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A APPENDIX

A.1 OVERVIEW OF CHEBYSHEV APPROXIMATION

The Chebyshev polynomials denoted as mappings Tk : r´1, 1s Ñ R are given by the recurrent
formula

T0ptq– 1,

T1ptq– t,

Tk`1ptq– 2tTkptq ´ Tk´1ptq, k ě 1.

Alternatively, the recurrence is equivalent to Tkptq “ cos
`

k cos´1ptq
˘

.

Chebyshev polynomials have been widely studied, see (Dahlquist & Björck (2008)) for a general
overview, and their zeros in the interval r´1, 1s are well-known. In fact, the zeros of the kth Cheby-
shev polynomial are located at the points

tk – cos

ˆ

πpk ` 1
2 q

d

˙

, 0 ď k ď d. (15)

An explicit computation shows that they are orthogonal in the interval r´1, 1s over a weight p1 ´
t2q´1{2. For all indices i ‰ j, when introducing the change of variable t “ cosx and trigonometric
properties of the cosine, we see that

ż π

0

cospixq cospjxq dx “
1

2

ż π

0

cos
`

pj ´ iqx
˘

` cos
`

pj ` iqx
˘

dx “ 0.

This orthogonality between Chebyshev polynomials leads to a linearly independent system. Thus,
tTkptqu

d´1
k“0 is a vectorial subspace of dimension d, meaning that we can easily apply the normal

equations interpreted in the discrete case as follows: if f : r´1, 1s Ñ R is a continuous function and
we consider the discrete points tfptkqud´1

k“0 where tk is the kth zero of the Td Chebyshev polynomial
(see Equation 15), then f can be approximated by

fptq « pptq– c0T0ptq ` ¨ ¨ ¨ ` cd´1Td´1ptq, for all t P r´1, 1s. (16)

with

cj “
d´1
ÿ

k“0

fptkq cos

ˆ

jπpk ` 1
2 q

d

˙

, 0 ď j ă d. (17)

Note that Equation 17 is simply a matrix times a vector, where the entries of the matrix are the
cosines and the vector is tfptkqud´1

k“0. Therefore, a direct computation of Equation 17 has a com-
plexity equal to the matrix-vector multiplication, i.e. Θpd2q. However, there is a fast computation
for an expression like the one in Equation 17.

In fact, an expression like the one in Equation 17 is denoted in signal theory as a Discrete Cosine
Transform (DCT). If values are given to j and k in Equation 17, then one immediately realises that
many of the cosine values are the same due to the trigonometric properties of the cosine. Following
the principles in the Fast Fourier Transform (FFT), we obtain an efficient algorithm with complexity
Θpd log dq, which is commonly implemented in numerical libraries and known as type 2 DCT (DCT-
II).

As happens with the classical FFT, the DCT is not normalised and to avoid this lack of normalisation,
i.e. to make the cj quantitatively independent of d, it is common to consider the cj multiplied by a
factor like 2{d.

Remark A.1. The approximation in Equation 16 exhibits some properties and advantages. One
of them is to approximate, uniformly in r´1, 1s, an arbitrary function f with a finite collection of
number ck rather than a table of values in tk.

Remark A.2. The assumption that f is defined in r´1, 1s is not a restriction, since a bijection
ϕa,b : r´1, 1s Ñ ra, bs can always be considered. Indeed, if g : ra, bs Ñ R is a mapping, then we
can consider f – g ˝ ϕa,b. Therefore, given that in the main text we have τ P r0, 1s, then we can
consider the interval r0, 1s using a ϕ0,1.
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Remark A.3. It is important to query the accuracy of the approximation in Equation 16. This
question is equivalent to quantifying the norm }f ´ p} or the pointwise distance |fptq ´ pptq|. This
question is crucial in determining how well p approximates f . Numerous references can be found
in this respect, mostly by numerical analysts, e.g. in (Dahlquist & Björck (2008); Trefethen (2008);
Majidian (2017)), or (Elliott (1968)). As a general conclusion, we can say that Equation 16 will
be a good (uniform) approximation when d is large enough. The quantification of “enough” here
depends on how regular the function f is. If f is analytic, the d will be smaller than the C8 case
and even smaller than the finite differentiable case.
Remark A.4. The expression in Equation 16 can be evaluated at a given t without constructing
the polynomials Tkptq. In fact, such an evaluation can be done in linear time with d. Algorithm 1
shows which steps to follow to evaluate a Chebyshev expansion in the ChePAN case when the r0, 1s
representation is considered.

