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ABSTRACT

We investigate what kind of images lie in the high-density regions of diffusion
models. We introduce a theoretical mode-tracking process capable of pinpointing
the exact mode of the denoising distribution, and we propose a practical high-
density sampler that consistently generates images of higher likelihood than usual
samplers. Our empirical findings reveal the existence of significantly higher likeli-
hood samples that typical samplers do not produce, often manifesting as cartoon-
like drawings or blurry images depending on the noise level. Curiously, these
patterns emerge in datasets devoid of such examples. We also present a novel ap-
proach to track sample likelihoods in diffusion SDEs, which remarkably incurs no
additional computational cost.

1 INTRODUCTION

Recently, Karras et al. (2024a) attributed the empirical success of guided diffusion models to their
ability to limit outliers, i.e. samples x0 ∼ p0 with low likelihood p0(x0). We argue that these models
in fact also elude samples with very high likelihoods. Our assertion stems from investigating a key
question: what manifests if we bias the sampler towards high-density regions of p0? However, an
immediate hurdle is the inability of stochastic diffusion models to track their own likelihood (Song
et al., 2020c; 2021).

First, we show that likelihood can be tracked in diffusion models with novel augmented stochastic
differential equations (SDE), which govern the evolution of a sample with its log-density log pt(xt)
under the optimal (unknown) model. For approximate models, we provide a formula for the bias in
the log-density estimate. The evaluation of the log-density estimate comes at no additional cost, and
can be used with any pretrained model without further tuning.

Then, we introduce a theoretical mode-tracking process, which finds the exact mode of the denoising
distribution p(x0|xt) under some technical assumptions, albeit at a high computational cost. We

Figure 1: High-density samples y0|xt resemble cartoon drawings. This is in contrast to regular
denoising samples x0 ∼ p(x0|xt) or expectations E[x0|xt]. The data contains no cartoons.
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Summary of our contributions

Augmented SDEs (section 2 + section 3)
Exact log pt(xt) when ∇ log pt(x) and pT are known subsection 2.2
Estimated log pSDE

t (xt) for approximate ∇ log pt(x) subsection 2.3
Variational gap log pSDE

0 (x0)− ELBO(x0) formula Equation 13
Estimation error analysis subsection 3.2

Mode-tracking (section 4):
Evolution of the mode of p(xs|xt) Theorem 5
High-Density ODE approximation Remark 1
General instantaneous change of variables Lemma 1

Diffusion probability landscape (section 5):
Unrealistic images have the highest likelihoods Figure 1
Blurring an image increases its likelihood Figure 10
Likelihood estimates correlate with PNG size Figure 8

Figure 2: Our contributions.

propose an approximative high density sampler whose images almost always have higher likelihood
than regular samples.

We leverage these findings to give insights into the diffusion model probability landscape. We find
that dramatically higher likelihood samples exist that a regular sampler never returns in practise. We
observe that the high density samples tend to be (i) blank images for high noise levels, (ii) cartoon
drawings for moderate noise, and (iii) blurry images for low noise (See Figure 1). This is despite the
datasets not containing any cartoon drawings. Curiously, on FFHQ-256 we observe 97% correlation
between model’s likelihood estimates and the amount of information in the image.

We summarize our contributions in Figure 2.

2 LIKELIHOOD ESTIMATION IN SDE MODELS

We model the data distribution with a diffusion process (Song et al., 2020c), which gradually trans-
forms the data into a Gaussian. We define a forward process p(xt|x0) = N (xt;αtx0, σ

2
t ID),

where D is the dimensionality of the data, αt and σt are schedule parameters with a decreasing
signal-to-noise ratio SNR(t) = α2

t /σ
2
t = eλt . Song et al. (2020c) showed an equivalence to a linear

stochastic differential equation (SDE) with x0 ∼ p0 - data distribution and
dxt = f(t)xtdt+ g(t)dWt, (1)

with drift f(t) = d logαt

dt , diffusion g2(t) = −dλt

dt σ
2
t , and {Wt} a Wiener process. Most of our

theoretical results also hold for non-linear SDEs such as the one proposed by Bartosh et al. (2024).
We discuss the impact of the linearity of the drift in section 6 and provide the general formulas in
the appendices. Anderson (1982) showed that there exists a corresponding (sharing the distribution
over trajectories) reverse-time SDE

dxt =
(
f(t)xt − g2(t) ∇x log pt(xt)

)
dt+ g(t)dWt, (2)

where pt is the marginal density of the forward process (equation 1), and {Wt} is a Wiener process
going backwards in time. Training of diffusion models centers on efficient estimation of the score
∇x log pt(x) (Hyvärinen & Dayan, 2005; Vincent, 2011; Song et al., 2020b; Kingma & Gao, 2024).

2.1 DIFFUSION ODE

We are interested in sampling high-density regions of diffusion models and for that, we need ability
to calculate the likelihood p0(x) of a sample image x ∼ p0. As the reverse-SDE (equation 2) does

2
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Figure 3: Tracking stochastic sampling likelihood. Estimation of log pt(xt) (colored trajectory)
for stochastic sampling via Augmented Reverse SDE (equation 4) on a Gaussian mixture with known
∇x log pt(x) and pT . Evaluation of d log pt(xt) requires only the score function.

not track the likelihood evolution d log pt(xt), a typical method for obtaining sample likelihoods is
instead via the Probability-Flow ODE (Chen et al., 2018; Song et al., 2020c)

d

[
xt

log pt(xt)

]
=

 f(t)xt − 1
2g

2(t) ∇x log pt(xt)

−f(t)D + 1
2g

2(t) divx ∇x log pt(xt)

 dt, (3)

where divx =
∑

i
∂

∂xi
is the divergence operator. The PF-ODE is a continuous normalizing flow

(CNF) that shares marginal distributions pt(xt) with both forward (1) and reverse SDE (2), when
they share p0 (Song et al., 2020c). The PF-ODE tracks and returns both the sample x0 and its
likelihood log p0(x0) from xT ∼ pT . It requires second-order derivatives div∇, which are roughly
twice as expensive as the score to evaluate (Hutchinson, 1989; Grathwohl et al., 2018).

2.2 AUGMENTED STOCHASTIC DYNAMICS

It has been reported that a stochastic sampler (2) has superior sample quality to the PF-ODE (3)
(Song et al., 2020c; Karras et al., 2022). However, the absence of density-augmented SDEs forbids
the stochastic sampler from describing the likelihood of the samples it yields (Song et al., 2021; Lu
et al., 2022; Zheng et al., 2023; Lai et al., 2023). We bridge this gap by generalizing equation 3 to
account for the stochastic evolution of x.
Theorem 1 (Augmented reverse SDE). Let x be a random process defined by equation 2. Then

d

[
xt

log pt(xt)

]
=

 f(t)xt − g2(t) ∇x log pt(xt)

−f(t)D − 1
2g

2(t)∥ ∇x log pt(xt) ∥2

 dt+ g(t)

[
ID

∇x log pt(xt)
T

]
dWt.

(4)

The proof (Appendix E) consists of applying Itô’s lemma and the Fokker-Planck equation. Note
that d log pt(xt) is economical to track as it only needs access to the first-order score. Figure 3
visualises a particle following a stochastic reverse trajectory while tracking its log-density. This
result contributes a new useful and economical tool to generate a sample together with its density
estimate, which previously was done using PF-ODE (Jing et al., 2022). Similarly to the reverse
SDE, we also introduce density-tracking forward SDE.
Theorem 2 (Augmented forward SDE). Let x be a random process defined by equation 1. Then

d

[
xt

log pt(xt)

]
=

[
f(t)xt

F (t,xt)

]
dt+ g(t)

[
ID

∇x log pt(xt)
T

]
dWt, (5)

3
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where

F (t,xt) = −divx

(
f(t)xt − g2(t) ∇x log pt(xt)

)
+

1

2
g2(t)∥ ∇x log pt(xt) ∥2.

Proof is similar to the reverse case and can be found in Appendix D. The forward augmented SDE
will prove useful for estimating the density of an arbitrary input point x (not necessarily sampled
from the model).

Karras et al. (2022) proposed a more general forward SDE than equation 1 for which we also derive
the dynamics of log pt(xt) in both directions (Appendix F). Interestingly, we show that equation 1
is the only case for which the dynamics of log pt(xt) in the reverse direction do not involve any
higher order derivatives of log pt(xt).

We can now track the likelihood for forward and reverse SDEs under the theoretical true
∇x log pt(x). However, under score approximation s(t,x) ≈ ∇x log pt(x) the density solutions
log pt(xt) of Theorems 1 and 2 become biased, which we study next.

2.3 APPROXIMATE REVERSE DYNAMICS

We can substitute the approximate score s(t,x) ≈ ∇x log pt(x) and assume pODE
T = pSDE

T =
N (0, σ2

T ID). The resulting SDE and ODE models are no longer equivalent, i.e. pODE
t ̸= pSDE

t
(Song et al., 2021; Lu et al., 2022). The PF-ODE becomes

d

[
xt

log pODE
t (xt)

]
=

 f(t)xt − 1
2g

2(t) s(t,xt)

−f(t)D + 1
2g

2(t) divx s(t,xt)

 dt, (6)

which can track its marginal log-density log pODE
t (xt) exactly. However, substituting the true score

with s(t,x) in the augmented reverse SDE 4 incurs estimation error in log pSDE
0 (x0). We charac-

terise the error formally in a novel theorem:

Theorem 3 (Approximate Augmented Reverse SDE). Let s(t,x) be an approximation of the score
function. Let xT ∼ pT and define an auxiliary process r starting at rT = log pSDE

T (xT ). If

d

[
xt

rt

]
=

 f(t)xt − g2(t) s(t,xt)

−f(t)D − 1
2g

2(t)∥ s(t,xt) ∥2

 dt+ g(t)

[
ID

s(t,xt)
T

]
dWt, (7)

then x0 ∼ pSDE
0 (x0) and

r0 = log pSDE
0 (x0) + X, (8)

where X is a random variable such that the bias of r0 is given by

EX =
T

2
Et∼U(0,T ),xt∼pSDE

t (xt)

[
g2(t)∥ s(t,xt) − ∇x log pSDE

t (xt) ∥2
]
≥ 0. (9)

See Appendix G for the proof and the definition of X. Intuitively, the true density evolution of
pSDE
t (xt) is induced by dxt in equation 7, and the auxiliary variable rt does not follow it perfectly.

Since the equation 9 has an intractable score, we seek more practical alternatives to measuring the
accuracy of r0 in the next Section.

The new augmented SDE of equation 7 can be used with any score-based model without
further tuning to provide sample likelihood estimates log pSDE

0 (x0) for no extra cost.

3 ACCURACY OF THE DENSITY ESTIMATION

We analyse the accuracy of the log pSDE
0 (x0) estimates in equation 8. We begin with the approxi-

mate forward dynamics which will provide a method for bounding the estimation error of r0.

