
A Appendix: More figures and tables

Figure A.1: Plot of the probability density −1
π ℑGµ (·+ iy) for y ∈ {1, 10−1, 10−4}. Here µ is the

multiplicative free convolution of three Marchenko-Pastur distributions, with different parameters.

Figure A.2: Plot of density of singular values for the Jacobian matrix J . The network has constant
width and ReLU non-linearities. Monte-Carlo sampling uses matrices of size Nℓ = N = 3000.

B Appendix: Table of non-linearities

Let us now collect the various required formulas, and specialize them to a selection of non-linearities:
ReLU, Hard Tanh and Hard Sine. These non-linearities are very tractable hence the choice. As
discussed in the introduction, the empirical distribution of D(N)

ℓ converges to the law of ϕ′
l

(√
qℓN

)
.

13

From this observation was deduced in [20] the following formula:

MD2
ℓ
(z) =

∑
k≥1

mk(D
2
ℓ)

zk
= E

[
ϕ′
ℓ(
√
qℓN)2

z − ϕ′
ℓ(
√
qℓN)2

]
, (B.1)

SD2
ℓ
(m) =

1 +m

mM
⟨−1⟩
D2

ℓ
(m)

, (B.2)

Linear ReLU Hard Tanh Hard sine / Triangle

ϕℓ(h) h [h]+ [h+ 1]+ − [h− 1]+ − 1 2
π arcsin ◦ sin(π2h)

MD2
ℓ
(z) 1

z−1
1
2

1
z−1 Cℓ

1
z−1

1
z−1

mk(D
2
ℓ) 1 1

2 Cℓ 1
SD2

ℓ
(m) 1 1+m

1
2+m

1+m
Cℓ+m 1

gℓ(q) q q
2 2qCℓ −

√
2q
π e−

1
2q

1

3
+

4

π2

∑
n≥1

(−1)n

n2
e−q π2n2

2

Table B.1: Table of formulas for moment generating functions and S-transforms.

In Table 1.1, the reader shall find the formulae of MD2
ℓ
, SD2

ℓ
and the recurrence relation given by fℓ

where

fℓ
(
qℓ−1

)
= σ2

Wℓ
gℓ(q

ℓ−1) + σ2
bℓ

,

with gℓ(q) := E
[
ϕℓ (
√
qN)

2
]
.

and

Cℓ = P

(
0 ≤ N ≤ 1√

qℓ

)
.

Proof of formulas in Table B.1: ReLU and Hard Tanh have already been computed in [20].

Hard Sine: This is the most tricky formula to establish. If ϕ(x) = 2
π arcsin ◦ sin

(
π
2x
)

and f̂(ξ) =∫
dx f(x)eiξx is the Fourier transform on f , then the application of the Plancherel formula yields:

E
[
ϕ (
√
qN)

2
]

=

∫ ∞

−∞
dx

e−
x2

2q

√
2πq

ϕ2(x)

=
1

2π

∫ ∞

−∞
dξ ϕ̂2(ξ)e−q ξ2

2 .

But in term of Fourier series:
ϕ2(x) =

∑
n∈Z

(
ϕ̂2
)
n
eiπnx

as ϕ2(x) = x2 on [−1, 1] and extended in order to become 2-periodic. In terms of Schwartz
distributions:

ϕ̂2(ξ) =
∑
n∈Z

(
ϕ̂2
)
n

̂(x 7→ eiπnx) =
∑
n∈Z

(
ϕ̂2
)
n
2πδ−πn(dξ) .

Hence:

E
[
ϕ (
√
qN)

2
]
=
∑
n∈Z

(
ϕ̂2
)
n
e−q π2n2

2 .

14

We conclude by computing the Fourier coefficients of ϕ2.(
ϕ̂2
)
0
=

1

2

∫ 1

−1

dx x2 =
1

3
.

