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Abstract

Blame attribution is one of the key aspects of accountable decision making, as it
provides means to quantify the responsibility of an agent for a decision making
outcome. In this paper, we study blame attribution in the context of cooperative
multi-agent sequential decision making. As a particular setting of interest, we
focus on cooperative decision making formalized by Multi-Agent Markov Decision
Processes (MMDPs), and we analyze different blame attribution methods derived
from or inspired by existing concepts in cooperative game theory. We formalize
desirable properties of blame attribution in the setting of interest, and we analyze
the relationship between these properties and the studied blame attribution methods.
Interestingly, we show that some of the well known blame attribution methods,
such as Shapley value, are not performance-incentivizing, while others, such as
Banzhaf index, may over-blame agents. To mitigate these value misalignment and
fairness issues, we introduce a novel blame attribution method, unique in the set
of properties it satisfies, which trade-offs explanatory power (by under-blaming
agents) for the aforementioned properties. We further show how to account for
uncertainty about agents’ decision making policies, and we experimentally: a)
validate the qualitative properties of the studied blame attribution methods, and b)
analyze their robustness to uncertainty.

... a body of people1, holding themselves accountable to nobody, ought not to be trusted by anybody.

—Thomas Paine, A philosopher and a political activist.

1 Introduction

With the widespread usage of artificial intelligence (AI) in everyday life [1, 2, 3], accountability has
become one of the central problems in the study of AI. Much recent research studied what constitutes
accountability in the context of AI and how to design accountable AI systems [4, 5, 6], and recent
policies and legislations [7] are increasingly highlighting the importance of accountability, aiming to
provide guidelines for developing and deploying accountable AI systems.

Accountability is a relatively broad term, and it typically involves an actor (or multiple actors)
justifying their decisions and facing consequences for actions taken [6, 8]. Hence, two critical aspects
of accountability are explainability and blame attribution. Recent work proposed various methods for
explaining, interpreting, understanding, and certifying algorithmic decision-making and its outcomes
[9, 10, 11, 12, 13, 14]. In this paper we study the other critical aspect of accountability – blame
attribution.

1Originally, and by modern standards outdated, Thomas Paine used phrasing with the word men.
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In multi-agent decision making, one of the central roles of blame attribution is assigning blame for
undesirable outcomes or, broadly speaking, for the system’s inefficiency. Prior work on responsibility
and blame in AI [15, 16, 17, 18] has recognized some of the core challenges in attributing blame,
including the fact that disentangling agents’ contributions to the final outcome is not a trivial task.
Such challenges are particularly prominent in sequential settings where past decisions influence the
future ones [16].

In this paper, we consider the task of allocating a score to an agent, which represents the degree of
its blame, and reflects its contributions to the total inefficiency of the multi-agent system. We focus
on cooperative sequential decision making, formalized by multi-agent Markov decision processes
(MMDPs) [19], where the outcome of interest is the expected discounted return of the agents’ joint
policy. Concretely, given an MMDP and the agents’ joint policy (true or estimated), we ask: How to
score each agent so that the agents’ scores satisfy desirable properties?

To answer this question, we turn to cooperative game theory and consider blame attribution methods
that are derived from or inspired by existing concepts in the cost sharing, data valuation, and coalition
formation literature [20, 21, 22, 23, 24, 25, 26, 27], such as core [28], Shapley value [29, 30], or
Banzhaf index [31, 32]. Taking this perspective on blame attribution, we study blame attribution for
accountable multi-agent sequential decision making. More concretely:

• We formalize desirable properties that blame attribution methods should satisfy in cooperative
multi-agent sequential decision making. We identify properties that are typically not considered in
the cost-sharing literature, yet are important for decision making. In particular, we introduce two
novel properties: a) performance monotonicity, which states that, having fixed all the other agents
to their policies, the blame assigned to an agent should not increase if the agent adopts a policy
that results in a higher expected discounted return (implying that the method is performance-
incentivizing); b) Blackstone consistency,2 which states that an agent should not receive a higher
blame just because the agents’ policies are not fully known to the blame attribution procedure.

• We characterize the properties of the studied blame attribution methods. We show that some
blame assignment methods, such as, Shapley value, are not performance-monotonic (and, hence,
performance-incentivizing), while others, such as Banzhaf index, may over-blame agents. Moti-
vated by these results, we introduce a novel blame attribution method that trade-offs explanatory
power (by under-blaming agents) for the aforementioned properties.

• We provide algorithms for making the studied blame attribution methods Blackstone-consistent
when the agents’ policies are estimated. We also characterize the effect of uncertainty on blame
attribution methods.

• Using a simulation-based testbed, we experimentally analyze the studied blame attribution methods,
their qualitative properties, as well as their robustness to uncertainty. The experiments showcase
the importance of the robustness considerations we study and indicate that typically more efficient
blame attribution methods (i.e., those that assign more blame in total) are less robust to uncertainty.

1.1 Other Related Work

Apart from the works mentioned in the previous paragraphs, our work relates to different areas
of moral philosophy, law, and AI, and here we highlight some of the most relevant references.
Research in moral philosophy and law has extensively studied the problem of blame attribution,
both in terms of human actors [34, 35, 36], as well as AI actors [37, 38, 39, 40]. We take some
of the well known principles in moral philosophy and law in determining properties relevant for
blame attribution, e.g., Blackstone consistency is inspired by Blackstone’s ratio [33]. In AI, blame
attribution has been studied through a more formal lens, utilizing causality [15, 16, 17] and/or
game theory [18, 41], and primarily focusing on nuances related to defining notions and degrees of
responsibility, blame, and blameworthiness. In contrast, we focus on cooperative sequential decision
making, and analyze how different blame attribution methods from cooperative game theory fare
under different blame attribution properties. Finally, our work is generally related to the credit
assignment problem [42, 43], and more specifically to the credit assignment problem in multi-agent
reinforcement learning [44, 45, 46]. However, our focus is not on supporting the learning processes
of agents by reducing computational and statistical challenges of learning, but on evaluating the
agents’ contributions to the system’s inefficiency, ideally in a fair and interpretable manner.

2This property is inspired by Blackstone’s ratio: “It is better that ten guilty persons escape than that one
innocent suffer" [33].
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2 Formal Setting

In this section, we describe our formal setting, based on multi-agent Markov decision processes
(MMDPs), and we formally model the blame attribution problem in sequential decision making. This
section also introduces a set of desirable formal properties of blame attribution methods.

2.1 Preliminaries

We consider a cooperative multi-agent setting, formalized as a class of MMDPsM with n agents
{1, ..., n}. Each MMDP in this class is a tuple M = (S, {1, ..., n},A, R, P, γ, σ) [19], where: S is
the state space; A = ×ni=1Ai is the action space, with Ai being the action space of agent i; R is
the reward function R : S × A → R specifying the reward obtained when agents {1, ..., n} take a
joint action; P specifies transitions with P (s, a, s′) denoting the probability of transitioning to s′
from s when agents {1, ..., n} take joint action a = (a1, ..., an); γ is the discount factor; and σ is the
initial state distribution. S and A are finite and discrete. A (stationary) joint policy π is a mapping
π : S → D(A), where D(A) is a probability simplex overA, with π(a|s) denoting the probability of
taking joint action a in s. We assume that a joint policy π is factorizable into agents’ policies, πi, i.e.,
π(a|s) = π1(a1|s) · · ·πn(an|s). Therefore, we can define an agent i’s policy πi as a mapping from
states to a distribution of agent i’s actions, i.e., πi : S → D(Ai). We denote the set of all policies by
Π = ×ni=1Πi. We also define a standard performance measure. The expected discounted return of
a joint policy π is defined as J(π) = E

[∑∞
t=1 γ

t−1R(st, at)|s1 ∼ σ, π
]
, where the initial state s1

is sampled from σ, and the state-joint action pair of time-step t, (st, at), is obtained by executing
joint policy π. We abuse our notation by denoting J(π′i, π−i) = J(π1, ..., π

′
i, ..., πn). Similarly,

J(π′S , π−S) = J(π′′) for some S ⊆ {1, ..., n}, where π′′i = πi if i /∈ S and π′′i = π′i if i ∈ S.