4
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3.1 APPROXIMATE FORWARD DYNAMICS

In contrast to Theorem 3, when we replace the true score function with s in the forward direction,
we underestimate log pSDE

0 (x0) on average.
Theorem 4 (Approximate Augmented Forward SDE). Let s(t,xt) be the model approximating the
score function and x0 ∈ RD given. Define an auxiliary process ω starting at ω0 = 0. If

d

[
xt

ωt

]
=

[
f(t)xt

−f(t)D + g2(t)
(

1
2∥ s(t,xt) ∥2 + divx s(t,xt)

)]
dt+ g(t)

[
ID

s(t,xt)
T

]
dWt.

(10)
Then

ωT = log pSDE
T (xT )− log pSDE

0 (x0) + Yx0
, (11)

where Yx0 is a random variable such that

EYx0 =
T

2
Et∼U(0,T )Ext∼p(xt|x0)g

2(t)∥ s(t,xt) − ∇x log pSDE
t (xt) ∥2 ≥ 0. (12)

See Appendix G for the proof and the definition of Yx0
. Due to the drift div operator, the evaluation

of dωt is computationally comparable to d log pODE
t (xt). Interestingly, Theorem 4 completes a

known lower bound into a novel identity,

log pSDE
0 (x0) = EYx0︸ ︷︷ ︸

≥0

−e
λmin

2
∥x0∥2 +

T

2
Et,ε

[
− dλt

dt

∥∥σt s(t, αtx0 + σtε) + ε
∥∥2]+ C︸ ︷︷ ︸

ELBO(x0) (Song et al., 2021; Kingma et al., 2021)

, (13)

where t ∼ U(0, T ), ε ∼ N (0, ID) and C = −D
2

(
1 + log(2πσ2

0)
)

(see Corollary 1). ELBO(x) is
the standard tool for estimating the SDE’s model likelihood of an arbitrary point x.

3.2 ESTIMATION BIAS OF log pSDE
0

Figure 4: r0 > log pODE
0 (x0) > ELBO(x0) cor-

relate strongly.

We are interested in using the stochastic
sampler to obtain high-quality sample-
density pairs (x0, log p

SDE
t (x0)). We have

now discussed two ways of estimating
log pSDE

0 (x0): with r0 (equation 7) and
ELBO(x0) (equation 13). Their estimation
errors εr(r0,x0) = r0 − log pSDE

0 (x0) and
εELBO(x0) = log pSDE

0 (x0)− ELBO(x0) are
intractable to estimate due to the presence of
unknown score∇ log pSDE

t (xt).

However, we can provide an upper bound on
the bias of both estimators,

Ex0∼pSDE
0 (x0) [εELBO(x0)]︸ ︷︷ ︸
≥0 (equation 12)

+E(x0,r0) [εr(r0,x0)]︸ ︷︷ ︸
≥0 (equation 9)

= E(x0,r0)

[
r0 − ELBO(x0)

]
.︸ ︷︷ ︸

R(s)(tractable)

(14)

We can thus sample (x0, r0) using equation 7 and the average difference r0 − ELBO(x0) gives
an upper bound on the bias of both r0 and ELBO(x0). This can be useful to assess the accuracy
of both r0 and ELBO(x0) as density estimates for stochastic samples x0. Furthermore, we can
estimate how much pSDE

0 differs from pODE
0 by providing bounds for KL[pSDE

0 ||pODE
0 ]

Ex0∼pSDE(x0)

[
ELBO(x0)− log pODE

0 (x0)
]

︸ ︷︷ ︸
RL(s) (tractable)

≤ KL
[
pSDE
0 ||pODE

0

]
≤ E(x0,r0)

[
r0 − log pODE

0 (x0)
]

︸ ︷︷ ︸
RU (s) (tractable)

.

(15)

RU and RL are novel practical tools for measuring the difference between pSDE
0 and pODE

0 . As a
demonstration, we train two versions of a diffusion model on CIFAR-10 (Krizhevsky et al., 2009),

5
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one with maximum likelihood training (Kingma et al., 2021; Song et al., 2021) and one optimized
for sample quality (Kingma & Gao, 2024). Please see Appendix M for implementation details. We
then generate 512 samples of (x0, r0) with equation 7 and for each x0 we estimated log pODE

0 (x0)
using equation 6 and ELBO(x0) using equation 13.

For both models we found very high correlations between r0 and log pODE
0 (x0) at 0.996 and 0.999.

Surprisingly, it is the model optimized for sample quality that yielded both a higher correlation and
lower values of RU (s) and R(s) suggesting a smaller difference between pSDE

0 and pODE
0 and a

lower bias of log pSDE
0 (x0) estimation (Figure 4). We also estimated RL(s), which was negative

for both models which is a trivial lower bound for KL[pSDE
0 ||pODE

0 ] ≥ 0.

The density estimates r0 ≈ log pSDE
0 (x0) from equation 7 empirically form an upper bound

on log pODE
0 (x0) and correlate with it very strongly (> 0.99).

4 MODE ESTIMATION

Figure 5: Equation 16 accurately recov-
ers the mode-tracking curve.

Many diffusion models are trained by implicitly maxi-
mizing weighted ELBO (Kingma & Gao, 2024), and can
be interpreted as likelihood-based models. Karras et al.
(2024a) emphasized the role of likelihood by explaining
the empirical success of guided diffusion models by their
ability to limit low density samples p0(x0). We explore
this idea further by asking: what if we aim for samples
with the highest p0(x0)?

4.1 MODE-TRACKING CURVE

We first go back to assuming a perfectly estimated score function∇x log pt(x). Let p(x0|xt) denote
the denoising distribution given by solving the reverse SDE (equation 2) from xt to x0. If we knew
how to estimate the denoising mode y0(xt) = argmax p(x0|xt), we could bias the sampler towards
higher likelihood regions by first taking a regular noisy samples xt ∼ pt(xt) at various times t, and
pushing them to deterministic modes y0(xt).

We approach this by asking a seemingly more difficult question: can we find a mode-tracking curve,
i.e. ys such that p(ys|xt) = maxxs

p(xs|xt) for all s < t (See Figure 5)? We show that whenever
such a smooth curve exists it is given by an ODE:

Theorem 5 (Mode-tracking ODE). Let t ∈ (0, T ] and xt ∈ RD a noisy sample. If there exists a
smooth curve s 7→ ys such that p(ys|xt) = maxxs p(xs|xt), then yt = xt and for s < t

d

ds
ys = f(s)ys − g2(s) ∇y log ps(ys) −

1

2
g2(s) A(s,ys)

−1 ∇y∆y log ps(ys) , (16)

where A(s,y) =
(
∇2

y log ps(y)− ψ(s)ID
)
, ψ(s) = 1

σ2
s

eλt

eλs−eλt
, and ∆y =

∑
i

∂2

∂y2
i

is the Laplace
operator. In particular:

p(y0|xt) = max
x0

p(x0|xt). (17)

The proof and the statement without assuming invertibility of A can be found in Appendix H. We
visualize on a mixture of 1D Gaussians in Figure 5 how the solution of the mode tracking ODE
(equation 16) correctly recovers the denoising mode curve, i.e. the mode of p(xs|xt) for all s < t.

4.2 HIGH-DENSITY SEEKING ODE

Using Theorem 5 in high-dimensional data is problematic. A smooth mode-tracking curve needs to
exist, which is difficult to verify and need not hold (Appendix J). Moreover, equation 16 requires
computing and inverting the Hessian and estimating third-order derivatives, which is costly (Meng
et al., 2021). Please see Appendix K for more details. We propose an approximation of equation 16
by noting its high-order terms disappear under Gaussian data.

6
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Figure 6: Equation 16 enables controlling the likelihood-diversity tradeoff. Blue dots are sam-
ples from the data distribution, i.e. a mixture of four Gaussians with the bottom left component
having the highest weight. Orange samples are generated with Algorithm 1.

Remark 1 (High-density ODE or HD-ODE). If p0 is Gaussian, then equation 16 becomes

dys =
(
f(s)ys − g2(s) ∇x log ps(ys)

)
ds, (18)

i.e. the drift term of reverse SDE equation 2. If yt = xt and equation 18 holds for s < t, then

y0 = argmax
x0

p(x0|xt) +O(e−λmax). (19)

See Appendix I for the proof. Even though equation 18 finds the mode of p(x0|xt) only in the
Gaussian case (for sufficiently small e−λmax ), we will empirically show that even for non-Gaussian
data it finds points with much higher likelihoods than regular samples.

Algorithm 1 High density sampling

1: Input: Threshold t ∈ (0, T ]
2: Initial xT ∼ N (0, σ2

T ID)
3: Sample xt ∼ pt(xt) eq. 6 or 7
4: y0 ← HD-ODE(t, 0,xt) eq. 18
5: Return y0

In Algorithm 1 we propose a novel high-density sam-
pler that uses equation 18 to bias the sampling towards
higher likelihood regions. We choose a threshold time
t and sample xt ∼ pt(xt), and then estimate y0(xt)
by solving equation 18 from s = t to s = 0. Figure 6
shows how the threshold controls the tradeoff between
likelihood and diversity in a toy mixture of Gaussians.

4.3 ESTIMATING MODE DENSITIES FOR REAL-WORLD DATA

We will next discuss how to evaluate the density of the high-density samples y0|xt and regular
samples x0|xt to empirically show that p(y0|xt) > p(x0|xt) for x0 ∼ p(x0|xt). For any x0, the
denoising likelihood can be decomposed using Bayes’ rule

log p0|t(x0|xt) = log pt|0(xt|x0)︸ ︷︷ ︸
N (xt|αtx0,σ2

t ID)

+ log p0(x0)− log pt(xt). (20)

For x0 ∼ p(x0|xt) we can use equation 4 from (xt, rt = 0) to obtain r0 = log p0(x0)− log pt(xt).
To estimate log p(y0|xt) we could use the PF-ODE, but that is inefficient.1 Instead, we can obtain
d log ps(ys) under HD-ODE with a convenient, and to our knowledge novel, lemma:
Lemma 1 (General instantaneous change of variables). Consider a CNF given by dxt = f1(t,xt)dt
with prior pT and marginal distributions pt, and a particle following some different dynamical
system dzt = f2(t, zt)dt. Then, if f1 and f2 are uniformly Lipschitz in the second argument and
continuous in the first, we have:

d log pt(zt)

dt
= − divz f1(t, zt) +

(
f2(t, zt)− f1(t, zt)

)T ∇z log pt(zt) . (21)
1On top of solving HD-ODE we would need to solve the augmented PF-ODE twice: once for yt from t to

T and once for y0 from 0 to T . Instead, we perform one augmented ((18) + (22)) HD-ODE solve from t to 0.

7
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Figure 7: Algorithm 1 generates images with higher likelihoods than regular samples. For
different noise levels t, compare the high density y0 (equation 18) with random samples x0 on
CIFAR-10. We find that the percentage of samples with higher likelihoods than y0 is 0.

