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Abstract1

Current graph representation learning techniques use Graph Neural Networks2

(GNNs) to extract features from dataset embeddings. In this work, we examine3

the quality of these embeddings and assess how changing them can affect the4

accuracy of GNNs. We explore different embedding extraction techniques for both5

images and texts; and find that the performance of different GNN architectures6

is dependent on the embedding style used. We see a prevalence of bag of words7

(BoW) embeddings and text classification tasks in available graph datasets. Given8

the impact embeddings has on GNN performance. this leads to a phenomenon that9

GNNs being optimised for BoW vectors.10

1 Introduction11

Current advancements in Graph Neural Networks (GNNs) are being evaluated on a small range of12

tasks and accompanying datasets. Though these datasets are sourced from different domains, they13

require preprocessing the raw data into a computationally digestable format to be usable by GNNs,14

referred to as embeddings. In this work we focus on node classification and thus node embeddings.15

Common node classification datasets [2, 5, 9, 12] focus on text classification with the primary node16

embedding being Bag of Words (BoW). Though this is a suitable method for text, this results in17

current GNNs being optimised to BoW. Equally, this form of node embedding is not always applicable,18

image data for example, and so GNNs are only being optimised for limited forms of data, mainly19

text. Existing literature has focused on the shortcomings of GNN training and the effect that the20

dataset can have on the model performance [9], but there is no comment on how different node data21

preprocessing may affect performance.22

To demonstrate this problem we introduce three new datasets as alterations of existing datasets that are23

commonly used in literature. Each dataset is accompanied by a set of node embeddings. To evaluate24

the effect of node embeddings on GNN performance we train and test standard GNN archictures:25

Graph Convolution Network [5], Graph Attention Network[11] (with GATv2 [1]), and GraphSAGE26

[2] with two different samplers. For these models we find that their performance and relative rank is27

dependant on the embeddings used. In this work we make the following contributions:28

• We put forward three new datasets and a rich set of accompanying embeddings to better test the29

performance of GNNs.30

• We demonstrate that GNN performance depends on the embedding used. The choice of embed-31

ding provides large variance and prevents a fair comparison of different architectures.32

• We demonstrate that current GNN architecture design overfits to limited styles of embedding.33

2 Background and Related Work34

Given a graph, G(V, E ,X), with raw node data, X , there exists a transformation function, fe, to35

project the raw data to a more compact feature space, Xe, such that Xe = fe(X). A GNN then36

trains and is evaluated on this transformed node data rather than the original raw data. A (dataset (G),37

embedding (fe)) pair is a specific graph, G, with a specific embedding function, fe.38
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This work focuses on the standard set of Graph Neural Networks (GNNs): Graph Convolution39

Network (GCN) [5], Graph Attention Network (GAT [11] and GATv2 [1]) and graphSAGE [2].40

These proposed models were evaluated using a small selection of datasets including the citation41

networks, Reddit, Amazon and Flickr. These datasets are also prevalent in current literature as42

a method of comparing new GNN architectures against prior architectures. This results in any43

shortcomings in these datasets propagating through successive papers. To combat this Hu et al. [4]44

developed the Open Graph Benchmark to standardise the datasets used for comparison.45

However, we find that the vast majority of datasets focus on text classification tasks and utilise bag of46

words (BoW) extensively. This is not a good representation of all tasks that GNNs may be used47

for as BoW is not always applicable to the raw data. Furthermore, simple text classification does not48

require particularly complex or rich node features and therefore does not test the capabilites of GNNs.49

Shchur et al. [9] focused on common pitfalls in GNN evaluation. Changing the train, evaluation and50

test split on a dataset can cause large changes in accuracy and the rank of different GNN architectures,51

even though other hyperparameters remained constant. This paper supports the idea that there are52

many factors that might affect the evaluation of the performance of GNNs. However, Shchur et al. [9]53

did not look into the embedding of the data which we find to be important for model performance.54

3 Datasets55

We introduce three new datasets: Flickr_v2, to highlight the importance of embeddings for non-text56

databases, and two Amazon datasets (AmazonElectronics and AmazonInstruments), to evaluate new57

text embeddings against the standard bag of words (BoW) approach. In each dataset we carry out a58

meta-label approach to generate labels for each node. Each node in the three datasets has a set of tags59

or categories which are converted into a word vector through GLoVe. These vectors are compared to60

each meta-label vector and the closest is chosen as the new label. Review and comparison to other61

datasets is detailed in Appendix A.62

3.1 Flickr_v263

This is an image classification task using the same graph structure as the prior Flickr [7] dataset. Each64

node represents an individual image in the network where the raw data is the image data itself. Each65

edge represents some connection between images based on comments, likes and groups. As stated66

before, in the case of images, BoW is not applicable. Instead using image classification modelss67

provides a method of encoding raw image data in a compact feature space. Extracting these node68

embeddings from this feature space yields a sensible embedding to be used in a graph dataset.69