2.2 Blame Attribution

Our goal is to assign blame to agents for failing to jointly achieve optimal performance. Given the
agents’ behavior policy, denoted by πb, the inefficiency of the considered multi-agent system can be
defined as ∆ = J(π∗)− J(πb), where π∗ ∈ arg maxπ J(π) is an optimal joint policy. Similarly, we

define the marginal inefficiency of a subset of agents S ⊆ {1, ..., n} as ∆S = J(π
∗|πb
S , πb−S)−J(πb),

as well as the marginal inefficiency of an agent i as ∆i = J(π
∗|πb
i , πb−i) − J(πb), where π∗|π

b

S

(resp. π∗|π
b

i ) denotes an optimal policy of S (resp. i) assuming all other policies are fixed, i.e.,

π
∗|πb
S ∈ arg maxπS J(πS , π

b
−S) (resp. π

∗|πb
i ∈ arg maxπi J(πi, π

b
−i)). A blame attribution

method is a mapping Ψ :M×Π→ Rn≥0, where Ψ(M,πb) distributes blame for inefficiency ∆ by
assigning score βi to agent i. The output of Ψ, i.e., the blame assignment, is denoted by β.

Uncertainty considerations. Since the agents’ behavior policy πb might not be known to the
blame attribution procedure, we also define blame attribution under uncertainty as a mapping Ψ̂ :

M×P(Π)→ Rn≥0 that outputs a blame assignment estimate β̂. Here, P(Π) represents a set whose
elements express the knowledge about πb. Inspired by the literature on robust MDPs [47, 48, 49], we
encode such knowledge with uncertainty sets P(πb), one associated to each state s, P(πb, s), defined
by the set of probability measures on A. We assume that P(πb) is consistent with πb, i.e., πb(·|s)
is in P(πb, s),34 and that every π(·|s) in P(πb, s) factorizes to π(a|s) = π1(a1|s) · · ·πn(an|s).
Therefore, P(πb, s) identifies the set of plausible stochastic actions that agent i takes in state s.

2.3 Desirable Properties

Our goal is to specify functions Ψ and Ψ̂, such that the blame assignments β and β̂ satisfy desirable
properties. In the following text we denote these properties byR. Below, we define properties that
are taken from or inspired by the game theory literature [26, 50, 21], but translated to our setting5:

• Validity (RV ): We say that Ψ is valid if it never distributes more blame than the observed
inefficiency ∆. More formally, Ψ satisfiesRV (resp. ε-RV ) if for every M and πb,

∑n
i=1 βi ≤ ∆

(resp.
∑n
i=1 βi ≤ ∆ + ε), where β = Ψ(M,πb).

3Such P(πb) can be derived from data containing agents’ trajectories and be based on confidence intervals.
4πb(·|s) could be in P(πb, s) w.h.p., provided Blackstone consistency in Section 2.3 is similarly adjusted.
5Note that the terminology is slightly different.
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• Efficiency (RE): A more strict condition is that the total distributed blame is equal to ∆. That is,
Ψ satisfies RE (resp. ε-RE) if for every M and πb,

∑n
i=1 βi = ∆ (resp. |

∑n
i=1 βi −∆| ≤ ε),

where β = Ψ(M,πb).
• Rationality (RR): Similar to validity is rationality, which requires that blame distributed to any

subset of agents S is not greater than ∆S . That is, Ψ satisfiesRR (resp. ε-RR) if for every M , πb,
and S ⊆ {1, ..., n},

∑
i∈S βi ≤ ∆S (resp.

∑
i∈S βi ≤ ∆S + ε), where β = Ψ(M,πb).

• Symmetry (RS): We say that Ψ is symmetric if it treats equal agents equally, i.e., agents that
equally contribute to the inefficiency should receive the same blame. More formally, Ψ satisfiesRS
(resp. ε-RS) if for every M and πb, βi = βj (resp. |βi − βj | ≤ ε) whenever ∆S∪{i} = ∆S∪{j}
for all S ⊆ {1, ..., n}\{i, j}, where β = Ψ(M,πb).

• Invariance (RI ): We say that Ψ is invariant if it assigns zero blame to agents who do not marginally
contribute to inefficiency. More formally, Ψ satisfies RI (resp. ε-RI ) if for every M and πb,
βi = 0 (resp. βi ≤ ε) whenever ∆S∪{i} = ∆S for all S, where β = Ψ(M,πb).

Note that ε > 0 in the definitions of ε-R, and that we use these properties in our characterization
result for blame attribution under uncertainty. Additionally, we consider two properties that relate the
blame attribution output to the MMDP structure and the agents’ behavior policies.

• Contribution monotonicity (RCM )[51]: We say that Ψ is contribution-monotonic if the blame
it assigns to an agent depends only on its marginal contributions and monotonically so. More
formally, Ψ satisfiesRCM (resp. ε-RCM ) if for every two (M1, πb

1
) and (M2, πb

2
), βi1 ≥ βi2

(resp. βi1 ≥ βi2−ε) whenever ∆1
S∪{i}−∆1

S ≥ ∆2
S∪{i}−∆2

S for all S, where β1 = Ψ(M1, πb
1
)

and β2 = Ψ(M2, πb
2
).

• Performance monotonicity (RPerM ): We say that Ψ is performance-monotonic if it does not
assign greater blame to agent i for adopting a policy that results in an equal or higher performance,
assuming the other agents’ policies fixed. More formally, consider any MMDP M , and any πb−i,
πi and π′i such that J(πi, π

b
−i) ≤ J(π′i, π

b
−i). We say that Ψ satisfiesRPerM (resp. ε-RPerM )

if βi ≥ β′i (resp. βi ≥ β′i − ε) where β = Ψ(M, (πi, π
b
−i)) and β′ = Ψ(M, (π′i, π

b
−i)).

The above definitions directly extend to Ψ̂ except that we require them to hold for all P(πb).
Additionally, we identify the following property for Ψ̂:

• Blackstone consistency (RBC ): We say that Ψ̂ is Blackstone-consistent with Ψ if it never attributes
more blame to an agent than Ψ. More formally, Ψ̂ satisfiesRBC(Ψ) if for any M , πb and P(πb),
β̂i ≤ βi, where β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)).

3 Game-Theoretic Approaches to Blame Attribution

In this section, we study blame attribution methods based on well known game theoretic notions,
such as the core [28], Shapley value [29, 30], or Banzhaf index [31, 32]. We also introduce a novel
blame attribution method, unique in the set of properties it satisfies. The proofs of our results can be
found in Appendices G, H, and I.

3.1 Max-Efficient Rationality

We start with a relatively simple blame assignment method that puts rationality as a strict condition,
and maximizes the efficiency of blame assignment under this constraint. We call this blame assignment
method max-efficient rationality. More formally, max-efficient rationality can be defined via the
following linear program:

ΨMER(M,πb) := max
β

n∑
i=1

βi s.t.
∑
i∈S

βi ≤ ∆S ∀S ⊆ {1, ..., n}, (P1)

where ∆S are precomputed. Max-efficient rationality is inspired by the notion of core, but unlike the
core, max-efficient rationality does not require RE (efficiency) to hold. It is easy to show that the
following properties are satisfied by any optimizer of (P1), ΨMER.
Proposition 1. Every solution to the optimization problem (P1), i.e., ΨMER, satisfiesRV (validity),
RR (rationality) andRI (invariance).
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Since there might exist multiple optimal solutions to (P1), a tie breaking rule might be needed to
decide on the method’s output, ΨMER. We account for this fact in the experiments from Section
5. Note that the constraints in (P1) are quite restrictive, leading to blame assignments that typically
distribute very little blame in total. The amount of total blame assigned is important for explanatory
power. Namely, a trivial blame attribution method that assigns the score of 0 to every agent satisfies
all of the properties from the previous section exceptRE (efficiency), but provides no information
regarding the agents’ contributions to the outcome.