The proof is in Appendix L. When f1 = f2 we recover the standard formula Chen et al. (2018).
By setting f1 =PF-ODE (3) and f2 =HD-ODE (18) we augment the HD-ODE with its density
evolution

d log ps(ys)

ds
= −f(s)D +

1

2
g2(s) divy ∇y log ps(ys) −

1

2
g2(s)

∥∥ ∇y log ps(ys)
∥∥2. (22)

We trained a diffusion model on CIFAR-10 and generated xt for different noise levels t and com-
pared the high-density samples y0|xt (Algorithm 1) against 512 regular samples x0 ∼ p(x0|xt).
We found that p(y0|xt) > p(x0|xt) for all samples across different noise levels t (See Figure 7).

Additionally, we compared the likelihoods of regular samples and the ones obtained with algorithm
1 for different models, and values of the threshold parameter t. We found that algorithm 1 samples
have higher likelihoods than regular samples in all cases. For details, please refer to Appendix N.

5 HIGH-RESOLUTION DIFFUSION PROBABILITY LANDSCAPE

Figure 8: Density estimates correlate with
information content (.png size)

We demonstrated that algorithm 1 can generate im-
ages with much higher likelihoods than regular sam-
ples. However, after visually inspecting the high
density samples y0 in Figure 7 we found that they
correspond to blurry images with much less detail
than regular samples.

To gain more insight we analyze high-density sam-
ples on higher-resolution diffusion models.2 We
found that the samples with the highest likelihood
were blurry images. Surprisingly, for higher values
of t, the samples were unnatural cartoons, but still re-
ceived higher likelihoods than regular samples. The
training datasets do not contain any cartoon images.
See Figure 9. A similar phenomenon occurs for latent diffusion models Appendix O.

Inspired by the empirical observation that the highest likelihood generated samples are blurry images
we performed the following two experiments. First, we add different amounts of blur to FFHQ-
256 test images and measure the likelihood of the distorted image. We found that blurring always
increases the likelihood and that the increase is proportional to the strength of blurring (Figure 10).

2We used FFHQ-256 and Churches-256 models from github.com/yang-song/score_sde_
pytorch and ImageNet-64 from github.com/NVlabs/edm
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Figure 9: Diffusion models assign highest likelihoods to unrealistic images. Left: High-density
samples generated with Algorithm 1 for various values of the threshold parameter t. Right: distribu-
tions of negative log-likelihood (in bits-per-dim). Across different models and datasets, Algorithm
1 finds unnatural images, which have higher densities than regular samples.

Second, we compare the model’s likelihood estimation with the image’s file size after PNG com-
pression. The smaller the PNG file size, the less information in the image. For FFHQ-256, we
found a 97% correlation between log p0(x0) and the amount of information in an image (Figure 8).
This hints at why cartoons and blurry images have the highest densities (Appendix P). We used 192
samples for each of 7 blur strengths σ ∈ {0, 1, 2, 5, 10, 20, 50}, resulting in 7·192=1344 images.

6 DISCUSSION

Variance of log pSDE
0 (x0) estimate. In section 3 we discussed the accuracy of r0, our novel esti-

mate of log pSDE
0 (x0). Specifically, we provided tools to estimate the bound of its bias for stochastic

samples. Based on the empirically measured correlation between r0 and log pODE
0 (x0) at over 0.99,

Figure 10: Blurring increases likelihood. Left: Two FFHQ-256 images with different amounts
of blur and corresponding negative loglikelihoods (NLL). Right: Distributions of NLL for different
amounts of added blur (σ ∈ {0, 1, 2, 5, 10, 20, 50}, 192 samples each).

9
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we hypothesize that the variance of r0 − log pSDE
0 (x0) is low whenever s(t,x) ≈ ∇ log pSDE

t (x).
However, we do not provide theoretical guarantees, or empirical estimates.

pSDE
0 vs pODE

0 . In equation 15 we show that RU (s) = E(x0,r0)[r0 − log pODE
0 (x0)] is an upper

bound on KL[pSDE
0 ||pODE

0 ] ≥ 0. In particular, for (x0, r0) sampled with equation 7 we must have on
average r0 ≥ log pODE

0 (x0). However, for two different models, we found that r0 ≥ log pODE
0 (x0)

holds for every sample. We hypothesize this is a more widespread phenomenon, but do not prove it.

Towards exact estimates of log pSDE
0 (x0). We showed in equation 9 that the bias of r0 is given by

E(r0 − log pSDE
0 (x0)) ∝ Et,xt

g2(t)∥s(t,xt)−∇x log pSDE
t (xt)∥2 for xt ∼ pSDE

t (xt). Similarly,
equation 12 shows that log pSDE

0 (x0)−ELBO(x0) ∝ Et,xt
g2(t)∥s(t,xt)−∇x log pSDE

t (xt)∥2 for
xt ∼ p(xt|x0). Both these errors could then be reduced to zero if s(t,x) = ∇x log pSDE

t (x) for all
t,x. However, for SDEs with linear drift (equation 1), this can only happen if pSDE

t is Gaussian for
all t (Proposition B.1 in Lu et al. (2022)). This is because an SDE with linear drift cannot transform
a non-Gaussian p0 into a Gaussian in finite time T .

To unlock exact likelihood estimation in diffusion SDEs, non-linear drift is necessary, such as the one
proposed in Bartosh et al. (2024). There it is possible to have pT Gaussian for finite T and s(t,x) =
∇x log pSDE

t (x) for all t,x, in which case both r0 and ELBO(x0) become exact (Theorem 7 and
Proposition 3).

7 RELATED WORK

We reference most of the related work in the main sections. Please see Appendix Q for a discussion
on cartoon generation methods.

Likelihood estimation for diffusion models. As we discussed in subsection 2.3 there is a distinc-
tion between diffusion ODEs and SDEs. For diffusion SDEs only lower bounds on likelihood are
reported (Ho et al., 2020; Vahdat et al., 2021; Nichol & Dhariwal, 2021; Huang et al., 2021; Kingma
et al., 2021; Kim et al., 2022). Exact likelihoods, on the other hand, are available for diffusion
ODEs (Song et al., 2020c;a; 2021; Dockhorn et al., 2021) and some works explicitly optimize for
ODE likelihood (Lu et al., 2022; Zheng et al., 2023; Lai et al., 2023). For a comprehensive survey,
we refer the reader to Yang et al. (2023). We provide a novel tool for estimating the likelihood of
the samples generated by diffusion SDEs.

Typicality vs likelihood. Theis et al. (2015) observed that likelihood estimates do not correlate
with image quality. Furthermore, deep generative models can assign higher likelihoods to out-of-
distribution (OOD) data than the data they were trained on (Choi et al., 2018; Nalisnick et al., 2018;
Kirichenko et al., 2020) and therefore perform poorly at OOD detection. Nalisnick et al. (2019);
Choi et al. (2018) analyze this phenomenon through the lens of typicality, arguing that typical sam-
ples do not coincide with the highest likelihood regions. Ben-Hamu et al. (2024) observed that
explicit distortion of an image like inserting a gray patch in the middle may increase the likelihood
assigned by a flow-based model. Our investigation contrasts these reports by explicitly studying
regions of highest likelihood and shedding light on the probability landscape of diffusion models.

8 CONCLUSION

We provide novel tools for estimating the likelihood for Diffusion SDE samples. Additionally,
we theoretically and empirically analyze the estimation error and discuss when exact likelihood
estimation for diffusion SDEs might be possible. These tools, combined with a theoretical mode-
seeking analysis, allowed us to study high-density regions of diffusion models. We made a surprising
observation that unnatural and blurry images occupy the highest-density regions of diffusion models.
While Karras et al. (2024a) argued that avoiding low-density regions is crucial for the success of
diffusion models, our analysis reveals that high-density regions should also be avoided in high-
quality image generation. We discuss the limitations of this work in Appendix R.

This work not only enhances the understanding of diffusion model probability landscapes but also
opens avenues for improved sample generation strategies.
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A NOTATION AND ASSUMPTIONS

Table 1: Summary of notation and abbreviations.

Notation Description

D dimensionality of the data

∥x∥2 =
∑

i x
2
i Squared Euclidean norm of x ∈ RD

∇x, or ∂
∂x

gradient w.r.t x

divx =
∑

i
∂

∂xi
divergence operator w.r.t x

Ex∼pf(x) expectation =
∫
f(x)p(x)dx

ID D-dimensional identity matrix

DKL(p||q) Kullback-Leibler divergence = Ex∼p (log p(x)− log q(x))

f ∈ Ck function f has continuous derivatives of up to order k

∆x =
∑

i
∂2

∂x2
i

Laplace operator

p0 data distribution

pt marginal distribution of a process defined by Forward SDE equa-
tion 1

p(xt|x0) = pt|0(xt|x0) Forward transition distribution. For linear drift SDE (equation 1):
p(xt|x0) = N (xt|αtx0, σ

2
t ID)

p(x0|xt) = p0|t(x0|xt) Denoising distribution p0|t(x0|xt) = pt|0(xt|x0)p0(x0)/pt(xt)

SNR(t) =
α2
t

σ2
t

signal to noise ratio

λt = log SNR(t) log signal to noise ratio

∇x log pt(x) “True” score function

s(t,x) “approximate” score function

pSDE
t marginal distribution of a process defined by the approximate re-

verse SDE equation 7

pODE
t marginal distribution of a process defined by the approximate ODE

equation 6

W Wiener process running forward in time

W Wiener process running backwards in time

In equation 1, the drift term is linear in x, which corresponds to most commonly used SDEs, because
it admits Gaussian transition kernels pt|s for s < t (Song et al., 2020c; 2021; Kingma et al., 2021;
Kingma & Gao, 2024) and covers many common implementations of diffusion models (Ho et al.,
2020; Song et al., 2020a; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Karras et al., 2024b).

However, more general SDEs have been proposed that do not assume linear drift (Zhang & Chen,
2021; Bartosh et al., 2024):

dxt = f(t,xt)dt+ g(t)dWt (23)

with f and g satisfying assumptions below. We define the approximate reverse SDE in the general
case

dxt =
(
f(t,xt)− g2(t)s(t,xt)

)
dt+ g(t)dWt. (24)

In our theorems in section 2 and section 3, we do not assume the linearity of the drift and
provide more general formulas. However, results in section 4 only hold for linear drift SDE.
We follow Song et al. (2021) and Lu et al. (2022) and make the following assumptions in our proofs
to ensure existence of reverse-time SDEs and correctness of integration by parts.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1. p0 ∈ C3 and Ex∼p0
[∥x∥2] <∞.

2. ∀t ∈ [0, T ] : f(·, t) ∈ C2. And ∃C > 0,∀x ∈ RD, t ∈ [0, T ] : ∥f(t,x)∥2 ≤ C(1+ ∥x∥2).
3. ∃C > 0,∀x,y ∈ RD : ∥f(t,x)− f(t,y)∥2 ≤ C∥x− y∥2.
4. g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.

5. For any open bounded set O,
∫ T

0

∫
O
(
∥pt(x)∥2 +D · g(t)2∥∇pt(x)∥2dx

)
dt <∞.