(
ϕ̂2
)
n
=

1

2

∫ 1

−1

dx x2 e−iπnx

=

∫ 1

0

dx x2 cos(πnx)

= − 1

πn

∫ 1

0

dx 2x sin(πnx)

=
2

(πn)
2 [x cos(nπx)]

1
0 −

2

(πn)2

∫ 1

0

dx cos(πnx)

=
2

(πn)
2 (−1)

n .

In the end:

E
[
ϕ (
√
qN)

2
]
=

1

3
+

4

π2

∑
n≥1

(−1)n

n2
e−q π2n2

2 .

C Appendix: Proofs

C.1 Proof of Theorem 2.3

For k ∈ N, we have :

Tr

[((
A(N)B(N)

)T
A(N)B(N)

)k
]
= Tr

[((
B(N)

)T (
A(N)

)T
AB

)k
]

= Tr

[
(B(N)

(
B(N)

)T (
A(N)

)T
A)k

]
.

As
(
A(N)B(N)

)T
A(N)B(N) ∈MrN (C) and B(N)

(
B(N)

)T (
A(N)

)T
A(N) ∈MqN (C), this shows

that
M(A(N)B(N))

T
A(N)B(N)(z) =

qN
rN

M
B(N)(B(N))

T
(A(N))

T
A(N)(z) ,

and then

M
⟨−1⟩
(A(N)B(N))

T
A(N)B(N)

(m) = M
⟨−1⟩
B(N)(B(N))

T
(A(N))

T
A(N)

(
rN
qN

m

)
.

Consequently,

S
(A(N)B(N))

T
A(N)B(N)(m) =

1 +m

mM
⟨−1⟩
(A(N)B(N))

T
A(N)B(N)

(m)

=
1 +m

mM
⟨−1⟩
B(N)(B(N))

T
(A(N))

T
A(N)

(
rN
qN

m
) × 1 + rN

qN
m

rN
qN

m
×

rN
qN

m

1 + rN
qN

m

=
rN
qN

1 +m

1 + rN
qN

m
S
B(N)(B(N))

T
(A(N))

T
A(N)

(
rN
qN

m

)
. (C.1)

As
(
A(N)

)T
A(N) and B(N)

(
(N)
)T

are asymptotically free, taking the limit N → +∞ and applying
Voiculescu’s Theorem 2.2 , we get

S(AB)∗AB(m) = α
1 +m

1 + αm
SBB∗ (αm)SA∗A (αm) .

15

Moreover, the above equality is true replacing A with the identity I . SI(m) = 1 yields:

SB∗B(m) = α
1 +m

1 + αm
SBB∗ (αm) .

Finally we have

S(AB)∗AB(m) = SA∗A (αm)SB∗B(m) .

This concludes the proof.

C.2 Proof of Theorem 3.1

We assume that Wℓ have i.i.d. entries. Thanks to a swapping trick justified in [17], we can assume
that the matrices Dℓ have i.i.d. entries independent from the rest of the network, distributed as
ϕ′
ℓ(
√
qℓN). Notice that we can also replace the Dℓ’s by deterministic matrices that use the quantiles

of the same distribution. This together with standard results from FPT such as [16] gives asymptotic
freeness – see [3] for a more general result reflecting the current state of the art. Therefore, we can
apply Theorem 2.3.

Starting from Eq. (1.1) , we get in the infinite width regime and by induction:

S
(J(N))

T
J(N)(m)

= S(
D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1...D

(N)
1 W

(N)
1

)T
D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1...D

(N)
1 W

(N)
1

(m)

= S(
D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1...D

(N)
2 W

(N)
2 D

(N)
1

)T
D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1...D

(N)
2 W

(N)
2 D

(N)
1

(λ1m)

× S(
W

(N)
1

)T
W

(N)
1

(m)

= S(
D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1...D

(N)
2 W

(N)
2

)T
D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1...D

(N)
2 W

(N)
2

(λ1m)

× S(
D

(N)
1

)2(λ1m)S(
W

(N)
1

)T
W

(N)
1

(m)

...