3.2 Marginal Contribution

Another intuitive blame assignment method is what we refer to as marginal contribution. This method
simply quantifies an agent’s potential to increase the performance of the system, assuming that the
other agents keep their policies fixed. That is, the blame assigned to agent i is equal to βi = ∆i. The
following properties hold:
Proposition 2. ΨMC(M,πb) = (∆1, ...,∆n) satisfies RS (symmetry), RI (invariance), RCM
(contribution monotonicity) andRPerM (performance monotonicity).

Unlike max-efficient rationality, marginal contribution does not satisfy validity, i.e., it can over-blame
a group of agents by assigning them total score that exceeds the improvement they can achieve, i.e.,
∆. Given that an agent’s marginal inefficiency is not always a good indicator of the agent’s influence
on the system’s performance, this method can be highly inefficient (distributing very little blame)
when coordination among agents is required, as we show in Section 5.

3.3 Shapley Value and Banzhaf Index

In the context of the sequential decision making setting studied in this paper, Shapley value can be
defined as β = ΨSV (M,πb) such that

βi =
∑

S⊆{1,...,n}\{i}

wS ·
[
J(π

∗|πb
S∪{i}, π

b
−S∪{i})− J(π

∗|πb
S , πb−S)

]
, (1)

where coefficients wS are set to wS = |S|!(n−|S|−1)!
n! . We restate (and in Appendix H, prove the

claim for our setting) a well known uniqueness result for Shapley value:
Theorem 1. [51] ΨSV (M,πb) = (β1, ..., βn), where βi is defined by Eq. (1) and wS =
|S|!(n−|S|−1)!

n! , is a unique blame attribution method satisfyingRE (efficiency),RS (symmetry) and
RCM (contribution monotonicity). Additionally, ΨSV satisfiesRV (validity) andRI (invariance).

As we show in Section 5, Shapley value does not satisfy properties RR (rationality) nor RPerM
(performance monotonicity).

Banzhaf index, denoted by ΨBI , is similar to Shapley value, and in fact, it has the same functional
form but different coefficients (wS = 1

2n−1 ), leading to a slightly different uniqueness result. Ap-
pendix C discusses Banzhaf index and its properties in greater detail. Here, we note that Banzhaf
index is equivalent to Shapley value for two agents. However, in general, Banzhaf index does not
satisfy RE (efficiency), but a version of it, called 2-efficiency [52]. As it is the case with Shapley
value, Banzhaf index does not satisfy RPerM (performance monotonicity) nor RR (rationality).
Interestingly,RV (validity) might also not hold (see Section 5).

3.4 Average Participation

Motivated by the fact thatRPerM (performance monotonicity) is important for incentivizing good
performance and RE (efficiency) is important for explanatory power, we introduce a novel blame
assignment method, which can be seen as a combination of marginal contribution and Shapley value.
We first show the following result, which shows that there is an inherent trade-off betweenRPerM
andRE , assumingRS (symmetry) andRI (invariance) hold.
Proposition 3. No blame attribution method Ψ satisfiesRE (efficiency),RS (symmetry),RI (invari-
ance) andRPerM (performance monotonicity).

Given this result, we instead consider two new propertiesRAE (average efficiency) andRcPerM (c-
performance monotonicity), which are weaker variants ofRE (efficiency) andRPerM (performance
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monotonicity) respectively. Importantly,RAE is not satisfied by ΨMC andRcPerM by ΨSV . In ad-
dition, we also consider two variants ofRCM (contribution monotonicity): RcParM (c-participation
monotonicity) andRRcParM (relative c-participation monotonicity). To define the new properties,
we introduce a contribution function c : M× Π × {1, ..., n} → {0, 1} that indicates whether an
agent is pivotal, i.e., marginally contributes to the inefficiency of some subset of {1, ..., n}:

c(M,πb, i) =

{
0 if J(π

∗|πb
S∪{i}, π

b
−S∪{i}) = J(π

∗|πb
S , πb−S) ∀S ⊆ {1, ..., n}

1 otherwise
.

Alternatively, an agent i is pivotal if and only if its Shapley value is strictly greater than 0, i.e.,
c(M,πb, i) = 1 [βi > 0], where β = ΨSV (M,πb) and 1 [.] is an indicator function. The new
properties are then defined as follows:

• Average efficiency (RAE): Ψ satisfies RAE (resp. ε-RAE) if for every M and πb,
∑n
i=1 βi =∑

S⊆{1,...,n}
1

2n−1 ·∆S (resp. |
∑n
i=1 βi −

∑
S⊆{1,...,n}

1
2n−1 ·∆S | ≤ ε), where β = Ψ(M,πb).

• c-Performance monotonicity (RcPerM ): Consider any MMDP M , and any πb−i, πi and π′i
s.t. J(πi, π

b
−i) ≤ J(π′i, π

b
−i) and c(M, (πi, π

b
−i), j) = c(M, (π′i, π

b
−i), j) for every j. We

say that Ψ satisfies RcPerM (resp. ε-RcPerM ) if βi ≥ β′i (resp. βi ≥ β′i − ε) where β =
Ψ(M, (πi, π

b
−i)) and β′ = Ψ(M, (π′i, π

b
−i)).

• c-Participation monotonicity (RcParM ): Ψ satisfies RcParM (resp. ε-RcParM ) if for every
(M1, πb

1
) and (M2, πb

2
) s.t. c(M1, πb

1
, i) = c(M2, πb

2
, i) for every i, βj1 ≥ βj2 (resp. βj1 ≥

βj
2 − ε) whenever ∆1

S∪{j} ≥ ∆2
S∪{j} for all S, where β1 = Ψ(M1, πb

1
) and β2 = Ψ(M2, πb

2
).

• Relative c-participation monotonicity (RRcParM ): Ψ satisfiesRRcParM (resp. ε-RRcParM ) if
for every (M1, πb

1
) and (M2, πb

2
) s.t. c(M1, πb

1
, i) = c(M2, πb

2
, i) for every i, βj1 − βj2 ≥

βk
1 − βk2 (resp. βj1 − βj2 ≥ βk

1 − βk2 − ε) whenever c(M1, πb
1
, j) = c(M1, πb

1
, k) and

∆1
S∪{j} −∆2

S∪{j} ≥ ∆1
S∪{k} −∆2

S∪{k} for all S ∈ {1, ..., n}\{j, k}, where β1 = Ψ(M1, πb
1
)

and β2 = Ψ(M2, πb
2
).

Before describing the main results of this subsection, we briefly outline the intuition behind the
above definitions. RAE (average efficiency) is similar to RE (efficiency), however it requires
less total blame to be distributed. Whereas RE requires that the total blame is equal to the total
inefficiency ∆, RAE requires that the total blame is equal to the average marginal inefficiency of
subsets of agents, i.e., the average value of ∆S .6 Compared toRPerM (performance monotonicity),
RcPerM (c-performance monotonicity) additionally accounts for the pivotality of agents through
contribution function c, treating each set of pivotal agents as a separate case. RcParM (c-participation
monotonicity) accounts for agents’ pivotality in a similar manner. Moreover, RcParM resembles
contribution monotonicity RCM , but instead of requiring blame monotonicity to hold w.r.t. the
agent’s influence on the marginal inefficiency of subsets S (i.e., ∆S∪{i} −∆S), it considers blame
monotonicity w.r.t. the marginal inefficiency of subsets that contain the agent (i.e., ∆S∪{j}). Relative
c-participation monotonicityRRcParM is similar toRcParM , but its blame monotonicity requirement
is based on a pairwise comparison of agents with the same pivotality degree. In particular,RRcParM
requires that the blame increase is higher for an agent who is in subsets with a greater marginal
inefficiency increase (i.e., βj1−βj2 ≥ βk1−βk2 whenever ∆1

S∪{j}−∆2
S∪{j} ≥ ∆1

S∪{k}−∆2
S∪{k}).

