DIFFUSION MODELS AS CARTOONISTS! THE CURIOUS CASE OF HIGH DENSITY REGIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

We investigate what kind of images lie in the high-density regions of diffusion models. We introduce a theoretical mode-tracking process capable of pinpointing the exact mode of the denoising distribution, and we propose a practical highdensity sampler that consistently generates images of higher likelihood than usual samplers. Our empirical findings reveal the existence of significantly higher likelihood samples that typical samplers do not produce, often manifesting as cartoonlike drawings or blurry images depending on the noise level. Curiously, these patterns emerge in datasets devoid of such examples. We also present a novel approach to track sample likelihoods in diffusion SDEs, which remarkably incurs no additional computational cost.

1 INTRODUCTION

 Recently, [Karras et al.](#page-11-0) [\(2024a\)](#page-11-0) attributed the empirical success of guided diffusion models to their ability to limit outliers, i.e. samples $x_0 \sim p_0$ with low likelihood $p_0(x_0)$. We argue that these models in fact also elude samples with very high likelihoods. Our assertion stems from investigating a key question: what manifests if we bias the sampler towards high-density regions of p_0 ? However, an immediate hurdle is the inability of stochastic diffusion models to track their own likelihood [\(Song](#page-12-0) [et al., 2020c;](#page-12-0) [2021\)](#page-12-1).

 First, we show that likelihood can be tracked in diffusion models with novel augmented stochastic differential equations (SDE), which govern the evolution of a sample with its log-density $\log p_t(x_t)$ under the optimal (unknown) model. For approximate models, we provide a formula for the bias in the log-density estimate. The evaluation of the log-density estimate comes at no additional cost, and can be used with any pretrained model without further tuning.

 Then, we introduce a theoretical mode-tracking process, which finds the exact mode of the denoising distribution $p(x_0|x_t)$ under some technical assumptions, albeit at a high computational cost. We

105 2.1 DIFFUSION ODE

106

107 We are interested in sampling high-density regions of diffusion models and for that, we need ability to calculate the likelihood $p_0(x)$ of a sample image $x \sim p_0$. As the reverse-SDE (equation [2\)](#page-1-3) does

Figure 3: Tracking stochastic sampling likelihood. Estimation of $\log p_t(x_t)$ (colored trajectory) for stochastic sampling via Augmented Reverse SDE (equation [4\)](#page-2-1) on a Gaussian mixture with known $\nabla_x \log p_t(x)$ and p_T . Evaluation of $d \log p_t(x_t)$ requires only the score function.

not track the likelihood evolution $d \log p_t(x_t)$, a typical method for obtaining sample likelihoods is instead via the Probability-Flow ODE [\(Chen et al., 2018;](#page-10-3) [Song et al., 2020c\)](#page-12-0)

$$
d\begin{bmatrix} \mathbf{x}_t \\ \log p_t(\mathbf{x}_t) \end{bmatrix} = \begin{bmatrix} f(t)\mathbf{x}_t - \frac{1}{2}g^2(t) \overline{\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)} \\ -f(t)D + \frac{1}{2}g^2(t) \overline{\operatorname{div}_{\mathbf{x}}\left[\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)\right]} \end{bmatrix} dt, \tag{3}
$$

135 136 137 138 139 where $\text{div}_{\bm{x}} = \sum_i \frac{\partial}{\partial x_i}$ is the divergence operator. The PF-ODE is a continuous normalizing flow (CNF) that shares marginal distributions $p_t(x_t)$ with both forward [\(1\)](#page-1-2) and reverse SDE [\(2\)](#page-1-3), when they share p_0 [\(Song et al., 2020c\)](#page-12-0). The PF-ODE tracks and returns both the sample x_0 and its likelihood log $p_0(x_0)$ from $x_T \sim p_T$. It requires second-order derivatives div ∇ , which are roughly twice as expensive as the score to evaluate [\(Hutchinson, 1989;](#page-10-4) [Grathwohl et al., 2018\)](#page-10-5).

2.2 AUGMENTED STOCHASTIC DYNAMICS

142 143 144 145 146 It has been reported that a stochastic sampler [\(2\)](#page-1-3) has superior sample quality to the PF-ODE [\(3\)](#page-2-2) [\(Song et al., 2020c;](#page-12-0) [Karras et al., 2022\)](#page-11-2). However, the absence of density-augmented SDEs forbids the stochastic sampler from describing the likelihood of the samples it yields [\(Song et al., 2021;](#page-12-1) [Lu](#page-11-3) [et al., 2022;](#page-11-3) [Zheng et al., 2023;](#page-12-4) [Lai et al., 2023\)](#page-11-4). We bridge this gap by generalizing equation [3](#page-2-2) to account for the stochastic evolution of x .

Theorem 1 (Augmented reverse SDE). *Let* x *be a random process defined by equation [2.](#page-1-3) Then*

$$
d\begin{bmatrix} \boldsymbol{x}_t \\ \log p_t(\boldsymbol{x}_t) \end{bmatrix} = \begin{bmatrix} f(t)\boldsymbol{x}_t - g^2(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) \\ -f(t)D - \frac{1}{2}g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\|^2 \end{bmatrix} dt + g(t) \begin{bmatrix} \boldsymbol{I}_D \\ \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) \end{bmatrix}^T \begin{bmatrix} d\overline{\mathbf{W}}_t. \\ 0, \end{bmatrix}
$$
(4)

151 152

140 141

153 154 155 156 157 158 The proof [\(Appendix E\)](#page-15-0) consists of applying Itô's lemma and the Fokker-Planck equation. Note that $d \log p_t(x_t)$ is economical to track as it only needs access to the first-order score. [Figure 3](#page-2-3) visualises a particle following a stochastic reverse trajectory while tracking its log-density. This result contributes a new useful and economical tool to generate a sample together with its density estimate, which previously was done using PF-ODE [\(Jing et al., 2022\)](#page-10-6). Similarly to the reverse SDE, we also introduce density-tracking forward SDE.

159 Theorem 2 (Augmented forward SDE). *Let* x *be a random process defined by equation [1.](#page-1-2) Then*

160 161 $d\Big[\begin{smallmatrix} x_t\end{smallmatrix}$ $\log p_t(\boldsymbol{x}_t)$ $\mathbf{f} = \begin{bmatrix} f(t)\mathbf{x}_t \\ F(t)\mathbf{x}_t \end{bmatrix}$ $F(t,\boldsymbol{x}_t)$ $\frac{d}{dt} + g(t)$ I_D $\frac{\boldsymbol{I}_D}{\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)}_T \Bigg]$ $dW_t,$ (5) **162 163** *where*

164 165

177

179

$$
F(t, \boldsymbol{x}_t) = -\operatorname{div}_{\boldsymbol{x}}\left(f(t)\boldsymbol{x}_t - g^2(t)\left|\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\right|\right) + \frac{1}{2}g^2(t)\|\left|\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\right|\|^2.
$$

166 167 168 169 Proof is similar to the reverse case and can be found in [Appendix D.](#page-15-1) The forward augmented SDE will prove useful for estimating the density of an arbitrary input point x (not necessarily sampled from the model).

170 171 172 173 [Karras et al.](#page-11-2) [\(2022\)](#page-11-2) proposed a more general forward SDE than equation [1](#page-1-2) for which we also derive the dynamics of $\log p_t(x_t)$ in both directions [\(Appendix F\)](#page-16-0). Interestingly, we show that equation [1](#page-1-2) is the only case for which the dynamics of $\log p_t(x_t)$ in the reverse direction do not involve any higher order derivatives of $\log p_t(\mathbf{x}_t)$.

174 175 176 We can now track the likelihood for forward and reverse SDEs under the theoretical true $\nabla_x \log p_t(x)$. However, under score approximation $s(t, x) \approx \nabla_x \log p_t(x)$ the density solutions $\log p_t(x_t)$ of Theorems 1 and 2 become biased, which we study next.

178 2.3 APPROXIMATE REVERSE DYNAMICS

180 181 182 We can substitute the approximate score $s(t, x) \approx \nabla_x \log p_t(x)$ and assume $p_T^{\rm ODE} = p_T^{\rm SDE} =$ $\mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I}_D)$. The resulting SDE and ODE models are no longer equivalent, i.e. $p_t^{\text{ODE}} \neq p_t^{\text{SDE}}$ [\(Song et al., 2021;](#page-12-1) [Lu et al., 2022\)](#page-11-3). The PF-ODE becomes

$$
d\begin{bmatrix} \mathbf{x}_t \\ \log p_t^{\text{ODE}}(\mathbf{x}_t) \end{bmatrix} = \begin{bmatrix} f(t)\mathbf{x}_t - \frac{1}{2}g^2(t) \mathbf{s}(t, \mathbf{x}_t) \\ -f(t)D + \frac{1}{2}g^2(t) \mathbf{div}_{\mathbf{x}} \mathbf{s}(t, \mathbf{x}_t) \end{bmatrix} dt, \tag{6}
$$

187 188 189 which can track its marginal log-density $\log p_t^{\text{ODE}}(x_t)$ exactly. However, substituting the true score with $s(t, x)$ in the augmented reverse SDE [4](#page-2-1) incurs estimation error in $\log p_0^{\text{SDE}}(x_0)$. We characterise the error formally in a novel theorem:

Theorem 3 (Approximate Augmented Reverse SDE). *Let* s(t, x) *be an approximation of the score function. Let* $x_T \sim p_T$ *and define an auxiliary process* r *starting at* $r_T = \log p_T^{\rm SDE}(\bm x_T)$ *. If*

190

$$
d\begin{bmatrix} x_t \\ r_t \end{bmatrix} = \begin{bmatrix} f(t)x_t - g^2(t) \ s(t, x_t) \\ -f(t)D - \frac{1}{2}g^2(t) \parallel s(t, x_t) \parallel^2 \end{bmatrix} dt + g(t) \begin{bmatrix} I_D \\ s(t, x_t) \end{bmatrix} T \begin{bmatrix} I_D \\ d\overline{W}_t, \end{bmatrix}
$$
(7)

then $\bm{x}_{0} \sim p_{0}^{\rm SDE}(\bm{x}_{0})$ and

$$
r_0 = \log p_0^{\text{SDE}}(\boldsymbol{x}_0) + \mathbf{X},\tag{8}
$$

where X *is a random variable such that the bias of* r_0 *is given by*

$$
\mathbb{E}\mathbf{X} = \frac{T}{2} \mathbb{E}_{t \sim \mathcal{U}(0,T), \boldsymbol{x}_t \sim p_t^{\text{SDE}}(\boldsymbol{x}_t)} \left[g^2(t) \| \boldsymbol{s}(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) \|^{2} \right] \geq 0. \tag{9}
$$

See [Appendix G](#page-18-0) for the proof and the definition of X. Intuitively, the true density evolution of $p_t^{\text{SDE}}(\vec{x}_t)$ is induced by $d\vec{x}_t$ in equation [7,](#page-3-2) and the auxiliary variable r_t does not follow it perfectly. Since the equation [9](#page-3-3) has an intractable score, we seek more practical alternatives to measuring the accuracy of r_0 in the next Section.

The new augmented SDE of equation [7](#page-3-2) can be used with any score-based model without further tuning to provide sample likelihood estimates $\log p_0^{\rm SDE}(\mathbf{x}_0)$ for no extra cost.

211 212 213

214

3 ACCURACY OF THE DENSITY ESTIMATION

215 We analyse the accuracy of the $\log p_0^{\text{SDE}}(x_0)$ estimates in equation [8.](#page-3-4) We begin with the approximate forward dynamics which will provide a method for bounding the estimation error of r_0 .

216 217 3.1 APPROXIMATE FORWARD DYNAMICS

218 219 In contrast to [Theorem 3,](#page-3-5) when we replace the true score function with s in the forward direction, we underestimate $\log p_0^{\rm SDE}(\boldsymbol{x}_0)$ on average.

Theorem 4 (Approximate Augmented Forward SDE). Let $s(t, x_t)$ be the model approximating the *score function and* $x_0 \in \mathbb{R}^D$ given. Define an auxiliary process ω starting at $\omega_0 = 0$. If

$$
d\begin{bmatrix} x_t \\ \omega_t \end{bmatrix} = \begin{bmatrix} f(t)x_t \\ -f(t)D + g^2(t) \begin{bmatrix} \frac{1}{2} \|\mathbf{s}(t, x_t)\|^2 + \mathbf{div}_{\mathbf{x}} \|\mathbf{s}(t, x_t)\end{bmatrix} \end{bmatrix} dt + g(t) \begin{bmatrix} I_D \\ \mathbf{s}(t, x_t) \end{bmatrix}^T \begin{bmatrix} d\mathbf{W}_t. \end{bmatrix}
$$
\n(10)

Then

$$
\omega_T = \log p_T^{\text{SDE}}(\boldsymbol{x}_T) - \log p_0^{\text{SDE}}(\boldsymbol{x}_0) + \mathbf{Y}_{\boldsymbol{x}_0},\tag{11}
$$

where $Y_{\bm{x}_0}$ is a random variable such that

$$
\mathbb{E}\mathbf{Y}_{\boldsymbol{x}_0} = \frac{T}{2} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t|\boldsymbol{x}_0)} g^2(t) \|\boldsymbol{s}(t,\boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) \|^2 \ge 0. \tag{12}
$$

See [Appendix G](#page-18-0) for the proof and the definition of Y_{α} . Due to the drift div operator, the evaluation of $d\omega_t$ is computationally comparable to $d\log p_t^{\mathrm{ODE}}(x_t)$. Interestingly, [Theorem 4](#page-4-2) completes a known lower bound into a novel identity,

$$
\log p_0^{\text{SDE}}(\boldsymbol{x}_0) = \underbrace{\mathbb{E} \mathbf{Y}_{\boldsymbol{x}_0}}_{\geq 0} - \underbrace{\frac{e^{\lambda_{\text{min}}}}{2} ||\boldsymbol{x}_0||^2 + \frac{T}{2} \mathbb{E}_{t,\varepsilon} \left[-\frac{d\lambda_t}{dt} ||\sigma_t \, \boldsymbol{s}(t,\alpha_t \boldsymbol{x}_0 + \sigma_t \varepsilon) + \varepsilon||^2 \right] + C, \tag{13}}_{\text{ELBO}(\boldsymbol{x}_0) \, (\text{Song et al., } 2021; \text{Kingma et al., } 2021)}
$$

where $t \sim \mathcal{U}(0,T)$, $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_D)$ and $C = -\frac{D}{2} \left(1 + \log(2\pi\sigma_0^2)\right)$ (see [Corollary 1\)](#page-21-0). ELBO(x) is the standard tool for estimating the SDE's model likelihood of an arbitrary point x .

243 3.2 ESTIMATION BIAS OF $\log p_0^{\text{SDE}}$

244 245 246 247 248 249 250 251 252 253 We are interested in using the stochastic sampler to obtain high-quality sampledensity pairs $(x_0, \log p_t^{\rm SDE})$ We have now discussed two ways of estimating $\log p_0^{\rm SDE}$ with r_0 (equation [7\)](#page-3-2) and $ELBO(x_0)$ (equation [13\)](#page-4-0). Their estimation errors $\varepsilon_r(r_0, x_0) = r_0 - \log p_0^{\text{SDE}}(x_0)$ and $\varepsilon_{\rm ELBO}(\bm{x}_0) = \log p_0^{\rm SDE}(\bm{x}_0) - \widetilde{\rm ELBO}(\bm{x}_0)$ are intractable to estimate due to the presence of unknown score $\nabla \log p_t^{\rm SDE}(\boldsymbol{x}_t)$.

However, we can provide an upper bound on the bias of both estimators,

Figure 4: $r_0 > \log p_0^{\rm ODE}(\boldsymbol{x}_0) > \text{ELBO}(\boldsymbol{x}_0)$ correlate strongly.