=

L∏
ℓ=1

[
S(

D
(N)
ℓ

)2

(
l∏

k=1

λkm

)
S(

W
(N)
ℓ

)T
W

(N)
ℓ

(
l−1∏
k=1

λkm

)]

=

L∏
ℓ=1

[
S(

D
(N)
ℓ

)2 (Λℓm)S(
W

(N)
ℓ

)T
W

(N)
ℓ

(Λℓ−1m)

]
,

with the convention Λ0 =
∏0

k=1 λk = 1.

Under the asumption that the entries of Wℓ are i.i.d., the Marcenko-Pastur Theorem gives

S(
W

(N)
ℓ

)T
W

(N)
ℓ

(m) =
1

σ2
Wℓ

1

1 + λℓm
,

which leads to

S
(J(N))

T
J(N)(m) =

L∏
ℓ=1

(
S(

D
(N)
ℓ

)2 (Λℓm)
1

σ2
Wℓ

1

1 + Λℓm

)
.

16

We thus have

M
⟨−1⟩
(J(N))

T
J(N)

(m) =
m+ 1

mS(J(N))
T
J(N)(m)

=
m+ 1

m
∏L

ℓ=1

(
S(

D
(N)
ℓ

)2 (Λℓm) 1
σ2
Wℓ

1
1+Λℓm

)
=

(m+ 1)
∏L

ℓ=1 σ
2
Wℓ

(1 + Λℓm)

m
∏L

ℓ=1 S
(
D

(N)
ℓ

)2 (Λℓm)

=
(m+ 1)

∏L
ℓ=1 σ

2
Wℓ

(1 + Λℓm)

m
∏L

ℓ=1 S
(
D

(N)
ℓ

)2 (Λℓm)
.

D Appendix: On the classical Newton-Raphson scheme

Algorithm 2 Newton-Raphson scheme for a rational function f

Name: NEWTON_RAPHSON
Input:
Numerical precision: ε > 0 (Default: 10−12),
Image value: z ∈ C+,
Polynomials: P , Q such that f = P

Q ,
(Optional) Guess: m0 ∈ C, (Default: m0 = 0).
Code:
m← m0

while True do
value← φz(m) # See Eq. (4.1)
if |value| < ε then

return m
end if
grad← φ′

z(m)
m← m− value/grad

end while

Here we give the optimal Kantorovich criterion from [10] adapted to this paper. Fix z ∈ C+ and
recall that φz in Eq. (4.1) is the map whose zero we want to find.
Theorem D.1 (Kantorovich’s criterion, [13]). Consider a starting point m0 ∈ C, and define:

δ :=

∣∣∣∣φz(m0)

φ′
z(m0)

∣∣∣∣ , κ :=

∣∣∣∣ 1

φ′
z(m0)

∣∣∣∣ .
If the starting point satisfies h := δκλ < 1

2 , where

λ := sup
|m−m0|≤t∗

|φ′′
z (m)| , t∗ :=

2δ

1 +
√
1− h

< 2δ .

Then, the Newton-Raphson scheme, starting from m0 converges to m∗ such that φz(m
∗) = 0.

Furthermore, the convergence at each step is at least quadratic.

E Appendix: Moments of J

We can reach an early understanding of the behavior of J’s singular values by computing mean and
variance. For ease of notation, we write:

m
(s)
k (A) = mk(A

TA)

17

for any operator A, which admits a measure of singular values. We have under the assumptions that
the entries of Wℓ are i.i.d. :

m
(s)
1 (J) =

L∏
ℓ=1

(
m

(s)
1 (Dℓ)m

(s)
1 (Wℓ)

)
=

L∏
ℓ=1

(cℓσ
2
Wℓ

) , (E.1)

m
(s)
2 (J)−m

(s)
1 (J) (E.2)

=m
(s)
1 (J)2

(
L∑

ℓ=1

Λℓ

(
m

(s)
2 (Dℓ)−m

(s)
1 (Dℓ)

2

m
(s)
1 (Dℓ)2

+
m

(s)
2 (Wℓ)−m

(s)
1 (Wℓ)

2

m
(s)
1 (Wℓ)2

))

=

(
L∏

ℓ=1

c2ℓσ
4
Wℓ

)(
L∑

ℓ=1

Λℓ

(
1− cℓ
cℓ

+ λℓ

))
.