6. ∃C > 0,∀x ∈ RD, t ∈ [0, T ] : ∥∇pt(x)∥2 ≤ C(1 + ∥x∥).
7. ∃C > 0,∀x,y ∈ RD : ∥∇ log pt(x)−∇ log pt(y)∥ ≤ C∥x− y∥.
8. ∃C > 0,∀x ∈ RD, t ∈ [0, T ] : ∥s(t,x)∥ ≤ C(1 + ∥x∥).
9. ∃C > 0,∀x,y ∈ RD : ∥s(t,x)− s(t,y)∥ ≤ C∥x− y∥.

10. Novikov’s condition: E
[
exp

(
1
2

∫ T

0
∥∇ log pt(x)− s(t,x)∥2dt

)]
<∞.

11. ∀t ∈ [0, T ],∃k > 0 : pt(x), p
SDE
t (x), pODE

t (x) ∈ O(e−∥x∥k

) as ∥x∥ → ∞.

Additionally, we assume

12. ∀x0 ∈ RD : Ex∼ν(x0)

(∫ T

0
g2(t)∥∇x log pSDE

t (xt)∥2dt
)
< ∞, where ν(x0) is the path

measure of equation 1 starting at x0.

13. Ex∼νSDE

(∫ T

0
g2(t)∥∇x log pSDE

t (xt)− s(t,xt)∥2dt
)
< ∞, where νSDE is the path

measure of equation 7.

14. ∀x0 ∈ RD,∀t ∈ [0, T ],∃k > 0 : pt|0(x|x0) ∈ O(e−∥x∥k

) as ∥x∥ → ∞. This trivially
holds for the linear drift SDE (equation 1), where pt|0(x|x0) is Gaussian.

B FOKKER PLANCK EQUATION

A useful tool in some of the proofs is the Fokker-Planck equation (Fokker, 1914; Planck, 1917;
Øksendal & Øksendal, 2003; Särkkä & Solin, 2019), a partial differential equation (PDE) governing
the evolution of the marginal density of a diffusion process. For a process described in Equation 23,
the evolution of marginal density is described by the Fokker-Planck Equation:

∂

∂t
pt(x) = −div (f(t,x)pt(x)) +

1

2
g2(t)∆xpt(x), (25)

where pt is the marginal density at time t, which holds for all t ∈ (0, T ) and x ∈ RD. Equivalently,

∂

∂t
log pt(x) = − div (f(t,x)) +

1

2
g2(t)∆x log pt(x)

−∇x log pt(x)
T

(
f(t,x)− 1

2
g2(t)∇x log pt(x)

)
.

(26)

C ITÔ’S LEMMA

The main tool for studying the dynamics of log-density of stochastic processes we will use in our
proofs is Itô’s lemma (Itô, 1951), which states that for a stochastic process

dxt = f(t,xt)dt+ g(t)dWt (27)

and a smooth function h : R× RD → R it holds that

dh(t,xt) =

(
∂

∂t
h(t,xt) +

∂

∂x
h(t,xt)

T f(t,xt) +
1

2
g2(t)∆xh(t,xt)

)
dt+ g(t)

∂

∂x
h(t,xt)dWt.

(28)
A more general version of Itô’s lemma holds, which does not assume isotropic diffusion, but we do
not need it in our proofs.
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D PROOF OF THEOREM 2

Theorem 2 (Augmented forward SDE). Let x be a random process defined by equation 1. Then

d

[
xt

log pt(xt)

]
=

[
f(t)xt

F (t,xt)

]
dt+ g(t)

[
ID

∇x log pt(xt)
T

]
dWt, (5)

where

F (t,xt) = −divx

(
f(t)xt − g2(t) ∇x log pt(xt)

)
+

1

2
g2(t)∥ ∇x log pt(xt) ∥2.

For the non-linear drift (equation 23), we have (the difference highlighted in blue)

F (t,xt) = −divx

(
f(t,xt)− g2(t) ∇x log pt(xt)

)
+

1

2
g2(t)∥ ∇x log pt(xt) ∥2

Proof. We will apply Itô’s lemma (Appendix C) to h(t,x) := log pt(x). From Equation 26, we
have

∂

∂t
h(t,x) = −divxf(t,x)+

1

2
g2(t)∆x log pt(x)−∇x log pt(x)

T

(
f(t,x)− 1

2
g2(t)∇x log pt(x)

)
(29)

and

∂

∂t
h(t,xt) +

∂

∂x
h(t,xt)

T f(t,xt) +
1

2
g2(t)∆xh(t,xt)

= −divxf(t,x) +
1

2
g2(t)∆x log pt(x)−∇x log pt(x)

T

(
����f(t,x)− 1

2
g2(t)∇x log pt(x)

)
+((((((((((
∇x log pt(x)

T f(t,xt) +
1

2
g2(t)∆x log pt(xt)

= −divxf(t,xt) +
1

2
g2(t)∥∇x log pt(xt)∥2 + g2(t)∆x log pt(xt)

= −divx
(
f(t,xt)− g2(t)∇x log pt(xt)

)
+

1

2
g2(t)∥∇x log pt(xt)∥2.

(30)

Finally, we get

d log pt(xt) =

(
−divx

(
f(t,xt)− g2(t)∇x log pt(xt)

)
+

1

2
g2(t)∥∇x log pt(xt)∥2

)
dt

+∇x log pt(xt)
T dWt.

(31)

E PROOF OF THEOREM 1

Theorem 1 (Augmented reverse SDE). Let x be a random process defined by equation 2. Then

d

[
xt

log pt(xt)

]
=

 f(t)xt − g2(t) ∇x log pt(xt)

−f(t)D − 1
2g

2(t)∥ ∇x log pt(xt) ∥2

 dt+ g(t)

[
ID

∇x log pt(xt)
T

]
dWt.

(4)

For the non-linear drift (equation 23), we have (the difference highlighted in blue)

d

[
xt

log pt(xt)

]
=

 f(t,xt)− g2(t) ∇x log pt(xt)

−divx f(t,xt)− 1
2g

2(t)∥ ∇x log pt(xt) ∥2

 dt+g(t)[ ID

∇x log pt(xt)
T

]
dWt.
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Proof. The reverse SDE (Equation 2) can be equivalently written, as

dxt =
(
−f(T − t,xt) + g2(T − t)∇x log pT−t(xt)

)︸ ︷︷ ︸
=:µ(t,xt)

dt+ g(T − t)dWt (32)

for a forward running brownian motion W and positive dt. We will apply Itô’s lemma (Appendix C)
to g(t,x) = log pT−t(x). Since forward and reverse SDEs share marginals we can use Equation 29:

∂

∂t
g(t,x) = divx(f(T − t,x))−

1

2
g2(T − t)∆x log pT−t(x)

+∇x log pT−t(x)
T

(
f(T − t,x)− 1

2
g2(T − t)∇x log pT−t(x)

) (33)

and

∂

∂t
g(t,xt) +

∂

∂x
g(t,xt)

Tµ(t,xt) +
1

2
g2(T − t)∆xg(t,xt)

= divx(f(T − t,x))−
((((((((((((1

2
g2(T − t)∆x log pT−t(xt)

+∇x log pT−t(xt)
T

(
((((((f(T − t,xt)−

1

2
g2(T − t)∇x log pT−t(xt)

)
−∇x log pT−t(xt)

T
(
((((((f(T − t,xt)− g2(T − t)∇x log pT−t(xt)

)
+
((((((((((((1

2
g2(T − t)∆x log pT−t(xt)

= divx(f(T − t,xt)) +
1

2
g2(T − t)∥∇x log pT−t(xt)∥2.

(34)

Remarkably, the terms involving the higher order derivatives: ∆x log pT−t(xt) cancel out. Thus,
we have

d log pT−t(xt) =

(
divx(f(T − t,xt)) +

1

2
g2(T − t)∥∇x log pT−t(xt)∥2

)
dt

+ g(T − t)∇x log pT−t(xt)
T dWt,

(35)

which can equivalently be written as

d log pt(xt) =

(
−divx(f(t,xt))−

1

2
g2(t)∥∇x log pt(xt)∥2

)
dt+ g(t)∇x log pt(xt)

T dWt,

(36)
where W is running backwards in time and dt is negative.

F GENERAL SDES

Karras et al. (2022) showed that there is a more general SDE formulation than Equation 23, which
can be interpreted as a continuum between the PF-ODE and SDE formulations. Specifically, they
showed that for any choice of β : R+ → R+ the SDE

dxt =

(
f(t,xt)−

(
1

2
− β(t)

)
g2(t)∇x log pt(xt)

)
dt+

√
2β(t)g(t)dWt (37)

has the same marginals as Equation 23 and it has a reverse-time SDE

dxt =

(
f(t,xt)−

(
1

2
+ β(t)

)
g2(t)∇x log pt(xt)

)
dt+

√
2β(t)g(t)dWt. (38)

One can therefore replace the original model (β ≡ 1
2 ) with any choice of non-negative β. We now

derive the augmented dynamics of log pt(xt) for any β.
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F.1 GENERAL FORWARD AUGMENTED DYNAMICS

Proposition 1. For x following Equation 37 we have

d log pt(xt) =

(
−divxf(t,xt) +

(
1

2
+ β(t)

)
g2(t)∆x log pt(xt) + β(t)g2(t)∥∇x log pt(xt)∥2

)
dt

+
√

2β(t)g(t)∇x log pt(xt)
T dWt.

(39)

Note that since β(t) ≥ 0, the higher order term ∆x log pt(xt) is always non-zero for any β.

Proof. We proceed in the same way as the proof of Theorem 2 and apply Itô’s lemma (Appendix C)
to h(t,x) = log pt(x). Since Equation 37 shares marginals with Equation 23 we can reuse the
derivation of ∂

∂th(t,x) from Equation 29:

∂

∂t
h(t,x) = −divxf(t,x)+

1

2
g2(t)∆x log pt(x)−∇x log pt(x)

T

(
f(t,x)− 1

2
g2(t)∇x log pt(x)

)
.

Therefore for x following Equation 37:

d log pt(xt) =

(
∂

∂t
h(t,xt) +∇x log pt(xt)

T

(
f(t,xt)−

(
1

2
− β(t)

)
g2(t)∇x log pt(xt)

)
+ β(t)g2(t)∆ log pt(xt) ) dt+

√
2β(t)g(t)∇x log pt(xt)

T dWt

=

(
−divxf(t,xt) +

(
1

2
+ β(t)

)
g2(t)∆x log pt(xt) + β(t)g2(t)∥∇x log pt(xt)∥2

)
dt

+
√

2β(t)g(t)∇x log pt(xt)
T dWt.

(40)

F.2 GENERAL REVERSE AUGMENTED DYNAMICS

Proposition 2. For x following Equation 38, we have

d log pt(xt) =−
(
divxf(t,xt) +

(
β(t)− 1

2

)
g2(t)∆x log pt(xt) + β(t)g2(t)∥∇x log pt(xt)∥2

)
dt

+
√

2β(t)g(t)∇x log pt(xt)
T dWt

(41)

Note that β ≡ 1
2 (corresponding to Equation 2) is the only choice for which the higher order term

involving ∆x log pt(xt) disappears.