.

$$
\underbrace{\mathbb{E}_{\boldsymbol{x}_0 \sim p_0^{\text{SDE}}(\boldsymbol{x}_0)} \left[\varepsilon_{\text{ELBO}}(\boldsymbol{x}_0) \right]}_{\geq 0 \text{ (equation 12)}} + \underbrace{\mathbb{E}_{(\boldsymbol{x}_0, r_0)} \left[\varepsilon_r(r_0, \boldsymbol{x}_0) \right]}_{\geq 0 \text{ (equation 9)}} = \underbrace{\mathbb{E}_{(\boldsymbol{x}_0, r_0)} \left[r_0 - \text{ELBO}(\boldsymbol{x}_0) \right]}_{\mathcal{R}(s) \text{(tractable)}}.
$$
 (14)

260 261 262 263 We can thus sample (x_0, r_0) using equation [7](#page-3-2) and the average difference $r_0 - \text{ELBO}(x_0)$ gives an upper bound on the bias of both r_0 and $ELBO(x_0)$. This can be useful to assess the accuracy of both r_0 and $ELBO(x_0)$ as density estimates for stochastic samples x_0 . Furthermore, we can estimate how much p_0^{SDE} differs from p_0^{ODE} by providing bounds for $KL[p_0^{\text{SDE}}||p_0^{\text{ODE}}]$

$$
\underbrace{\mathbb{E}_{\boldsymbol{x}_0 \sim p^{\text{SDE}}(\boldsymbol{x}_0)} \left[\text{ELBO}(\boldsymbol{x}_0) - \log p_0^{\text{ODE}}(\boldsymbol{x}_0) \right]}_{\mathcal{R}^L(\boldsymbol{s}) \text{ (tractable)}} \leq \text{KL} \left[p_0^{\text{SDE}} || p_0^{\text{ODE}} \right] \leq \underbrace{\mathbb{E}_{(\boldsymbol{x}_0, r_0)} \left[r_0 - \log p_0^{\text{ODE}}(\boldsymbol{x}_0) \right]}_{\mathcal{R}^U(\boldsymbol{s}) \text{ (tractable)}}
$$
\n(15)

 \mathcal{R}^U and \mathcal{R}^L are novel practical tools for measuring the difference between p_0^{SDE} and p_0^{ODE} . As a demonstration, we train two versions of a diffusion model on CIFAR-10 [\(Krizhevsky et al., 2009\)](#page-11-6), **270 271 272 273 274** one with maximum likelihood training [\(Kingma et al., 2021;](#page-11-5) [Song et al., 2021\)](#page-12-1) and one optimized for sample quality [\(Kingma & Gao, 2024\)](#page-11-1). Please see [Appendix M](#page-30-0) for implementation details. We then generate 512 samples of (x_0, r_0) with equation [7](#page-3-2) and for each x_0 we estimated $\log p_0^{\rm ODE}(x_0)$ using equation [6](#page-3-6) and $ELBO(x_0)$ using equation [13.](#page-4-0)

For both models we found very high correlations between r_0 and $\log p_0^{\rm ODE}(\bm x_0)$ at 0.996 and 0.999 . For bour models we found very high correlations between r_0 and $\log p_0$ (x_0) at 0.990 and 0.999.
Surprisingly, it is the model optimized for sample quality that yielded both a higher correlation and lower values of $\mathcal{R}^{U}(s)$ and $\mathcal{R}(s)$ suggesting a smaller difference between p_0^{SDE} and p_0^{ODE} and a lower bias of $\log p_0^{\text{SDE}}(x_0)$ estimation [\(Figure 4\)](#page-4-4). We also estimated $\mathcal{R}^L(s)$, which was negative for both models which is a trivial lower bound for $KL[p_0^SDE||p_0^{ODE}] \ge 0$.

The density estimates $r_0 \approx \log p_0^{\text{SDE}}(x_0)$ from equation [7](#page-3-2) empirically form an upper bound on $\log p_0^{\text{ODE}}(\boldsymbol{x}_0)$ and correlate with it very strongly (> 0.99).

4 MODE ESTIMATION

Many diffusion models are trained by implicitly maximizing weighted ELBO [\(Kingma & Gao, 2024\)](#page-11-1), and can be interpreted as likelihood-based models. [Karras et al.](#page-11-0) [\(2024a\)](#page-11-0) emphasized the role of likelihood by explaining the empirical success of guided diffusion models by their ability to limit low density samples $p_0(x_0)$. We explore this idea further by asking: *what if we aim for samples with the highest* $p_0(x_0)$?

4.1 MODE-TRACKING CURVE

297 298 299 300 301 We first go back to assuming a perfectly estimated score function $\nabla_x \log p_t(x)$. Let $p(x_0|x_t)$ denote the denoising distribution given by solving the reverse SDE (equation [2\)](#page-1-3) from x_t to x_0 . If we knew how to estimate the *denoising mode* $y_0(x_t) = \arg \max p(x_0|x_t)$, we could bias the sampler towards higher likelihood regions by first taking a regular noisy samples $x_t \sim p_t(x_t)$ at various times t, and pushing them to deterministic modes $y_0(x_t)$.

302 303 304 We approach this by asking a seemingly more difficult question: can we find a *mode-tracking curve*, i.e. y_s such that $p(y_s|x_t) = \max_{x_s} p(x_s|x_t)$ for all $s < t$ (See [Figure 5\)](#page-5-4)? We show that whenever such a smooth curve exists it is given by an ODE:

305 306 Theorem 5 (Mode-tracking ODE). Let $t \in (0, T]$ and $x_t \in \mathbb{R}^D$ a noisy sample. If there exists a *smooth curve* $s \mapsto y_s$ *such that* $p(y_s|x_t) = \max_{x_s} p(x_s|x_t)$ *, then* $y_t = x_t$ *and for* $s < t$

$$
\frac{d}{ds}\mathbf{y}_s = f(s)\mathbf{y}_s - g^2(s)\left[\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)\right] - \frac{1}{2}g^2(s)\left[\mathbf{A}(s,\mathbf{y}_s)^{-1}\right]\left[\nabla_{\mathbf{y}}\Delta_{\mathbf{y}}\log p_s(\mathbf{y}_s)\right],\tag{16}
$$

where $\bm{A}(s, \bm{y}) = (\nabla_{\bm{y}}^2 \log p_s(\bm{y}) - \psi(s) \bm{I}_D), \, \psi(s) = \frac{1}{\sigma_s^2}$ $e^{\lambda t}$ $\frac{e^{\lambda_t}}{e^{\lambda_s}-e^{\lambda_t}}$ *, and* $\Delta_{\bm{y}}=\sum_i\frac{\partial^2}{\partial y_i^2}$ $rac{\partial^2}{\partial y_i^2}$ is the Laplace *operator. In particular:*

$$
p(\mathbf{y}_0|\mathbf{x}_t) = \max_{\mathbf{x}_0} p(\mathbf{x}_0|\mathbf{x}_t). \tag{17}
$$

The proof and the statement without assuming invertibility of \vec{A} can be found in [Appendix H.](#page-25-0) We visualize on a mixture of 1D Gaussians in [Figure 5](#page-5-4) how the solution of the mode tracking ODE (equation [16\)](#page-5-3) correctly recovers the denoising mode curve, i.e. the mode of $p(\mathbf{x}_s|\mathbf{x}_t)$ for all $s < t$.

317 318 319

4.2 HIGH-DENSITY SEEKING ODE

320 321 322 323 Using [Theorem 5](#page-5-1) in high-dimensional data is problematic. A smooth *mode-tracking* curve needs to exist, which is difficult to verify and need not hold [\(Appendix J\)](#page-28-0). Moreover, equation [16](#page-5-3) requires computing and inverting the Hessian and estimating third-order derivatives, which is costly [\(Meng](#page-11-7) [et al., 2021\)](#page-11-7). Please see [Appendix K](#page-29-0) for more details. We propose an approximation of equation [16](#page-5-3) by noting its high-order terms disappear under Gaussian data.

Figure 6: Equation [16](#page-5-3) enables controlling the likelihood-diversity tradeoff. Blue dots are samples from the data distribution, i.e. a mixture of four Gaussians with the bottom left component having the highest weight. Orange samples are generated with Algorithm [1.](#page-6-1)

Remark 1 (High-density ODE or HD-ODE). *If* p_0 *is Gaussian, then equation [16](#page-5-3) becomes*

$$
d\mathbf{y}_s = \left(f(s)\mathbf{y}_s - g^2(s)\overline{\nabla_{\mathbf{x}}\log p_s(\mathbf{y}_s)}\right)ds,\tag{18}
$$

i.e. the drift term of reverse SDE equation [2.](#page-1-3) If $y_t = x_t$ *and equation* [18](#page-6-2) holds for $s < t$, then

$$
\mathbf{y}_0 = \arg\max_{\mathbf{x}_0} p(\mathbf{x}_0 | \mathbf{x}_t) + \mathcal{O}(e^{-\lambda_{\max}}). \tag{19}
$$

See [Appendix I](#page-27-0) for the proof. Even though equation [18](#page-6-2) finds the mode of $p(x_0|x_t)$ only in the Gaussian case (for sufficiently small $e^{-\lambda_{\max}}$), we will empirically show that even for non-Gaussian data it finds points with much higher likelihoods than regular samples.

352 353 354 355 356 357 358 In Algorithm [1](#page-6-1) we propose a novel high-density sampler that uses equation [18](#page-6-2) to bias the sampling towards higher likelihood regions. We choose a threshold time t and sample $x_t \sim p_t(x_t)$, and then estimate $y_0(x_t)$ by solving equation [18](#page-6-2) from $s = t$ to $s = 0$. [Figure 6](#page-6-3) shows how the threshold controls the tradeoff between likelihood and diversity in a toy mixture of Gaussians.

4.3 ESTIMATING MODE DENSITIES FOR REAL-WORLD DATA

362 364 We will next discuss how to evaluate the density of the high-density samples $y_0|x_t$ and regular samples $x_0|x_t$ to empirically show that $p(y_0|x_t) > p(x_0|x_t)$ for $x_0 \sim p(x_0|x_t)$. For any x_0 , the denoising likelihood can be decomposed using Bayes' rule

$$
\log p_{0|t}(\boldsymbol{x}_0|\boldsymbol{x}_t) = \underbrace{\log p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)}_{\mathcal{N}(\boldsymbol{x}_t|\alpha_t\boldsymbol{x}_0, \sigma_t^2\boldsymbol{I}_D)} + \log p_0(\boldsymbol{x}_0) - \log p_t(\boldsymbol{x}_t). \tag{20}
$$

367 368 369 370 For $x_0 \sim p(x_0|x_t)$ we can use equation [4](#page-2-1) from $(x_t, r_t = 0)$ to obtain $r_0 = \log p_0(x_0) - \log p_t(x_t)$. To estimate $\log p(\bm{y}_0|\bm{x}_t)$ we could use the PF-ODE, but that is inefficient.^{[1](#page-6-4)} Instead, we can obtain $d \log p_s(\mathbf{y}_s)$ under HD-ODE with a convenient, and to our knowledge novel, lemma:

371 372 373 374 Lemma 1 (General instantaneous change of variables). *Consider a CNF given by* $dx_t = f_1(t, x_t)dt$ *with prior* p_T *and marginal distributions* p_t *, and a particle following some different dynamical system* $dz_t = f_2(t, z_t)dt$. Then, if f_1 and f_2 are uniformly Lipschitz in the second argument and *continuous in the first, we have:*

$$
\frac{d \log p_t(\mathbf{z}_t)}{dt} = -\frac{\text{div}_{\mathbf{z}}}{dt} f_1(t, \mathbf{z}_t) + \left(f_2(t, \mathbf{z}_t) - f_1(t, \mathbf{z}_t)\right)^T \nabla_{\mathbf{z}} \log p_t(\mathbf{z}_t).
$$
 (21)

337 338 339

348 349

350 351

359 360 361

363

365 366

375 376 377

¹On top of solving HD-ODE we would need to solve the augmented PF-ODE twice: once for y_t from t to T and once for y_0 from 0 to T. Instead, we perform one *augmented* ([\(18\)](#page-6-2) + [\(22\)](#page-7-2)) HD-ODE solve from t to 0.

Figure 7: Algorithm [1](#page-6-1) generates images with higher likelihoods than regular samples. For different noise levels t, compare the high density y_0 (equation [18\)](#page-6-2) with random samples x_0 on CIFAR-10. We find that the percentage of samples with higher likelihoods than y_0 is 0.

The proof is in [Appendix L.](#page-29-1) When $f_1 = f_2$ we recover the standard formula [Chen et al.](#page-10-3) [\(2018\)](#page-10-3). By setting f_1 =PF-ODE [\(3\)](#page-2-2) and f_2 =HD-ODE [\(18\)](#page-6-2) we augment the HD-ODE with its density evolution

$$
\frac{d\log p_s(\mathbf{y}_s)}{ds} = -f(s)D + \frac{1}{2}g^2(s)\left[\text{div}_{\mathbf{y}}\right]\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s) - \frac{1}{2}g^2(s)\left\|\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)\right\|^2.
$$
 (22)

We trained a diffusion model on CIFAR-10 and generated x_t for different noise levels t and compared the high-density samples $y_0|x_t$ (Algorithm [1\)](#page-6-1) against 512 regular samples $x_0 \sim p(x_0|x_t)$. We found that $p(\bm{y}_0|\bm{x}_t) > p(\bm{x}_0|\bm{x}_t)$ for all samples across different noise levels t (See [Figure 7\)](#page-7-3).

Additionally, we compared the likelihoods of regular samples and the ones obtained with algorithm [1](#page-6-1) for different models, and values of the threshold parameter t. We found that algorithm [1](#page-6-1) samples have higher likelihoods than regular samples in all cases. For details, please refer to [Appendix N.](#page-30-1)

409 410 411

412

431

5 HIGH-RESOLUTION DIFFUSION PROBABILITY LANDSCAPE

413 414 415 416 417 418 We demonstrated that algorithm [1](#page-6-1) can generate images with much higher likelihoods than regular samples. However, after visually inspecting the high density samples y_0 in [Figure 7](#page-7-3) we found that they correspond to blurry images with much less detail than regular samples.

419 420 421 422 423 424 To gain more insight we analyze high-density samples on higher-resolution diffusion models.[2](#page-7-4) We found that the samples with the highest likelihood were blurry images. Surprisingly, for higher values of t, the samples were unnatural cartoons, but still received higher likelihoods than regular samples. The training datasets do not contain any cartoon images.

Figure 8: Density estimates correlate with information content (**.png** size)

425 426 See [Figure 9.](#page-8-2) A similar phenomenon occurs for latent diffusion models [Appendix O.](#page-30-2)

427 428 429 430 Inspired by the empirical observation that the highest likelihood generated samples are blurry images we performed the following two experiments. First, we add different amounts of blur to FFHQ-256 test images and measure the likelihood of the distorted image. We found that blurring always increases the likelihood and that the increase is proportional to the strength of blurring [\(Figure 10\)](#page-8-0).

²We used FFHQ-256 and Churches-256 models from [github.com/yang-song/score_sde_](github.com/yang-song/score_sde_pytorch) [pytorch](github.com/yang-song/score_sde_pytorch) and ImageNet-64 from <github.com/NVlabs/edm>

Figure 9: Diffusion models assign highest likelihoods to unrealistic images. Left: High-density samples generated with Algorithm [1](#page-6-1) for various values of the threshold parameter t . Right: distributions of negative log-likelihood (in bits-per-dim). Across different models and datasets, Algorithm finds unnatural images, which have higher densities than regular samples.

Second, we compare the model's likelihood estimation with the image's file size after PNG compression. The smaller the PNG file size, the less information in the image. For FFHQ-256, we found a 97% correlation between $\log p_0(x_0)$ and the amount of information in an image [\(Figure 8\)](#page-7-1). This hints at why cartoons and blurry images have the highest densities [\(Appendix P\)](#page-30-3). We used 192 samples for each of 7 blur strengths $\sigma \in \{0, 1, 2, 5, 10, 20, 50\}$, resulting in 7·192=1344 images.

6 DISCUSSION

Variance of $\log p_0^{\text{SDE}}(x_0)$ **estimate.** In [section 3](#page-3-0) we discussed the accuracy of r_0 , our novel estimate of $\log p_0^{\text{SDE}}(x_0)$. Specifically, we provided tools to estimate the bound of its bias for stochastic samples. Based on the empirically measured correlation between r_0 and $\log p_0^{\rm ODE}(\bm{x}_0)$ at over 0.99,

 Figure 10: Blurring increases likelihood. Left: Two FFHQ-256 images with different amounts of blur and corresponding negative loglikelihoods (NLL). Right: Distributions of NLL for different amounts of added blur ($\sigma \in \{0, 1, 2, 5, 10, 20, 50\}$, 192 samples each).

486 487 488 we hypothesize that the variance of $r_0 - \log p_0^{\text{SDE}}(x_0)$ is low whenever $s(t, x) \approx \nabla \log p_t^{\text{SDE}}(x)$. However, we do not provide theoretical guarantees, or empirical estimates.

489 490 491 492 p_0^{SDE} vs p_0^{ODE} . In equation [15](#page-4-5) we show that $\mathcal{R}^U(s) = \mathbb{E}_{(\mathbf{x}_0,r_0)}[r_0 - \log p_0^{\text{ODE}}(\mathbf{x}_0)]$ is an upper bound on $\text{KL}[p_0^{\text{SDE}} || p_0^{\text{ODE}}] \ge 0$. In particular, for (x_0, r_0) sampled with equation [7](#page-3-2) we must have *on average* $r_0 \ge \log p_0^{\text{ODE}}(\bm{x}_0)$. However, for two different models, we found that $r_0 \ge \log p_0^{\text{ODE}}(\bm{x}_0)$ holds *for every sample*. We hypothesize this is a more widespread phenomenon, but do not prove it.

494 495 496 497 498 499 500 Towards exact estimates of $\log p_{0}^{\text{SDE}}(x_0)$. We showed in equation [9](#page-3-3) that the bias of r_0 is given by For $x_t \sim p_t^{\text{SDE}}(x_0) \propto \mathbb{E}_{t,x_t} g^2(t) \|s(t,x_t) - \nabla_x \log p_t^{\text{SDE}}(x_t) \|^2$ for $x_t \sim p_t^{\text{SDE}}(x_t)$. Similarly, equation [12](#page-4-3) shows that $\log p^{\rm SDE}_0(\bm{x}_0)-\rm E LBO(\bm{x}_0)\propto \mathbb{E}_{t,\bm{x}_t}g^2(t)\|\bm{s}(t,\bm{x}_t)-\nabla_{\bm{x}}\log p^{\rm SDE}_t(\bm{x}_t)\|^2$ for $x_t \sim p(x_t|x_0)$. Both these errors could then be reduced to zero if $s(t, x) = \nabla_x \log p_t^{\text{SDE}}(x)$ for all t, x. However, for SDEs with linear drift (equation [1\)](#page-1-2), this can only happen if p_t^{SDE} is Gaussian for all t (Proposition B.1 in [Lu et al.](#page-11-3) [\(2022\)](#page-11-3)). This is because an SDE with linear drift cannot transform a non-Gaussian p_0 into a Gaussian in finite time T.

