD model sets a strong baseline
(0.46 for f1

θ and 0.41 for f2
θ ), and our method maintains this high alignment, ensuring that debiasing

does not impair semantic accuracy. Regarding image quality, our approach slightly improves upon
the Original SD model, achieving the highest scores (39.10 for f1

θ and 38.90 for f2
θ ). Again, the

qualitative results in Figure 7 further verify that our method outperforms others in reducing racial
bias while preserving both semantic similarity and image quality.

Table 3: Evaluation of mitigating intersec-
tional bias across methods.

Method FD ↓ CLIPsim↑ BRISQUE ↑
Original SD 0.214 0.35 39.24

F4Fair 0.145 0.36 38.90
H Guidance 0.130 0.33 38.75
UCE 0.180 0.34 38.60
Ours 0.047 0.36 39.50

Comparisons in intersectional debiasing We also
consider a more complex challenge of intersectional
debiasing, i.e., jointly debiasing both gender and racial
biases. The target distribution fθ is set to be uniform
for both gender and racial bias. Table 3 shows that
Original SD model exhibits significant bias with an FD
score of 0.214. While F4Fair and H Guidance reduce
this bias to 0.145 and 0.130, respectively, our method
achieves a much lower FD score of 0.047, reflecting a substantial improvement in fairness.

For semantic similarity, the Original SD scores 0.35, and F4Fair slightly improves it to 0.36. Our
method matches this performance, maintaining semantic coherence while reducing bias. Regarding
image quality, the Original SD has a BRISQUE score of 39.24, while our method improves it to
39.50, indicating enhanced perceptual quality. These results demonstrate that our method excels
at jointly debiasing both gender and racial biases, significantly reducing bias without sacrificing
semantic accuracy or image quality. This highlights its robustness and practicality in real-world
settings where multiple biases are present.

Transferability across different DMs. We further evaluate the transferability of our method by
training it with Stable Diffusion v2.1 and testing it over other versions, and results are reported in
Table 4. From the table we can see that the performance of in all metrics are close to the opti-
mal results achieved when training and testing are performed using the same model version (v2.1).
While there is a slight increase in FD when tested on v1.4, v1.5, and v2.0, the differences are minor,
indicating that our method can effectively generalize across different model versions. This robust-
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WMELH Black

(a) original (b) debiased

Asian Indian

Figure 7: Images generated from original SD (left) and Ours for gender and race (right) with prompt
‘A photo of a sportsman’. Racial group distribution: WMELH : Asian : Black:Indian = 7:2:5:1→
4:4:4:3

Table 4: Transferability of proposed method across different DMs

Train Test Gender Racial

FD ↓ CLIPsim ↑ BRISQUE ↑ FD ↓ CLIPsim ↑ BRISQUE ↑

v2.1 v1.4 0.006 0.37 38.40 0.097 0.45 38.90
v2.1 v1.5 0.006 0.37 38.42 0.096 0.45 38.92
v2.1 v2.0 0.008 0.38 38.45 0.095 0.46 38.95
v2.1 v2.1 0.003 0.38 38.46 0.095 0.46 38.96

ness highlights the method’s capability to transfer learned features across varying model conditions,
underscoring its practical value for real-world applications.

5.4 ABLATION STUDY

Table 5: Ablation of layers that are at-
tached adapters.

Location FD ↓ CLIPsim ↑ BRISQUE ↑
All layers 0.165 0.33 35.00

Non-CA layers 0.158 0.34 37.00
CA layers 0.047 0.36 39.50

Attaching adapters in U-Net. The results in Table
5 illustrate the impact of attaching adapters to differ-
ent layers of the U-Net in the DM. When adapters are
attached to all layers, the fairness score (FD) is 0.165,
with a CLIP similarity score of 0.33 and a BRISQUE
score of 35.00. The best results are obtained when
adapters are attached only to the CA layers. This configuration significantly reduces the FD score to
0.047, increases semantic similarity (CLIPsim = 0.36), and enhances image quality with a BRISQUE
score of 39.50. These highlights that focusing the adapters on the cross-attention layers leads to the
most substantial improvements in both fairness and image quality.

Table 6: Orthogonal Ablation
Location FD ↓ CLIPsim ↑ BRISQUE ↑

Ours w\o OR 0.143 0.29 37.92
Ours w\ OR 0.047 0.36 39.50

Impact of orthogonal regularization (OR). Table 6
demonstrates the impact of orthogonal regularization
(OR). Without OR, the FD score is 0.143, semantic
similarity (CLIPsim) drops to 0.29, and image quality
(BRISQUE) is 37.92. When OR is applied, perfor-
mance improves significantly across all metrics, with a much lower FD score of 0.047, higher se-
mantic similarity of 0.36, and improved image quality (BRISQUE = 39.50). This highlights the
effectiveness of orthogonal regularization in reducing bias and improving overall performance.