Average participation: Now, we describe the new blame assignment method, which we call average
participation. This blame assignment method can be defined as β = ΨAP (M,πb) such that

βi =
∑

S⊆{1,...,n}\{i}

w · c(M,πb, i)∑
j∈S c(M,πb, j) + 1

·∆S∪{i}, (2)

where coefficient w is set to w = 1
2n−1 . Intuitively, ΨAP equally distributes blame for the marginal

inefficiency of a subset of agents among the pivotal agents in that subset. Hence, an agent i that is
pivotal receives blame for each subset S ∪ {i} equal to ∆S∪{i} divided by the number of pivotal
agents in S ∪ {i} and scaled by coefficient w. Agents that are not pivotal, obtain 0 blame. Average
participation uniquely satisfies the following properties.

6This average does not include ∆∅, which is equal to 0. Note also that ∆ ≥ ∆S for every S ⊆ {1, ..., n},
so this average is upper bounded by ∆.
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Theorem 2. ΨAP (M,πb) = (β1, ..., βn), where βi is defined by Eq. (2) and w = 1
2n−1 , is a

unique blame attribution method that satisfiesRAE (average-efficiency),RS (symmetry),RI (invari-
ance),RcParM (c-participation monotonicity) andRRcParM (relative c-participation monotonicity).
Furthermore, ΨAP satisfiesRcPerM (c-performance monotonicity) andRV (validity).

Unlike marginal contribution, average participation is valid (never over-blames agents), however it
satisfies a weaker version of performance monotonicity. Still, this version is not satisfied by Shapley
value. On the other hand, Shapley value is efficient, unlike average participation, which satisfies a
weaker requirement—average efficiency. We also showcase these trade-offs in Section 5.

4 Blame Attribution under Uncertainty

In this section, we study blame attribution methods that do not have direct access to πb. As mentioned
in Section 2, we focus on the case where the knowledge about πb is defined by the uncertainty set
P(πb), and it is defined state-wise so that each state is associated with a set of probability measures
on A identifying plausible candidates for πb(·|s).7 We denote π ∈ P(πb) if π is plausible by P(πb).

4.1 Shapley Value under Uncertainty

In explaining approaches to handling uncertainty, we focus on Shapley value. Arguably, the simplest
way to operate under uncertainty is to derive a point estimate of πb, denoted by π̂b,8 and apply ΨSV

on this estimate to obtain blame assignment β̂ = ΨSV (M, π̂b). Albeit being simple, this approach
does not satisfy desirable properties, most notably,RV (validity) andRBC (Blackstone consistency).

Validity. Now, note that β̂ = ΨSV (M, π̂b) satisfies
∑n
i=1 β̂i = J(π∗)− J(π̂b). Therefore, instead

of relying on a point estimate π̂b, we could utilize a policy π̂b for which J(π∗)−J(π̂b) ≤ ∆. Namely,
in that case β̂ = ΨSV (M, π̂b) results in a blame assignment that satisfiesRV (validity). Since this
inequality holds for a solution to the optimization problem maxπ∈P(πb) J(π), we obtain:

Proposition 4. Let π̂b be a solution to the optimization problem maxπ∈P(πb) J(π). Then
Ψ̂SV,V (M,P(πb)) = ΨSV (M, π̂b) satisfiesRV (validity).

Blackstone consistency. As we show in Section 5, although Ψ̂SV,V is valid, it might not be Black-
stone consistent w.r.t. ΨSV . In particular, although the total blame is never overestimated, an agent i
might receive higher blame than it would receive under ΨSV . To ensure Blackstone consistency, we
can assign blame to agent i equal to minπ∈P(πb) βi

π s.t. βπ = ΨSV (M,π). Together with Eq. (1),
this implies that agent i’s blame is obtained by solving

min
π∈P(πb)

∑
S⊆{1,...,n}\{i}

wS ·
[
J(π

∗|π
S∪{i}, π−S∪{i})− J(π

∗|π
S , π−S)

]
, (P2)

where wS = |S|!(n−|S|−1)!
n! and π∗|πS ∈ arg maxπ′S J(π′S , π−S). We have the following result:

Proposition 5. Let βii be the minimum value of the objective in (P2). Then Ψ̂SV,BC(M,P(πb)) =
(β1

1 , ..., β
n
n) satisfiesRV (validity) andRBC(ΨSV ) (Blackstone consistency w.r.t. ΨSV (M,πb)).

Note that Ψ̂SV,BC distributes less total blame than Ψ̂SV,V , since it takes the worst case perspective
for each agent separately, while under Ψ̂SV,V the blame assigned to all agents is computed with
the same joint behavior policy. Moreover, the objective function in (P2) is more complex than
in classical robust MDP settings [47, 48], making classical approaches for robust MDPs hard to
apply. In practice, we can relax (P2) and optimize a lower bound of the objective; this preserves
RBC(ΨSV ), but at the expense of distributing less blame to the agents. In our experiments, we
solve minπ∈P′(πb) J(π

∗|π
S∪{i}, π−S∪{i}) and maxπ∈P′(πb) J(π

∗|π
S , π−S) for each subset S and with

appropriately chosen P ′(πb) ⊇ P(πb) (see Appendix D), and we apply Eq. (1) to obtain the blame

7Such definition implies a rectangularity of the uncertainty set [47, 49].
8For example, this estimate can be derived from data containing the agents’ trajectories.
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assignment. This implies that agent i’s blame is obtained by solving∑
S⊆{1,...,n}\{i}

wS ·
[

min
π∈P′(πb)

J(π
∗|π
S∪{i}, π−S∪{i})− max

π∈P′(πb)
J(π

∗|π
S , π−S)

]
.

Other Blame Attribution Methods. Similar approaches also work for other blame assign-
ment methods discussed in Section 3. For example, and focusing on Blackstone consistency,
Ψ̂BI,BC(M,P(πb)) can be obtained in the same way as Ψ̂SV,BC(M,P(πb)), but with wS =

1
2n−1 , while Ψ̂MC,BC(M,P(πb)) can be implemented as Ψ̂MC,BC(M,P(πb)) = (∆̃1, ..., ∆̃n)

where ∆̃i = minπ∈P′(πb) J(π
∗|π
i , π−i)−maxπ∈P′(πb) J(π). Implementing Blackstone consistent

Ψ̂MER,BC(M,P(πb)) and Ψ̂AP,BC(M,P(πb)) is more nuanced, and we discuss it in Appendix D.

4.2 Characterization Result

Notice that the described Blackstone consistent methods Ψ̂(M,P(πb)) are not guaranteed to satisfy
the properties that their counterparts Ψ(M,πb) satisfy. However, as long as Ψ̂(M,P(πb)) and
Ψ(M,πb) output similar enough blame assignments, properties that hold under Ψ(M,πb) will
approximately hold under Ψ̂(M,P(πb)). More formally, we have the following results.

Theorem 3. Consider Ψ̂ and Ψ s.t.
∥∥∥Ψ̂(M,P(πb))−Ψ(M,πb)

∥∥∥
1
≤ ε for any M , πb, and P(πb).

Then if Ψ satisfies a propertyR ∈ {RV ,RE ,RR,RS ,RI ,RAE}, Ψ̂ satisfies ε-R. Moreover, if Ψ

satisfies a propertyR ∈ {RCM ,RPerM ,RcPerM ,RcParM ,RRcParM}, Ψ̂ satisfies 2ε-R.

This theorem allows us to quantify the robustness of the blame attribution methods—the closer Ψ̂ is
to Ψ, the more robust it is to uncertainty. Interestingly, a trivial blame attribution method that assigns
0 blame to all the agents is robust in this sense. However, as we already mentioned, this trivial blame
assignment is not informative as it does not attribute any blame. In fact, if agents receive no penalties
for bad behavior, such a blame attribution method might have adverse effects. We provide a broader
discussion on the negative side-effects of under-blaming in Appendix F. Importantly, this example
suggests that efficiency (in a broad sense, i.e., how much blame is being distributed) and robustness
are sometimes at odds, which we also demonstrate in the experiments.