501 502 503 504 To unlock exact likelihood estimation in diffusion SDEs, non-linear drift is necessary, such as the one proposed in [Bartosh et al.](#page-10-0) [\(2024\)](#page-10-0). There it is possible to have p_T Gaussian for finite T and $s(t, x)$ = $\nabla_x \log p_t^{\text{SDE}}(x)$ for all t, x, in which case both r_0 and $\text{ELBO}(x_0)$ become exact [\(Theorem 7](#page-22-0) and [Proposition 3\)](#page-19-0).

7 RELATED WORK

508 509 We reference most of the related work in the main sections. Please see [Appendix Q](#page-33-0) for a discussion on cartoon generation methods.

511 512 513 514 515 516 517 518 Likelihood estimation for diffusion models. As we discussed in [subsection 2.3](#page-3-1) there is a distinction between diffusion ODEs and SDEs. For diffusion SDEs only lower bounds on likelihood are reported [\(Ho et al., 2020;](#page-10-7) [Vahdat et al., 2021;](#page-12-5) [Nichol & Dhariwal, 2021;](#page-11-8) [Huang et al., 2021;](#page-10-8) [Kingma](#page-11-5) [et al., 2021;](#page-11-5) [Kim et al., 2022\)](#page-11-9). Exact likelihoods, on the other hand, are available for diffusion ODEs [\(Song et al., 2020c;](#page-12-0)[a;](#page-11-10) [2021;](#page-12-1) [Dockhorn et al., 2021\)](#page-10-9) and some works explicitly optimize for ODE likelihood [\(Lu et al., 2022;](#page-11-3) [Zheng et al., 2023;](#page-12-4) [Lai et al., 2023\)](#page-11-4). For a comprehensive survey, we refer the reader to [Yang et al.](#page-12-6) [\(2023\)](#page-12-6). We provide a novel tool for estimating the likelihood of the samples generated by diffusion SDEs.

519 520 521 522 523 524 525 526 527 Typicality vs likelihood. [Theis et al.](#page-12-7) [\(2015\)](#page-12-7) observed that likelihood estimates do not correlate with image quality. Furthermore, deep generative models can assign higher likelihoods to out-ofdistribution (OOD) data than the data they were trained on [\(Choi et al., 2018;](#page-10-10) [Nalisnick et al., 2018;](#page-11-11) [Kirichenko et al., 2020\)](#page-11-12) and therefore perform poorly at OOD detection. [Nalisnick et al.](#page-11-13) [\(2019\)](#page-11-13); [Choi et al.](#page-10-10) [\(2018\)](#page-10-10) analyze this phenomenon through the lens of *typicality*, arguing that typical samples do not coincide with the highest likelihood regions. [Ben-Hamu et al.](#page-10-11) [\(2024\)](#page-10-11) observed that explicit distortion of an image like inserting a gray patch in the middle may increase the likelihood assigned by a flow-based model. Our investigation contrasts these reports by explicitly studying regions of highest likelihood and shedding light on the probability landscape of diffusion models.

528 529

530

493

505 506 507

510

8 CONCLUSION

531 532 533 534 535 536 537 538 We provide novel tools for estimating the likelihood for Diffusion SDE samples. Additionally, we theoretically and empirically analyze the estimation error and discuss when exact likelihood estimation for diffusion SDEs might be possible. These tools, combined with a theoretical modeseeking analysis, allowed us to study high-density regions of diffusion models. We made a surprising observation that unnatural and blurry images occupy the highest-density regions of diffusion models. While [Karras et al.](#page-11-0) [\(2024a\)](#page-11-0) argued that avoiding low-density regions is crucial for the success of diffusion models, our analysis reveals that high-density regions should also be avoided in highquality image generation. We discuss the limitations of this work in [Appendix R.](#page-33-1)

539 This work not only enhances the understanding of diffusion model probability landscapes but also opens avenues for improved sample generation strategies.

540 541 REFERENCES

647 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020a.

- Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to density and score estimation. In *Uncertainty in Artificial Intelligence*, pp. 574–584. PMLR, 2020b.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020c.
- Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based diffusion models. *Advances in neural information processing systems*, 34:1415– 1428, 2021.
- Piotr Tempczyk, Rafał Michaluk, Lukasz Garncarek, Przemysław Spurek, Jacek Tabor, and Adam Golinski. Lidl: Local intrinsic dimension estimation using approximate likelihood. In *International Conference on Machine Learning*, pp. 21205–21231. PMLR, 2022.
- Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. *arXiv preprint arXiv:1511.01844*, 2015.
	- Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. *Advances in neural information processing systems*, 34:11287–11302, 2021.
- Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):1661–1674, 2011.
- Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. *ACM Computing Surveys*, 56(4):1–39, 2023.
	- Qinsheng Zhang and Yongxin Chen. Diffusion normalizing flow. *Advances in neural information processing systems*, 34:16280–16291, 2021.
	- Jing Zhao, Heliang Zheng, Chaoyue Wang, Long Lan, Wanrong Huang, and Wenjing Yang. Nulltext guidance in diffusion models is secretly a cartoon-style creator. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 5143–5152, 2023.
- Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved techniques for maximum likelihood estimation for diffusion odes. In *International Conference on Machine Learning*, pp. 42363– 42389. PMLR, 2023.
-

-
-
-

-
-
-
-

A NOTATION AND ASSUMPTIONS

749

752

Table 1: Summary of notation and abbreviations.

742 743 744 745 In equation [1,](#page-1-2) the drift term is linear in x , which corresponds to most commonly used SDEs, because it admits Gaussian transition kernels $p_{t|s}$ for $s < t$ [\(Song et al., 2020c;](#page-12-0) [2021;](#page-12-1) [Kingma et al., 2021;](#page-11-5) [Kingma & Gao, 2024\)](#page-11-1) and covers many common implementations of diffusion models [\(Ho et al.,](#page-10-7) [2020;](#page-10-7) [Song et al., 2020a;](#page-11-10) [Nichol & Dhariwal, 2021;](#page-11-8) [Dhariwal & Nichol, 2021;](#page-10-12) [Karras et al., 2024b\)](#page-11-14).

746 747 748 However, more general SDEs have been proposed that do not assume linear drift [\(Zhang & Chen,](#page-12-8) [2021;](#page-12-8) [Bartosh et al., 2024\)](#page-10-0):

$$
d\boldsymbol{x}_t = f(t, \boldsymbol{x}_t)dt + g(t)dW_t
$$
\n(23)

750 751 with f and g satisfying assumptions below. We define the approximate reverse SDE in the general case

 $dx_t = (f(t, \boldsymbol{x}_t) - g^2(t)\boldsymbol{s}(t, \boldsymbol{x}_t)) dt + g(t)d\overline{\mathbf{W}}_t.$ (24)

753 754 755 In our theorems in [section 2](#page-1-0) and [section 3,](#page-3-0) we do not assume the linearity of the drift and provide more general formulas. However, results in [section 4](#page-5-0) only hold for linear drift SDE. We follow [Song et al.](#page-12-1) [\(2021\)](#page-12-1) and [Lu et al.](#page-11-3) [\(2022\)](#page-11-3) and make the following assumptions in our proofs to ensure existence of reverse-time SDEs and correctness of integration by parts.

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 1. $p_0 \in \mathcal{C}^3$ and $\mathbb{E}_{\boldsymbol{x} \sim p_0}[\|\boldsymbol{x}\|^2] < \infty$. 2. $\forall t \in [0, T] : f(\cdot, t) \in C^2$. And $\exists C > 0, \forall x \in \mathbb{R}^D, t \in [0, T] : ||f(t, x)||_2 \leq C(1 + ||x||_2)$. 3. $\exists C > 0, \forall x, y \in \mathbb{R}^D : ||f(t,x) - f(t,y)||_2 \leq C ||x - y||_2.$ 4. $q \in \mathcal{C}$ and $\forall t \in [0, T], |q(t)| > 0$. 5. For any open bounded set \mathcal{O} , $\int_0^T \int_{\mathcal{O}} \left(||p_t(\boldsymbol{x})||^2 + D \cdot g(t)^2 ||\nabla p_t(\boldsymbol{x})||^2 d\boldsymbol{x} \right) dt < \infty$. 6. $\exists C > 0, \forall x \in \mathbb{R}^D, t \in [0, T] : ||\nabla p_t(x)||^2 \leq C(1 + ||x||).$ 7. $\exists C > 0, \forall x, y \in \mathbb{R}^D : ||\nabla \log p_t(x) - \nabla \log p_t(y)|| \leq C ||x - y||.$ 8. $\exists C > 0, \forall x \in \mathbb{R}^D, t \in [0, T] : ||s(t, x)|| \leq C(1 + ||x||).$ 9. ∃ $C > 0, \forall x, y \in \mathbb{R}^D : ||s(t,x) - s(t,y)|| \leq C ||x - y||.$ 10. Novikov's condition: $\mathbb{E}\left[\exp\left(\frac{1}{2}\int_0^T \|\nabla \log p_t(\bm{x}) - \bm{s}(t,\bm{x})\|^2 dt\right)\right] < \infty$. 11. $\forall t \in [0, T], \exists k > 0 : p_t(\boldsymbol{x}), p_t^{\text{SDE}}(\boldsymbol{x}), p_t^{\text{ODE}}(\boldsymbol{x}) \in O(e^{-\|\boldsymbol{x}\|^k})$ as $\|\boldsymbol{x}\| \to \infty$. Additionally, we assume 12. $\forall x_0 \in \mathbb{R}^D : \mathbb{E}_{\mathbf{x} \sim \nu(\mathbf{x}_0)} \left(\int_0^T g^2(t) \|\nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) \|^2 dt \right) < \infty$, where $\nu(\mathbf{x}_0)$ is the path measure of equation [1](#page-1-2) starting at x_0 . 13. $\mathbb{E}_{\boldsymbol{x} \sim \nu^{\text{SDE}}} \left(\int_0^T g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) - \boldsymbol{s}(t, \boldsymbol{x}_t)\|^2 dt \right) < \infty$, where ν^{SDE} is the path measure of equation [7.](#page-3-2) 14. $\forall x_0 \in \mathbb{R}^D, \forall t \in [0, T], \exists k > 0 : p_{t|0}(x|x_0) \in O(e^{-\|x\|^k})$ as $||x|| \to \infty$. This trivially holds for the linear drift SDE (equation [1\)](#page-1-2), where $p_{t|0}(x|x_0)$ is Gaussian. B FOKKER PLANCK EQUATION A useful tool in some of the proofs is the Fokker-Planck equation [\(Fokker, 1914;](#page-10-13) [Planck, 1917;](#page-11-15) \emptyset ksendal & Øksendal, 2003; Särkkä & Solin, 2019), a partial differential equation (PDE) governing

the evolution of marginal density is described by the Fokker-Planck Equation:
\n
$$
\frac{\partial}{\partial n_i(x)} = - \operatorname{div} (f(t, x) n_i(x)) + \frac{1}{2} a^2(t) \Delta_n n_i(x)
$$
\n(25)

$$
\frac{\partial}{\partial t}p_t(\boldsymbol{x}) = -\operatorname{div}\left(f(t,\boldsymbol{x})p_t(\boldsymbol{x})\right) + \frac{1}{2}g^2(t)\Delta_{\boldsymbol{x}}p_t(\boldsymbol{x}),\tag{25}
$$

where p_t is the marginal density at time t, which holds for all $t \in (0, T)$ and $\mathbf{x} \in \mathbb{R}^D$. Equivalently,

the evolution of the marginal density of a diffusion process. For a process described in [Equation 23,](#page-13-0)

$$
\frac{\partial}{\partial t} \log p_t(\boldsymbol{x}) = -\operatorname{div} \left(f(t, \boldsymbol{x}) \right) + \frac{1}{2} g^2(t) \Delta_{\boldsymbol{x}} \log p_t(\boldsymbol{x}) \n- \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x})^T \left(f(t, \boldsymbol{x}) - \frac{1}{2} g^2(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}) \right).
$$
\n(26)

796 797 798

C ITÔ'S LEMMA

The main tool for studying the dynamics of log-density of stochastic processes we will use in our proofs is Itô's lemma [\(It](#page-10-14)ô, [1951\)](#page-10-14), which states that for a stochastic process

$$
d\boldsymbol{x}_t = f(t, \boldsymbol{x}_t)dt + g(t)dW_t
$$
\n(27)

and a smooth function $h : \mathbb{R} \times \mathbb{R}^D \to \mathbb{R}$ it holds that

$$
dh(t, \boldsymbol{x}_t) = \left(\frac{\partial}{\partial t}h(t, \boldsymbol{x}_t) + \frac{\partial}{\partial \boldsymbol{x}}h(t, \boldsymbol{x}_t)^T f(t, \boldsymbol{x}_t) + \frac{1}{2}g^2(t)\Delta_{\boldsymbol{x}}h(t, \boldsymbol{x}_t)\right)dt + g(t)\frac{\partial}{\partial \boldsymbol{x}}h(t, \boldsymbol{x}_t)dW_t.
$$
\n(28)

A more general version of Ito's lemma holds, which does not assume isotropic diffusion, but we do ˆ not need it in our proofs.

D PROOF OF T[HEOREM](#page-2-4) 2

Theorem 2 (Augmented forward SDE). *Let* x *be a random process defined by equation [1.](#page-1-2) Then*

813 814 815

810 811 812

$$
d\begin{bmatrix} \boldsymbol{x}_t \\ \log p_t(\boldsymbol{x}_t) \end{bmatrix} = \begin{bmatrix} f(t)\boldsymbol{x}_t \\ F(t,\boldsymbol{x}_t) \end{bmatrix} dt + g(t) \begin{bmatrix} \boldsymbol{I}_D \\ \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) \end{bmatrix}^T \begin{bmatrix} d\mathbf{W}_t, \end{bmatrix}
$$
(5)

where

$$
F(t, \boldsymbol{x}_t) = -\operatorname{div}_{\boldsymbol{x}}\left(f(t)\boldsymbol{x}_t - g^2(t)\left|\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\right|\right) + \frac{1}{2}g^2(t)\|\left|\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\right|\|^2.
$$

For the non-linear drift (equation [23\)](#page-13-0), we have (the difference highlighted in blue)

$$
F(t, \boldsymbol{x}_t) = -\operatorname{div}_{\boldsymbol{x}}\left(f(t, \boldsymbol{x}_t) - g^2(t) \left[\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\right]\right) + \frac{1}{2}g^2(t) \|\left[\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\right]\|^2
$$

Proof. We will apply Itô's lemma [\(Appendix C\)](#page-14-0) to $h(t, x) := \log p_t(x)$. From [Equation 26,](#page-14-1) we have

$$
\frac{\partial}{\partial t}h(t,\mathbf{x}) = -\text{div}_{\mathbf{x}}f(t,\mathbf{x}) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}\log p_t(\mathbf{x}) - \nabla_{\mathbf{x}}\log p_t(\mathbf{x})^T \left(f(t,\mathbf{x}) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\right)
$$
\n(29)

and

$$
\frac{\partial}{\partial t}h(t, \mathbf{x}_t) + \frac{\partial}{\partial \mathbf{x}}h(t, \mathbf{x}_t)^T f(t, \mathbf{x}_t) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}h(t, \mathbf{x}_t)
$$
\n
$$
= -\text{div}_{\mathbf{x}}f(t, \mathbf{x}) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}\log p_t(\mathbf{x}) - \nabla_{\mathbf{x}}\log p_t(\mathbf{x})^T \left(f(t, \mathbf{x}) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\right)
$$
\n
$$
+ \nabla_{\mathbf{x}}\log p_t(\mathbf{x})^T f(t, \mathbf{x}_t) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}\log p_t(\mathbf{x}_t)
$$
\n
$$
= -\text{div}_{\mathbf{x}}f(t, \mathbf{x}_t) + \frac{1}{2}g^2(t)\|\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)\|^2 + g^2(t)\Delta_{\mathbf{x}}\log p_t(\mathbf{x}_t)
$$
\n
$$
= -\text{div}_{\mathbf{x}}\left(f(t, \mathbf{x}_t) - g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)\right) + \frac{1}{2}g^2(t)\|\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)\|^2.
$$
\n(30)

Finally, we get

$$
d \log p_t(\boldsymbol{x}_t) = \left(-\text{div}_{\boldsymbol{x}} \left(f(t, \boldsymbol{x}_t) - g^2(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) \right) + \frac{1}{2} g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\|^2 \right) dt + \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)^T dW_t.
$$
\n(31)

