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A APPENDIX

A.1 DATASET SPLIT DETAILS

The dataset consists of 208,900 XYZ files drawn from 100 materials, divided into three distinct sub-
sets for training and evaluation. The training set contains 88,500 files (42.4%), the in-distribution test
set contains 55,200 files (26.4%), and the out-of-distribution test set contains 65,200 files (31.2%).
On average, this corresponds to 885 files per material in the training set, 552 files per material in
the ID test set, and 652 files per material in the OOD test set. This balanced partition ensures that
each material contributes consistently across subsets, while still providing meaningful variation in
the number of files per material.

The split is also organized by R-value categories, which serve as distinguishing labels for different
structural or configurational states. The training set covers 15 R-values: Rg, Rg, Ri2, Ri13, Ri4,
Ry5, Rig, Ris, Ri9, Rog, Roa, Ras, Ras, Raor, and Rog. The ID test set uses 6 disjoint R-values:
Ri0, R11, Ri7, Ro1, Ro4, and Reg. The OOD test set focuses on 4 unique R-values: Rg, R7,
Ry, and R3p. Within each subset, the average number of files per R-value per material differs:
approximately 59 in train, 92 in ID test, and 163 in OOD test. This design ensures that the model
encounters a wide spread of R-values during training while reserving distinct, unseen R-values for
rigorous in-distribution and out-of-distribution testing, making the dataset well-suited for bench-
marking generalization performance.

B IMPLEMENTATION OVERVIEW (TASKS 1 & 2)

All models were implemented from their official repositories to preserve published architectures
and training protocols. Training was conducted on an RTX 4070 GPU using PyTorch and PyTorch
Geometric. Each model was trained to convergence on the provided splits, using three random seeds
with results averaged.

B.1 COMPONENTS SHARED ACROSS TASKS 1 & 2

¢ Core Variables:
— FE,: atom embedding dimension, " hidden (model) width, H: number of atten-
tion heads,
— L: number of layers (e.g., Transformer/GCN/SchNet),
— FE,: time embedding dimension (used in both tasks),
— FE,: radius embedding dimension (Task 1 only),
— dat: VAE latent dimension (whenever VAE is used),
— Nsg: number of space-group classes (Task 2 only).

* Atom Embedding: Learnable embedding
Embedagom : [1;, Zmax] — R

initialized with Xavier, providing dense element representations.
* SchNet-based Cell/Graph Encoding:

— A SchNet encoder ingests atomic numbers and positions.

— In Task 1, a unit-cell interaction block (cutoff 5.0 A, five Gaussians, hidden C'=32)
produces a global feature h.e; conditioning nanoparticle modules.

— In Task 2, the encoder yields a scalar g € R! which is projected to R® as a global cell
descriptor.

* Transformer/Message-Passing Blocks: Residual self-attention with LayerNorm and a
SiLU feed-forward sublayer (x4C expansion when present). Depth L is task/model de-
pendent.

¢ Temporal/Spatial Conditioning:

— Time: A two-layer SiLU MLP embeds ¢ € [0, 1] into R* (both tasks).
— Radius: A two-layer SiLU MLP embeds scalar radius r into R?" (Task 1).
— Embeddings are concatenated to node/global features as appropriate.
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* Optimization: Adam with learning rate 1 X 10~%, ReduceLROnPlateau (factor 0.5, pa-
tience 5), and gradient clipping (max norm 1.0).

* Diffusion/Flow Parameterization (generic): 3(t¢) uses task-specific schedules with per-
model clipping to pre-defined bounds (details below).
B.2 TASK-SPECIFIC HEADS AND SCHEDULES
Task 1 (Nanoparticle/Atomic Coordinates).

+ Noise Head: A three-layer SILU MLP maps [h; temp; Tomp] € REFEHE t0 a 3-D per-
atom noise/velocity vector.

* Schedule: 3(t) = Bmin + (Bmax — Bmin) tP With model-specific clipping.

Task 2 (Lattice + Space Group).

* Lattice Head (LatNet): SiLU MLP maps [h; temn] € RETE: (or augmented with £opp,
when used) to six lattice parameters; outputs are clamped per-model.

* Space-Group Head (SGHead): An MLP produces logits over Ngg classes.
* Schedule: Cubic schedule 3(t) = Bmin + (Bmax — Bmin) t° (unless otherwise stated), with
clipping per-model.
B.3 PER-TASK, PER-MODEL DIFFERENCES ONLY
TAsSK 1
ADIT.
 Diffusion Transformer over atoms within cutoff 5.0; H=2, L=1.
* Block: LayerNorm — self-attention — FFN (4C', SiLU) + normalization.
* Inputs: [Embed,om(2), p] — RC.
* Head: noise clipped to [—5, 5].
e Hyperparams: F,=4, C=4, H=2, L=1, cutoff 5.0.