6 CONCLUSION

In this paper, we propose DebiasDiff, a plug-and-play method that learns attribute latent directions
in a self-discovering manner, thus mitigates the reliance on collecting additional reference datasets.
Our method can not only jointly debias multiple attributes in DMs, but also enables the generated
images to follow a prescribed attribute distribution. It is lightweight and can be integrated with other
DMs without re-training. Extensive experiments on debiasing gender, racial, and their intersectional
biases show that our method outperforms previous SOTA by a large margin. We believe that our
work marks a critical advancement in addressing harmful societal stereotypes within diffusion mod-
els, and it contributes to the ethical real-world applications of text-to-image diffusion models.
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Male Female

(a) original (b) debiased

Figure 8: Images generated from the original SD (left) and Ours for gender and race (right) with
prompt ‘A photo of a ceo’. Gendet ratio: Male : Female = 13 : 2→ 7 : 8

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We use Stable Diffusion v2.1 for all methods. We employ the prompt template “a photo of the face of
a {occupation}, a person”. At inference time, for each bias, we generate 100 images per occupation
across 100 occupations, resulting in a total of 10,000 images. We set η = α = 1, and train for 1000
iterations with a learning rate of 1e-5. For gender bias, we use the CelebA (Liu et al., 2015) dataset
to train a binary classifier with two categories:{male,female}. For racial bias, we use the FairFace
(Joo, 2021) dataset to train a classifier with the following four categories: WMELH={White, Middle
Eastern, Latino Hispanic}, Asian={East Asian, Southeast Asian}, Black, and Indian. Please refer
to supplementary for more details. We also conduct experiments with other versions of Stable
Diffusion.

A.2 COMPARED METHODS

Finetuning for Fairness (F4Fair) (Shen et al., 2024) is a training-free approach with two main
technical innovations: (1) a distributional alignment loss that aligns specific attributes of generated
images to a user-defined target distribution, and (2) adjusted direct finetuning (adjusted DFT) of the
diffusion model’s sampling process, which uses an adjusted gradient to directly optimize losses on
generated images.

H-Distribution Guidance (H Guidance) (Parihar et al., 2024) is another training-free approach. It
introduces Distribution Guidance, which ensures that generated images follow a prescribed attribute
distribution. This is achieved by leveraging the latent features of the denoising UNet, which contain
rich demographic semantics, to guide debiased generation. They also train an Attribute Distribution
Predictor (ADP), a small MLP that maps latent features to attribute distributions. ADP is trained
using pseudo labels generated by existing attribute classifiers, allowing fairer generation with the
proposed Distribution Guidance.

Unified Concept Editing (UCE) (Gandikota et al., 2023) is a closed-form parameter-editing method
that enables the application of numerous editorial modifications within a single text-to-image syn-
thesis model, while maintaining the model’s generative quality for unedited concepts.

A.3 MORE VISUALIZATION RESULTS

We provide more visualization results about gender debaising and racial debaising. The qualitative
results in Figure 8 9 10 further demonstrate that our method(DebiasDiff) effectively mitigates gender
bias without compromising image quality or semantic coherence.

The qualitative results in Figure 11 12 further verify that our method outperforms others in reducing
racial bias while preserving both semantic similarity and image quality.
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Male Female

(a) original (b) debiased

Figure 9: Images generated from the original SD (left) and Ours for gender and race (right) with
prompt ‘A photo of a doctor’. Gendet ratio: Male : Female = 12 : 3→ 8 : 7

Male Female

(a) original (b) debiased

Figure 10: Images generated from the original SD (left) and Ours for gender and race (right) with
prompt ‘A photo of a nusrse’. Gendet ratio: Male : Female = 3 : 12→ 7 : 8

WMELH Black

(a) original (b) debiased

Asian Indian

Figure 11: Images generated from the original SD (left) and Ours for gender and race (right) with
prompt ‘A photo of a banker’. Racial group distribution: WMELH : Asian : Black:Indian = 10:2:1:1
→ 4:4:4:3

WMELH Black

(a) original (b) debiased

Asian Indian

Figure 12: Images generated from the original SD (left) and Ours for gender and race (right) with
prompt ‘A photo of a professor’. Racial group distribution: WMELH : Asian : Black:Indian =
8:1:5:1→ 4:4:4:3
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