 \Box

849 850 851

E PROOF OF T[HEOREM](#page-2-5) 1

Theorem 1 (Augmented reverse SDE). *Let* x *be a random process defined by equation [2.](#page-1-3) Then*

$$
d\begin{bmatrix} \mathbf{x}_t \\ \log p_t(\mathbf{x}_t) \end{bmatrix} = \begin{bmatrix} f(t)\mathbf{x}_t - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \\ -f(t)D - \frac{1}{2}g^2(t) \|\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)\|^2 \end{bmatrix} dt + g(t) \begin{bmatrix} \mathbf{I}_D \\ \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \end{bmatrix}^T \begin{bmatrix} \frac{\partial \mathbf{I}_D}{\partial \mathbf{x}_t} \end{bmatrix} d\overline{\mathbf{W}}_t.
$$
\n(4)

For the non-linear drift (equation [23\)](#page-13-0), we have (the difference highlighted in blue)

$$
\begin{aligned}\n\frac{d}{d\cos\theta} &= d\left[\frac{\mathbf{x}_t}{\log p_t(\mathbf{x}_t)}\right] = \left[\frac{f(t,\mathbf{x}_t) - g^2(t) \, \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)}{-\text{div}_{\mathbf{x}} f(t,\mathbf{x}_t) - \frac{1}{2}g^2(t) \|\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)\|^2}\right] dt + g(t) \left[\frac{I_D}{\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)} T\right] d\overline{\mathbf{W}}_t.\n\end{aligned}
$$

Proof. The reverse SDE [\(Equation 2\)](#page-1-3) can be equivalently written, as

$$
dx_t = \underbrace{(-f(T-t, \boldsymbol{x}_t) + g^2(T-t)\nabla_{\boldsymbol{x}}\log p_{T-t}(\boldsymbol{x}_t))}_{=: \mu(t, \boldsymbol{x}_t)} dt + g(T-t)dW_t
$$
(32)

for a forward running brownian motion W and positive dt . We will apply Itô's lemma [\(Appendix C\)](#page-14-0) to $g(t, x) = \log p_{T-t}(x)$. Since forward and reverse SDEs share marginals we can use [Equation 29:](#page-15-2)

$$
\frac{\partial}{\partial t}g(t,\mathbf{x}) = \text{div}_{\mathbf{x}}(f(T-t,\mathbf{x})) - \frac{1}{2}g^2(T-t)\Delta_{\mathbf{x}}\log p_{T-t}(\mathbf{x}) \n+ \nabla_{\mathbf{x}}\log p_{T-t}(\mathbf{x})^T \left(f(T-t,\mathbf{x}) - \frac{1}{2}g^2(T-t)\nabla_{\mathbf{x}}\log p_{T-t}(\mathbf{x}) \right)
$$
\n(33)

and

$$
\frac{\partial}{\partial t}g(t, x_t) + \frac{\partial}{\partial x}g(t, x_t)^T \mu(t, x_t) + \frac{1}{2}g^2(T - t)\Delta_x g(t, x_t)
$$
\n
$$
= \text{div}_x(f(T - t, x)) - \frac{1}{2}g^2(T - t)\Delta_x \text{top}_{T-t}(x_t)
$$
\n
$$
+ \nabla_x \log p_{T-t}(x_t)^T \left(f(T - t, x_t) - \frac{1}{2}g^2(T - t)\nabla_x \log p_{T-t}(x_t) \right)
$$
\n
$$
- \nabla_x \log p_{T-t}(x_t)^T \left(f(T - t, x_t) - g^2(T - t)\nabla_x \log p_{T-t}(x_t) \right)
$$
\n
$$
+ \frac{1}{2}g^2(T - t)\Delta_x \text{top}_{T-t}(x_t)
$$
\n
$$
= \text{div}_x(f(T - t, x_t)) + \frac{1}{2}g^2(T - t) \|\nabla_x \log p_{T-t}(x_t)\|^2.
$$
\n(34)

Remarkably, the terms involving the higher order derivatives: $\Delta_x \log p_{T-t}(x_t)$ cancel out. Thus, we have

$$
d \log p_{T-t}(\boldsymbol{x}_t) = \left(\operatorname{div}_{\boldsymbol{x}} (f(T-t, \boldsymbol{x}_t)) + \frac{1}{2} g^2 (T-t) \|\nabla_{\boldsymbol{x}} \log p_{T-t}(\boldsymbol{x}_t)\|^2 \right) dt
$$

+ $g(T-t) \nabla_{\boldsymbol{x}} \log p_{T-t}(\boldsymbol{x}_t)^T dW_t,$ (35)

which can equivalently be written as

$$
d\log p_t(\boldsymbol{x}_t) = \left(-\text{div}_{\boldsymbol{x}}(f(t,\boldsymbol{x}_t)) - \frac{1}{2}g^2(t)\|\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\|^2\right)dt + g(t)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)^T d\overline{\mathbf{W}}_t,
$$
\n(36)

 \Box

where \overline{W} is running backwards in time and dt is negative.

F GENERAL SDES

914 915 916 [Karras et al.](#page-11-2) [\(2022\)](#page-11-2) showed that there is a more general SDE formulation than [Equation 23,](#page-13-0) which can be interpreted as a continuum between the PF-ODE and SDE formulations. Specifically, they showed that for any choice of $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ the SDE

$$
dx_t = \left(f(t, \boldsymbol{x}_t) - \left(\frac{1}{2} - \beta(t)\right)g^2(t)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\right)dt + \sqrt{2\beta(t)}g(t)dW_t
$$
 (37)

912 913 has the same marginals as [Equation 23](#page-13-0) and it has a reverse-time SDE

$$
dx_t = \left(f(t, \boldsymbol{x}_t) - \left(\frac{1}{2} + \beta(t)\right)g^2(t)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\right)dt + \sqrt{2\beta(t)}g(t)d\overline{\mathbf{W}}_t.
$$
 (38)

917 One can therefore replace the original model $(\beta \equiv \frac{1}{2})$ with any choice of non-negative β . We now derive the augmented dynamics of $\log p_t(x_t)$ for any β .

918 919 F.1 GENERAL FORWARD AUGMENTED DYNAMICS

Proposition 1. *For* x *following [Equation 37](#page-16-1) we have*

$$
d\log p_t(\boldsymbol{x}_t) = \left(-\text{div}_{\boldsymbol{x}}f(t,\boldsymbol{x}_t) + \left(\frac{1}{2} + \beta(t)\right)g^2(t)\Delta_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t) + \beta(t)g^2(t)\|\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)\|^2\right)dt
$$

$$
+ \sqrt{2\beta(t)}g(t)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)^T d\mathbf{W}_t.
$$
(39)

Note that since $\beta(t) \geq 0$, the higher order term $\Delta_x \log p_t(x_t)$ is always non-zero for any β .

Proof. We proceed in the same way as the proof of [Theorem 2](#page-2-4) and apply Itô's lemma [\(Appendix C\)](#page-14-0) to $h(t, x) = \log p_t(x)$. Since [Equation 37](#page-16-1) shares marginals with [Equation 23](#page-13-0) we can reuse the derivation of $\frac{\partial}{\partial t}h(t, x)$ from [Equation 29:](#page-15-2)

$$
\frac{\partial}{\partial t}h(t,\boldsymbol{x}) = -\mathrm{div}_{\boldsymbol{x}}f(t,\boldsymbol{x}) + \frac{1}{2}g^2(t)\Delta_{\boldsymbol{x}}\log p_t(\boldsymbol{x}) - \nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})^T\left(f(t,\boldsymbol{x}) - \frac{1}{2}g^2(t)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})\right).
$$

Therefore for x following [Equation 37:](#page-16-1)

$$
d \log p_t(\boldsymbol{x}_t) = \left(\frac{\partial}{\partial t} h(t, \boldsymbol{x}_t) + \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)^T \left(f(t, \boldsymbol{x}_t) - \left(\frac{1}{2} - \beta(t)\right) g^2(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\right) + \beta(t) g^2(t) \Delta \log p_t(\boldsymbol{x}_t) \right) dt + \sqrt{2\beta(t)} g(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)^T dW_t
$$

=
$$
\left(-\text{div}_{\boldsymbol{x}} f(t, \boldsymbol{x}_t) + \left(\frac{1}{2} + \beta(t)\right) g^2(t) \Delta_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) + \beta(t) g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\|^2\right) dt
$$

$$
+\sqrt{2\beta(t)}g(t)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x}_t)^T d\mathbf{W}_t.
$$
\n(40)

$$
^{(40)}
$$

$$
\Box
$$

F.2 GENERAL REVERSE AUGMENTED DYNAMICS

Proposition 2. *For* x *following [Equation 38,](#page-16-2) we have*

$$
d\log p_t(\boldsymbol{x}_t) = -\left(\text{div}_{\boldsymbol{x}} f(t, \boldsymbol{x}_t) + \left(\beta(t) - \frac{1}{2}\right) g^2(t) \Delta_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) + \beta(t) g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)\|^2\right) dt
$$

$$
+ \sqrt{2\beta(t)} g(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)^T d\overline{\mathbf{W}}_t
$$
(41)

Note that $\beta \equiv \frac{1}{2}$ (corresponding to [Equation 2\)](#page-1-3) is the only choice for which the higher order term involving $\Delta_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ disappears.

Proof. Similarly to the proof of [Theorem 1](#page-2-5) rewrite the general reverse SDE with positive dt and W going forward in time

968 969 970

971

$$
dx_t = -\left(f(T-t, \boldsymbol{x}_t) - \left(\frac{1}{2} + \beta(T-t)\right)g^2(T-t)\nabla_{\boldsymbol{x}}\log p_{T-t}(\boldsymbol{x}_t)\right)dt
$$

+
$$
\sqrt{2\beta(T-t)}g(T-t)dW_t
$$
 (42)

We apply Itô's lemma to $g(t, x) = \log p_{T-t}(x)$: $dg(t, \boldsymbol{x}_t) = \frac{\partial}{\partial t} g(t, \boldsymbol{x}_t) dt$ $-\nabla_{\bm{x}}g(t,\bm{x}_t)^T\left(f(T-t,\bm{x}_t)-\left(\frac{1}{2}\right)\right)$ $\frac{1}{2} + \beta(T-t) \bigg) g^2(T-t) \nabla_{\bm{x}} \log p_{T-t}(\bm{x}_t) \bigg) dt$ $+\beta(T-t)g^{2}(T-t)\Delta_{\boldsymbol{x}}g(t,\boldsymbol{x}_{t})dt$ $+\sqrt{2\beta(T-t)}g(T-t)\nabla_{\bm{x}}\log p_{T-t}(\bm{x}_t)^Td\bm{\mathrm{W}}_t$ $=\int \text{div}_{\bm{x}} f(T-t, \bm{x}_t) + \int \beta(T-t) - \frac{1}{2}$ 2 $\int g^2(T-t)\Delta_{\boldsymbol{x}}\log p_{T-t}(\boldsymbol{x}_t)\bigg)\,dt$ $+\beta(T-t)g^{2}(T-t)\|\nabla_{\boldsymbol{x}}\log p_{T-t}(\boldsymbol{x}_{t})\|^{2}dt$ $+\sqrt{2\beta(T-t)}g(T-t)\nabla_{\bm{x}}\log p_{T-t}(\bm{x}_t)^T d\mathbf{W}_t,$ (43)

which we rewrite equivalently with $dt < 0$ and \overline{W} running backward in time to obtain [Equation 41.](#page-17-0) \Box

G APPROXIMATE MODEL DYNAMICS

Analogously to [Theorem 2](#page-2-4) and [Theorem 1](#page-2-5) we can derive the dynamics of $\log p_t^{\text{SDE}}({\bm{x}})$. Theorem 6 (Approximate augmented forward SDE). *Let* x *be a random process defined by [Equa](#page-13-0)[tion 23.](#page-13-0) Then*

$$
d \log p_t^{\text{SDE}}(\boldsymbol{x}_t) = G(t, \boldsymbol{x}_t) dt + \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x})^T dW_t,
$$
\n(44)

where

$$
G(t, \mathbf{x}) = -\text{div}_{\mathbf{x}} \left(f(t, \mathbf{x}) - g^2(t)\mathbf{s}(t, \mathbf{x}) \right) + \frac{1}{2} g^2(t) \|\mathbf{s}(t, \mathbf{x})\|^2 - \frac{1}{2} g^2(t) \|\nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}) - \mathbf{s}(t, \mathbf{x})\|^2 \tag{45}
$$

Proof. [Lu et al.](#page-11-3) [\(2022\)](#page-11-3) showed that the corresponding forward SDE to [Equation 24](#page-13-1) is given by

$$
d\boldsymbol{x}_t = \left(f(t, \boldsymbol{x}_t) + g^2(t) \left(\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) - \boldsymbol{s}(t, \boldsymbol{x}_t)\right)\right) dt + g(t) dW_t.
$$
 (46)

1004 1005 1006 1007 We will apply Itô's lemma [\(Appendix C\)](#page-14-0) to $h(t, x) = \log p_t^{\text{SDE}}(x)$ for x following [Equation 23](#page-13-0) (not [Equation 46,](#page-18-1) which is intractable due to presence of $\nabla_x \log p_t^{\text{SDE}}$). $\frac{\partial}{\partial t} h(t, x)$ can be evaluated using [Equation 26](#page-14-1)

$$
\frac{\partial}{\partial t}h(t, x) = -\text{div}_{x}f(t, x) - g^{2}(t)\left(\Delta_{x} \log p_{t}^{\text{SDE}}(x) - \text{div}_{x} s(t, x)\right) + \frac{1}{2}g^{2}(t)\Delta_{x} \log p_{t}^{\text{SDE}}(x)
$$
\n
$$
-\nabla_{x} \log p_{t}^{\text{SDE}}(x)^{T}\left(f(t, x) + g^{2}(t)\left(\nabla_{x} \log p_{t}^{\text{SDE}}(x) - s(t, x)\right) - \frac{1}{2}g^{2}(t)\nabla_{x} \log p_{t}^{\text{SDE}}(x)\right)
$$
\n
$$
= -\text{div}_{x}f(t, x) - \frac{1}{2}g^{2}(t)\Delta_{x} \log p_{t}^{\text{SDE}}(x) + g^{2}(t)\text{div}_{x} s(t, x)
$$
\n
$$
-\nabla_{x} \log p_{t}^{\text{SDE}}(x)^{T}\left(f(t, x_{t}) - g^{2}(t)s(t, x) + \frac{1}{2}g^{2}(t)\nabla_{x} \log p_{t}^{\text{SDE}}(x)\right)
$$
\n(47)

Therefore, we have

1018
\n1019
\n1020
\n1021
\n1022
\n1023
\n1024
\n1025
\n
$$
-\text{div}_{\bm{x}} f(t, \bm{x}) + g^2(t) \text{ div}_{\bm{x}} s(t, \bm{x})
$$
\n
$$
-\nabla_{\bm{x}} \log p_t^{\text{SDE}}(\bm{x})^T \left(-g^2(t)s(t, \bm{x}) + \frac{1}{2}g^2(t)\nabla_{\bm{x}} \log p_t^{\text{SDE}}(\bm{x}) \right)
$$
\n
$$
= -\text{div}_{\bm{x}} \left(f(t, \bm{x}) - g^2(t)s(t, \bm{x}) \right) + \frac{1}{2}g^2(t) ||s(t, \bm{x})||^2 - \frac{1}{2}g^2(t) ||\nabla_{\bm{x}} \log p_t^{\text{SDE}}(\bm{x}) - s(t, \bm{x})||^2.
$$
\n(48)

1026 1027 Thus for x following [Equation 1,](#page-1-2) we have

$$
d\log p_t^{\text{SDE}}(\boldsymbol{x}_t) = G(t, \boldsymbol{x}_t)dt + \nabla_{\boldsymbol{x}}\log p_t^{\text{SDE}}(\boldsymbol{x}_t)^T dW_t, \tag{49}
$$

1030 1031 where

1028 1029

1050 1051

$$
G(t, \boldsymbol{x}) = -\text{div}_{\boldsymbol{x}} \left(f(t, \boldsymbol{x}) - g^2(t)\boldsymbol{s}(t, \boldsymbol{x}) \right) + \frac{1}{2} g^2(t) \|\boldsymbol{s}(t, \boldsymbol{x})\|^2 - \frac{1}{2} g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}) - \boldsymbol{s}(t, \boldsymbol{x})\|^2
$$
\n
$$
\tag{50}
$$

1038 1039 1040 Interestingly, [Theorem 6](#page-18-2) can be used to derive a lower bound for the likelihood of an individual data point x_0 [\(Kingma et al., 2021;](#page-11-5) [Song et al., 2021\)](#page-12-1).