5 Experiments

To demonstrate the efficacy of the studied blame attribution methods, we consider two environments,
Gridworld and Graph, depicted in Fig. 1 and Fig. 2. Both environments are adapted from [53] and
modified to be multi-agent. The experiments evaluate blame attribution methods along three axis:

• Performance monotonicity: First, we test blame attribution methods for theRPerM (performance
monotonicity) property, which we deem important for accountability. To do that, we consider the
gridworld environment: this is a two-agent environment in which one of the agents, A2, optimizes
its policy using a model of the other agent, A1. Importantly, by controlling the correctness of
A2’s model of A1, we can validate whether a blame attribution method satisfiesRPerM . Namely,
if A2 does not receive the minimum blame when its model of A1 is the correct model, the
corresponding method is not performance incentivizing, i.e., it does not satisfyRPerM .

• Coordination: Second, we evaluate the efficacy of blame attribution methods when a higher degree
of coordination among agents is needed to yield improvements over the baseline behavior. For this,
we consider the graph environment, which includes configurations where an agent cannot improve
the joint performance by unilaterally changing its policy. Thus, this environment is suitable for
evaluating whether blame attribution methods incorporate more nuanced counterfactual reasoning.

• Robustness: Finally, we evaluate the robustness of blame attribution methods under uncertainty. In
this case, both environments (Gridworld and Graph) are used for testing purposes, and we control
for the level of uncertainty over the agents’ behavior policies.

Appendix E provides more details on the experimental setup and implementation. Below we provide
a more detailed description of the considered environments and discuss our findings.

8



Environment 1: This is a gridworld environment, in which two agents control the same actor but
with different priorities. In the single-agent version of the environment, an agent,
agent A1, controls the movement of the actor. In our multi-agent version, there
is an additional agent, agent A2, who can intervene and override A1’s actions.
The two agents select their actions simultaneously. Cells denoted with S are
the initial states, blank cells indicate areas of small negative reward, F cells
indicate areas of slightly increased cost and H cells are areas of severe penalty.
The cell denoted by G is the terminal state of the environment and has a positive
reward. When agent A2 intervenes in some state, the actor takes the action that
an optimal policy would select in the single-agent mode, but also pays a cost of

S S
S
S
S F
S
S H
S H
S

S S
F

H

H
H

H

S S
H

H

F
H

F

S S

F
F

F
H
H

G

Fig. 1. Gridworld

intervention C. The behavior policy πb1 of agent A1 is parameterized by variable α, which specifies
the probability that A1 takes an action determined by an optimal single-agent policy, instead of its
personal policy. The personal policy of A1 is a mixture of an optimal single-agent policy for correctly
specified costs and a single-agent policy that is optimal but for misspecified costs of F andH cells—it
assumes that they have the same cost as the blank cells. A2’s behavior policy πb2 optimizes the
expected discounted return and is trained with a model of A1 specified by the true personal policy of
A1 and variable α′ (not necessarily equal to α). A2 is meant to rectify potential mistakes of A1 that
could inflict cost greater than C. InRPerM experiments we set α = 0.4. In robustness experiments,
we only consider uncertainty over the personal policy of A1, and we set α = 0.2 and α′ = 0.5.

Performance monotonicity: Fig. 3a validates our theoretical results regardingRPerM (performance
monotonicity). More specifically, methods ΨAP and ΨMC assign the minimum blame to A2 when it
acts optimally w.r.t. the true policy ofA1 , i.e., when α′ = α. However, this is not the case for methods
ΨSV and ΨBI , which implies that these methods are not incentivizing A2 to act optimally w.r.t. its
belief about A1. ΨMER and ΨBI assign the same blame to A2 as ΨMC and ΨSV , respectively.

Environment 2: This is a graph environment in which 4 agents simultaneously
select actions. The graph consists of one starting and one terminal node, as well
as 8 intermediate nodes that can be grouped according to their index number;
nodes with even index number are located on the upper level of the graph and
nodes with odd index number on the lower level. At each time-step every agent

-1

7531

6420

8

0

0

00

0 0

111
1

0

1 1 1

Fig. 2. Graph
chooses to take either action 0 and move to the upper level or action 1 and move to the lower level.
We test multiple variants of this environment, each of which defines a different reward function. In
all variants, the reward at each time-step is +1 if some formation constraint is satisfied and −1 if
not. In the first set of experiments (Coordination), we consider 4 different formation constraints:
in formation constraint m ∈ {1, ..., 4}, at least m agents need to select action 1 for the constraint
to be satisfied. Each behavior policy πbi takes action ai = 0 in every node. In the second set of
experiments (Robustness), we consider one formation constraint that is satisfied if the agents are
arranged equally between the two levels. In states where agents are balanced between the levels, each
behavior policy πbi takes the action from the previous time-step with probability pi; in unbalanced
states, the action that leads to the level with the least number of agents is taken with probability pi.

Coordination: Fig. 3e shows how much blame in total the blame attribution methods assign for the
four different levels of required coordination (m = 1, ..., 4). Observe, that when the constraint can be
satisfied by every agent (m = 1), ΨMC violatesRV (validity). For m = 2, ΨMER and ΨMC assign
zero blame to all agents, while ΨBI violates RV (validity). Although always valid, ΨAP assigns
significantly less blame as m increases. ΨSV is always efficient, and its total blame does not vary
with m. ΨSV , ΨBI , ΨMC and ΨAP do not satisfyRR (they assign more total blame than ΨMER).

Robustness: We test the robustness of the blame attribution methods by controlling the amount of
uncertainty in the estimates of the agents’ behavior policies. To model uncertainty, we consider
maximum estimation error εmax, and to obtain uncertainty sets P(πb), we sample (uniformly at
random) π̂bi (s) such that 1

2

∥∥π̂bi (s)− πbi(s)∥∥1 ≤ εmax. Moreover, P(πb, s) contains all policies π
such that 1

2

∥∥π̂bi (s)− πi(s)∥∥1 ≤ εmax. In our experiments, we take π̂b to be the point estimate of πb.

Comparing estimation approaches: Fig. 3b and 3f show how the approaches for estimating Ψ̂SV from
Section 4 fare under different levels of uncertainty. The point estimate approach typically over-blames
an agent and the amount of over-blaming increases with the level of uncertainty. Ψ̂SV,BC never
over-blames any agent, but it becomes less efficient (in distributing blame) as εmax increases (Fig.
3f). Ψ̂SV,V is more efficient than Ψ̂SV,BC , but violatesRBC (Blackstone consistency) (Fig. 3b).
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Fig. 3. Experimental results for the Gridworld and Graph environments. Plot (a) tests methods for
RPerM . Plot (e) shows the effect of varying coordination level. Plots (b,c,d,f,g,h) show the effect of
varying εmax in different Shapley value approaches (b,f) and blame attribution methods (c,d,g,h).
Comparing attribution approaches: Fig. 3c and 3g show for each consistent blame attribution method
Ψ̂ from Section 4 the L1 distance between its output and the output of its counterpart Ψ (“targeted
assignment”). Fig. 3d and 3h show the total blame assigned by these methods. Ψ̂AP,BC consistently
outperforms the other methods in terms of the L1 distance from its “targeted assignment”. Compared
to Ψ̂AP,BC , Ψ̂SV,BC is consistently better in terms of efficiency (in distributing blame). Similar,
albeit less prominent effects can be seen when comparing Ψ̂AP,BC and Ψ̂BI,BC . These results
indicate a tendency where efficiency (in distributing blame) and robustness are at odds, as we also
discuss in Section 4.2. Ψ̂MER,BC and Ψ̂MC,BC assign zero total blame even for smaller εmax,
indicating that they are the least robust to uncertainty.