Under the asumption that WT
ℓ Wℓ = σWℓ

INℓ−1
, we find the same m

(s)
1 (J) and :

m
(s)
2 (J)− (m

(s)
1 (J))2 =

L∑
ℓ=1

(
Λℓ

(
m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

− 2

))
L∏

ℓ=1

(
c2ℓσ

4
Wℓ

)
(E.3)

=

L∑
ℓ=1

(
Λℓ

(
1

cℓ
− 2

)) L∏
ℓ=1

(
c2ℓσ

4
Wℓ

)
.

These formulas need to be interpreted:

• Variance grows with L, showing increased instability with depth.

• Larger layers, relative to N0, give larger Λℓ’s and thus the same effect.

Proof: Computations of moments. The following remark is useful in the computation of moments.

Remark E.1 (Moments). At the neighborhood of z ∼ ∞:

Mµ(z) =
m1(µ)

z
+

m2(µ)

z2
+O

(
z−3

)
.

By inversion, at the neighborhood of m ∼ 0:

M ⟨−1⟩
µ (m) =

m1(µ)

m
+O (1) .

M ⟨−1⟩
µ (m) =

m1(µ)

m
+

m2(µ)

m1(µ)
+O (m) .

Hence:

Sµ(m) =
1 +m

m1(µ) +mm2(µ)
m1(µ)

+O (m2)

=
1

m1(µ)
(1 +m)

(
1−m

m2(µ)

m1(µ)2
+O

(
m2
))

=
1

m1(µ)
+

m

m1(µ)

(
1− m2(µ)

m1(µ)2

)
+O

(
m2
)
.

18

Thanks to this, we can prove Eq. (E.1) and (E.2). By Remark E.1 and Theorem 3.1, we have as
m→ 0:

SJT J(m) =

L∏
ℓ=1

[
SD2

ℓ
(Λℓm)SWT

ℓ Wℓ
(Λℓm)

]
=

L∏
ℓ=1

[(1

m
(s)
1 (Dℓ)

+m
Λℓ

m
(s)
1 (Dℓ)

(
1− m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

)
+O

(
m2
))

(
1

m
(s)
1 (Wℓ)

+m
Λℓ

m
(s)
1 (Wℓ)

(
1− m

(s)
2 (Wℓ)

m
(s)
1 (Wℓ)2

)
+O

(
m2
))]

=

[
L∏

ℓ=1

1

m
(s)
1 (Dℓ)m

(s)
1 (Wℓ)

]
L∏

ℓ=1

[
1 +mΛℓ

(
2− m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

− m
(s)
2 (Wℓ)

m
(s)
1 (Wℓ)2

)
+O

(
m2
)]

.

Identifying the first order term, one finds indeed Eq. (E.1). Continuing the previous computation:

SJT J(m) =
1

m
(s)
1 (J)

+
m

m
(s)
1 (J)

(
L∑

ℓ=1

Λℓ

(
2− m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

− m
(s)
2 (Wℓ)

m
(s)
1 (Wℓ)2

))
+O

(
m2
)
.

Applying Remark E.1 again for SJT J , we get :
L∑

ℓ=1

Λℓ

(
2− m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

− m
(s)
2 (Wℓ)

m
(s)
1 (Wℓ)2

)
= 1− m

(s)
2 (J)

m
(s)
1 (J)2

which is equivalent to Eq. (E.2).