1041 1042 Proposition 3 (ELBO for non-linear SDE). For any $x_0 \in \mathbb{R}^D$ and p_t^{SDE} marginal distribution of a process defined by some $p_T^{\rm SDE}$ and equation [24](#page-13-1) for $t < T$, we have

$$
\log p_0^{\text{SDE}}(\boldsymbol{x}_0) = \underbrace{\frac{T}{2} \mathbb{E}_{t,\boldsymbol{x}_t} g^2(t) \| \boldsymbol{s}(t,\boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) \|^2}_{\geq 0} + \text{ELBO}(\boldsymbol{x}_0),\tag{51}
$$

1048 1049 *where* $t \sim \mathcal{U}(0,T)$, $\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)$ and

$$
\text{ELBO}(\boldsymbol{x}_0) = \mathbb{E}_{\boldsymbol{x}_T \sim p_{T|0}(\boldsymbol{x}_T|\boldsymbol{x}_0)}[\log p_T^{\text{SDE}}(\boldsymbol{x}_T)] + T \mathbb{E}_{t,\boldsymbol{x}_t} L(t,\boldsymbol{x}_t)
$$
(52)

1052 1053 1054 and $L(t,\bm{x})=-\frac{1}{2}g^2(t)\|\bm{s}(t,\bm{x})\|^2+L_i(t,\bm{x})$, where one may choose any of the following L_1,L_2,L_3 *(one could also have different definitions depending on* t*):*

$$
L_1(t, \mathbf{x}) = \text{div}_{\mathbf{x}} \left(f(t, \mathbf{x}) - g^2(t) s(t, \mathbf{x}) \right) \tag{53}
$$

$$
L_2(t, \boldsymbol{x}) = -\left(f(t, \boldsymbol{x}_t) - g^2(t)\boldsymbol{s}(t, \boldsymbol{x}_t)\right)^T \nabla_{\boldsymbol{x}_t} \log p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)
$$
(54)

$$
L_3(t, \mathbf{x}) = \text{div}_{\mathbf{x}}(f(t, \mathbf{x})) + g^2(t)\mathbf{s}(t, \mathbf{x}_t)^T \nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0)
$$
(55)

 $\int_0^L g(t) \nabla_x \log p_t^{\text{SDE}}(\boldsymbol{x}_t)^T dW_t,$ (56)

1059 1060 1061

1062 1063

Proof. Using [Equation 44:](#page-18-3)

$$
\log p_0^{\rm SDE}(\boldsymbol{x}_0) = \log p_T^{\rm SDE}(\boldsymbol{x}_T) - \int_0^T G(t,\boldsymbol{x}_t) dt - \int_0^T
$$

$$
\begin{array}{c} 1064 \\ 1065 \end{array}
$$

for x being a random trajectory following [Equation 23](#page-13-0) starting at x_0 . Using the definition of $G(t, x)$:

$$
\log p_0^{\text{SDE}}(\boldsymbol{x}_0) = \log p_T^{\text{SDE}}(\boldsymbol{x}_T)
$$

-
$$
\int_0^T \left(-\text{div}_{\boldsymbol{x}} \left(f(t, \boldsymbol{x}_t) - g^2(t) s(t, \boldsymbol{x}_t) \right) + \frac{1}{2} g^2(t) \| s(t, \boldsymbol{x}_t) \|^2 \right) dt
$$

+
$$
\frac{1}{2} \int_0^T g^2(t) \| s(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) \|^2 dt
$$

-
$$
\int_0^T g(t) \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t)^T dW_t.
$$
 (57)

1076 1077 1078

1079 We can take the expectation of both sides of [Equation 57](#page-19-1) w.r.t. $x \sim \nu(x|x_0)$, where $\nu(x|x_0)$ is a path measure of x starting at x_0 . Note that the LHS of [Equation 57](#page-19-1) is constant w.r.t $\nu(x|x_0)$ and

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 thus it is equal to its expectation. $\mathbb{E}[\log p_{0}^{\rm SDE}(\boldsymbol{x}_{0})]$ $=$ log $p_0^{\rm SDE}(\boldsymbol{x}_0)$ $=\mathbb{E}[\log p_{T}^{\rm SDE}(\boldsymbol{x}_{T})]$ "first term" $-\mathbb{E}\left[\int_0^T\right]$ 0 $\left(-\mathrm{div}_{\bm{x}}\left(f(t,\bm{x}_t)-g^2(t)\bm{s}(t,\bm{x}_t)\right)+\frac{1}{2}\right)$ $\frac{1}{2}g^2(t)\|\boldsymbol{s}(t,\boldsymbol{x}_t)\|^2\bigg)\,dt\bigg]$ "second term" "second term" $+ \mathbb{E} \left[\frac{1}{2} \right]$ 2 \int_0^T 0 $g^2(t)\|\boldsymbol{s}(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p^{\rm SDE}_t(\boldsymbol{x}_t)\|^2 dt \bigg]$ "third term" $-\mathbb{E}\left[\int_0^T\right]$ $\int_0^{\cdot} g(t) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)^T dW_t$ 1 "fourth term" "fourth term" . (58) **First term.** Since the expectation is taken w.r.t $\nu(x|x_0)$, we have $\mathbb{E}_{\boldsymbol{x} \sim \nu(\boldsymbol{x}|\boldsymbol{x}_0)}[\log p_{T}^{\rm SDE}(\boldsymbol{x}_T)] = \mathbb{E}_{\boldsymbol{x}_T \sim p_{T|0}(\boldsymbol{x}_T|\boldsymbol{x}_0)}[\log p_{T}^{\rm SDE}(\boldsymbol{x}_T)],$ (59) where $p_{T|0}$ is the forward transition probability of equation [23.](#page-13-0) Second term. Using Fubini's theorem we have $\mathbb{E}_{\bm{x} \sim \nu(\bm{x}|\bm{x}_0)} \bigg[\int^T$ $\int_0^T F(t, \boldsymbol{x}_t) dt$ = \int_0^T 0 $\left(\mathbb{E}_{\boldsymbol{x}_t \sim \nu(\boldsymbol{x}_t|\boldsymbol{x}_0)} F(t,\boldsymbol{x}_t)\right) dt$ $=$ \int_0^T 0 $\left(\mathbb{E}_{\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)} F(t,\boldsymbol{x}_t)\right) dt.$ (60) After substituting for F , we get $\mathbb{E}_{\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)}F(t,\boldsymbol{x}_t) = \mathbb{E}_{\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)}\left(-\text{div}_{\boldsymbol{x}}\left(f(t,\boldsymbol{x}_t)-g^2(t)\boldsymbol{s}(t,\boldsymbol{x}_t)\right)+\frac{1}{2}\right)$ $\frac{1}{2}g^2(t)\|\bm{s}(t,\bm{x}_t)\|^2\bigg)\,.$ (61) Note that for any t the divergence term under the expectation can equivalently be written in one of three ways (integration by parts; assumptions 8 and 14 in [Appendix A\)](#page-13-2): $-\mathbb{E}_{\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)} \operatorname{div}_{\boldsymbol{x}} (f(t, \boldsymbol{x}_t) - g^2(t) s(t, \boldsymbol{x}_t))$ $\overset{(i)}{=} \mathbb{E}_{\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)} \left[\left(f(t, \boldsymbol{x}_t) - g^2(t) \boldsymbol{s}(t, \boldsymbol{x}_t) \right)^T \nabla_{\boldsymbol{x}_t} \log p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0) \right]$ $\stackrel{(ii)}{=} \mathbb{E}_{\boldsymbol{x}_t \sim p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)} \left[-\operatorname{div}_{\boldsymbol{x}} f(t, \boldsymbol{x}_t) - g^2(t) s(t, \boldsymbol{x}_t)^T \nabla_{\boldsymbol{x}_t} \log p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0) \right],$ (62) which holds due to applying integration by parts either • (*i*) : to $f(t, \boldsymbol{x}_t) - g^2(t)\boldsymbol{s}(t, \boldsymbol{x}_t)$ and $p_{t|0}(\boldsymbol{x}_t|\boldsymbol{x}_0)$, or • (ii) : to $s(t, x_t)$ and $p_{t|0}(x_t|x_0)$. Third term. $\mathbb{E} \Big[\frac{1}{-}$ 2 \int_0^T 0 $g^2(t)\|\boldsymbol{s}(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p^{\rm SDE}_t(\boldsymbol{x}_t)\|^2 dt\bigg]$ (63)

1134 1135 1136 Fourth term. Using Assumption 12 [\(Appendix A\)](#page-13-2) and the fact that $g(t)\nabla_x \log p_t^{\text{SDE}}(x_t)$ is W adapted, we have

1137 1138

1149 1150

1153

1156 1157

1171

1174 1175 1176

1178 1179 1180

 $\mathbb{E}\big[\int^T$ $\int\limits_0^1 g(t)\nabla_{\boldsymbol{x}}\log p^{\rm SDE}_t(\boldsymbol{x}_t)^Td\mathrm{W}_t$ 1 $= 0.$ (64)

1139 1140 Combining all four terms yields the claim. \Box

1141 1142 Corollary 1 (ELBO for Linear SDE). *For an SDE with linear drift (equation [1\)](#page-1-2), for any* $x_0 \in \mathbb{R}^D$, assuming $p_T^{\rm SDE} = \mathcal{N}(\mathbf{0}, \sigma_T^2 \boldsymbol{I}_D)$ we have

$$
\log p_0^{\text{SDE}}(\boldsymbol{x}_0) = \underbrace{\frac{T}{2} \mathbb{E}_{t,\boldsymbol{\varepsilon}} g^2(t) \|\boldsymbol{s}(t,\boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t)\|^2}_{\geq 0} + \text{ELBO}(\boldsymbol{x}_0)
$$
(65)

1147 1148 *where* $t \sim \mathcal{U}(0,T)$ *,* $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_D)$ *,* $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \varepsilon$ and

$$
\text{ELBO}(\boldsymbol{x}_0) = C - \frac{e^{\lambda_{min}}}{2} ||\boldsymbol{x}_0||^2 - \frac{T}{2} \mathbb{E}_{t,\varepsilon} \left(-\frac{d\lambda_t}{dt} \right) ||\sigma_t \boldsymbol{s}(t, \alpha_t \boldsymbol{x}_0 + \sigma_t \varepsilon) + \varepsilon||^2 \tag{66}
$$

1151 1152 *and* $C = -\frac{D}{2} (1 + \log(2\pi\sigma_0^2)).$

1154 1155 *Proof.* In the linear SDE case (equation [1\)](#page-1-2) we have $p_{t|0}(x_t|x_0) = \mathcal{N}(x_t|\alpha_t x_0, \sigma_t^2 I_D)$. Using [Proposition 3,](#page-19-0) we have

$$
ELBO(\boldsymbol{x}_0) = \mathbb{E}_{\boldsymbol{x}_T \sim p_{T|0}(\boldsymbol{x}_T|\boldsymbol{x}_0)} [\log p_T^{\rm SDE}(\boldsymbol{x}_T)] + T \mathbb{E}_{t,\boldsymbol{x}_t} L(t,\boldsymbol{x}_t)
$$
(67)

1158 1159 and we choose

1160 1161 1162 1163 1164 1165 L(t, x) = − 1 2 g 2 (t)∥s(t, x)∥ ² + L3(t, x) = − 1 2 g 2 (t)∥s(t, x)∥ ² + divx(f(t, x)) + g 2 (t)s(t, x) ^T ∇^x log pt|0(x|x0) =f(t)D − 1 2 g 2 (t)∥s(t, x) − ∇^x log pt|0(x|x0)∥ ² + 1 2 g 2 (t)∥∇^x log pt|0(x|x0)∥ 2 (68)

1166 1167 1168 Since $\nabla_x \log p_{t|0}(x|x_0) = \frac{\alpha_t x_0 - x}{\sigma_t^2}$ and $x_t \sim p_{t|0}(x_t|x_0)$ is equivalent to $x_t = \alpha_t x_0 + \sigma_t \varepsilon$ for $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_D)$, we have $\nabla_x \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) = \frac{-\varepsilon}{\sigma_t}$ and

1169
\n1170
\n1171
\n1172
\n1173
\n1174
\n1175
\n1176
\n1177
\n1178
\n1179
\n1170
\n1171
\n1173
\n
$$
= -\frac{T}{2} \mathbb{E}_{t,\varepsilon} \left(-\frac{d\lambda_t}{dt} \right) \left\| \sigma_t s(t, \alpha_t x_0 + \sigma_t \varepsilon) + D T \mathbb{E}_{t,x_t} f(t) + \frac{T}{2} \mathbb{E}_{t,\varepsilon} g^2(t) \right\| \frac{\varepsilon}{\sigma_t} \right\|^2
$$
\n
$$
= -\frac{T}{2} \mathbb{E}_{t,\varepsilon} \left(-\frac{d\lambda_t}{dt} \right) \left\| \sigma_t s(t, \alpha_t x_0 + \sigma_t \varepsilon) + \varepsilon \right\|^2
$$
\n
$$
+ \mathbb{E}_{\varepsilon} [\log p_2^{\text{SDE}}(\alpha_T x_0 + \sigma_T \varepsilon)] + D T \mathbb{E}_{\varepsilon} \left(f(t) - \frac{1}{2} \frac{d\lambda_t}{\lambda t} \right)
$$
\n(69)

$$
+\underbrace{\mathbb{E}_{\varepsilon}[\log p_{T}^{\rm SDE}(\alpha_{T}x_{0}+\sigma_{T}\varepsilon)]}_{\text{``first term''}}+\underbrace{DT\mathbb{E}_{t}\left(f(t)-\frac{1}{2}\frac{d\lambda_{t}}{dt}\right)}_{\text{``second term''}}
$$

1181 First term

$$
\mathbb{E}_{\varepsilon}[\log p_T^{\text{SDE}}(\alpha_T \boldsymbol{x}_0 + \sigma_T \boldsymbol{\varepsilon})] = -\frac{D}{2} \log(2\pi \sigma_T^2) - \frac{1}{2\sigma_T^2} \mathbb{E}_{\varepsilon} ||\alpha_T \boldsymbol{x}_0 + \sigma_T \boldsymbol{\varepsilon}||^2
$$

$$
= -\frac{D}{2} \log(2\pi \sigma_T^2) - \frac{1}{2\sigma_T^2} (\alpha_T^2 ||\boldsymbol{x}_0||^2 + \sigma_T^2 D) \tag{70}
$$

1187
$$
= -\frac{D}{2} \left(1 + \log(2\pi\sigma_T^2) \right) - \frac{e^{\lambda_{\min}}}{2} ||x_0||^2
$$

1188 1189 Second term

1190 1191

1194

1206 1207

1210 1211 1212

1214 1215 1216

1229 1230

$$
DT\mathbb{E}_t\left(f(t) - \frac{1}{2}\frac{d\lambda_t}{dt}\right) = D\int_0^T \frac{d\log \sigma_t}{dt} dt = D\left(\log \sigma_T - \log \sigma_0\right)
$$
(71)

 \Box

 \Box

1192 1193 Combining all the terms yields the claim.

1195 We can now use [Theorem 6](#page-18-2) to prove [Theorem 4.](#page-4-2)

1196 1197 Theorem 4 (Approximate Augmented Forward SDE). Let $s(t, x_t)$ be the model approximating the *score function and* $x_0 \in \mathbb{R}^D$ given. Define an auxiliary process ω starting at $\omega_0 = 0$. If

$$
d\begin{bmatrix} \mathbf{x}_t \\ \omega_t \end{bmatrix} = \begin{bmatrix} f(t)\mathbf{x}_t \\ -f(t)\mathbf{D} + g^2(t) \left(\frac{1}{2} \|\mathbf{s}(t, \mathbf{x}_t)\|^2 + \mathbf{div}_{\mathbf{x}} \|\mathbf{s}(t, \mathbf{x}_t)\right) \end{bmatrix} dt + g(t) \begin{bmatrix} \mathbf{I}_D \\ \mathbf{s}(t, \mathbf{x}_t) \end{bmatrix} d\mathbf{W}_t.
$$
\n(10)

Then

$$
\omega_T = \log p_T^{\text{SDE}}(\boldsymbol{x}_T) - \log p_0^{\text{SDE}}(\boldsymbol{x}_0) + \mathbf{Y}_{\boldsymbol{x}_0},\tag{11}
$$

1204 1205 where $Y_{\bm{x}_0}$ is a random variable such that

$$
\mathbb{E}\mathbf{Y}_{\boldsymbol{x}_0} = \frac{T}{2} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t|\boldsymbol{x}_0)} g^2(t) \|\boldsymbol{s}(t,\boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) \|^2 \ge 0. \tag{12}
$$

1208 1209 Furthermore, Y_{x_0} can be written as $Y_{x_0} = Y_1 + Y_2$, where

$$
\mathbf{Y}_1 = \frac{1}{2} \int_0^T g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) - \boldsymbol{s}(t, \boldsymbol{x}_t)\|^2 dt
$$

1213 and

$$
\mathbb{E} \mathbf{Y}_2 = 0; \text{Var}(\mathbf{Y}_2) = \int_0^T g^2(t) \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t|\boldsymbol{x}_0)} ||\boldsymbol{s}(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{s}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t)||^2 dt.
$$

For the non-linear drift (equation [23\)](#page-13-0), we have (the difference highlighted in blue)

1217
\n1218
\n1219
\n1220
\n
$$
d\begin{bmatrix} x_t \\ \omega_t \end{bmatrix} = \begin{bmatrix} f(t, x_t) \\ -\text{div}_x f(t, x_t) + g^2(t) \left(\frac{1}{2} \|\mathbf{s}(t, x)\|^2 + \text{div}_x \ \mathbf{s}(t, x) \right) \end{bmatrix} dt + g(t) \begin{bmatrix} I_D \\ \mathbf{s}(t, x_t) \end{bmatrix} dW_t.
$$
\n1221

Proof. Using [Theorem 6](#page-18-2) we have

$$
\log p_0^{\text{SDE}}(\boldsymbol{x}_0) = \log p_T^{\text{SDE}}(\boldsymbol{x}_T) - \int_0^T G(t, \boldsymbol{x}_t) dt - \int_0^T g(t) \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t)^T dW_t,
$$

=
$$
\log p_T^{\text{SDE}}(\boldsymbol{x}_T) - \int_0^T d\omega_t + \mathbf{Y}_1 + \mathbf{Y}_2,
$$
 (72)

1228 where

$$
\mathbf{Y}_1 = \frac{1}{2} \int_0^T g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) - \boldsymbol{s}(t, \boldsymbol{x}_t)\|^2 dt \tag{73}
$$

1231 1232 and

$$
\mathbf{Y}_2 = \int_0^T g(t) \left(\mathbf{s}(t, \mathbf{x}_t) - \nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) \right) d\mathbf{W}_t.
$$
 (74)

Since $\int_0^T d\omega_t = \omega_T - \omega_0 = \omega_T$, we have

$$
\log p_0^{\rm SDE}(\boldsymbol{x}_0) = \log p_T^{\rm SDE}(\boldsymbol{x}_T) - \omega_T + \mathbf{Y}
$$
\n(75)

1238 1239 for $Y = Y_1 + Y_2$.