6 Conclusion

In summary, the focus of our work is to provide an overview of possible computational approaches for
attributing blame in multi-agent sequential decision making. We discuss the strengths and weaknesses
of different methods in order to guide practitioners and policy makers in designing tools that support
accountability. We conclude that there is no single best choice for blame attribution methods, since
there are inherent trade-offs among properties that one might consider important. Looking forward,
we recognize several research directions that could address the limitations of our results, some of
which we highlight here. a) In this work we primarily focused on the agents’ joint return as the
outcome of interest. However, it is often important to pinpoint actual causes that led to more fine
grained outcomes. Utilizing a causal perspective would be beneficial in this regard and could link our
results to prior work (e.g., [16]). b) We considered model-based approaches to blame assignment.
Learning blame attribution directly from data (e.g., with model-free counterfactual RL) might be
more practical in settings where an approximate model is hard to obtain. c) More generally, ensuring
scalability both in the number of agents and the the richness of environments is one of the most
important steps for making this work more widely applicable. We deem approaches from multi-
agent RL as suitable candidate solutions for resolving this problem. d) We primarily studied blame
assignment properties that are taken from or closely relate to those from the game theory literature.
This list could be extended and include more principles from moral philosophy and law. For example,
in this paper, we adopted a consequentialist approach to blame attribution, focusing on the outcomes
of the agents’ behavior. Alternatively, one could take a deontological perspective, and focus on the
alignment of an agent’s behavior with a set of rules. We further discuss different perspectives on
blame attribution in Appendix F. Finally, we would like to draw particular attention to the fact that
there is no universal prioritization of properties that applies to all blame attribution problems and
hence treating any generic analysis like ours as panacea without further justification, might have a
negative impact to the agents that are being blamed. To that end, we would like to emphasize that
we see this work not as a final solution to the blame attribution problem, but as a starting point that
shows challenges and trade-offs in distributing blame.
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A List of Appendices

In this section we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides a table that summarizes the the results in Section 3.
• Appendix C provides additional details on Banzhaf index.
• Appendix D provides additional details on blame attribution under uncertainty.
• Appendix E provides additional details on experimental setup and implementation.
• Appendix F provides an extended discussion on different perspectives on blame attribution and

the negative side-effects of under-blaming agents.
• Appendix G contains the proofs of the proposition from Section 3 (Proposition 1, Proposition 2,

and Proposition 3).
• Appendix H contains the proof of Theorem 1 from Section 3.
• Appendix I contains the proof of Theorem 2 from Section 3.
• Appendix J contains the proofs of the formal results from Section 4 (Proposition 4, Proposition 5,

and Theorem 3).

B Table of Methods and Properties

In this section we provide a table that summarizes the results of Section 3 and describes which blame
attribution methods satisfy which properties. We use (X) to denote that a method does not satisfy the
exact property but a weaker version of it.

ΨMER ΨMC ΨSV ΨBI ΨAP

RV X X X
RE X (X)
RR X
RS X X X X
RI X X X X X
RCM X X X
RPerM X (X)

Table 1: Summary of the characterization results from Section 3

Method ΨAP satisfies propertiesRAE andRcPerM which are weaker versions ofRE andRPerM ,
respectively.

C Banzhaf Index

In this section, we discuss in a greater detail Banzhaf index and its properties. In the context
of the sequential decision making setting studied in this paper, Banzhaf Index can be defined as
β = ΨBI(M,πb) such that

βi =
∑

S⊆{1,...,n}\{i}

wS ·
[
J(π

∗|πb
S∪{i}, π

b
−S∪{i})− J(π

∗|πb
S , πb−S)

]
, (3)

where coefficients wS are set to wS = 1
2n−1 . The following properties hold:

Proposition 6. ΨBI(M,πb) = (β1, ..., βn), where βi is defined by Eq. (3) and wS = 1
2n−1 , is

a blame attribution method satisfying RS (symmetry), RI (invariance) and RCM (contribution
monotonicity).

Proof. First, notice that Banzhaf Index can be redefined as β = ΨBI(M,πb) such that:

βi =
∑

S⊆{1,...,n}\{i}

wS ·
[
∆S∪{i} −∆S

]
. (4)

We prove the properties as follows:
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• RS (symmetry): Consider M , πb, and agents i and j such that ∆S∪{i} = ∆S∪{j} for all
S ⊆ {1, ..., n}\{i, j}. Notice that ∆S∪{i} − ∆S = ∆S∪{j} − ∆S and ∆S∪{i,j} − ∆S∪{j} =

∆S∪{i,j} −∆S∪{i} for all S ⊆ {1, ..., n}\{i, j}. Given the definition of β = ΨBI(M,πb), this
implies that βi = βj , and hence propertyRS (symmetry) is satisfied.

• RI (invariance): Consider M , πb, and agent i such that ∆S∪{i} = ∆S for all S. Given the
definition of β = ΨBI(M,πb), this implies that βi = 0, and hence property RI (invariance) is
satisfied.

• RCM (contribution monotonicity): Consider M1, πb1, M2, πb2, and agent i such that ∆1
S∪{i} −

∆1
S ≥ ∆2

S∪{i} − ∆2
S for all S. By using the definitions of β1 = ΨBI(M

1, πb
1
) and β2 =

ΨBI(M
2, πb

2
), this implies that:

βi
1 =

∑
S⊆{1,...,n}\{i}

wS ·
[
∆1
S∪{i} −∆1

S

]
≥

≥
∑

S⊆{1,...,n}\{i}

wS ·
[
∆2
S∪{i} −∆2

S

]
=

=βi
2,

and hence propertyRCM (contribution monotonicity) is satisfied.

In general, Banzhaf index satisfies a property called 2-efficiency [52] which leads to a slightly
different uniqueness result than the one of Theorem 1. This property and the corresponding analysis
are out of the scope of this paper, and we refer the reader to [52, 54] for more details.

D Additional Information on Blame Attribution under Uncertainty

In this section, we provide additional information on the optimization problems defined in Section 4.1
and the implementation of Blackstone consistent Ψ̂MER,BC(M,P(πb)) and Ψ̂AP,BC(M,P(πb)).

D.1 Implementation of Optimization Problems

In this section, we provide implementation details on the optimization problems defined in Section 4.1,
for obtaining Valid and Blackstone consistent blame attribution methods. More specifically, we fo-
cus on the optimization problems minπ∈P′(πb) J(π

∗|π
S∪{i}, π−S∪{i}) and maxπ∈P′(πb) J(π

∗|π
S , π−S),

where S ⊆ {1, ..., n} and P ′(πb) ⊇ P(πb). We consider

P(πb) =

{
π|π(a|s) = π1(a1|s) · · ·πn(an|s),

1

2
·
∥∥πi(·|s)− πbasi (·|s)

∥∥
1
≤ C, 0 ≤ πi(ai|s) ≤ 1,∑

ai∈Ai

πi(ai|s) = 1

}
,

where C is a non-negative constant and πbas is a baseline joint policy. In specific cases, we can
set P ′(πb) = P(πb) and we discuss these cases below. In general, to more directly relate the
optimization problems to prior work on robust optimization in MDPs [47, 48], we relax the constraint
that π factorizes to π(a|s) = π1(a1|s) · · ·πn(an|s), and consider

P ′(πb) =

{
π|

n∏
i=1

max(πbasi (ai|s)− C, 0) ≤ π(a1, ..., an|s) ≤
n∏
i=1

min(πbasi (ai|s) + C, 1),

∑
(a1,...,an)∈A

π(a1, ..., an|s) = 1

}
.

Notice that since
∑
ai∈Ai π

bas
i (ai|s) = 1, we have that πbasi (ai|s)−C ≤ πi(ai|s) ≤ πbasi (ai|s)+C

for every π ∈ P(πb), and hence P ′′(πb) ⊇ P(πb), where

P ′′(πb) =

{
π|π(a|s) = π1(a1|s) · · ·πn(an|s),max(πbasi (ai|s)− C, 0) ≤ πi(ai|s)
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≤ min(πbasi (ai|s) + C, 1),
∑
ai∈Ai

πi(ai|s) = 1

}
.