A.2 THE CLENSHAW-CURTIS NETWORK (CCN)

The Clenshaw-Curtis Network (CCN), which provides a partially monotonic function with respect
to the quantile input τ , comprises the step between the UMNN, referenced in Section 4, and the
main proposal of the current article, the ChePAN, presented in Section 5. However, given that this
model cannot be generally applied to constrained black-box uncertainty modelling, we have decided
to keep its definition for the Appendix.

The CCN contains a neural network, φ : r0, 1s ˆ RD Ñ R`, which models the derivative with
respect to the quantile τ of the Quantile Regression loss function in Equation 1, similar to the
ChePAN. Furthermore, the CCN also uses the Chebyshev approximation described in Section A.1.
In contrast with the ChePAN, however, it restarts the computation of the Chebyshev coefficients at
each given τ , as explained below.

With the CCN, it is sometimes appropriate to change the Chebyshev nodes of Equation 3 for the
points that are the extrema of the Chebyshev polynomials. There are k ` 1 extrema of the kth
Chebyshev polynomial located at the points

cos

ˆ

πk

d

˙

, 0 ď k ă d.

for k “ 0, . . . , d´ 1. After the bijection ϕ0,τ from Remark A.2, they become

t̄dk –
τ

2
cos

ˆ

πk

d

˙

`
τ

2
, 0 ď k ď d. (18)

They have the property that t̄2dk “ t̄dk{2, which means that information can be reused when the value
of d needs to be increased. Besides this small detail, the rest of the content is adaptable to these new
roots. Indeed, if f : r0, τ s Ñ R is continuous, we consider the discrete points tfpt̄dkqu

d
k“0, then f

can be approximated by
fptq « p̄ptq– c̄0T0pϕ0,τ ptqq ` ¨ ¨ ¨ ` c̄dTdpϕ0,τ ptqq, for all t P r0, τ s,

with ϕ0,τ ptq– 2t{τ ´ 1 and

c̄j “
d
ÿ

k“0

fpt̄dkq cos

ˆ

jπk

d

˙

, 0 ď j ď d, (19)

which, as in Equation 17, is a matrix-vector multiplication. Similarly, as in Section A.1, there is a
fast algorithm that performs this matrix-vector with complexity Θpd log dq. This algorithm is known
as the type 1 Discrete Cosine Transform, or DCT-I. This algorithm produces the unnormalised co-
efficients Equation 19, which as with the case of Equation 17, must be normalised by a factor, for
instance, 2{d.

Similarly to the ChePAN in Section 5, we use Equation 6 to deduce the Chebyshev coefficients of
the integral by the recurrence given in Equation 8, but now the C0 is chosen such that the value of
the integral of the small polynomial p is equal to a βpxq, i.e., P p0,x; dq “ βpxq. All of this leads
to the final Clenshaw-Curtis expression used in the CCN,

P pτ,x; dq “ τ

ˆ

c0pτ,xq

2
´

td{2u
ÿ

k“1

c2kpτ,xq

4k2 ´ 1

˙

`βpxq, (20)
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where td{2u denotes the floor value of the integer division d{2.

Note that Equation 20 has a τ dependency on all the Chebyshev coefficients of ckpτ,xq, which
comes from the fact that P is not uniform on τ .

A.3 A BRIEF COMPARISON OF THE CCN AND THE CHEPAN

Both methods are based on the UMNN described in Section 4 and both have been modified in such
a way as to provide a partially monotonic function in the input τ . However, the ChePAN gives
a uniform representation of the NN across all of the quantile domain r0, 1s, while the CCN only
gives pointwise values of the NN. This crucial difference derives from the fact that the nodes in
Equation 18 explicitly depend on τ with the CCN, which does not happen with the ChePAN nodes
(see Equation 3).

Another consequence of this dependency on τ in the CCN is that the final expression in Equation 20
obviously depends on the quantile τ as well. This makes it impossible to impose any condition
for the black box, except in the case of the quantile 0. In contrast, the ChePAN provides for much
more freedom in the choice of the constant of integration and is therefore more flexible in adding
uncertainty estimation via a black-box predictive system.

A.4 DEDUCTION OF THE C0 COEFFICIENT IN THE CHEPAN

In this subsection, we explain how to deduce all the formulas proposed in Section 5.1 in more detail.

Equation 9 is obtained by considering P p0,x; dq “ βpxq in Equation 7. This is straightforward
because Tkp´1q “ p´1qk.

Similarly, Equation 10 is deduced by imposing P p1,x; dq “ βpxq, which is immediate due to the
fact that Tkp1q “ 1.

Equation 11 is proven in a similar manner because Tkp0q “ 0 when k is odd and Tkp0q “ p´1qk{2

when k is even.