1240

1241 Similarly to [Theorem 6](#page-18-2) we can derive the dynamics of $\log p_t^{\text{SDE}}(x_t)$ under the approximate reverse SDE [\(Equation 24\)](#page-13-1).

1242 1243 1244 Theorem 7 (Approximate augmented reverse SDE). *Let* x *be a random process following [Equa](#page-13-1)[tion 24,](#page-13-1) then*

$$
d\begin{bmatrix} \mathbf{x}_t \\ \log p_t^{\text{SDE}}(\mathbf{x}_t) \end{bmatrix} = \begin{bmatrix} f(t, \mathbf{x}_t) - g^2(t)\mathbf{s}(t, \mathbf{x}_t) \\ \tilde{F}(t, \mathbf{x}_t) \end{bmatrix} dt + g(t) \begin{bmatrix} \mathbf{I}_d \\ \nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t)^T \end{bmatrix} d\overline{\mathbf{W}}_t, \qquad (76)
$$

1247 1248 *where*

1245 1246

1252

$$
\tilde{F}(t, \boldsymbol{x}) = -\operatorname{div}_{\boldsymbol{x}} f(t, \boldsymbol{x}) - g^2(t) \underbrace{\left(\Delta_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}) - \operatorname{div}_{\boldsymbol{x}} s(t, \boldsymbol{x})\right)}_{=0 \text{ when } s(t, \boldsymbol{x}) = \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x})} - \frac{1}{2} g^2(t) \|\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x})\|^2.
$$
\n(77)

1253 *Proof.* The approximate reverse SDE can equivalently be written as

$$
d\boldsymbol{x}_t = -\left(f(T-t,\boldsymbol{x}_t) - g^2(T-t)\boldsymbol{s}(T-t,\boldsymbol{x}_t)\right)dt + g(T-t)dW_t \tag{78}
$$

for $dt > 0$ and W running forward in time. We will apply Itô's lemma [\(Appendix C\)](#page-14-0) to $h(t, x) =$ $\log p_{T-t}^{\rm SDE}(\boldsymbol{x})$. From [Equation 47](#page-18-4) we have:

$$
\frac{\partial}{\partial t}h(t, \mathbf{x}) = \text{div}_{\mathbf{x}} f(T - t, \mathbf{x}) + \frac{1}{2}g^2(T - t)\Delta_{\mathbf{x}} \log p_{T-t}^{\text{SDE}}(\mathbf{x}) - g^2(T - t) \text{ div}_{\mathbf{x}} s(T - t, \mathbf{x}) \n+ \nabla_{\mathbf{x}} \log p_{T-t}^{\text{SDE}}(\mathbf{x})^T \left(f(T - t, \mathbf{x}) - g^2(T - t)s(T - t, \mathbf{x}) + \frac{1}{2}g^2(T - t)\nabla_{\mathbf{x}} \log p_{T-t}^{\text{SDE}}(\mathbf{x}) \right)
$$
\n(79)

Therefore the drift of $h(t, x_t)$ is given by

$$
\frac{\partial}{\partial t}h(t, \mathbf{x}_t) + \nabla_{\mathbf{x}}h(t, \mathbf{x}_t)^T \left(-f(T - t, \mathbf{x}_t) + g^2(T - t)\mathbf{s}(T - t, \mathbf{x}_t) \right) + \frac{1}{2}g^2(T - t)\Delta_{\mathbf{x}}h(t, \mathbf{x}_t)
$$
\n
$$
= \text{div}_{\mathbf{x}} f(T - t, \mathbf{x}_t) + g^2(T - t)\Delta_{\mathbf{x}} \log p_{T - t}^{\text{SDE}}(\mathbf{x}_t) - g^2(T - t) \text{ div}_{\mathbf{x}} \mathbf{s}(T - t, \mathbf{x}_t)
$$
\n
$$
+ \frac{1}{2}g^2(T - t) \|\nabla_{\mathbf{x}} \log p_{T - t}^{\text{SDE}}(\mathbf{x}_t)\|^2
$$
\n(80)

and therefore for x following the approximate reverse SDE [\(Equation 24\)](#page-13-1), we have

$$
d\log p_t^{\text{SDE}}(\boldsymbol{x}_t) = \tilde{F}(t, \boldsymbol{x}_t)dt + g(t)\nabla_{\boldsymbol{x}}\log p_t^{\text{SDE}}(\boldsymbol{x}_t)^T d\overline{\mathbf{W}}_t, \tag{81}
$$

1275 1276 where $dt < 0$, \overline{W} is running backwards in time and

$$
\tilde{F}(t,\mathbf{x}) = -\operatorname{div}_{\mathbf{x}} f(t,\mathbf{x}) - g^2(t)\Delta_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}) + g^2(t) \operatorname{div}_{\mathbf{x}} s(t,\mathbf{x}) - \frac{1}{2}g^2(t) \|\nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x})\|^2.
$$
\n(82)

1278 1279 1280

1288 1289 1290

1295

1277

1281 1282 1283 1284 [Theorem 7](#page-22-0) defines the exact dynamics of $\log p_t^{\text{SDE}}(x_t)$. However, $d \log p_t^{\text{SDE}}(x_t)$ depends on $\nabla_x \log p_t^{\text{SDE}}(x_t)$, which we cannot access in practice. We only have access to the approximation $s(t, x)$. We now show that replacing the true $\nabla_x \log p_t^{\text{SDE}}(x_t)$ with s no longer provides exact likelihood estimates, but an "upper bound in expectation".

1285 1286 1287 Theorem 3 (Approximate Augmented Reverse SDE). *Let* s(t, x) *be an approximation of the score function. Let* $x_T \sim p_T$ *and define an auxiliary process* r *starting at* $r_T = \log p_T^{\rm SDE}(\bm x_T)$ *. If*

$$
d\begin{bmatrix} \boldsymbol{x}_t \\ r_t \end{bmatrix} = \begin{bmatrix} f(t)\boldsymbol{x}_t - g^2(t) \boldsymbol{s}(t, \boldsymbol{x}_t) \\ -f(t)D - \frac{1}{2}g^2(t) \|\boldsymbol{s}(t, \boldsymbol{x}_t)\|^2 \end{bmatrix} dt + g(t) \begin{bmatrix} \boldsymbol{I}_D \\ \boldsymbol{s}(t, \boldsymbol{x}_t) \end{bmatrix}^T \begin{bmatrix} \boldsymbol{I}_D \\ \boldsymbol{s}(t, \boldsymbol{x}_t) \end{bmatrix} (7)
$$

1291 1292 then $\bm{x}_{0} \sim p_{0}^{\rm SDE}(\bm{x}_{0})$ and

$$
r_0 = \log p_0^{\text{SDE}}(\boldsymbol{x}_0) + \mathbf{X},\tag{8}
$$

1293 1294 *where* X *is a random variable such that the bias of* r_0 *is given by*

$$
\mathbb{E}\mathbf{X} = \frac{T}{2} \mathbb{E}_{t \sim \mathcal{U}(0,T), \boldsymbol{x}_t \sim p_t^{\text{SDE}}(\boldsymbol{x}_t)} \left[g^2(t) \| \boldsymbol{s}(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) \|^{2} \right] \geq 0. \tag{9}
$$

Tuntthermore, X can be written as
$$
X = X_1 + X_2
$$
, where
\n
$$
X_1 = \int_0^T g^2(t) \left(\operatorname{div}_x s(t, x_t) + \frac{1}{2} ||s(t, x_t)||^2 - \Delta_x \log p_t^{\text{SDE}}(x_t) - \frac{1}{2} ||\nabla_x \log p_t^{\text{SDE}}(x_t)||^2 \right) dt
$$
\nand
\n
$$
E X_2 = 0; \text{Var}(X_2) = \int_0^T g^2(t) \mathbb{E}_{x_t \sim p_t^{\text{SDE}}(x_t)} ||s(t, x_t) - \nabla_x \log p_t^{\text{SDE}}(x_t)||^2 dt
$$
\nFor the non-linear drift (equation 23), we have (the difference highlighted in blue)
\n
$$
d \begin{bmatrix} x_t \\ r_t \end{bmatrix} = \begin{bmatrix} f(t, x_t) - g^2(t) \sin(t, x_t) \\ -\operatorname{div}_x f(t, x_t) - \frac{1}{2} g^2(t) ||s(t, x_t)||^2 \end{bmatrix} dt + g(t) \begin{bmatrix} I_D \\ s(t, x_t) \end{bmatrix} T \frac{d \overline{W}_t}{d \overline{W}_t},
$$
\n
$$
P \text{ropf.}
$$
\n1308\nProof.
\n1309\nProof.
\n1310\n1311\n132\n1332\n134\n1353\n136\n1374\n1385\n1396\n1317\n1318\n1319\n1314\n1315\n1318\n1319\n1310\n1311\n1311\n1312\n1313\n1313\n1314\n1315\n1316\n1317\n1318\n1319\n1310\n1311\n1311\n1312\n1313\n1313\n1314\n1315\n1316\n1317\n1318\n1319\n1320\n1321\n1322\n1322\n1323\n1323\n1334\n1335\n1336\n1347\n1328\n1321\n1323\n1339\n1330\n1310\n1311\n1321\n1322\n1330\n1331\n1333\n1343\n135\n1

and

1325 1326

1329

$$
\mathbf{X}_2 = \int_0^T g(t) \left(\nabla_{\boldsymbol{x}} \log p_t^{\rm SDE}(\boldsymbol{x}_t) - \boldsymbol{s}(t, \boldsymbol{x}_t) \right)^T d\overline{\mathbf{W}}_t
$$
 (86)

1327 1328 Note that from Assumption 13 [\(Appendix A\)](#page-13-2) we have

$$
\mathbb{E}X_2 = 0. \tag{87}
$$

1330 Furthermore, using Fubini's theorem, we have

$$
\mathbb{E}X_1 = \int_0^T g^2(t) \mathbb{E}_{\boldsymbol{x}_t \sim p_t^{\text{SDE}}(\boldsymbol{x}_t)} \left(\text{div}_{\boldsymbol{x}} \, \boldsymbol{s}(t, \boldsymbol{x}_t) + \frac{1}{2} ||\boldsymbol{s}(t, \boldsymbol{x}_t)||^2 - \Delta_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) - \frac{1}{2} ||\nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t)||^2 \right) dt. \tag{88}
$$

1336 Now rewrite

$$
\begin{array}{c} 1337 \\ 1338 \end{array}
$$

$$
\mathbb{E}_{\mathbf{x}_t \sim p_t^{\text{SDE}}(\mathbf{x}_t)} \left(\text{div}_{\mathbf{x}} \, \mathbf{s}(t, \mathbf{x}_t) - \Delta_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) \right) \n= \mathbb{E}_{\mathbf{x}_t \sim p_t^{\text{SDE}}(\mathbf{x}_t)} \, \text{div}_{\mathbf{x}} \left(\mathbf{s}(t, \mathbf{x}_t) - \nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) \right) \n\stackrel{\text{(i)}}{=} \mathbb{E}_{\mathbf{x}_t \sim p_t^{\text{SDE}}(\mathbf{x}_t)} \left(-\mathbf{s}(t, \mathbf{x}_t) + \nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) \right)^T \nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) \n= \mathbb{E}_{\mathbf{x}_t \sim p_t^{\text{SDE}}(\mathbf{x}_t)} \left(-\mathbf{s}(t, \mathbf{x}_t)^T \nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) + ||\nabla_{\mathbf{x}} \log p_t^{\text{SDE}}(\mathbf{x}_t) ||^2 \right),
$$
\n(89)

1343 1344 where (i) is applying integration by parts (Assumptions 8 and 11 in [Appendix A\)](#page-13-2). Substituting back to [Equation 88,](#page-24-0) we get

$$
\begin{split}\n\mathbb{E}X_{1} &= \int_{0}^{T} \frac{1}{2} g^{2}(t) \mathbb{E}_{\mathbf{x}_{t} \sim p_{t}^{\text{SDE}}(\mathbf{x}_{t})} \left(\|\mathbf{s}(t, \mathbf{x}_{t})\|^{2} - 2\mathbf{s}(t, \mathbf{x}_{t})^{T} \nabla_{\mathbf{x}} \log p_{t}^{\text{SDE}}(\mathbf{x}_{t}) + \|\nabla_{\mathbf{x}} \log p_{t}^{\text{SDE}}(\mathbf{x}_{t})\|^{2} \right) dt \\
&= \int_{0}^{T} \frac{1}{2} g^{2}(t) \mathbb{E}_{\mathbf{x}_{t} \sim p_{t}^{\text{SDE}}(\mathbf{x}_{t})} \|\mathbf{s}(t, \mathbf{x}_{t}) - \nabla_{\mathbf{x}} \log p_{t}^{\text{SDE}}(\mathbf{x}_{t}) \|^{2} dt.\n\end{split} \tag{90}
$$

1350 1351 Therefore

1352

1355 1356

1369 1370

1375

1378 1379 1380

1389 1390

1392 1393

1395 1396 1397

1399

$$
\frac{1353}{1354}
$$

$$
\log p_0^{\text{SDE}}(\boldsymbol{x}_0) = \log p_T^{\text{SDE}}(\boldsymbol{x}_T) - \int_0^T \left(-\operatorname{div}_{\boldsymbol{x}} f(t, \boldsymbol{x}_t) - \frac{1}{2} g^2(t) s(t, \boldsymbol{x}_t) \right) dt - \int_0^T g(t) s(t, \boldsymbol{x}_t)^T d\overline{\mathbf{W}}_t - \mathbf{X},
$$
\n(91)

1357 where

$$
\mathbb{E}\mathbf{X} = \int_0^T \frac{1}{2} g^2(t) \mathbb{E}_{\boldsymbol{x}_t \sim p_t^{\text{SDE}}(\boldsymbol{x}_t)} ||\boldsymbol{s}(t, \boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log p_t^{\text{SDE}}(\boldsymbol{x}_t) ||^2 dt \ge 0.
$$
 (92)

H PROOF OF T[HEOREM](#page-5-1) 5

1366 In the following sections, we assume the linear drift SDE [Equation 1.](#page-1-2) In [Theorem 5](#page-5-1) we explicitly assume Gaussian forward transition densities, which are only guaranteed in the linear drift SDE.