Importantly, P ′(πb) ⊇ P ′′(πb) implies that P ′(πb) ⊇ P(πb), which means
that maxπ∈P′(πb) J(π

∗|π
S , π−S) upper bounds maxπ∈P(πb) J(π

∗|π
S , π−S) and

minπ∈P′(πb) J(π
∗|π
S∪{i}, π−S∪{i}) lower bounds minπ∈P(πb) J(π

∗|π
S∪{i}, π−S∪{i}). Therefore,

minπ∈P′(πb) J(π
∗|π
S∪{i}, π−S∪{i}) and maxπ∈P′(πb) J(π

∗|π
S , π−S) can be used for deriving valid and

Blackstone consistent blame assignments (e.g., by applying Eq. (1) with the obtained solutions).
Next, we discuss how to solve these optimization problems.

While [47, 48] consider uncertainty over transitions dynamics instead of behavior policies, we
can solve maxπ∈P′(πb) J(π

∗|π
S , π−S) and minπ∈P′(πb) J(π

∗|π
S∪{i}, π−S∪{i}) by adapting their robust

optimization techniques. To solve the optimization problem minπ∈P′(πb) J(π
∗|π
S∪{i}, π−S∪{i}) for

subset S, we apply the following recursion (in each iteration updating values for each state s):

π̃(·|s)← arg min
π(·|s)∈P′(πb,s)

max
aS∪{i}

∑
a−S∪{i}

π−S∪{i}(a−S∪{i}|s) ·
[
R(s, a) + γ ·

∑
s′

P (s, a, s′) · V k(s′)

]
,

V k+1(s)← max
aS∪{i}

∑
a−S∪{i}

π̃−S∪{i}(a−S∪{i}|s) ·
[
R(s, a) + γ ·

∑
s′

P (s, a, s′) · V k(s′)

]
,

for k = 1, 2, . . . , where V : S → R≥0 is the value function, aS denotes the joint action of agents
S, a−S denotes the joint action of agents {1, ..., n}\S, and a is the joint action of all the agents.
The optimization problem for finding π̃ can be solved via a linear program that minimizes a dummy
variable which is constrained to be at least as large as∑

a−S∪{i}

π−S∪{i}(a−S∪{i}|s) ·
[
R(s, a) + γ ·

∑
s′

P (s, a, s′) · V k(s′)

]
for all aS∪{i}. The optimization problem for finding V k+1 can be solved by simply searching over
all possible aS∪{i}. Similarly, we can solve maxπ∈P′(πb) J(π

∗|π
S , π−S) with the following recursion:

π̃(·|s)← arg max
π(·|s)∈P′(πb,s)

max
aS

∑
a−S

π−S(a−S |s) ·
[
R(s, a) + γ ·

∑
s′

P (s, a, s′) · V k(s′)

]
,

V k+1(s)← max
aS

∑
a−S

π̃−S(a−S |s) ·
[
R(s, a) + γ ·

∑
s′

P (s, a, s′) · V k(s′)

]
,

for k = 1, 2, . . . . The optimization problem for finding π̃ can be solved by searching over all aS and
selecting one that maximizes

max
π(·|s)∈P′(πb,s)

∑
a−S

π−S(a−S |s) ·
[
R(s, a) + γ ·

∑
s′

P (s, a, s′) · V k(s′)

]
—the solution to this problem gives us the corresponding π̃. The optimization problem for finding
V k+1 can be solved by searching over all possible aS . The two recursions described above define
dynamic programming techniques that are analogs of those in [47, 48], but applied for uncertainty
over behavior policies. They can be solved efficiently for smaller action spaces A, e.g., as those in
our experiments.

Now, in specific cases, we can set P ′(πb) = P(πb), which in turn can lead to more efficient blame
assignments (since the estimates are tighter). We consider the following two cases:

• First, when there are only two agents in an MMDP, −S ∪ {i} contains at most one agent.
Therefore, we could run the first recursion on {πj | 12 ·

∥∥πj(·|s)− πbasj (·|s)
∥∥
1
≤ C, 0 ≤

πj(aj |s) ≤ 1,
∑
aj∈Aj πj(aj |s) = 1} instead of {πj |max(πbasj (aj |s) − C, 0) ≤ πj(aj |s) ≤

min(πbasj (aj |s) +C, 1),
∑
aj∈Aj πj(aj |s) = 1} and thus solve minπ∈P(πb) J(π

∗|π
S∪{i}, π−S∪{i}).
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Also in that case, −S contains at most one agent whenever S 6= ∅, and hence we could run the sec-
ond recursion on {πj | 12 ·

∥∥πj(·|s)− πbasj (·|s)
∥∥
1
≤ C, 0 ≤ πj(aj |s) ≤ 1,

∑
aj∈Aj πj(aj |s) = 1},

and thus solve maxπ∈P(πb) J(π
∗|π
S , π−S) for every S 6= ∅. In addition, when the optimal policies

of one of the agents, agent i, are independent of which policy the other agent, agent j, follows
we can directly compute an optimal policy for i on {πi| 12 ·

∥∥πi(·|s)− πbasi (·|s)
∥∥
1
≤ C, 0 ≤

πi(ai|s) ≤ 1,
∑
ai∈Ai πi(ai|s) = 1}, by fixing an arbitrary policy to agent j. Then, by fix-

ing agent i to its optimal policy, we can can directly compute an optimal policy of agent j on
{πj | 12 ·

∥∥πj(·|s)− πbasj (·|s)
∥∥
1
≤ C, 0 ≤ πj(aj |s) ≤ 1,

∑
aj∈Aj πj(aj |s) = 1}. This implies

that we can run the second recursion directly onP(πb) for S = ∅ and thus solve maxπ∈P(πb) J(π).
We use these facts in our experiments for the Gridworld environment, where the optimal policies
of A1 are independent of A2’s policy.

• Another specific case is when action spaces Ai are binary, and in this case, we can directly solve
maxπ∈P(πb) J(π

∗|π
S , π−S). Namely, we can think of this optimization problem as searching for

an optimal joint policy in an MMDP where the actions of agents −S have reduced “influence”.
Since an optimal joint policy in the reduced MMDP is deterministic, the optimal solution to
maxπ∈P(πb) J(π

∗|π
S , π−S) sets πj(aj |s) of agent j ∈ −S either to its maximum or its minimum

value, πbasj (aj |s) +C and πbasj (aj |s)−C respectively. In the former case, this means that agent j
chooses aj in the MMDP with the reduced influence, in the latter, this means that agent j chooses
the other action. We use this fact in our experiments for the Graph environment.

To conclude, in our experiments we directly solve the optimization problems
minπ∈P(πb) J(π

∗|π
S∪{i}, π−S∪{i}) and maxπ∈P(πb) J(π

∗|π
S , π−S) for the Gridworld environment,

and maxπ∈P(πb) J(π
∗|π
S , π−S) for the Graph environment.

D.2 Max-Efficient Rationality and Average Participation under Uncertainty

In this section we discuss the implementation of Blackstone consistent Ψ̂MER,BC(M,P(πb)) and
Ψ̂AP,BC(M,P(πb)) from Section 4.1. We begin with Ψ̂MER,BC(M,P(πb)), which can be obtained
by solving the optimization problem (P1) with ∆S replaced by ∆̃S = minπ∈P′(πb) J(π

∗|π
S , π−S)−

maxπ∈P′(πb) J(π). A solution to this optimization problem β̂ will for at least one solution β of
(P1) (with ∆S) satisfy β̂i ≤ βi for all i. In that sense, Ψ̂MER,BC(M,P(πb)) satisfiesRBC(ΨMER)
(Blackstone consistency w.r.t. ΨMER(M,πb)). However, note thatRBC(ΨMER) might not hold if
(P1) has multiple solutions (e.g., when calculating Ψ̂MER,BC or ΨMER) and we consider only one
solution (e.g., obtained through a tie breaking rule).