Finally, Equation 12 considers the definition for the mean of a random variable. Changing coordi-
nates leads to the computation of the integral

ż 1

´1

tTkptq dt. (21)

Following this, the symmetries of the Chebyshev polynomials leads to the equality
ż 1

´1

tTkptq dt “ p1` p´1qk`1q

ż 1

0

tTkptq dt.

Then if k is even, Equation 21 is zero. If k is now assumed to be an odd integer, then by defining
the Chebyshev polynomials, 2Tkptq “ Tk`1ptq ` Tk´1ptq and then according to Equation 6,

ż 1

´1

tTkptq dt “
Tk´2ptq

2pk ´ 2q
´
Tk`2ptq

2pk ` 2q

ˇ

ˇ

ˇ

ˇ

1

0

“
2

k2 ´ 4
.

By now imposing
ş1

´1
tP pt,x; dq dt “ βpxq, we can deduce Equation 12.

A.5 THE PSEUDO-CODE OF THE CHEPAN

The Clenshaw method, see (Clenshaw (1955)), or its stable numerical error version (Elliott (1968);
Newbery (1974)), can be used to evaluate Equation 4 or Equation 7 for a value τ in r0, 1s. Let us
briefly summarise the evaluation at τ of ppτ,x; dq in Equation 4 (or P pτ,x; dq in Equation 7), whose
numerical complexity is Θpdq.

The pseudo-code of this framework is shown in Algorithm 4 and can be implemented using any au-
tomatic differentiation library. Furthermore, a TensorFlow (Abadi et al. (2016)) and Keras (Chollet
et al. (2019)) implementation, following this pseudo-code, will be found in the Github repository
that will be made public in the camera-ready version of this paper.
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Algorithm 1 Evaluation of Eq. 4 or Eq. 7 at τ P r0, 1s

1: procedure EVAL CHEB(τ , c0pxq, . . . , cd´1pxq)
2: d1pxq Ð d2pxq Ð d3pxq Ð 0.
3: σ Ð 2τ ´ 1.
4: for k “ d´ 1, d´ 2, . . . , 1 do
5: d3pxq Ð d1pxq.
6: d1pxq Ð 2σd1pxq ´ d2pxq ` ckpxq.
7: d2pxq Ð d3pxq.
8: return σd1pxq ´ d2pxq ` 0.5c0pxq.

Algorithm 2 Definitions and functions used for the following algorithms

Ź x has batch size and number of features as shape, i.e. rbs,Ds.
Ź RSp tensor, shapeq: reshape tensor to shape.
Ź RPptensor, nq: repeats n times the last dimension of tensor.
Ź CCpT1, T2q: concatenate T1 and T2 using their last dimension.

Algorithm 3 Obtain all the ChePAN coefficients

1: procedure CHEB CS(x, d, φ, β)
2: ttku

d´1
k“0 Ð Apply Eq. 3

3: tt
1

ku
d´1
k“0 Ð RS

`

RP
`

ttku
d´1
k“0, bs

˘

, rbs ¨ d, 1s
˘

4: x
1

Ð RSpRPpx, dq, rbs ¨ d,Dsq

5: iÐ CC
´

tt
1

ku
d´1
k“0,x

1
¯

Ź rbs ¨ d,D ` 1s.

6: oÐ φpiq Ź Apply any NN function φ : r0, 1s ˆ RD Ñ R`.
7: tckpxqu

d´1
k“0 Ð DCT-IIpo, dq Ź Transformation.

8: tCkpxqu
d´1
k“1 Ð Integration step wrt tckpxqud´1

k“0

9: C0pxq Ð 2βpxq ´ 2
řd´1
k“1 Ckpxqp´1qk Ź Eq. 9

10: return tCkpxqud´1
k“0, tckpxqu

d´1
k“0.

Algorithm 4 How to build the ChePAN model by using any deep learning architecture for regression

1: procedure BUILD CHEPAN GRAPH(x, y, d, φ, β,Nτ )
2: Ź Nτ is the number of non-roots to evaluate.
3: tCkpxqu

d´1
k“0, tckpxqu

d´1
k“0 Ð CHEB CSpx, d, φ, βq

4: τ Ð Up0, 1q Ź τ must has rbs ¨Nτ , 1s shape.
5: oP Ð EVAL CHEBpτ , C0pxq, . . . , Cd´1pxqq
6: LÐ py ´ oP q ¨ pτ ´ 1ry ă oP sq Ź Eq. 1 loss.
7: return L

A.6 DATA SETS AND MODEL HYPER-PARAMETERS USED DURING THE EVALUATION

To ensure the strictly positive output values of φ in the CCN and the ChePAN, the final output will
have a softplus function (Zheng et al. (2015)) with a certain shift, specifically φpτ,xq “ 10´3 `

softpluspNNpτ,xq ` 10´5q, where NNpτ,xq is the output of the neural network. All internal
activation functions will be ReLU for all of the models. Furthermore, all experiments will be trained
using an early stopping training policy, with 100 epochs of patience for all compared methods.