We can initialise these image classification models with pre-trained weights to embed the images70

rather than needing to train the model ourselves. This does also open up the possibility of carry out71

further training of the image classification model to be better suited to GNN providing adaptable72

node embeddings. For the Flickr_v2 we use a selection of convolutional neural networks (CNNs),73

namely two variations of ResNet [3] (ResNet18 and ResNet50) and VGG16 [10], to provide the three74

embeddings for the Flickr dataset.75

It is important to highlight the exclusion of BoW from Flickr_v2 as this is the embedding used in76

the current Flickr dataset [7]. Given that Flickr_v2 uses raw image data we cannot sensibly generate77

BoW embeddings and instead need to use an image based technique. The previous Flickr used human78

descriptions of the images which is not always possible when all that is available is raw image data.79

3.2 AmazonElectronics and AmazonInstruments80

Both Amazon datasets are text classification tasks using the graph structure induced by the ”similar81

items", ”co-viewed" and ”co-bought". Each node represents a single item from a the specified82

category where the raw data is the review text.83

In comparison to Flickr_v2 BoW is a suitable candidate as an embedding as the raw data is text84

reviews. Keeping with the approach for Flickr_v2 we utilise a text transformer model, specifically85

the roBERTa [6] transformer. Compared to the CNNs we have multiple stages in the classification to86

extract embeddings from: the preprocessing step converting the raw text into byte-pair encodings, the87

transformer encodings and the final feature vector before classification. These three embeddings are88

called Byte-Pair, roBERTa-Encoded and roBERTa respectively.89
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The roBERTa model also uses pre-trained weights in this case we use a roBERTa model trained on the90

MNLI dataset. This does mean that this specific model is not optimised for simple text classification,91

as MNLI is designed for sentiment analysis.92

4 Evaluation93

4.1 Experimental Setup94

Each GNN is setup following their respective papers, in all cases this entails a 2 layer architecture95

with a final classification layer. Each of these architectures remains the same across all (dataset,96

embedding) pairs. As the datasets are based on existing datasets where the graph structure and input97

vector sizes are similar we use the same hyperparameters as the original papers. To prevent bias from98

training we use the same optimizer.99

Each dataset is split into train, validation and test splits into 70%, 10% and 20% respectively. The100

same split is used across all the embeddings for a given dataset to prevent this influencing the101

performance. Each epoch of training uses the train and validation splits with the test split held out for102

evaluation. Each GNN is given 300 epochs to train on a (dataset, embedding) pair and we carry out 3103

runs to calculate a mean accuracy and confidence interval.104

Table 1: Test accuracy on Flickr_v2 with different embeddings.

Model
Embedding Styles

ResNet18 ResNet50 VGG16

GCN 41.8% ± 0.4 38.3% ± 0.5 35.5% ± 0.3
GAT 38.1% ± 0.6 37.1% ± 1.1 27.3% ± 1.2

GAT2 42.1% ± 1.8 41.0% ± 1.5 34.2% ± 0.8
GraphSAGE (Random) 45.4% ± 0.1 47.0% ± 0.0 35.2% ± 0.2

GraphSAGE (Neighbour) 45.8% ± 0.2 44.5% ± 0.1 34.5% ± 0.2

4.2 Flickr_v2 and AmazonElectronics Results105

Table 1 demonstrates how the different image node embeddings affect the performance of the five106

models. We see in the case of ResNet the best performing model is graphSAGE with the only107

difference being the sampler. This is contrary to the previous results seen on the prior Flickr dataset108

where Graph Attention Network (GAT) and the improved version GATv2 out-performed GraphSAGE.109

When looking at the results for VGG16 we notice that there is less variation in the results for each110

GNN and a reduction in the accuracy of the models. However, when trained on the underlying111

images VGG16 out-performed both ResNet18 and ResNet50 achieving 47.0% accuracy compared to112

45.2% and 46.9% respectively for the ResNet models. Therefore it is not only the performance of113

the network used to create the embeddings that is important but rather the feature vectors produced114

before classification.115

We also see that the ranking of the models remains relatively consistent across the embeddings,116

though in the case of VGG16 the models perform relatively the same. Importantly this ranking is117

different from those presented when evaluating on the bag of words (BoW) version of Flickr.118

Table 2: Test accuracy on AmazonElectronics with different embeddings.