CDVAE.

* Conditional VAE on unit cell and target radius R; encoder outputs (u, log 02) € R%a¢ with
diat=4; reparameterized z conditions decoding.

* Decoder: single GCN (L=1, C=4) — linear to Ap € [—0.5,0.5].
» Inputs: atom and radius encodings into R« R~
e Hyperparams: F,=4, E,.=4, dj,;=4, C=4, L=1, cutoff 5.0.

DiffCSP.
 Lightweight diffusion baseline; backbone: single Transformer (L=1, C=4).
* Head: SiLU MLP maps [h, temb, Temn] to R?, clipped to [—5, 5].
* Schedule: continuous 3 € [0.01, 2.0].
e Hyperparams: F,=4, E;=4, E,.=4, C=4, cutoff 5.0.

FlowMM.

* Flow matching; LayerNorm per layer and NaN/Inf sanitization.

e Decoding: GCN (L=1, C=4) + two-stage SiLU MLP — R3; outputs clipped [—1, 1].
* Conditioning: F,=F;=F,.=4 fused with atom features.

* Schedule: cosine, 8 € [0.01, 2.0], cutoff 5.0.

e Hyperparams: E,=4, E;=4, E,.=4, C=4, L=1, cutoff 5.0.
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MatterGen-MP.
* Flow matching on coordinates conditioned by hce1, t (Er=4), and atom embeddings.
* Predictor: single SiLU MLP (L=1, C'=4) to R3; interactions cutoff 5.0.
* Schedule: linear in time (8(t) o t).
* Hyperparams: F,=4, F,=4, C=4, L=1, cutoff 5.0.

TASK 2

ADIT.
* SchNet — projection to R¢; LayerNorm + NaN sanitization.
 Transformer: L=1, H=2; E,=4 via two-layer SiLU MLP.
¢ Heads:

— Lattice LatNet (three-layer SiLU MLP) maps [h;temp] to six parameters, clipped
[—5,5].
— SGHead projects h to logits over Ngg.
* Schedule: cubic with clipping 3 € [0.1, 10].
e Hyperparams: C=4, L=1, H=2, FE;=4, cutoff 5.0, Nsg=NUM_SG, Bmnin=0.1,
6max:10~0~

CDVAE.

¢ SchNet (L=1, C=4, four filters, cutoff 5.0 A) — scalar g; latent parameters (u,logo) €
Rdlat 5 dlat =4,

* Init: weights 0, log-variance bias —2.0; KL regularization retained.
* Heads: lattice (six parameters, clamp [—10%, 10%]) and SGHead (Nsg logits).
* Hyperparams: F,=4, C=4, d),;=4, L=1, cutoff 5.0, N5g=NUM_SG.

DiffCSP.
* SchNet encoder (L=1, C=4, four filters, cutoff 5.0 A) — ¢ € R! — R® (normalized).

* Time embedding added: [h;¢,,] drives lattice noise regression.
¢ Heads:

— Lattice LatNet (three-layer SiLU MLP), outputs clamp [—5, 5].
— SGHead: two-layer MLP over Ngg.

* Schedule: cubic with clipping 8 € [0.1, 10]; sampling via reverse diffusion with chunking
+ NaN sanitization.

e Hyperparams: FE,=4, C=4, E,=4, L=1, cutoff 5.0, Ngg=NUM_SG, PBmnin=0.1,
Bmax=10.0.

FlowMM.

 SchNet (L=1, C'=4, three Gaussians, cutoff 5.0 A); LayerNorm and NaN sanitization.

» Embeddings: cell parameters via linear-SiLU R® — R*; time via one-layer SiLU MLP
R—R?.

e Heads:

— Lattice: two-layer SiLU MLP from [h; temp; femp] to six parameters, clamp [—1, 1].
— SGHead: two-layer MLP over Ngg.

» Sampling: reverse flow with chunking and sanitization.

e Hyperparams: E,=4, C=4, E;=4, F;,=4, L=1, cutoff 5.0, Ngg=NUM_SG, Bmin=0.01,
ﬂmax:2-0-
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MatterGen-MP.

* SchNet (L=1, C=4, five Gaussians, cutoff 5.0 A) — g € R! — R* (normalized).
* Time: two-layer SiLU MLP t — ton1, € R%.

* Heads:
— Lattice: three-layer SiLU MLP from [h;tcyp], final layer zero-initialized; outputs
clamp [—5, 5].

— SGHead: three-layer MLP over Ngc.

* Schedule: cubic with 5 € [0.1, 10]; reverse diffusion with chunked updates and NaN sani-
tization.

e Hyperparams: FE,=4, C=4, E,=4, L=1, cutoff 5.0, Ngg=NUM_SG, PBmnin=0.1,
Brmax=10.0.