The Synthetic Heterogeneous Data Set To demonstrate the aleatoric enhancement resulting from
Section 5.1, we selected a recently published synthetic data set proposed in (Brando et al. (2019))
and shown in Figure 3. It has 4 different synthetic distributions depending on the input value.
Specifically, the data set has 3, 800 points that came from a Betapα “ 0.5, β “ 1q distribution, a
N pµ “ 3 ¨ cosxi ´ 2, σ “| 3 ¨ cosxi ´ 2 |q distribution, an increasing uniform random distribution
and a mixture of three uniform distributions Up8, 0.5q, Up1, 3q and Up´4.5, 1.5q.
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Following (Brando et al. (2019)), the architecture used for µ and σ in the N model and φ and β
functions of the ChePAN consists of 4 dense layers with output dimensions 120, 60, 10 and 1 for
each function, respectively (see the pseudo-code in Section A.5).

The Year Prediction Million Song Data set (Year-MSD) This consists of 515, 345 songs com-
prising 90 input audio features to predict the release year of each song from 1922´2011. To evaluate
this data set, 80% was considered for the training set, 10% for the validation set and, finally, 10%
for the test set. All years where normalised between 0 and 1. Furthermore, each audio feature was
normalised subtracting by the minimum value and dividing by the new maximum value considering
each feature of the training set.

Room price forecasting (RPF) Following the procedure to obtain the data described in (Brando
et al. (2019)), the publicly available information from the Inside Airbnb platform (Cox (2019)) cor-
responds to the cities of Barcelona (BCN) with 36, 367 flats, and Vancouver (YVC) with 11, 497
flats. The goal of the regression problem is to predict the rental price per night of each flat in their
respective currency using the properties available for it. These properties are: district number, neigh-
bourhood number, room type and property type, number of bathrooms, accommodation values, and
longitude and latitude normalised according to the minimum and maximums of the corresponding
city. The same training, validation and test sets were used as the original proposal to make the
evaluation.

Similarly to (Brando et al. (2019)), the selected architecture for the µ and σ in the N model, µ and b
in the LP and φ and β functions of the ChePAN consists of 6 dense layers with output dimensions
120, 120, 60, 60, 10 and 1 for each function, respectively. On the other hand, for the Year-MSD
problem we used the same architecture for all the proposed models (see the pseudo-code in Section
A.5 for further details).

Improving an Inaccurate Predictive System Given a 5-depth Random Forest Regressor (RF)
with 100 estimators, we obtained an imprecise approximation of the distribution to be predicted
minimising the mean square error, as shown in Figure 3. Alternatively, an equivalent implementation
with an XGBoost model (Chen & Guestrin (2016)) is considered.

Since this statistic corresponds to the mode of a normal distribution, we can consider two different
approaches to tackle the aleatoric uncertainty estimation of the RF or the XGBoost (the black box).
Firstly, we can consider a conditional normal distribution, fixing the mean as the predicted values of
the black box and adjusting the variance as a σpxq neural network function that minimises the cor-
responding likelihood (which we shall call RF-N). Similarly, we can perform the same optimisation
process with a Laplace distribution. Alternatively, we can use the proposed ChePAN model con-
sidering the black-box predictor as β and adjusting φ (RF-ChePAN or XGBoost-ChePAN). Table 1
shows the mean and standard deviation of 10 executed models of the quantile regression loss values
for the same 10, 000 randomly sampled quantiles.

Enriching a pointwise prediction involves relating the aleatoric estimation of the distribution to the
previous pointwise prediction. Thus, we do not consider approximating an IQN or SQR model
because we need to link the pointwise prediction of the RF and the predicted quantiles. As Figure
3 shows, there is a noisy behaviour in the predicted quantiles similar to the RF prediction. This
indicates that the quantile values depend on the RF prediction, as expected.

Enriching an Accurate Predictive System For comparison with an optimal black-box estima-
tor, we can repeat the previous experiment learning the β function (or µ in the exponential power
distributions). The results are shown in the lower part of Figure 3 and the last 3 rows of Table 1.