Proof. Similarly to the proof of Theorem 1 rewrite the general reverse SDE with positive dt and W
going forward in time

dxt =−
(
f(T − t,xt)−

(
1

2
+ β(T − t)

)
g2(T − t)∇x log pT−t(xt)

)
dt

+
√

2β(T − t)g(T − t)dWt

(42)
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We apply Itô’s lemma to g(t, x) = log pT−t(x):

dg(t,xt) =
∂

∂t
g(t,xt)dt

−∇xg(t,xt)
T

(
f(T − t,xt)−

(
1

2
+ β(T − t)

)
g2(T − t)∇x log pT−t(xt)

)
dt

+ β(T − t)g2(T − t)∆xg(t,xt)dt

+
√
2β(T − t)g(T − t)∇x log pT−t(xt)

T dWt

=

(
divxf(T − t,xt) +

(
β(T − t)− 1

2

)
g2(T − t)∆x log pT−t(xt)

)
dt

+ β(T − t)g2(T − t)∥∇x log pT−t(xt)∥2dt

+
√
2β(T − t)g(T − t)∇x log pT−t(xt)

T dWt,
(43)

which we rewrite equivalently with dt < 0 and W running backward in time to obtain Equation 41.

G APPROXIMATE MODEL DYNAMICS

Analogously to Theorem 2 and Theorem 1 we can derive the dynamics of log pSDE
t (x).

Theorem 6 (Approximate augmented forward SDE). Let x be a random process defined by Equa-
tion 23. Then

d log pSDE
t (xt) = G(t,xt)dt+∇x log pSDE

t (x)T dWt, (44)
where

G(t,x) = −divx
(
f(t,x)− g2(t)s(t,x)

)
+
1

2
g2(t)∥s(t,x)∥2−1

2
g2(t)∥∇x log pSDE

t (x)−s(t,x)∥2

(45)

Proof. Lu et al. (2022) showed that the corresponding forward SDE to Equation 24 is given by

dxt =
(
f(t,xt) + g2(t)

(
∇x log pSDE

t (xt)− s(t,xt)
))
dt+ g(t)dWt. (46)

We will apply Itô’s lemma (Appendix C) to h(t,x) = log pSDE
t (x) for x following Equation 23

(not Equation 46, which is intractable due to presence of ∇x log pSDE
t ). ∂

∂th(t,x) can be evaluated
using Equation 26
∂

∂t
h(t,x) = −divxf(t,x)− g2(t)

(
∆x log pSDE

t (x)− divx s(t,x)
)
+

1

2
g2(t)∆x log pSDE

t (x)

−∇x log pSDE
t (x)T

(
f(t,x) + g2(t)

(
∇x log pSDE

t (x)− s(t,x)
)
− 1

2
g2(t)∇x log pSDE

t (x)

)
= −divxf(t,x)−

1

2
g2(t)∆x log pSDE

t (x) + g2(t) divx s(t,x)

−∇x log pSDE
t (x)T

(
f(t,xt)− g2(t)s(t,x) +

1

2
g2(t)∇x log pSDE

t (x)

)
(47)

Therefore, we have
∂

∂t
h(t,x) +∇xh(t,x)f(t,x) +

1

2
g2(t)∆xh(t,x)

= −divxf(t,x) + g2(t) divx s(t,x)

−∇x log pSDE
t (x)T

(
−g2(t)s(t,x) + 1

2
g2(t)∇x log pSDE

t (x)

)
= −divx

(
f(t,x)− g2(t)s(t,x)

)
+

1

2
g2(t)∥s(t,x)∥2 − 1

2
g2(t)∥∇x log pSDE

t (x)− s(t,x)∥2.
(48)
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Thus for x following Equation 1, we have

d log pSDE
t (xt) = G(t,xt)dt+∇x log pSDE

t (xt)
T dWt, (49)

where

G(t,x) = −divx
(
f(t,x)− g2(t)s(t,x)

)
+
1

2
g2(t)∥s(t,x)∥2−1

2
g2(t)∥∇x log pSDE

t (x)−s(t,x)∥2

(50)

Interestingly, Theorem 6 can be used to derive a lower bound for the likelihood of an individual data
point x0 (Kingma et al., 2021; Song et al., 2021).

Proposition 3 (ELBO for non-linear SDE). For any x0 ∈ RD and pSDE
t marginal distribution of a

process defined by some pSDE
T and equation 24 for t < T , we have

log pSDE
0 (x0) =

T

2
Et,xt

g2(t)∥s(t,xt)−∇x log pSDE
t (xt)∥2︸ ︷︷ ︸

≥0

+ELBO(x0), (51)

where t ∼ U(0, T ), xt ∼ pt|0(xt|x0) and

ELBO(x0) = ExT∼pT |0(xT |x0)[log p
SDE
T (xT )] + TEt,xt

L(t,xt) (52)

and L(t,x) = − 1
2g

2(t)∥s(t,x)∥2+Li(t,x), where one may choose any of the following L1, L2, L3

(one could also have different definitions depending on t):

L1(t,x) = divx
(
f(t,x)− g2(t)s(t,x)

)
(53)

L2(t,x) = −
(
f(t,xt)− g2(t)s(t,xt)

)T ∇xt
log pt|0(xt|x0) (54)

L3(t,x) = divx(f(t,x)) + g2(t)s(t,xt)
T∇xt

log pt|0(xt|x0) (55)

Proof. Using Equation 44:

log pSDE
0 (x0) = log pSDE

T (xT )−
∫ T

0

G(t,xt)dt−
∫ T

0

g(t)∇x log pSDE
t (xt)

T dWt, (56)

for x being a random trajectory following Equation 23 starting at x0. Using the definition ofG(t,x):

log pSDE
0 (x0) = log pSDE

T (xT )

−
∫ T

0

(
−divx

(
f(t,xt)− g2(t)s(t,xt)

)
+

1

2
g2(t)∥s(t,xt)∥2

)
dt

+
1

2

∫ T

0

g2(t)∥s(t,xt)−∇x log pSDE
t (xt)∥2dt

−
∫ T

0

g(t)∇x log pSDE
t (xt)

T dWt.

(57)

We can take the expectation of both sides of Equation 57 w.r.t. x ∼ ν(x|x0), where ν(x|x0) is a
path measure of x starting at x0. Note that the LHS of Equation 57 is constant w.r.t ν(x|x0) and
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thus it is equal to its expectation.

E[log pSDE
0 (x0)]︸ ︷︷ ︸

=log pSDE
0 (x0)

=E[log pSDE
T (xT )]︸ ︷︷ ︸

“first term”

− E

[∫ T

0

(
−divx

(
f(t,xt)− g2(t)s(t,xt)

)
+

1

2
g2(t)∥s(t,xt)∥2

)
dt

]
︸ ︷︷ ︸

“second term”

+ E

[
1

2

∫ T

0

g2(t)∥s(t,xt)−∇x log pSDE
t (xt)∥2dt

]
︸ ︷︷ ︸

“third term”

− E

[∫ T

0

g(t)∇x log pt(xt)
T dWt

]
︸ ︷︷ ︸

“fourth term”

.

(58)

First term. Since the expectation is taken w.r.t ν(x|x0), we have

Ex∼ν(x|x0)[log p
SDE
T (xT )] = ExT∼pT |0(xT |x0)[log p

SDE
T (xT )], (59)

where pT |0 is the forward transition probability of equation 23.

Second term. Using Fubini’s theorem we have

Ex∼ν(x|x0)

[∫ T

0

F (t,xt)dt

]
=

∫ T

0

(
Ext∼ν(xt|x0)F (t,xt)

)
dt

=

∫ T

0

(
Ext∼pt|0(xt|x0)F (t,xt)

)
dt.

(60)

After substituting for F , we get

Ext∼pt|0(xt|x0)F (t,xt) = Ext∼pt|0(xt|x0)

(
−divx

(
f(t,xt)− g2(t)s(t,xt)

)
+

1

2
g2(t)∥s(t,xt)∥2

)
.

(61)
Note that for any t the divergence term under the expectation can equivalently be written in one of
three ways (integration by parts; assumptions 8 and 14 in Appendix A):

− Ext∼pt|0(xt|x0) divx
(
f(t,xt)− g2(t)s(t,xt)

)
(i)
= Ext∼pt|0(xt|x0)

[(
f(t,xt)− g2(t)s(t,xt)

)T ∇xt
log pt|0(xt|x0)

]
(ii)
= Ext∼pt|0(xt|x0)

[
−divx f(t,xt)− g2(t)s(t,xt)

T∇xt
log pt|0(xt|x0)

]
,

(62)

which holds due to applying integration by parts either

• (i) : to f(t,xt)− g2(t)s(t,xt) and pt|0(xt|x0), or

• (ii) : to s(t,xt) and pt|0(xt|x0).

Third term.

E

[
1

2

∫ T

0

g2(t)∥s(t,xt)−∇x log pSDE
t (xt)∥2dt

]

=
1

2

∫ T

0

g2(t)
(
Ext∼pt|0(xt|x0)∥s(t,xt)−∇x log pSDE

t (xt)∥2
)
dt

(63)
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Fourth term. Using Assumption 12 (Appendix A) and the fact that g(t)∇x log pSDE
t (xt) is W

adapted, we have

E

[∫ T

0

g(t)∇x log pSDE
t (xt)

T dWt

]
= 0. (64)

Combining all four terms yields the claim.

Corollary 1 (ELBO for Linear SDE). For an SDE with linear drift (equation 1), for any x0 ∈ RD,
assuming pSDE

T = N (0, σ2
T ID) we have

log pSDE
0 (x0) =

T

2
Et,εg

2(t)∥s(t,xt)−∇x log pSDE
t (xt)∥2︸ ︷︷ ︸

≥0

+ELBO(x0) (65)

where t ∼ U(0, T ), ε ∼ N (0, ID), xt = αtx0 + σtε and

ELBO(x0) = C − eλmin

2
∥x0∥2 −

T

2
Et,ε

(
−dλt
dt

)
∥σts(t, αtx0 + σtε) + ε∥2 (66)

and C = −D
2

(
1 + log(2πσ2

0)
)
.