C EXTENDED RESULTS

This section provides a detailed evaluation of state-of-the-art generative models on the PEROV-
H3 benchmark. The benchmark is structured into distinct tasks that probe different facets of
nanoparticle lattice generation, inference, and reconstruction, with metrics carefully designed to
capture both structural fidelity and the representation of periodic and surface features. Results
are reported separately for in-distribution and out-of-distribution regimes, exposing the strengths
and generalization limits of each approach. Evaluation criteria include RMSD, Hausdorff dis-
tance, volume and surface agreement, radial distribution function divergence, as well as space
group and joint accuracies, together offering a rigorous picture of robustness and failure modes.
Tables referenced throughout the section present direct model-to-model comparisons in terms of
accuracy and computational efficiency. Future extensions of the benchmark will incorporate addi-
tional architectures, with all new results and updates maintained openly in the GitHub repository at
https://anonymous.4open.science/r/PEROV-H3!

C.1 Task1

Table ] presents Task 1 results for crystal structure prediction under both ID and OOD test regimes.
The results clearly split the models into two groups. On one side, ADiT, DiffCSP, FlowMM, and
MatterGen report extremely low reconstruction losses (all near 0.01), yet their geometry-sensitive
metrics (RMSD ~ 40 A, Hausdorff ~ 85 A, hull volume deviations ~ 3 x 10*=5 x 10%) are many
orders of magnitude worse than CDVAE. This indicates that diffusion- and flow-based architectures
can trivially minimize their training objective while completely failing to recover atomistic geome-
try. In contrast, CDVAE exhibits a higher average loss (0.10 4= 0.16) but achieves better structural
fidelity, with RMSD and Hausdorff errors in the 1072 A range and hull/energy metrics close to
physical ground truth.

When comparing ID and OOD regimes, all models show degradation, but CDVAE retains its ad-
vantage slightly. In OOD tests, CDVAE maintains RMSD ~ 0.007 A and Hausdorff ~ 0.020 A,
whereas MatterGen and DiffCSP remain at ~ 41 A and ~ 80 A, respectively. Hull volume differ-
ences for CDVAE stay within single digits, while others remain inflated by more than four orders of
magnitude. RDF energy follows the same pattern, with CDVAE under 0.2 while all other models
report values exceeding 150-170.

Training efficiency provides another important comparison axis. MatterGen is the fastest model at
~ 60 s per epoch, followed by FlowMM (~ 67 s) and DiffCSP (~ 75 s), while ADiT is much slower
at over 240 s per epoch. CDVAE strikes a favorable balance, training in ~ 71s per epoch while
delivering vastly better reconstruction quality. Taken together, these results demonstrate that Task 1
is intrinsically difficult: most models can drive the training loss down but fail to recover geometry,
and OOD evaluation on PEROV-H3 further exposes their brittleness.

C.2 TAsk?2

The results in Table [2 highlight the difficulty of Task 2, where a model must infer both lattice pa-
rameters A and space group I" from a finite nanoparticle. Existing methods show clear weaknesses:
while some achieve near-perfect space group accuracy in-distribution (e.g., DiffCSP at 0.987), their
lattice predictions collapse, yielding RMSE values around 63 A. Even CDVAE, which lowers RMSE
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ID Results
Model Loss | RMSD (A) | Hausdorff (A) | A Hull Vol | RDF Energy | Vol Ratio 1 Time/Epoch (s) |
ADIT 0.0100 - 0.0000 40.5902 + 0.0034 86.2368 + 0.0129 30804.6101 + 0.0001 168.3962 + 7.2399 2.2336 x 107% 4+ 3.1588 x 107% 242.4135 + 2.1226
CDVAE 0.1029 £ 0.1625  0.0066 + 0.0014  0.0188 + 0.0007 5.8698 + 4.2245 0.1381 4 0.0371  8.7637 x 107°" +2.4582 x 107%*  71.0519 + 4.1267
DiffCSP 0.0101 = 0.0000 40.5846 + 0.0061 86.2184 + 0.0153 30804.6102 + 0.0000 163.1791 + 9.5042 1.9235 x 10~ + 1.5323 x 10~ 75.1089 + 12.9805
FlowMM  0.0104 + 0.0006 40.5855 & 0.0000 86.2077 & 0.0001 30804.6101 + 0.0000 173.5152 + 0.0000 8.6119 x 107% +2.6541 x 10~*'  67.3877 + 1.0707
MatterGen 0.0104 = 0.0004 40.8804 £ 0.0272 78.5013 = 0.0005 29804.9187 £ 0.0956  64.5889 & 0.0157 8.7162 x 10~°2 4+ 7.3342 x 10~  59.8859 + 0.4994
OOD Results
Model Loss | RMSD (A) | Hausdorff (A) | A Hull Vol | RDF Energy | Vol Ratio 1 Time/Epoch (s) |
ADIT 0.0100 £ 0.0000 40.8168 = 0.0063 85.9504 = 0.0009 51410.1434 £ 0.0000  170.0530 £ 5.7558  3.3409 x 1010 £4.7247 x 107'0 2424135 £ 2.1226