Model
Embedding styles

Bag of Words Byte Pair roBERTa Encoded roBERTa

GCN 69.1% ± 0.1 21.7% ± 0.2 22.7% ± 1.1 22.3% ± 1.2
GAT 81.1% ± 0.2 22.2% ± 0.5 46.1% ± 1.5 40.3% ± 2.9

GAT2 81.8% ± 0.3 22.2% ± 0.6 41.8% ± 5.1 35.7% ± 5.6
GraphSAGE (Random) 71.3% ± 0.1 26.3% ± 0.3 57.0% ± 0.5 53.7% ± 0.5

GraphSAGE (Neighbour) 76.4% ± 0.3 40.4% ± 0.4 67.8% ± 0.4 66.4% ± 0.3
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Table 2 demonstrates how different text node embeddings affects the performance of the models. It119

is clear that the common standard of Bag of Words (Bow) is far superior to other embedding styles.120

What is more interesting is that fact that in this case we see that both GAT models out-perform121

the other models by a significant margin. But when looking at the roBERTa encoding we see that122

GraphSAGE performs the best in line with what we see in Flickr_v2.123

Unlike in the case of Flickr_v2 we see that the results are more inline with the results we see from124

previous BoW datasets. We also see that the ranking of the models follows those that are presented in125

prior papers suggesting that improvement of models has been focusing on optimising for BoW126

embeddings. In this case the best embedding option is BoW, however, not always applicable.127

It is important to note that we are not promoting an alternative embedding function other than BoW,128

since BoW shows the best performance in Table 2. However, we are showing the phenomenon that129

current GNN architecture design and evaluation is promoting overfitting to BoW embeddings.130

We see in the majority of node embeddings, which are not BoW, that GraphSAGE performs the best.131

This suggests that when using a wider range of embeddings our expected accuracy is better if we132

were to use GraphSAGE over GAT even though GAT is often consider state of the art. Results for133

AmazonInstruments are available in Appendix B.134

4.3 Discussion and Limitations135

Discussion In the case of text classification where our labels are representations of words or phrases136

we anticipate BoW to perform best. This is because BoW provides a discrete collection of word137

presence, if these can be linked to words in the labels then there is a simple direct connection between138

a few bits in the node vector and the output classification. In the case of Amazon the BoW vectors139

contain direct synonyms of the label words or phrases.140

This invites the question as to why GAT performs far better on BoW wherease GraphSAGE performs141

better on model embeddings. In the case of BoW we have discrete inclusion or exclusion of a specific142

word but in the case of model embeddings we have a continuous vector that varies within the model’s143

feature space. Therefore, it is more likely that GAT is good at picking out discrete features than144

GraphSAGE, which is to be expected given the architecture can utilise multiple heads to focus on145

individual entries. On the contrary GraphSAGE is better suited to continuous vectors as it takes the146

whole vector into account at once when computing a classification.147

In comparison, the field of NLP is moving away from BoW. This is mainly because more complex148

tasks such as sentimental analysis or language modelling benefit from richer embeddings This in turn149

questions the focus on text-based graph datasets: is text classification in a graph really the task we150

want to use to assess the quality of our GNNs?151

Limitations The datasets we provide are a small subsection of all possible representation learning152

tasks that could be carried out on graph networks. Similarly we only provide a handful of embeddings153

and do not endeavour to find the optimal embedding for each tasks. Thus these results do not represent154

all possible GNN tasks however we do still see clear trends. Due to the brevity of an extended abstract155

we only focus on variations on three standard models rather than analysing the effect of embeddings156

on more niche models. There has been a lot of work into simplified GNNs moving away from the157

layered approach of the models presented in this paper. These new models may be better suited or158

more consistent across the different node embeddings.159

5 Conclusion160

Current approaches to evaluating graph neural networks (GNNs) focuses on text classification using161

bag of words (BoW) embedding to transform the raw text into a compact node feature. However, this162

approach is not general for all types of data and thus the evaluation of GNNs is overfitting to BoW163

and text classification.164

Our work demonstrates how the GNN performance is dependent on the node embeddings used in165

training and evalutation, providing new embedding candidates where BoW is not applicable. In166

evaluating different choices of embeddings we introduce three new datasets each with their own set167

of embeddings. We show that each node embedding favours different GNN architectures rather than168

simply effecting the accuracy.169
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