1367 1368 Theorem 5 (Mode-tracking ODE). Let $t \in (0, T]$ and $x_t \in \mathbb{R}^D$ a noisy sample. If there exists a *smooth curve* $s \mapsto y_s$ *such that* $p(y_s|x_t) = \max_{x_s} p(x_s|x_t)$ *, then* $y_t = x_t$ *and for* $s < t$

$$
\frac{d}{ds}\mathbf{y}_s = f(s)\mathbf{y}_s - g^2(s)\left[\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)\right] - \frac{1}{2}g^2(s)\left[\mathbf{A}(s,\mathbf{y}_s)^{-1}\right]\left[\nabla_{\mathbf{y}}\Delta_{\mathbf{y}}\log p_s(\mathbf{y}_s)\right],\tag{16}
$$

1371 1372 1373 1374 where $\bm{A}(s, \bm{y}) = (\nabla_{\bm{y}}^2 \log p_s(\bm{y}) - \psi(s) \bm{I}_D), \, \psi(s) = \frac{1}{\sigma_s^2}$ e^{λ_t} $\frac{e^{\lambda_t}}{e^{\lambda_s}-e^{\lambda_t}}$ *, and* $\Delta_{\bm{y}}=\sum_i\frac{\partial^2}{\partial y_i^2}$ $rac{\partial^2}{\partial y_i^2}$ is the Laplace *operator. In particular:*

$$
p(\mathbf{y}_0|\mathbf{x}_t) = \max_{\mathbf{x}_0} p(\mathbf{x}_0|\mathbf{x}_t).
$$
 (17)

1376 1377 Note that without assuming invertibility of A, [Equation 16](#page-5-3) becomes

$$
\mathbf{A}(s, \mathbf{y}_s) \left(\dot{\mathbf{y}}_s - f(s) \mathbf{y}_s + g^2(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) \right) = -\frac{1}{2} g^2(s) \nabla_{\mathbf{y}} \Delta_{\mathbf{y}} \log p_s(\mathbf{y}_s)
$$
(93)

1381 *Proof.* We begin by noting that for linear SDE (equation [1\)](#page-1-2) $p_{t|s}$ is Gaussian for $s < t$ and therefore

$$
\log p_{s|t}(\mathbf{y}_s|\mathbf{x}_t) = \log p_{t|s}(\mathbf{x}_t|\mathbf{y}_s) + \log p_s(\mathbf{y}_s) - \log p_t(\mathbf{x}_t)
$$

=
$$
C - \frac{\|\mathbf{x}_t - \tilde{f}(s)\mathbf{y}_s\|^2}{2\tilde{g}^2(s)} + \log p_s(\mathbf{y}_s) - \log p_t(\mathbf{x}_t),
$$
(94)

1386 1387 1388 where $\tilde{f}(s) = \frac{\alpha_t}{\alpha_s}$ and $\tilde{g}^2(s) = \sigma_t^2 - \tilde{f}^2(s)\sigma_s^2$ (See Appendix A.1 in [Kingma et al.](#page-11-5) [\(2021\)](#page-11-5)). Since $p_{s|t}(\mathbf{y}_s|\mathbf{x}_t) = \max_{\mathbf{x}_s} p_{s|t}(\mathbf{x}_s|\mathbf{x}_t)$, it must hold that

$$
\nabla_{\mathbf{y}_s} \log p_{s|t}(\mathbf{y}_s|\mathbf{x}_t) = 0 \text{ for all } s < t. \tag{95}
$$

1391 Therefore

$$
\frac{d}{ds} \left(\nabla_{\mathbf{y}_s} \log p_{s|t}(\mathbf{y}_s|\mathbf{x}_t) \right) = 0 \text{ for all } s < t. \tag{96}
$$

1394 From [Equation 94](#page-25-1) we have

$$
\nabla_{\mathbf{y}_s} \log p_{s|t}(\mathbf{y}_s|\mathbf{x}_t) = \nabla_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) + \frac{\tilde{f}(s)}{\tilde{g}^2(s)} \left(\mathbf{x}_t - \tilde{f}(s)\mathbf{y}_s\right) = 0 \tag{97}
$$

1398 and thus

$$
\frac{d}{ds} \left(\nabla_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) - \psi(s) \mathbf{y}_s + \phi(s) \mathbf{x}_t \right) = 0, \tag{98}
$$

1400 1401 1402 1403 where $\psi(s) = \frac{\tilde{f}^2(s)}{\tilde{a}^2(s)}$ $\frac{\tilde{f}^2(s)}{\tilde{g}^2(s)}$ and $\phi(s) = \frac{\tilde{f}(s)}{\tilde{g}^2(s)}$. Note that d

$$
\frac{d}{ds}\nabla_{\boldsymbol{y}_s}\log p_s(\boldsymbol{y}_s) = \frac{\partial}{\partial s}\nabla_{\boldsymbol{y}_s}\log p_s(\boldsymbol{y}_s) + \nabla_{\boldsymbol{y}_s}^2\log p_s(\boldsymbol{y}_s)\dot{\boldsymbol{y}}_s
$$
\n(99)

1404 1405 and we can use [Equation 26](#page-14-1) to re-write the first term

$$
\frac{\partial}{\partial s} \nabla_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) = \nabla_{\mathbf{y}_s} \frac{\partial}{\partial s} \log p_s(\mathbf{y}_s)
$$
\n
$$
= \nabla_{\mathbf{y}_s} \left(-f(s)D + \frac{1}{2} g^2(s) \Delta_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) - \nabla_{\mathbf{y}_s} \log p_s(\mathbf{y}_s)^T (f(s) \mathbf{y}_s - \frac{1}{2} g^2(s) \nabla_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) \right)
$$
\n
$$
= \frac{1}{2} g^2(s) \nabla_{\mathbf{y}_s} \Delta_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) - f(s) \nabla_{\mathbf{y}}^2 \log p_s(\mathbf{y}_s) \mathbf{y}_s
$$
\n
$$
- f(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) + g^2(s) \nabla_{\mathbf{y}}^2 \log p_s(\mathbf{y}_s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s)
$$
\n
$$
= \frac{1}{2} g^2(s) \nabla_{\mathbf{y}_s} \Delta_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) - f(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s)
$$
\n
$$
= \frac{1}{2} g^2(s) \nabla_{\mathbf{y}_s} \Delta_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) - f(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s)
$$
\n
$$
= \nabla_{\mathbf{y}}^2 \log p_s(\mathbf{y}_s) (f(s) \mathbf{y}_s - g^2(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s))
$$
\n
$$
= (100)
$$

and thus

$$
\frac{d}{ds} \nabla_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) = \frac{1}{2} g^2(s) \nabla_{\mathbf{y}_s} \Delta_{\mathbf{y}_s} \log p_s(\mathbf{y}_s) - f(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) \n+ \nabla_{\mathbf{y}}^2 \log p_s(\mathbf{y}_s) (\mathbf{y}_s - f(s) \mathbf{y}_s + g^2(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s))
$$
\n(101)

For the remaining terms we first note

$$
\tilde{f}(s) = \frac{\alpha_t}{\alpha_s} = \exp\{\log \alpha_t - \log \alpha_s\} = \exp\{\int_s^t \frac{d}{du} \log \alpha_u\} = \exp\{\int_s^t f(u)\}
$$
(102)

1427 1428 and in particular $\frac{d}{ds} \log \tilde{f}(s) = -f(s)$. Similarly

$$
\tilde{g}^2(s) = \sigma_t^2 - \tilde{f}^2(s)\sigma_s^2 = \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_s^2}{\alpha_s^2}\right) = \alpha_t^2 \left(e^{-\lambda_t} - e^{-\lambda_s}\right) = \alpha_t^2 \int_s^t \frac{d}{du} e^{-\lambda_u} du
$$

$$
= \alpha_t^2 \int_s^t \left(-\frac{d\lambda_u}{du}\right) e^{-\lambda_u} du = \alpha_t^2 \int_s^t \left(-\frac{d\lambda_u}{du}\right) \frac{\sigma_u^2}{\alpha_u^2} du = \alpha_t^2 \int_s^t \frac{g^2(u)}{\alpha_u^2} du
$$
(103)

$$
= \int_s^t \tilde{f}^2(u)g^2(u)du
$$

and in particular $\frac{d}{ds} \log \tilde{g}^2(s) = \frac{1}{\tilde{g}^2(s)} \frac{d}{ds} \tilde{g}^2(s) = -\psi(s)g^2(s)$. Therefore d

$$
\frac{d}{ds}(-\psi(s)\mathbf{y}_s + \phi(s)\mathbf{x}_t) = -\psi'(s)\mathbf{y}_s - \psi(s)\mathbf{y}_s + \phi'(s)\mathbf{x}_t \n= -\psi(s)\mathbf{y}_s + \phi'(s)\mathbf{x}_t - (\phi'(s)\tilde{f}(s) - f(s)\psi(s))\mathbf{y}_s \n= -\psi(s)(\mathbf{y}_s - f(s)\mathbf{y}_s) + \phi'(s)(\mathbf{x}_t - \tilde{f}(s)\mathbf{y}_s) \n= -\psi(s)(\mathbf{y}_s - f(s)\mathbf{y}_s) + \phi(s)\frac{d}{ds}(\log \phi(s))(\mathbf{x}_t - \tilde{f}(s)\mathbf{y}_s).
$$
\n(104)

1447 From [Equation 97,](#page-25-2) we have

$$
\phi(s) \left(\boldsymbol{x}_t - \tilde{f}(s) \boldsymbol{y}_s \right) = -\nabla_{\boldsymbol{y}} \log p_s(\boldsymbol{y}_t)
$$
\n(105)

1450 1451 and

1448 1449

1452

$$
\frac{d}{ds}\left(\log\phi(s)\right) = \frac{d}{ds}\log\tilde{f}(s) - \frac{d}{ds}\log\tilde{g}^2(s) = -f(s) + \psi(s)g^2(s). \tag{106}
$$

1453 Thus

$$
\begin{aligned}\n\frac{1454}{1455} \quad & \frac{d}{ds} \left(-\psi(s)\mathbf{y}_s + \phi(s)\mathbf{x}_t \right) = -\psi(s)\left(\dot{\mathbf{y}}_s - f(s)\mathbf{y}_s \right) + \left(f(s) - \psi(s)g^2(s) \right) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) \\
& = -\psi(s)\left(\dot{\mathbf{y}}_s - f(s)\mathbf{y}_s + g^2(s)\nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) \right) + f(s)\nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s).\n\end{aligned} \tag{107}
$$

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 Putting it all together, we have $0 = \frac{d}{ds} (\nabla_{\boldsymbol{y}} \log p(\boldsymbol{y}_s|\boldsymbol{x}_t))$ $=\frac{1}{2}$ $\frac{1}{2}g^2(s)\nabla_{\boldsymbol{y}}\Delta_{\boldsymbol{y}}\log p_s(\boldsymbol{y}_s)-f(s)\nabla_{\boldsymbol{y}}\log p_s(\boldsymbol{y}_s)$ $+ \nabla_{\boldsymbol{y}}^2 \log p_s(\boldsymbol{y}_s) \left(\dot{\boldsymbol{y}}_s - f(s) \boldsymbol{y}_s + g^2(s) \nabla_{\boldsymbol{y}} \log p_s(\boldsymbol{y}_s) \right)$ $-\psi(s)\left(\dot{\mathbf{y}}_s - f(s)\mathbf{y}_s + g^2(s)\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)\right) + f(s)\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)$ $=\frac{1}{2}$ $\frac{1}{2}g^2(s)\nabla_{\bm{y}}\Delta_{\bm{y}}\log p_s(\bm{y}_s)+\left(\nabla_{\bm{y}}^2\log p_s(\bm{y}_s)-\psi(s)\bm{I}_D\right)\left(\dot{\bm{y}}_s-f(s)\bm{y}_s+g^2(s)\nabla_{\bm{y}}\log p_s(\bm{y}_s)\right),$ (108)

1470 1471 or equivalently for $\bm{A}(s,\bm{y})=\nabla^2_{\bm{y}}\log p_s(\bm{y})-\psi(s)\bm{I}_D$

$$
\dot{\mathbf{y}}_s = f(s)\mathbf{y}_s - g^2(s)\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s) - \frac{1}{2}g^2(s)\mathbf{A}(s,\mathbf{y}_s)^{-1}\nabla_{\mathbf{y}}\Delta_{\mathbf{y}}\log p_s(\mathbf{y}_s)
$$
(109)

1474 if $A(s, y_s)$ is invertible for all $s < t$ and

1458

1472 1473

1489 1490

1492 1493 1494

1511

$$
\psi(s) = \frac{\tilde{f}^2(s)}{\tilde{g}^2(s)} = \frac{\alpha_t^2}{\alpha_s^2 \left(\sigma_t^2 - \tilde{f}^2(s)\sigma_s^2\right)} = \frac{\alpha_t^2}{\alpha_s^2 \sigma_t^2 - \alpha_t^2 \sigma_s^2} = \frac{1}{\alpha_s^2} \frac{1}{\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_s^2}{\alpha_s^2}}
$$
\n
$$
- \frac{1}{\alpha_s^2} \frac{1}{\sigma_t^2 - \frac{\sigma_s^2}{\sigma_s^2}} = \frac{e^{\lambda_s}}{e^{\lambda_t}} = \frac{1}{\alpha_s^2} \frac{e^{\lambda_t}}{e^{\lambda_t}}
$$
\n
$$
(110)
$$

$$
= \frac{1}{\alpha_s^2} \frac{1}{e^{-\lambda_t} - e^{-\lambda_s}} = \frac{e^{-\alpha_s}}{\alpha_s^2} \frac{e^{\alpha_t}}{e^{\lambda_s} - e^{\lambda_t}} = \frac{1}{\sigma_s^2} \frac{e^{\alpha_t}}{e^{\lambda_s} - e^{\lambda_t}}.
$$

I MODE-SEEKING ODE IN THE GAUSSIAN CASE

We will prove the claims from [Remark 1.](#page-5-2) We recall it for completeness.

1487 1488 Remark 1 (High-density ODE or HD-ODE). *If* p_0 *is Gaussian, then equation [16](#page-5-3) becomes*

$$
d\mathbf{y}_s = \left(f(s)\mathbf{y}_s - g^2(s)\overline{\nabla_{\mathbf{x}}\log p_s(\mathbf{y}_s)}\right)ds,\tag{18}
$$

 \Box

1491 *i.e. the drift term of reverse SDE equation* [2.](#page-1-3) If $y_t = x_t$ and equation [18](#page-6-2) holds for $s < t$, then

$$
\mathbf{y}_0 = \arg\max_{\mathbf{x}_0} p(\mathbf{x}_0 | \mathbf{x}_t) + \mathcal{O}(e^{-\lambda_{\max}}). \tag{19}
$$

1495 1496 1497 *Proof.* We first note that when p_0 Gaussian and the SDE is linear (equation [1\)](#page-1-2) then p_s are Gaussian $\forall s$. In particular $\nabla_{x}\Delta_{x}\log p_{s}(x) = 0$ for al $s \in [0,T]$ and $x \in \mathbb{R}^{D}$. Therefore equation [16](#page-5-3) becomes equation [18.](#page-6-2) We will now study y_s following equation 18. Recalling [Equation 101:](#page-26-0)

1498
\n1499
\n1500
\n1501
\n1502
\n1503
\n1503
\n1504
\n1504
\n1504
\n1504
\n1504
\n1505
\n
$$
\frac{d}{ds} \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) = \frac{1}{2} g^2(s) \nabla_{\mathbf{y}} \Delta_{\mathbf{y}} \log p_s(\mathbf{y}_s) - f(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s)
$$
\n
$$
= -f(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) + \nabla_{\mathbf{y}}^2 \log p_s(\mathbf{y}_s) \left(\mathbf{y}_s - f(s) \mathbf{y}_s + g^2(s) \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) \right).
$$
\n(111)

If we then assume [Equation 18,](#page-6-2) we have

$$
\frac{d}{ds}\nabla_{\boldsymbol{y}}\log p_s(\boldsymbol{y}_s) = -f(s)\nabla_{\boldsymbol{y}}\log p_s(\boldsymbol{y}_s)
$$
\n(112)

1509 1510 and to simplify further, using the fact that $f(s) = \frac{d}{ds} \log \alpha_s$

$$
\frac{d}{ds} \left(\alpha_s \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) \right) = \frac{d}{ds} \alpha_s \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) + \alpha_s \frac{d}{ds} \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) = 0.
$$
 (113)

1512 1513 Hence, for y_s satisfying [Equation 18,](#page-6-2) we have

$$
\alpha_s \nabla_{\mathbf{y}} \log p_s(\mathbf{y}_s) = \alpha_t \nabla_{\mathbf{y}} \log p_t(\mathbf{y}_t) \text{ for all } s < t. \tag{114}
$$

1515 1516 We can thus rewrite

$$
\dot{\mathbf{y}}_s = f(s)\mathbf{y}_s - g^2(s)\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)
$$

= $f(s)\mathbf{y}_s - \frac{g^2(s)}{\alpha_s}\alpha_s\nabla_{\mathbf{y}}\log p_s(\mathbf{y}_s)$
= $f(s)\mathbf{y}_s - \frac{g^2(s)}{\alpha_s}\alpha_t\nabla_{\mathbf{y}}\log p_t(\mathbf{y}_t).$ (115)

1523 Furthermore

1524 1525

1514

$$
\frac{d}{ds}\left(\frac{\boldsymbol{y}_s}{\alpha_s}\right) = \frac{\dot{\boldsymbol{y}}_s \alpha_s - \boldsymbol{y}_s \alpha'_s}{\alpha_s^2} = \frac{\left(\frac{\alpha'_s}{\mathscr{A}_s} \boldsymbol{y}_s - \frac{g^2(s)}{\alpha_s} \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t)\right) \alpha_s - \boldsymbol{y}_s \alpha'_s}{\alpha_s^2} \n= -\frac{g^2(s)}{\alpha_s^2} \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t) = \frac{d\lambda_s}{ds} e^{-\lambda_s} \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t)
$$
\n(116)

and we can solve

$$
\frac{\boldsymbol{y}_t}{\alpha_t} - \frac{\boldsymbol{y}_0}{\alpha_0} = \int_0^t \left(\frac{d\lambda_s}{ds} e^{-\lambda_s} \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t) \right) ds = \left(\int_0^t \frac{d\lambda_s}{ds} e^{-\lambda_s} ds \right) \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t) \n= \left(\int_{\lambda_{\text{max}}}^{\lambda_t} e^{-\lambda} d\lambda \right) \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t) = \left(e^{-\lambda_{\text{max}}} - e^{-\lambda_t} \right) \alpha_t \nabla_{\boldsymbol{y}} \log p_t(\boldsymbol{y}_t).
$$
\n(117)

1537 Leveraging that $\alpha_0 = 1$, we get

$$
\mathbf{y}_0 = \frac{\mathbf{y}_t}{\alpha_t} + e^{-\lambda_t} \alpha_t \log p_t(\mathbf{y}_t) - e^{-\lambda_{\max}} \alpha_t \nabla_{\mathbf{y}} \log p_t(\mathbf{y}_t)
$$
\n
$$
= \frac{\mathbf{y}_t + \sigma_t^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)}{\alpha_t} - e^{-\lambda_{\max}} \alpha_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)
$$
\n
$$
= \mathbb{E} [\mathbf{x}_0 | \mathbf{x}_t] - e^{-\lambda_{\max}} \alpha_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)
$$
\n
$$
= \arg \max_{\mathbf{x}_0} p(\mathbf{x}_0 | \mathbf{x}_t) + \mathcal{O}(e^{-\lambda_{\max}}).
$$
\n(118)

 \Box

J NON-SMOOTH MODE-TRACKING CURVE

1566 1567 1568 An important assumption in [Theorem 5](#page-5-1) is that for a fixed $t \in (0,T]$ and a noisy point $x_t \in \mathbb{R}^D$, there exists a smooth curve $s \mapsto y_s$ such that

$$
p_{s|t}(\mathbf{y}_s|\mathbf{x}_t) = \max_{\mathbf{x}_s} p_{s|t}(\mathbf{x}_s|\mathbf{x}_t).
$$
 (119)

1570 1571 1572 1573 1574 1575 1576 It is an assumption that need not hold. To demonstrate we define the data distribution as 1D mixture of 3 gaussians $p = \sum_{i=1}^{3} w_i \mathcal{N}(\mu_i, \sigma^2)$, where $\mu_1 = -2.5$, $\mu_2 = -1.5$, $\mu_3 = 1$ and $\sigma^2 = 0.1$ and weights $w_1 = w_2 = 0.274$ and $w_3 = 0.45$. We model the distrbution with a VP-SDE [\(Song et al.,](#page-12-0) [2020c\)](#page-12-0), where $\sigma_t^2 = \frac{1}{1+e^{\lambda_t}} = 1 - \alpha_t^2$. We then choose $x_t = -2.5$ and t such that $\lambda_t = -8$ and visualize $\log p(\mathbf{x}_s|\mathbf{x}_t)$ for all $s < t$ and all $\mathbf{s}_t \in [-4, 3.5]$ and the mode-tracking curve $\mathbf{y}_s|\mathbf{x}_t$ in white [\(Figure 11](#page-28-1) left).