Proof. In the linear SDE case (equation 1) we have pt|0(xt|x0) = N (xt|αtx0, σ
2
t ID). Using

Proposition 3, we have

ELBO(x0) = ExT∼pT |0(xT |x0)[log p
SDE
T (xT )] + TEt,xt

L(t,xt) (67)

and we choose

L(t,x) =− 1

2
g2(t)∥s(t,x)∥2 + L3(t,x)

=− 1

2
g2(t)∥s(t,x)∥2 + divx(f(t,x)) + g2(t)s(t,x)T∇x log pt|0(x|x0)

=f(t)D − 1

2
g2(t)∥s(t,x)−∇x log pt|0(x|x0)∥2 +

1

2
g2(t)∥∇x log pt|0(x|x0)∥2

(68)

Since ∇x log pt|0(x|x0) = αtx0−x
σ2
t

and xt ∼ pt|0(xt|x0) is equivalent to xt = αtx0 + σtε for
ε ∼ N (0, ID), we have ∇x log pt|0(xt|x0) =

−ε
σt

and

ELBO(x0) =−
T

2
Et,εg

2(t)

∥∥∥∥s(t, αtx0 + σtε) +
ε

σt

∥∥∥∥2
+ ExT∼pT |0(xT |x0)[log p

SDE
T (xT )] +DTEt,xtf(t) +

T

2
Et,εg

2(t)

∥∥∥∥ ε

σt

∥∥∥∥2
=− T

2
Et,ε

(
−dλt
dt

)
∥σts(t, αtx0 + σtε) + ε∥2

+ Eε[log p
SDE
T (αTx0 + σTε)]︸ ︷︷ ︸

“first term”

+DTEt

(
f(t)− 1

2

dλt
dt

)
︸ ︷︷ ︸

“second term”

(69)

First term

Eε[log p
SDE
T (αTx0 + σTε)] =−

D

2
log(2πσ2

T )−
1

2σ2
T

Eε∥αTx0 + σTε∥2

=− D

2
log(2πσ2

T )−
1

2σ2
T

(
α2
T ∥x0∥2 + σ2

TD
)

=− D

2

(
1 + log(2πσ2

T )
)
− eλmin

2
∥x0∥2

(70)
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Second term

DTEt

(
f(t)− 1

2

dλt
dt

)
= D

∫ T

0

d log σt
dt

dt = D (log σT − log σ0) (71)

Combining all the terms yields the claim.

We can now use Theorem 6 to prove Theorem 4.

Theorem 4 (Approximate Augmented Forward SDE). Let s(t,xt) be the model approximating the
score function and x0 ∈ RD given. Define an auxiliary process ω starting at ω0 = 0. If

d

[
xt

ωt

]
=

[
f(t)xt

−f(t)D + g2(t)
(

1
2∥ s(t,xt) ∥2 + divx s(t,xt)

)]
dt+ g(t)

[
ID

s(t,xt)
T

]
dWt.

(10)
Then

ωT = log pSDE
T (xT )− log pSDE

0 (x0) + Yx0
, (11)

where Yx0 is a random variable such that

EYx0 =
T

2
Et∼U(0,T )Ext∼p(xt|x0)g

2(t)∥ s(t,xt) − ∇x log pSDE
t (xt) ∥2 ≥ 0. (12)

Furthermore, Yx0
can be written as Yx0

= Y1 + Y2, where

Y1 =
1

2

∫ T

0

g2(t)∥∇x log pSDE
t (xt)− s(t,xt)∥2dt

and

EY2 = 0;Var(Y2) =

∫ T

0

g2(t)Ext∼p(xt|x0)∥s(t,xt)−∇s log p
SDE
t (xt)∥2dt.

For the non-linear drift (equation 23), we have (the difference highlighted in blue)

d

[
xt

ωt

]
=

[
f(t,xt)

−divx f(t,xt) + g2(t)
(

1
2∥ s(t,x) ∥

2 + divx s(t,x)
)]

dt+g(t)

[
ID

s(t,xt)
T

]
dWt.

Proof. Using Theorem 6 we have

log pSDE
0 (x0) = log pSDE

T (xT )−
∫ T

0

G(t,xt)dt−
∫ T

0

g(t)∇x log pSDE
t (xt)

T dWt,

= log pSDE
T (xT )−

∫ T

0

dωt + Y1 + Y2,

(72)

where

Y1 =
1

2

∫ T

0

g2(t)∥∇x log pSDE
t (xt)− s(t,xt)∥2dt (73)

and

Y2 =

∫ T

0

g(t)
(
s(t,xt)−∇x log pSDE

t (xt)
)
dWt. (74)

Since
∫ T

0
dωt = ωT − ω0 = ωT , we have

log pSDE
0 (x0) = log pSDE

T (xT )− ωT + Y (75)

for Y = Y1 + Y2.

Similarly to Theorem 6 we can derive the dynamics of log pSDE
t (xt) under the approximate reverse

SDE (Equation 24).
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Theorem 7 (Approximate augmented reverse SDE). Let x be a random process following Equa-
tion 24, then

d

[
xt

log pSDE
t (xt)

]
=

[
f(t,xt)− g2(t)s(t,xt)

F̃ (t,xt)

]
dt+ g(t)

[
Id

∇x log pSDE
t (xt)

T

]
dWt, (76)

where

F̃ (t,x) = −divx f(t,x)− g2(t)
(
∆x log pSDE

t (x)− divx s(t,x)
)︸ ︷︷ ︸

=0 when s(t,x)=∇x log pSDE
t (x)

−1

2
g2(t)∥∇x log pSDE

t (x)∥2.

(77)

Proof. The approximate reverse SDE can equivalently be written as

dxt = −
(
f(T − t,xt)− g2(T − t)s(T − t,xt)

)
dt+ g(T − t)dWt (78)

for dt > 0 and W running forward in time. We will apply Itô’s lemma (Appendix C) to h(t,x) =
log pSDE

T−t (x). From Equation 47 we have:

∂

∂t
h(t,x) = divx f(T − t,x) +

1

2
g2(T − t)∆x log pSDE

T−t (x)− g2(T − t) divx s(T − t,x)

+∇x log pSDE
T−t (x)

T

(
f(T − t,x)− g2(T − t)s(T − t,x) + 1

2
g2(T − t)∇x log pSDE

T−t (x)

)
(79)

Therefore the drift of h(t,xt) is given by

∂

∂t
h(t,xt) +∇xh(t,xt)

T
(
−f(T − t,xt) + g2(T − t)s(T − t,xt)

)
+

1

2
g2(T − t)∆xh(t,xt)

= divx f(T − t,xt) + g2(T − t)∆x log pSDE
T−t (xt)− g2(T − t) divx s(T − t,xt)

+
1

2
g2(T − t)∥∇x log pSDE

T−t (xt)∥2

(80)

and therefore for x following the approximate reverse SDE (Equation 24), we have

d log pSDE
t (xt) = F̃ (t,xt)dt+ g(t)∇x log pSDE

t (xt)
T dWt, (81)

where dt < 0, W is running backwards in time and

F̃ (t,x) = − divx f(t,x)−g2(t)∆x log pSDE
t (x)+g2(t) divx s(t,x)−1

2
g2(t)∥∇x log pSDE

t (x)∥2.
(82)

Theorem 7 defines the exact dynamics of log pSDE
t (xt). However, d log pSDE

t (xt) depends on
∇x log pSDE

t (xt), which we cannot access in practice. We only have access to the approxima-
tion s(t,x). We now show that replacing the true∇x log pSDE

t (xt) with s no longer provides exact
likelihood estimates, but an “upper bound in expectation”.
Theorem 3 (Approximate Augmented Reverse SDE). Let s(t,x) be an approximation of the score
function. Let xT ∼ pT and define an auxiliary process r starting at rT = log pSDE

T (xT ). If

d

[
xt

rt

]
=

 f(t)xt − g2(t) s(t,xt)

−f(t)D − 1
2g

2(t)∥ s(t,xt) ∥2

 dt+ g(t)

[
ID

s(t,xt)
T

]
dWt, (7)

then x0 ∼ pSDE
0 (x0) and

r0 = log pSDE
0 (x0) + X, (8)

where X is a random variable such that the bias of r0 is given by

EX =
T

2
Et∼U(0,T ),xt∼pSDE

t (xt)

[
g2(t)∥ s(t,xt) − ∇x log pSDE

t (xt) ∥2
]
≥ 0. (9)
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Furthermore, X can be written as X = X1 + X2, where

X1 =

∫ T

0

g2(t)

(
divx s(t,xt) +

1

2
∥s(t,xt)∥2 −∆x log pSDE

t (xt)−
1

2
∥∇x log pSDE

t (xt)∥2
)
dt

and

EX2 = 0;Var(X2) =

∫ T

0

g2(t)Ext∼pSDE
t (xt)∥s(t,xt)−∇x log pSDE

t (xt)∥2dt

For the non-linear drift (equation 23), we have (the difference highlighted in blue)

d

[
xt

rt

]
=

 f(t,xt)− g2(t) s(t,xt)

−divx f(t,xt)− 1
2g

2(t)∥ s(t,xt) ∥2

 dt+ g(t)

[
ID

s(t,xt)
T

]
dWt,

Proof.

log pSDE
0 (x0) = log pSDE

T (xT )−
∫ T

0

d log pSDE
t (xt) (83)

From Theorem 7 we have∫ T

0

d log pSDE
t (xt) =

∫ T

0

F̃ (t,xt)dt+

∫ T

0

g(t)∇x log pSDE
t (xt)

T dWt

=

∫ T

0

(
−divx f(t,xt)−

1

2
g2(t)∥s(t,xt)∥2

)
dt

+

∫ T

0

g(t)s(t,xt)
T dWt + X1 + X2,

(84)

where

X1 =

∫ T

0

g2(t)

(
divx s(t,xt) +

1

2
∥s(t,xt)∥2 −∆x log pSDE

t (xt)−
1

2
∥∇x log pSDE

t (xt)∥2
)
dt

(85)
and

X2 =

∫ T

0

g(t)
(
∇x log pSDE

t (xt)− s(t,xt)
)T
dWt (86)

Note that from Assumption 13 (Appendix A) we have

EX2 = 0. (87)

Furthermore, using Fubini’s theorem, we have

EX1 =

∫ T

0

g2(t)Ext∼pSDE
t (xt)

(
divx s(t,xt) +

1

2
∥s(t,xt)∥2 −∆x log pSDE

t (xt)

−1

2
∥∇x log pSDE

t (xt)∥2
)
dt.

(88)

Now rewrite
Ext∼pSDE

t (xt)

(
divx s(t,xt)−∆x log pSDE

t (xt)
)

= Ext∼pSDE
t (xt) divx

(
s(t,xt)−∇x log pSDE

t (xt)
)

(i)
= Ext∼pSDE

t (xt)

(
−s(t,xt) +∇x log pSDE

t (xt)
)T ∇x log pSDE

t (xt)

= Ext∼pSDE
t (xt)

(
−s(t,xt)

T∇x log pSDE
t (xt) + ∥∇x log pSDE

t (xt)∥2
)
,

(89)

where (i) is applying integration by parts (Assumptions 8 and 11 in Appendix A). Substituting back
to Equation 88, we get

EX1 =

∫ T

0

1

2
g2(t)Ext∼pSDE

t (xt)

(
∥s(t,xt)∥2 − 2s(t,xt)

T∇x log pSDE
t (xt) + ∥∇x log pSDE

t (xt)∥2
)
dt

=

∫ T

0

1

2
g2(t)Ext∼pSDE

t (xt)∥s(t,xt)−∇x log pSDE
t (xt)∥2dt.

(90)
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Therefore

log pSDE
0 (x0) = log pSDE

T (xT )−
∫ T

0

(
−divx f(t,xt)−

1

2
g2(t)s(t,xt)

)
dt

−
∫ T

0

g(t)s(t,xt)
T dWt − X,

(91)

where

EX =

∫ T

0

1

2
g2(t)Ext∼pSDE

t (xt)∥s(t,xt)−∇x log pSDE
t (xt)∥2dt ≥ 0. (92)

H PROOF OF THEOREM 5

In the following sections, we assume the linear drift SDE Equation 1. In Theorem 5 we explicitly
assume Gaussian forward transition densities, which are only guaranteed in the linear drift SDE.

