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1 Evaluation Metrics.

For average HR estimation, following the evaluation protocol [1, 2,
4], we report the most commonly used performance metrics, such as
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Stan-
dard Deviation (SD), and Pearson correlation coefficient (r). For Heart
Rate Variability (HRV) and Respiration Frequency (RF) estimation,
we follow [3, 5] and report low frequency (LF), high frequency (HF),
and LF/HF ratio.

2 Ablation Study of Hyper-parameters

As depicted in Fig. 1, we investigate different hyper-parameters
in facial ROI prototypical clustering. For the iteration number M,
we test its value of {1, 2,3,4} and set M to 3 to build prototypes.
For the cluster sparse ratio p, we evaluate its value from 0.3 to
1.0. The results show that p=0.5 performs best, and an excessively
high sparsity will lead to the loss of crucial rPPG clues, leading to a
decrease in performance. For the depth L of our Cluster-Phys, we
search its value from 2 to 5. As shown in Fig. 1 (c), the deeper model
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Figure 1: RMSE results of our Facial ROI Prototypical Cluster-
ing with different hyper-parameters on the VIPL-HR dataset.
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Figure 2: A failure case in VIPL-HR.

will make it difficult for the model to converge, which is harmful
to the performance.

3 More Implementation Details.

For each video, we extract the facial ROI regions using landmark
detection to generate the MSTmap [4]. The MSTmap and its cor-
responding Heart Rate (HR) label are sampled at a rate of 30Hz
within the video. Each MSTmap is configured to consist of 300
frames, with a sliding window of 15 frames overlapping with the
adjacent MSTmap. The model is trained by the Adam optimizer
with a learning rate of 1e™ and a batch size of 16. We train the
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model for 100 epochs on the VIPL-HR dataset and 30 epochs on the
other datasets.

4 Failure Case.

We visualize a fail case from VIPL-HR in Fig. 2. Inaccurate landmark
detection is inevitable with intense head movements. Our average
Pearson correlation coefficient (r T) on VIPL-HR is 0.84. In this case,
our r is 0.26, whereas PhysFormer has a r of 0.11. Although our
method performs better than PhysFormer, it is significantly lower
than the average r by a large margin. How to exploit occluded
areas more effectively is a direction for future research. From a
practical perspective, a multi-camera setup is considered a good
solution. Additionally, we may need to address new challenges such
as multi-camera alignment.

5 Limitation

For the HR estimation task, inaccurate landmarks caused by intense
head movements are inevitable to reduce the accuracy of facial
ROI; cross-domain learning and cross-ethnic application remain
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challenges described in Section 4.3 (see experiments in Table 2 of
the main paper). These are also some limitations of most current
HR estimation methods. For our method, the cluster ratio is a fixed
hyperparameter in each step. Developing an adaptive clustering
strategy will be our future research.
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