1577 1578 1579 The mode-tracking curve exhibits a discontinuous jump at s^* such that $\lambda_{s^*} \approx 1.28$. The distribution $p_{s|t}(\mathbf{x}_s|\mathbf{x}_t)$ has the mode at $\mathbf{x}_s \approx 0.86$ for $s = s^* - ds$ and at $\mathbf{x}_s \approx -1.81$ for $s = s^* + ds$ [\(Figure 11](#page-28-1) right).

1580 1581

1582

1584 1585 1586

1569

K COST OF MODE-TRACKING

1583 Evaluation of the drift of [Equation 16](#page-5-3) requires evaluating

$$
\underbrace{A(s,\boldsymbol{y}_s)^{-1}}_{\text{Hessian factor}} \underbrace{\nabla_{\boldsymbol{y}} \Delta_{\boldsymbol{y}} \log p_s(\boldsymbol{y}_s)}_{\text{Laplacian factor}},
$$

1587 1588 1589 1590 where $\mathbf{A}(s, y) = (\nabla_{\mathbf{y}}^2 \log p_s(\mathbf{y}) - \psi(s) \mathbf{I}_D), \ \psi(s) = \frac{1}{\sigma_s^2}$ e^{λ_t} $\frac{e^{\lambda_t}}{e^{\lambda_s}-e^{\lambda_t}},$ and Δ_y = $\sum_i \frac{\partial^2}{\partial y_i^2}$ $rac{\partial^2}{\partial y_i^2}$ is the Laplace operator. We will discuss the factors separately assuming that we use a model $s_{\theta}(t, x) \approx$ $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}).$

1591 1592 1593 1594 1595 1596 1597 Hessian factor To evaluate $A(s, y)$, we need to estimate $\nabla_y^2 \log p_s(y)$, which is the Jacobian matrix of the score function w.r.t. spatial argument y . This can be done using automatic differentiation and it requires D Jacobian-vector products (JVPs), where D is the dimensionality of the data and each JVP is roughly twice as expensive as score function evaluation [\(Meng et al., 2021\)](#page-11-7). In summary, evaluating $A(s, y_s)^{-1}$ requires roughly 2D score function evaluations plus the inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$.

1598 1599 1600 1601 1602 Laplacian factor Evaluation of $\nabla_{y}\Delta_{y}\log p_{s}(y_{s}) = \nabla_{y}\text{div}_{y}\nabla_{y}\log p_{s}(y_{s})$ requires evaluating the gradient of the divergence of the score function. Exact evaluation of the divergence would again require D JVPs [\(Meng et al., 2021\)](#page-11-7). However, one might approximate it with a single JVP using the Hutchinson's trick [\(Hutchinson, 1989;](#page-10-4) [Grathwohl et al., 2018\)](#page-10-5). One can thus approximate $\nabla_{\bm{y}} \Delta_{\bm{y}} \log p_s(\bm{y}_s) = \nabla_{\bm{y}} \text{div}_{\bm{y}} \nabla_{\bm{y}} \log p_s(\bm{y}_s)$ using a single JVP followed by a backward pass.

1603 1604 1605 1606 1607 In summary, the bottleneck of the evaluation of $A(s, y_s)^{-1} \nabla_y \Delta_y \log p_s(y_s)$ is the evaluation of $A(s, y_s)^{-1}$, which scales worse than linearly with the dimension of the data. For example, for CIFAR10 data, the evaluation of each step of [Equation 16](#page-5-3) would be at least 6000x more expensive than the evaluation of the score function. For 256x256 images it would be roughly 400000x more expensive.

1610 L PROOF OF L[EMMA](#page-6-0) 1

1611 *Proof.* From [Equation 26,](#page-14-1) we have that

$$
\frac{\partial}{\partial t} \log p_t(\boldsymbol{z}) = - \operatorname{div}_{\boldsymbol{z}} f_1(t, \boldsymbol{z}) - \nabla_{\boldsymbol{z}} \log p_t(\boldsymbol{z})^T f_1(t, \boldsymbol{z}).
$$

1615 Therefore

$$
\frac{d}{dt}\log p_t(\mathbf{z}_t) = \frac{\partial}{\partial t}\log p_t(\mathbf{z}_t) + \nabla_{\mathbf{x}}\log p_t(\mathbf{z}_t)^T \frac{d}{dt}\mathbf{z}_t
$$
\n
$$
= -\operatorname{div}_{\mathbf{x}} f_t(\mathbf{z}_t) + \nabla_{\mathbf{x}}\log p_t(\mathbf{z}_t)^T (f_{\mathbf{z}}(\mathbf{z}_t) - f_t(\mathbf{z}_t))
$$

1618 1619 $= -\operatorname{div}_{\boldsymbol{z}} f_1(t, \boldsymbol{z}_t) + \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{z}_t)^T \left(f_2(t, \boldsymbol{z}_t) - f_1(t, \boldsymbol{z}_t) \right).$

1612 1613

1614

1616 1617

1608 1609

1620 1621 M CIFAR MODELS HYPERPARAMETERS

1622 1623 1624 1625 1626 1627 1628 1629 1630 In [subsection 3.2](#page-4-1) we train diffusion models on CIFAR10 data. Specifically, these models are Variance Preserving (VP) SDEs with a linear log-SNR noise schedule and ε parametrization (where the model is directly conditioned on $\lambda = \log SNR(t)$ as opposed to t, as suggested by [Kingma & Gao](#page-11-1) [\(2024\)](#page-11-1)). ε_{θ} is parametrized as a UNET using the implementation from <docs.kidger.site/equinox/examples/unet/> with hyperparameters: is biggan=True, dim $mults = (1, 2, 2, 2)$, hidden size=128, heads=8, dim head=16, dropout rate=0.1, num res blocks=4, attn resolutions=[16]; trained for 2M steps, 128 batch size, and the adaptive noise schedule from [Kingma & Gao](#page-11-1) [\(2024\)](#page-11-1) with EMA weight 0.99.

1631 The two model variants are:

- CIFAR10-ML trained with maximum likelihood (ML), i.e. unweighted ELBO;
- CIFAR10-SQ optimized for Sample Quality, i.e. trained with weighted ELBO with $w(\lambda) = \text{sigmoid}(-\lambda + 2)$ as recommended by [Kingma & Gao](#page-11-1) [\(2024\)](#page-11-1).

1637 1638 N QUANTITATIVE ANALYSIS OF LIKELIHOODS OF SAMPLES GENERATED WITH ALGORITHM [1](#page-6-1)

1639

1649 1650

1640 1641 1642 1643 1644 1645 1646 In [Table 2](#page-32-0) we provide the values of $\mathbb{E}[-\log p_0(x_0)]$ (in bits-per-dim) for different models and sampling strategies. In all cases $\log p_0(x_0)$ was estimated using the PF-ODE [\(Equation 3\)](#page-2-2) to ensure a fair comparison. The values are mean \pm one standard deviation. We see that HD sampling (algorithm [1\)](#page-6-1) generates samples with higher density (lower NLL) than regular samples across different models and values of the threshold parameter t . Note that for different models, values of the threshold parameter t in HD sampling is in different ranges. This is due to the fact that different models use different SDEs and different noise schedules.

1647 1648 The models used are

- CIFAR10 Models from [subsection 3.2](#page-4-1) with hyperparameters as defined in [Appendix M.](#page-30-0) Used 1024 samples for each sampling strategy.
- **1651 1652 1653 1654** • ImageNet64 - Checkpoint provided by [Karras et al.](#page-11-2) [\(2022\)](#page-11-2), i.e. Variance Exploding (VE) SDE with a noise schedule satisfying $\sigma = t$. "Original" sampling strategy is the stochastic Heun sampler proposed by the authors. Used 192 samples for each sampling strategy with default hyperparameters.
	- FFHQ256 and Church256 Checkpoints provided by [Song et al.](#page-12-0) [\(2020c\)](#page-12-0), i.e. VE SDE with exponential noise schedule. "Original" sampling strategy is the Predictor-Corrector sampler recommended by the authors with default hyperparameters. Used 192 samples for each sampling strategy.

1658 1659 1660

1655 1656 1657

O STABLE DIFFUSION SAMPLES

1661 1662

1663 1664 1665 1666 1667 In [Figure 12](#page-31-0) we provide a comparison of regular samples and high-density samples generated with algorithm [1](#page-6-1) using the Stable Diffusion v2.1 model [\(Rombach et al., 2021\)](#page-11-18) for multiple values of the threshold parameter t. Interestingly, even though the diffusion process happens in the latent space, we see similar behavior to pixel-space diffusion models discussed in [section 5.](#page-7-0) Specifically, the high-density samples exhibit cartoon-like features or are blurry images, depending on the threshold parameter t value.

1668 1669

1670 1671 P WHY DO CARTOONS AND BLURRY IMAGES OCCUPY HIGH-DENSITY REGIONS?

- **1672**
- **1673** *Local intrinsic dimension* (LID) is a measure of an image's complexity and can be interpreted as "the number of local factors of variation" [\(Kamkari et al., 2024\)](#page-10-15). For image data, PNG compression

Figure 12: Regular vs High-Density samples on the Stable Diffusion v2.1 model. We added the prefix "A photo of" to each prompt to obtain more realistic images.

1728			
1729	Model	Sampling	NLL (bpd)
1730	CIFAR10-ML	PF-ODE	4.17 ± 0.49
1731		Rev-SDE	4.44 ± 0.42
1732		Rev-SDE (Theorem 1)	$4.30* \pm 0.41$
1733		$HD(t = 0.3T)$	2.65 ± 0.62
1734			
1735		$HD(t = 0.45T)$	1.57 ± 0.44
1736 1737		$HD(t = 0.5T)$	1.25 ± 0.38
1738		$HD(t = 0.55T)$	0.98 ± 0.36
1739		$HD(t = 0.7T)$	0.24 ± 0.27
1740	CIFAR10-SQ	PF-ODE	4.55 ± 0.46
1741		Rev-SDE	4.23 ± 0.42
1742			$4.16* \pm 0.42$
1743		Rev-SDE (Theorem 1)	
1744		$HD(t=0.3T)$	2.74 ± 0.61
1745		$HD(t = 0.45T)$	1.61 ± 0.39
1746		$HD(t = 0.5T)$	1.37 ± 0.34
1747		$HD(t = 0.55T)$	1.15 ± 0.32
1748		$HD(t = 0.7T)$	0.46 ± 0.30
1749			
1750	ImageNet64	Original	3.16 ± 0.81
1751	(Karras et al., 2022)	$HD(t = 0.0125T)$	-2.10 ± 0.33
1752		$HD(t = 0.05T)$	-2.74 ± 0.38
1753 1754			
1755	FFHQ256	Original	1.01 ± 0.41
1756	(Song et al., 2020c)	$HD(t=0.5T)$	-2.58 ± 0.65
1757		$HD(t = 0.3T)$	-4.01 ± 0.96
1758	Church256	Original	0.77 ± 0.23
1759			
1760	(Song et al., 2020c)	$HD(t = 0.5T)$	-0.66 ± 0.34
1761		$HD(t = 0.3T)$	-1.15 ± 0.15

Table 2: Comparison of NLL (in bits-per-dim) for different models and sampling methods. "*" denotes that the likelihood was estimated with [Theorem 1.](#page-2-5)

1762 1763

1766

1767 1768 size is commonly used as a proxy for LID; that is, higher PNG compression size indicates higher LID [\(Kamkari et al., 2024\)](#page-10-15).

1769 1770 1771 1772 1773 1774 1775 In [Figure 8,](#page-7-1) we observed a strong correlation between the model's log-likelihood estimation and the image's file size after PNG compression. This relationship can be attributed to a deeper connection between LID and the likelihood of data with varying levels of added noise [\(Tempczyk et al., 2022;](#page-12-9) [Kamkari et al., 2024\)](#page-10-15). Since diffusion models estimate densities across varying noise levels, their likelihood estimates naturally correlate with LID, providing an intuitive explanation for the observed relationship.

1776 1777 1778 1779 This finding suggests that the diffusion model's (negative) log-likelihood estimates can be interpreted as a measure of the number of local factors of variation. This insight helps explain why simple images, such as cartoons or blurry images, often exhibit higher likelihoods than complex, high-detail images.

1780 1781 Consider the samples generated with Stable Diffusion v2.1 in [Figure 13.](#page-33-2) After zooming in, one can observe that high-density samples exhibit significantly less local detail and thus a lower intrinsic dimension.

Figure 13: High-density samples have much less detail than regular samples and thus a lower local intrinsic dimension.

Q CARTOON GENERATION

 Recently, [Zhao et al.](#page-12-10) [\(2023\)](#page-12-10) proposed to alter the generation in guided diffusion models to bias the sampler to produce cartoon-like images. Specifically, the proposed method modifies classifier-free guidance [\(Ho & Salimans, 2022\)](#page-10-16) by replacing the intermediate noisy model input corresponding to the null-guidance with the so-called "noise disturbance".

 The main difference between our results, [Zhao et al.](#page-12-10) [\(2023\)](#page-12-10), and other cartoon-generation methods such as [Chen et al.](#page-10-17) [\(2020\)](#page-10-17), is that our aim was not to build a cartoon generator. Our goal was to study high-density regions of diffusion models and we developed a method (algorithm [1\)](#page-6-1) to efficiently generate points from such regions. The fact that these samples turned out to exhibit cartoon-like features was a surprising discovery that we believe is of interest to a wider research community. Especially in light of a recent report that inspired our study, which attributes the success of guided diffusion models to their ability to avoid low-density regions [\(Karras et al., 2024a\)](#page-11-0). We show that targeting the highest possible densities is not desirable either in high-quality image generation tasks.

 R LIMITATIONS

 Stochastic likelihood tracking While the likelihood estimation methods introduced in [section 2](#page-1-0) and [section 3](#page-3-0) apply to any diffusion SDE, regardless of how the score function is parametrized, there are inherent limitations regarding stochastic sampling. Our novel method for likelihood estimation introduced in [Theorem 1](#page-2-5) is beneficial as compared to the PF-ODE [\(Equation 3\)](#page-2-2) as it does not require estimating any higher-order derivatives and is *free* when doing stochastic sampling. However, stochastic sampling usually requires more iterations than deterministic sampling [\(Song et al.,](#page-12-0) [2020c\)](#page-12-0). Therefore, even though it is roughly twice as expensive to evaluate each step in the augmented PF-ODE [\(Equation 3\)](#page-2-2) as compared to the augmented reverse SDE [\(Equation 4\)](#page-2-1), PF-ODE may require fewer total steps.

 Mode-tracking In [Theorem 5](#page-5-1) we derived an exact ODE, which follows the mode exactly. However, there are three limitations:

- The result only holds for SDEs with a linear drift as the proof relies on Gaussian forward transition probabilities;
- Finding the exact mode is only guaranteed when a smooth mode-tracking curve exists and it is difficult to verify in practice and does not always hold [\(Appendix J\)](#page-28-0);
	- The ODE is prohibitively expensive, especially in higher dimensions. See [Appendix K.](#page-29-0)