Theorem 5 (Mode-tracking ODE). Let t ∈ (0, T ] and xt ∈ RD a noisy sample. If there exists a
smooth curve s 7→ ys such that p(ys|xt) = maxxs

p(xs|xt), then yt = xt and for s < t

d

ds
ys = f(s)ys − g2(s) ∇y log ps(ys) −

1

2
g2(s) A(s,ys)

−1 ∇y∆y log ps(ys) , (16)

where A(s,y) =
(
∇2

y log ps(y)− ψ(s)ID
)
, ψ(s) = 1

σ2
s

eλt

eλs−eλt
, and ∆y =

∑
i

∂2

∂y2
i

is the Laplace
operator. In particular:

p(y0|xt) = max
x0

p(x0|xt). (17)

Note that without assuming invertibility of A, Equation 16 becomes

A(s,ys)
(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

)
= −1

2
g2(s)∇y∆y log ps(ys) (93)

Proof. We begin by noting that for linear SDE (equation 1) pt|s is Gaussian for s < t and therefore

log ps|t(ys|xt) = log pt|s(xt|ys) + log ps(ys)− log pt(xt)

= C − ∥xt − f̃(s)ys∥2

2g̃2(s)
+ log ps(ys)− log pt(xt),

(94)

where f̃(s) = αt

αs
and g̃2(s) = σ2

t − f̃2(s)σ2
s (See Appendix A.1 in Kingma et al. (2021)). Since

ps|t(ys|xt) = maxxs ps|t(xs|xt), it must hold that

∇ys
log ps|t(ys|xt) = 0 for all s < t. (95)

Therefore
d

ds

(
∇ys

log ps|t(ys|xt)
)
= 0 for all s < t. (96)

From Equation 94 we have

∇ys log ps|t(ys|xt) = ∇ys log ps(ys) +
f̃(s)

g̃2(s)

(
xt − f̃(s)ys

)
= 0 (97)

and thus
d

ds
(∇ys

log ps(ys)− ψ(s)ys + ϕ(s)xt) = 0, (98)

where ψ(s) = f̃2(s)
g̃2(s) and ϕ(s) = f̃(s)

g̃2(s) . Note that

d

ds
∇ys

log ps(ys) =
∂

∂s
∇ys

log ps(ys) +∇2
ys

log ps(ys)ẏs (99)
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and we can use Equation 26 to re-write the first term

∂

∂s
∇ys

log ps(ys) = ∇ys

∂

∂s
log ps(ys)

= ∇ys

(
−f(s)D +

1

2
g2(s)∆ys

log ps(ys)−∇ys
log ps(ys)

T (f(s)ys −
1

2
g2(s)∇ys

log ps(ys)

)
=

1

2
g2(s)∇ys

∆ys
log ps(ys)− f(s)∇2

y log ps(ys)ys

− f(s)∇y log ps(ys) + g2(s)∇2
y log ps(ys)∇y log ps(ys)

=
1

2
g2(s)∇ys∆ys log ps(ys)− f(s)∇y log ps(ys)

−∇2
y log ps(ys)

(
f(s)ys − g2(s)∇y log ps(ys)

)
(100)

and thus

d

ds
∇ys

log ps(ys) =
1

2
g2(s)∇ys

∆ys
log ps(ys)− f(s)∇y log ps(ys)

+∇2
y log ps(ys)

(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

) (101)

For the remaining terms we first note

f̃(s) =
αt

αs
= exp{logαt − logαs} = exp{

∫ t

s

d

du
logαu} = exp{

∫ t

s

f(u)} (102)

and in particular d
ds log f̃(s) = −f(s). Similarly

g̃2(s) = σ2
t − f̃2(s)σ2

s = α2
t

(
σ2
t

α2
t

− σ2
s

α2
s

)
= α2

t

(
e−λt − e−λs

)
= α2

t

∫ t

s

d

du
e−λudu

= α2
t

∫ t

s

(
−dλu
du

)
e−λudu = α2

t

∫ t

s

(
−dλu
du

)
σ2
u

α2
u

du = α2
t

∫ t

s

g2(u)

α2
u

du

=

∫ t

s

f̃2(u)g2(u)du

(103)

and in particular d
ds log g̃

2(s) = 1
g̃2(s)

d
ds g̃

2(s) = −ψ(s)g2(s). Therefore

d

ds
(−ψ(s)ys + ϕ(s)xt) = −ψ′(s)ys − ψ(s)ẏs + ϕ′(s)xt

= −ψ(s)ẏs + ϕ′(s)xt −
(
ϕ′(s)f̃(s)− f(s)ψ(s)

)
ys

= −ψ(s) (ẏs − f(s)ys) + ϕ′(s)
(
xt − f̃(s)ys

)
= −ψ(s) (ẏs − f(s)ys) + ϕ(s)

d

ds
(log ϕ(s))

(
xt − f̃(s)ys

)
.

(104)

From Equation 97, we have

ϕ(s)
(
xt − f̃(s)ys

)
= −∇y log ps(yt) (105)

and
d

ds
(log ϕ(s)) =

d

ds
log f̃(s)− d

ds
log g̃2(s) = −f(s) + ψ(s)g2(s). (106)

Thus

d

ds
(−ψ(s)ys + ϕ(s)xt) = −ψ(s) (ẏs − f(s)ys) +

(
f(s)− ψ(s)g2(s)

)
∇y log ps(ys)

= −ψ(s)
(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

)
+ f(s)∇y log ps(ys).

(107)
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Putting it all together, we have

0 =
d

ds
(∇y log p(ys|xt))

=
1

2
g2(s)∇y∆y log ps(ys)− f(s)∇y log ps(ys)

+∇2
y log ps(ys)

(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

)
− ψ(s)

(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

)
+ f(s)∇y log ps(ys)

=
1

2
g2(s)∇y∆y log ps(ys) +

(
∇2

y log ps(ys)− ψ(s)ID
) (

ẏs − f(s)ys + g2(s)∇y log ps(ys)
)
,

(108)

or equivalently for A(s,y) = ∇2
y log ps(y)− ψ(s)ID

ẏs = f(s)ys − g2(s)∇y log ps(ys)−
1

2
g2(s)A(s,ys)

−1∇y∆y log ps(ys) (109)

if A(s,ys) is invertible for all s < t and

ψ(s) =
f̃2(s)

g̃2(s)
=

α2
t

α2
s

(
σ2
t − f̃2(s)σ2

s

) =
α2
t

α2
sσ

2
t − α2

tσ
2
s

=
1

α2
s

1
σ2
t

α2
t
− σ2

s

α2
s

=
1

α2
s

1

e−λt − e−λs
=
eλs

α2
s

eλt

eλs − eλt
=

1

σ2
s

eλt

eλs − eλt
.

(110)

I MODE-SEEKING ODE IN THE GAUSSIAN CASE

We will prove the claims from Remark 1. We recall it for completeness.

Remark 1 (High-density ODE or HD-ODE). If p0 is Gaussian, then equation 16 becomes

dys =
(
f(s)ys − g2(s) ∇x log ps(ys)

)
ds, (18)

i.e. the drift term of reverse SDE equation 2. If yt = xt and equation 18 holds for s < t, then

y0 = argmax
x0

p(x0|xt) +O(e−λmax). (19)

Proof. We first note that when p0 Gaussian and the SDE is linear (equation 1) then ps are Gaussian
∀s. In particular ∇x∆x log ps(x) = 0 for al s ∈ [0, T ] and x ∈ RD. Therefore equation 16
becomes equation 18. We will now study ys following equation 18. Recalling Equation 101:

d

ds
∇y log ps(ys) =

�����������:0
1

2
g2(s)∇y∆y log ps(ys)− f(s)∇y log ps(ys)

+∇2
y log ps(ys)

(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

)
= −f(s)∇y log ps(ys) +∇2

y log ps(ys)
(
ẏs − f(s)ys + g2(s)∇y log ps(ys)

)
.

(111)

If we then assume Equation 18, we have

d

ds
∇y log ps(ys) = −f(s)∇y log ps(ys) (112)

and to simplify further, using the fact that f(s) = d
ds logαs

d

ds
(αs∇y log ps(ys)) =

d

ds
αs∇y log ps(ys) + αs

d

ds
∇y log ps(ys) = 0. (113)
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Hence, for ys satisfying Equation 18, we have

αs∇y log ps(ys) = αt∇y log pt(yt) for all s < t. (114)

We can thus rewrite

ẏs = f(s)ys − g2(s)∇y log ps(ys)

= f(s)ys −
g2(s)

αs
αs∇y log ps(ys)

= f(s)ys −
g2(s)

αs
αt∇y log pt(yt).

(115)

Furthermore

d

ds

(
ys

αs

)
=
ẏsαs − ysα

′
s

α2
s

=

(
�

��α′
s

αs
ys − g2(s)

αs
αt∇y log pt(yt)

)
αs −�

��ysα
′
s

α2
s

= −g
2(s)

α2
s

αt∇y log pt(yt) =
dλs
ds

e−λsαt∇y log pt(yt)

(116)

and we can solve

yt

αt
− y0

α0
=

∫ t

0

(
dλs
ds

e−λsαt∇y log pt(yt)

)
ds =

(∫ t

0

dλs
ds

e−λsds

)
αt∇y log pt(yt)

=

(∫ λt

λmax

e−λdλ

)
αt∇y log pt(yt) =

(
e−λmax − e−λt

)
αt∇y log pt(yt).

(117)

Leveraging that α0 = 1, we get

y0 =
yt

αt
+ e−λtαt log pt(yt)− e−λmaxαt∇y log pt(yt)

=
yt + σ2

t∇x log pt(xt)

αt
− e−λmaxαt∇x log pt(xt)

=E [x0|xt]− e−λmaxαt∇x log pt(xt)

= argmax
x0

p(x0|xt) +O(e−λmax).

(118)

J NON-SMOOTH MODE-TRACKING CURVE

Figure 11: The mode tracking curve need not be continuous. Left: mode-tracking curve with a
discontinuous jump at s∗. Right: distribution of log ps|t(xs|xt) for values around s∗. At s = s∗ the
argmax changes discontinuously.
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An important assumption in Theorem 5 is that for a fixed t ∈ (0, T ] and a noisy point xt ∈ RD,
there exists a smooth curve s 7→ ys such that

ps|t(ys|xt) = max
xs

ps|t(xs|xt). (119)

It is an assumption that need not hold. To demonstrate we define the data distribution as 1D mixture
of 3 gaussians p =

∑3
i=1 wiN (µi, σ

2), where µ1 = −2.5, µ2 = −1.5, µ3 = 1 and σ2 = 0.1 and
weights w1 = w2 = 0.274 and w3 = 0.45. We model the distrbution with a VP-SDE (Song et al.,
2020c), where σ2

t = 1
1+eλt

= 1 − α2
t . We then choose xt = −2.5 and t such that λt = −8 and

visualize log p(xs|xt) for all s < t and all st ∈ [−4, 3.5] and the mode-tracking curve ys|xt in
white (Figure 11 left).