CDVAE  0.1027 £ 0.1622  0.0072 £+ 0.0011 ~ 0.0202 £ 0.0009  9.2122 + 8.2754 0.2012 £ 0.0235  7.7262 x 107" £2.8129 x 10" 71.0519 + 4.1267
DiffCSP  0.0101 +0.0000 40.8025 & 0.0066 85.9119 +0.0142 51410.1434 & 0.0000 157.1219 + 11.3505 2.6966 x 10~ +2.1845 x 107" 75.1089 + 12.9805
FlowMM  0.0103 + 0.0004 40.8032 = 0.0000 85.9029 + 0.0001 51410.1433 £ 0.0000 174.1226 + 0.0001  2.0886 x 107% +8.5895 x 10~'"  67.3877 + 1.0707
MatterGen 0.0101 £ 0.0001 41.0972 £ 0.0127 80.5981 + 0.0041 50702.5925 £ 0.1353  66.3866 + 0.2200  4.4870 x 10~°" £+ 6.4721 x 10~°°  59.8859 + 0.4994

Table 1: Crystal Structure Prediction Performance on ID vs OOD Test Sets. Results are averaged
across multiple random seeds with standard deviation. Arrows indicate optimization direction: | =
lower is better, 1 = higher is better. Metrics include reconstruction loss, RMSD, Hausdorff distance,
convex hull volume difference, RDF energy, volume ratio, and training time per epoch. Bold indi-
cates best performance, underlined indicates second best.

to 32.5 A, achieves zero joint recovery accuracy, underscoring the disconnect between numerical lat-
tice regression and discrete symmetry classification. These failures show that current architectures
cannot yet master the coupled recovery problem posed by Task 2.

Out-of-distribution evaluation further underscores the challenge introduced by PEROV-H3. Al-
though ADIT and DiffCSP preserve high space group accuracy under OOD shift (both ~ 0.982),
their lattice RMSE remains unchanged, reflecting an inability to adapt beyond memorized training
regimes. FlowMM breaks down completely, reporting zero accuracy for all classification metrics,
while MatterGen and ADIT show no gains in lattice generalization. The fact that every baseline
collapses on joint accuracy indicates that even when symmetry is identified, geometry recovery
fails, and vice versa. OOD generalization is thus a critical bottleneck, and PEROV-H3 makes this
limitation explicit.

Taken together, these results demonstrate that PEROV-H3 is not only a benchmark but also a stress
test: it reveals how models that appear strong on narrow ID splits fail when asked to recover global
crystallographic invariants from unseen nanoparticle geometries. The systematic collapse in joint
recovery shows that Task 2 remains unsolved, motivating new architectures capable of reasoning
over both continuous lattice scales and discrete symmetry groups. By exposing these weaknesses,
PEROV-H3 provides a rigorous setting to drive progress in crystal prediction under realistic distri-
bution shifts.

Model RMSE (A) | SG Accuracy 1 Joint Accuracy 1 Time/Epoch (s) |
D 00D D 00D D 00D
ADIT 63.71 £0.01 63.71 £0.01 0.980 &+ 0.000 0.982 &+ 0.003 0.000 & 0.000 0.000 + 0.000 839+ 1.7

CDVAE 32.50 +0.78 32.51 +0.80 0.980 £ 0.000 0.980 £ 0.000 0.000 £ 0.000 0.000 £ 0.000 548 £ 2.1
DiffCSP  63.70 £0.01 63.70 £0.01 0.987 £ 0.012 0.982 £ 0.007 0.000 & 0.000 0.000 % 0.000 550+1.5
FlowMM  62.61 £3.68 62.43 £3.16 0.000 & 0.000 0.000 & 0.000 0.000 & 0.000 0.000 % 0.000 793+23
MatterGen 63.71 £0.01 63.71 £0.01 0.980 & 0.000 0.980 & 0.000 0.000 £ 0.000 0.000 % 0.000 60.4 +2.1

Table 2: Lattice Parameter and Space Group Prediction Performance on ID vs OOD Test Sets. Re-
sults are averaged across multiple random seeds with standard deviation. Arrows indicate optimiza-
tion direction: | = lower is better, T = higher is better. Metrics include RMSE for lattice parameters,
space group classification accuracy, joint accuracy (both lattice and space group correct), and train-
ing time per epoch. Bold indicates best performance, underlined indicates second best.
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