We conclude by specializing to classical weight distributions. Under the assumption that the entries
of Wℓ are i.i.d. we have m

(s)
1 (Wℓ) = σ2

Wℓ
and m

(s)
2 (Wℓ) = σ4

Wℓ
(1 + λℓ) which gives

m
(s)
2 (J) =

(
1−

L∑
ℓ=1

(
Λℓ

(
1− m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

− λℓ

)))
L∏

ℓ=1

(
m

(s)
1 (Dℓ)

2σ4
Wℓ

)
m

(s)
2 (J)− (m

(s)
1 (J))2 =

L∑
ℓ=1

(
Λℓ

(
m

(s)
2 (Dℓ)

m
(s)
1 (Dℓ)2

+ λℓ − 1

))
L∏

ℓ=1

(
m

(s)
1 (Dℓ)

2σ4
Wℓ

)
.

F Appendix: More details on the benchmarks and the experiment

Recall that we have provided an anonymized Github repository at the address:

https://github.com/redachhaibi/FreeNN/

F.1 On the benchmarks of Fig. 1.1

The figure presents the computational time required for computing the density of νJ . Let us make the
following comments:

• Pennington and al. ’s algorithm has been implemented using a native root finding procedure. As
such, it is much more optimized than our code.

• A closer examination of the timings shows that Newton lilypads scales sublinearly with the number
of required points. This is easily understood by the fact that smaller N requires the computation of
more basins of attraction per point.

• Also, the Monte-Carlo method used matrices of size n = 3000. Not only Monte-Carlo is imprecise
because of the noise, but its performance scales very poorly with n since one needs to diagonalize
ever larger matrices. Of course, Monte-Carlo remains the easiest method to implement. But the
deterministic methods compute the density up to machine precision.

19

https://github.com/redachhaibi/FreeNN/

F.2 Description of the experiment

Recall that we considered a classical Multi-Layer Perceptron (MLP) with L = 4 layers, feed-forward
and fully-connected with ReLU non-linearities. The MLP’s architecture is determined by the vector
λ = (λ0, λ1, . . . , λL). The initialization follows the Xavier normal initialization [9] as implemented
in Pytorch [19]. Thus the full vector of variances of this initialization σ = (σ1, σ2, . . . , σL) is
determined up to a multiplicative factor called the gain..

First, we sample random architectures. We chose

• the λi to be i.i.d. and uniform on { 14 ,
1
3 ,

1
2 ,

2
3 , 1.0,

3
2 , 2, 3, 4}. As such the mean is Eλi = 1 in order

to obtain relatively balanced architectures.
• the single gain is taken as a uniform random variable on { 14 ,

1
2 , 1, 2, 4}.

Secondly, we compute the spectral distributions predicted by FPT for each random architecture.
Some architectures are very unbalanced and are discarded.

Thirdly, we train multiple instances of MLPs and record the learning curves.

In the end, by considering FPT quantiles and the final test accuracy for each MLP, we obtain data
which amenable to a statistical analysis.

Finally, MNIST and FashionMNIST both have the same format: grayscale images of 28x28 pixels.
To be able to train exactly the same MLPs on all three datasets, we applied a grayscale transformation
and resizing to 28x28 to CIFAR10.

F.3 Final remarks

Our sampling procedure does not consider large fluctuations in the λi ’s and focuses on balanced
architectures. Likewise, the gains at initialization do not deviate much from the classical [9]. It is
important to recognize that without the insight of FPT, the scalings applied to such initializations are
already normalized so that spectral measures do converge.

As such, we never encounter truly problematic gradient vanishing or gradient explosion, which
completely sabotage the convergence of the neural network. Our refined FPT metrics are arguably
"second order corrections". Nevertheless, it is surprising the 90th percentile in Table 1.1 highly
correlates to the final test accuracy after training. In the end, tuning FPT metrics does not amount to
second order corrections.

20