The mode-tracking curve exhibits a discontinuous jump at s∗ such that λs∗ ≈ 1.28. The distribution
ps|t(xs|xt) has the mode at xs ≈ 0.86 for s = s∗ − ds and at xs ≈ −1.81 for s = s∗ + ds
(Figure 11 right).

K COST OF MODE-TRACKING

Evaluation of the drift of Equation 16 requires evaluating

A(s,ys)
−1︸ ︷︷ ︸

Hessian factor

∇y∆y log ps(ys)︸ ︷︷ ︸
Laplacian factor

,

where A(s,y) =
(
∇2

y log ps(y)− ψ(s)ID
)
, ψ(s) = 1

σ2
s

eλt

eλs−eλt
, and ∆y =

∑
i

∂2

∂y2
i

is the
Laplace operator. We will discuss the factors separately assuming that we use a model sθ(t,x) ≈
∇x log pt(x).

Hessian factor To evaluate A(s,y), we need to estimate∇2
y log ps(y), which is the Jacobian ma-

trix of the score function w.r.t. spatial argument y. This can be done using automatic differentiation
and it requires D Jacobian-vector products (JVPs), where D is the dimensionality of the data and
each JVP is roughly twice as expensive as score function evaluation (Meng et al., 2021). In sum-
mary, evaluating A(s,ys)

−1 requires roughly 2D score function evaluations plus the inversion of a
D ×D matrix, which is O(D3).

Laplacian factor Evaluation of ∇y∆y log ps(ys) = ∇y divy∇y log ps(ys) requires evaluating
the gradient of the divergence of the score function. Exact evaluation of the divergence would
again require D JVPs (Meng et al., 2021). However, one might approximate it with a single JVP
using the Hutchinson’s trick (Hutchinson, 1989; Grathwohl et al., 2018). One can thus approximate
∇y∆y log ps(ys) = ∇y divy∇y log ps(ys) using a single JVP followed by a backward pass.

In summary, the bottleneck of the evaluation of A(s,ys)
−1∇y∆y log ps(ys) is the evaluation of

A(s,ys)
−1, which scales worse than linearly with the dimension of the data. For example, for

CIFAR10 data, the evaluation of each step of Equation 16 would be at least 6000x more expensive
than the evaluation of the score function. For 256x256 images it would be roughly 400000x more
expensive.

L PROOF OF LEMMA 1

Proof. From Equation 26, we have that

∂

∂t
log pt(z) = − divz f1(t, z)−∇z log pt(z)

T f1(t, z).

Therefore
d

dt
log pt(zt) =

∂

∂t
log pt(zt) +∇x log pt(zt)

T d

dt
zt

= −divz f1(t, zt) +∇x log pt(zt)
T (f2(t, zt)− f1(t, zt)) .
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M CIFAR MODELS HYPERPARAMETERS

In subsection 3.2 we train diffusion models on CIFAR10 data. Specifically, these mod-
els are Variance Preserving (VP) SDEs with a linear log-SNR noise schedule and ε-
parametrization (where the model is directly conditioned on λ = log SNR(t) as opposed to
t, as suggested by Kingma & Gao (2024)). εθ is parametrized as a UNET using the im-
plementation from docs.kidger.site/equinox/examples/unet/ with hyperparame-
ters: is biggan=True, dim mults=(1, 2, 2, 2), hidden size=128, heads=8,
dim head=16, dropout rate=0.1, num res blocks=4, attn resolutions=[16];
trained for 2M steps, 128 batch size, and the adaptive noise schedule from Kingma & Gao (2024)
with EMA weight 0.99.

The two model variants are:

• CIFAR10-ML - trained with maximum likelihood (ML), i.e. unweighted ELBO;
• CIFAR10-SQ - optimized for Sample Quality, i.e. trained with weighted ELBO with
w(λ) = sigmoid(−λ+ 2) as recommended by Kingma & Gao (2024).

N QUANTITATIVE ANALYSIS OF LIKELIHOODS OF SAMPLES GENERATED
WITH ALGORITHM 1

In Table 2 we provide the values of E[− log p0(x0)] (in bits-per-dim) for different models and sam-
pling strategies. In all cases log p0(x0) was estimated using the PF-ODE (Equation 3) to ensure a
fair comparison. The values are mean ± one standard deviation. We see that HD sampling (algo-
rithm 1) generates samples with higher density (lower NLL) than regular samples across different
models and values of the threshold parameter t. Note that for different models, values of the thresh-
old parameter t in HD sampling is in different ranges. This is due to the fact that different models
use different SDEs and different noise schedules.

The models used are

• CIFAR10 - Models from subsection 3.2 with hyperparameters as defined in Appendix M.
Used 1024 samples for each sampling strategy.

• ImageNet64 - Checkpoint provided by Karras et al. (2022), i.e. Variance Exploding (VE)
SDE with a noise schedule satisfying σ = t. ”Original” sampling strategy is the stochastic
Heun sampler proposed by the authors. Used 192 samples for each sampling strategy with
default hyperparameters.

• FFHQ256 and Church256 - Checkpoints provided by Song et al. (2020c), i.e. VE SDE
with exponential noise schedule. ”Original” sampling strategy is the Predictor-Corrector
sampler recommended by the authors with default hyperparameters. Used 192 samples for
each sampling strategy.

O STABLE DIFFUSION SAMPLES

In Figure 12 we provide a comparison of regular samples and high-density samples generated with
algorithm 1 using the Stable Diffusion v2.1 model (Rombach et al., 2021) for multiple values of the
threshold parameter t. Interestingly, even though the diffusion process happens in the latent space,
we see similar behavior to pixel-space diffusion models discussed in section 5. Specifically, the
high-density samples exhibit cartoon-like features or are blurry images, depending on the threshold
parameter t value.

P WHY DO CARTOONS AND BLURRY IMAGES OCCUPY HIGH-DENSITY
REGIONS?

Local intrinsic dimension (LID) is a measure of an image’s complexity and can be interpreted as
“the number of local factors of variation” (Kamkari et al., 2024). For image data, PNG compression
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Figure 12: Regular vs High-Density samples on the Stable Diffusion v2.1 model. We added the
prefix ”A photo of” to each prompt to obtain more realistic images.
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Model Sampling NLL (bpd)

CIFAR10-ML PF-ODE 4.17 ± 0.49
Rev-SDE 4.44 ± 0.42
Rev-SDE (Theorem 1) 4.30* ± 0.41
HD(t = 0.3T ) 2.65 ± 0.62
HD(t = 0.45T ) 1.57 ± 0.44
HD(t = 0.5T ) 1.25 ± 0.38
HD(t = 0.55T ) 0.98 ± 0.36
HD(t = 0.7T ) 0.24 ± 0.27

CIFAR10-SQ PF-ODE 4.55 ± 0.46
Rev-SDE 4.23 ± 0.42
Rev-SDE (Theorem 1) 4.16* ± 0.42
HD(t = 0.3T ) 2.74 ± 0.61
HD(t = 0.45T ) 1.61 ± 0.39
HD(t = 0.5T ) 1.37 ± 0.34
HD(t = 0.55T ) 1.15 ± 0.32
HD(t = 0.7T ) 0.46 ± 0.30

ImageNet64 Original 3.16 ± 0.81
(Karras et al., 2022) HD(t = 0.0125T ) -2.10 ± 0.33

HD(t = 0.05T ) -2.74 ± 0.38

FFHQ256 Original 1.01 ± 0.41
(Song et al., 2020c) HD(t = 0.5T ) -2.58 ± 0.65

HD(t = 0.3T ) -4.01 ± 0.96

Church256 Original 0.77 ± 0.23
(Song et al., 2020c) HD(t = 0.5T ) -0.66 ± 0.34

HD(t = 0.3T ) -1.15 ± 0.15

Table 2: Comparison of NLL (in bits-per-dim) for different models and sampling methods. “*”
denotes that the likelihood was estimated with Theorem 1.

size is commonly used as a proxy for LID; that is, higher PNG compression size indicates higher
LID (Kamkari et al., 2024).

In Figure 8, we observed a strong correlation between the model’s log-likelihood estimation and the
image’s file size after PNG compression. This relationship can be attributed to a deeper connection
between LID and the likelihood of data with varying levels of added noise (Tempczyk et al., 2022;
Kamkari et al., 2024). Since diffusion models estimate densities across varying noise levels, their
likelihood estimates naturally correlate with LID, providing an intuitive explanation for the observed
relationship.

This finding suggests that the diffusion model’s (negative) log-likelihood estimates can be inter-
preted as a measure of the number of local factors of variation. This insight helps explain why
simple images, such as cartoons or blurry images, often exhibit higher likelihoods than complex,
high-detail images.

Consider the samples generated with Stable Diffusion v2.1 in Figure 13. After zooming in, one can
observe that high-density samples exhibit significantly less local detail and thus a lower intrinsic
dimension.
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Figure 13: High-density samples have much less detail than regular samples and thus a lower local
intrinsic dimension.

Q CARTOON GENERATION

Recently, Zhao et al. (2023) proposed to alter the generation in guided diffusion models to bias the
sampler to produce cartoon-like images. Specifically, the proposed method modifies classifier-free
guidance (Ho & Salimans, 2022) by replacing the intermediate noisy model input corresponding to
the null-guidance with the so-called “noise disturbance”.

The main difference between our results, Zhao et al. (2023), and other cartoon-generation methods
such as Chen et al. (2020), is that our aim was not to build a cartoon generator. Our goal was to study
high-density regions of diffusion models and we developed a method (algorithm 1) to efficiently
generate points from such regions. The fact that these samples turned out to exhibit cartoon-like
features was a surprising discovery that we believe is of interest to a wider research community.
Especially in light of a recent report that inspired our study, which attributes the success of guided
diffusion models to their ability to avoid low-density regions (Karras et al., 2024a). We show that
targeting the highest possible densities is not desirable either in high-quality image generation tasks.

R LIMITATIONS

Stochastic likelihood tracking While the likelihood estimation methods introduced in section 2
and section 3 apply to any diffusion SDE, regardless of how the score function is parametrized,
there are inherent limitations regarding stochastic sampling. Our novel method for likelihood esti-
mation introduced in Theorem 1 is beneficial as compared to the PF-ODE (Equation 3) as it does not
require estimating any higher-order derivatives and is free when doing stochastic sampling. How-
ever, stochastic sampling usually requires more iterations than deterministic sampling (Song et al.,
2020c). Therefore, even though it is roughly twice as expensive to evaluate each step in the aug-
mented PF-ODE (Equation 3) as compared to the augmented reverse SDE (Equation 4), PF-ODE
may require fewer total steps.

Mode-tracking In Theorem 5 we derived an exact ODE, which follows the mode exactly. How-
ever, there are three limitations:

• The result only holds for SDEs with a linear drift as the proof relies on Gaussian forward
transition probabilities;

• Finding the exact mode is only guaranteed when a smooth mode-tracking curve exists and
it is difficult to verify in practice and does not always hold (Appendix J);

• The ODE is prohibitively expensive, especially in higher dimensions. See Appendix K.
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