UCI Data Sets In order to verify the results in other well-known data sets, we applied all the
proposed models to 9 different UCI Machine learning data sets (Dua & Graff (2017b)). These data
sets are commonly used for various regression tasks. Specifically, we used the splits proposed in
(Hernández-Lobato & Adams (2015a)) and widely used in later works (Gal & Ghahramani (2015);
Lakshminarayanan et al. (2017)).

Regarding the trained models, all share the same number of parameters for all of the models: a
single dense hidden layer of 200 neurons. However, as N, LP and ChePAN require two different
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architectures for their functions, we decided to assign half of the neurons of the single hidden layer
to each of them. The ChePAN was trained with a fixed degree of 20.

A.7 DIMENSION OF UCI DATA SETS

Housing Concrete Energy Kin8nm Naval Power Protein Wine Yacht
Train 364 741 552 5898 8592 6888 32925 1151 221

Val 91 186 139 1475 2149 1723 8232 288 56
Test 51 103 77 819 1193 957 4573 160 31

Table 2: Number of data points for each UCI data set proposed in (Hernández-Lobato & Adams
(2015a)).

Table 2 contains the number of points for each UCI dataset used in the article.

A.8 CALIBRATION IN PREDICTION INTERVALS

XGBoost -N XGBoost -LP XGBoost -ChePAN
Concrete 46.55˘ 6.7p3.34˘ 0.42q 54.66˘ 5.5p4.38˘ 0.3q 85.58˘ 4.7p17.7˘ 21.q

Power 79.44˘ 3.5p6.99˘ 0.4q 88.23˘ 3.7p9.19˘ 1.2q 92.93˘ 2.8p12.03˘ 1.6q
Wine 95.78˘ 1.8p2.66˘ 0.2q 96.7˘ 1.8p2.77˘ 0.2q 95.81˘ 1.89p3.86˘ 0.6q
Yacht 93.22˘ 5.1p2.42˘ 0.4q 94.03˘ 4.6p2.45˘ 0.4q 99.19˘ 1.7p8.16˘ 1.3q
Naval 99.52˘ 1.3p0.05˘ 0.0q 99.68˘ 1.3p0.08˘ 0.0q 96.95˘ 4.2p0.11˘ 0.0q

Energy 95.5˘ 4.4p2.16˘ 0.5q 95.8˘ 3.7p2.11˘ 0.3q 99.48˘ 0.64p6.17˘ 1.1q
Boston 51.9˘ 10.p3.25˘ 0.4q 63.73˘ 6.6p4.2˘ 0.3q 89.12˘ 3.7p10.4˘ 2.0q

Kin8nm 94.77˘ 1.0p0.67˘ 0.0q 98.33˘ 0.7p0.87˘ 0.0q 95.51˘ 1.8p1.39˘ 0.1q

Table 3: Mean and standard deviation, mean ˘ std, of the 100¨PICP (MPIW) value between the
0.975 and 0.025 quantile of the black box -uncertainty wrapper for the different test set folds pre-
sented in (Hernández-Lobato & Adams (2015b))

.

Table 3 shows the calibration results of using the Prediction Interval Coverage Probability (PICP)
and the Mean Prediction Interval Width (MPIW) for all the data sets used in (Tagasovska & Lopez-
Paz (2019)).

A.9 EXTRA GENERAL CALIBRATION FIGURES

Figure 5 shows two examples from Table 4 based on a metric such as that presented in Equation 14.
Specifically, the concrete metric for calculating each point of the curve corresponds to the non-
distance evaluation for each selected quantile value,

specific-Calpf ;Xtest, Ytest, τq “
1

Ntest

Ntest
ÿ

i“1

1ryi ă fpτj ,xiqs (22)

where the black line corresponds to a perfect calibration and the further away from that curve, the
worse the calibration is. We see that the ChePAN achieves an overall strong performance compared
to the other baselines.

A.10 SELECTING DIFFERENT STATISTICS

Figure 6 shows the result of approximating the heterogeneous synthetic data set considering β as the
other statistics proposed in Section 5.1.
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(a) Example where the ChePAN clearly outperforms
others. (b) Example where all methods behave similarly.

Figure 5: Plot with performance in terms of calibration. The table contains the mean and standard deviation
of all the folds using the mean absolute error between the empirical predicted calibration and the perfect ideal
calibration of 980 equidistant quantiles.

Figure 6: Heterogeneous synthetic distribution proposed by (Brando et al. (2019)). In all cases, φ
and β are learnt but β correspond to a different statistic in each case. In the upper part of the figure,
β approximates the median, following Equation 11. In the central figure, β regresses to the lower
quantile 0, following Equation 9. In the lower part, β corresponds to the higher quantile 1, following
Equation 10.
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