Let us now consider Ψ̂AP,BC(M,P(πb)). β̂ = Ψ̂AP,BC(M,P(πb)) can be implemented as

β̂i =
∑

S⊆{1,...,n}\{i}

w · c̃(M,P(πb), i)

|S|+ 1
· ∆̃S∪{i},

where c̃(M,P(πb), i) = 1
[
β̂SV,i > 0

]
with β̂SV = Ψ̂SV,BC(M,P(πb)) (see Section 4.1 for

how to calculate Ψ̂SV,BC), w = 1
2n−1 and ∆̃S∪{i} = minπ∈P′(πb) J(π

∗|π
S∪{i}, π−S∪{i}) −

maxπ∈P′(πb) J(π). Here, we used the fact that c (in this case, estimate c̃) can be obtained via
Shapley value (in this case, Blackstone consistent Shapley value).

E Experimental Setup and Implementation Details

In this section, we provide additional information on experimental setup and implementation details.

E.1 Additional Information on Experimental Setup

Environment 1: The exact penalties and rewards of the Gridworld environment (Fig. 1) are as
follows: −0.01 for blank cells and S cells, −0.02 for F cells, −0.5 for H cells and +1 for cell
G. Moreover, the cost of intervention C is −0.05. The size of the environment’s state space is 64
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(the state space represents cells of the Gridworld). The action space of agent A2 is {0, 1}, which
corresponds to don’t intervene and intervene, and the action space of agent A1 is {0, 1, 2, 3}, i.e.
move left, move right, move up and move down. Note also that the actor remains at the same
cell if it takes an action which would take it out of the environment. Finally, the specification of
the personal policy of agent A1 can be found in the source code, and more precisely in function
instantiate_behavior_policy_1() of env_gridworld.py.

Environment 2: The state space of the Graph environment (Fig. 2) is defined by possible distributions
of the 4 agents over the nodes of the graph, 66 states in total. The action space of each agent is {0, 1},
and the time-horizon of the environment is 5. We test multiple variants of this environment, each of
which defines a different reward function. In all the variants, the reward at each time-step t < 4 is
+1 if some formation constraint is satisfied and −1 if not, at time-step t = 4 the reward is always
0. Next, we describe in more detail the formation constraints and behavior policies for the Graph
environment in the first (Coordination) and the second (Robustness) set of experiments.

Coordination: In the first set of experiments, we assign weights w1 = 1, w2 = 2, w3 = 3 and
w4 = 4 to the four agents. We also consider 4 different formation constraints which are satisfied if∑
i∈{1,2,3,4} wi · ai ≥ hm, where ai is the action taken by agent i and hm is a threshold specific to

the constraint m ∈ {1, 2, 3, 4}. We consider four thresholds: h1 = 1, h2 = 7, h3 = 9 and h4 = 10.
For each constraint m to be satisfied, at least m number of agents need to select action 1. Each
behavior πbi takes action 0 in every state.

Robustness: In the second set of experiments, we consider one formation constraint that is satisfied
if agents are arranged equally between the two levels of the graph,

∑
i∈{1,2,3,4} ai = 2. When the

agents are in nodes −1, 6, 7 or 8, each behavior policy πbi takes each action with 0.5 probability. In
states where agents are balanced between the levels, each behavior policy πbi takes the action from
the previous time-step with probability pi; in unbalanced states, the action that leads to the level with
the least number of agents is taken with probability pi. We consider pi = 1− (i− 1) · 0.2 for each
agent i ∈ {1, 2, 3, 4}.
Discount factor γ is set to 0.99 in both environments.

E.2 Implementation Details

The solutions to the evaluation and optimization problems utilized by the blame attribution methods
can be computed efficiently using standard (robust) optimization techniques. In the source code, the
solvers of these problems are implemented as the following functions:

• policy performance evaluation in function recursion_1_a() (see recursion_graph.py and
recursion_gridworld.py).

• problem arg maxπS J(πS , π
b
−S) in functions recursion_1_c() (see recursion_graph.py)

and recursion_1_c_ag1(), recursion_1_c_ag2() (see recursion_gridworld.py).
• problem arg maxπ∈P′(πb) J(π) in function recursion_2_a() (see recursion_graph.py and
recursion_gridworld.py).

• problem minπ∈P′(πb) J(π
∗|π
S∪{i}, π−S∪{i}) in functions recursion_3_a() (see

recursion_graph.py) and recursion_3_a_ag1(), recursion_3_a_ag2() (see
recursion_gridworld.py).

• problem maxπ∈P′(πb) J(π
∗|π
S , π−S) in functions recursion_3_b() (see

recursion_graph.py) and recursion_3_b_ag1(), recursion_3_b_ag2() (see
recursion_gridworld.py).

E.3 Solutions to the Optimization Problem (P1)

(P1) might have multiple optimal solutions. Therefore, when calculating ΨMER (Section 3.1) or
Ψ̂MER,BC (Section 4.1 and Appendix D), a way to decide which solution is going to be the blame
assignment output is needed. For the experiments on the Gridworld environment the optimal solution
assigning the maximum blame to A2 was always selected. For the experiments on the Graph
environment, an LP solver was applied: in the case of the Graph environment, our experiments only
require the total blame assigned to the agents so any optimal solution to the LP produces the same
results (see below).
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L1 Distance: For the Max-Efficient Rationality method in Fig. 3c and 3g of Section 5, we consider
the L1 distance between an output β̂ of the consistent method Ψ̂MER,BC and an output β of ΨMER,
such that β̂i ≤ βi for all i. Notice that the L1 distance between any two such blame assignments
is equal to their difference in total blame,

∑
i∈{1,...,n} |βi − β̂i| =

∑
i∈{1,...,n} βi −

∑
i∈{1,...,n} β̂i.

Notice also that the total blame
∑
i∈{1,...,n} βi (resp.

∑
i∈{1,...,n} β̂i) is the same for all optimal

solutions β (resp. β̂) of (P1) with ∆S (resp. ∆̃S), since they maximize the same objective. Hence, for
obtaining the L1 distance between the output of the consistent method Ψ̂MER,BC and its “targeted
assignment”, it suffices to compute the difference

∑
i∈{1,...,n} βi−

∑
i∈{1,...,n} β̂i for any two optimal

solutions β and β̂.

Total Blame: The total blame assigned by the Max-Efficient Rationality method in each of the
figures 3e, 3d and 3h of Section 5 remains the same for all the optimal solutions of (P1).

E.4 Total Amount of Compute and Type of Resources

All experiments were run on a personal laptop (with Intel Core i7-8750H CPU). Experiments were
also run multiple times for 10 different seeds, and we report averages and standard deviations. The
total running time of the experiments on the Gridworld environment is a few minutes (∼10) and
of the experiments on the Graph environment a few hours (∼3). Tables 2 and 3 show how much
(CPU) time it takes to compute Shapley value under uncertainty (using the approaches from Section
4), for εmax = {0.01, 0.05, 0.1, 0.15, 0.2}. Note that ΨSV does not depend on εmax—its running
time for the Gridworld environment is 0.453125 ± 0.19111 sec and for the Graph environment is
2.02187± 0.06853 sec.

Ψ̂SV Ψ̂SV,V Ψ̂SV,BC

εmax = 0.05 0.45625± 0.19848 1.19843± 0.51044 1.38906± 0.60939

εmax = 0.10 0.46093± 0.20049 1.21093± 0.55609 1.45781± 0.71592

εmax = 0.15 0.47187± 0.20925 1.14062± 0.51864 1.45468± 0.66985

εmax = 0.20 0.46093± 0.22011 1.20937± 0.60934 1.72500± 0.96822

Table 2: Running times of different approaches for SV under uncertainty on the Gridworld environ-
ment. All times are measured in seconds (sec).

Ψ̂SV Ψ̂SV,V Ψ̂SV,BC

εmax = 0.01 2.06250± 0.10892 3.80625± 0.13243 92.38750± 1.59190

εmax = 0.05 2.07031± 0.18077 3.91718± 0.18944 91.60000± 1.43320

εmax = 0.10 1.97500± 0.05466 3.84218± 0.12798 92.84375± 3.45815

Table 3: Running times of different approaches for SV under uncertainty on the Graph environment.
All times are measured in seconds (sec).

Ψ̂SV,BC has the largest computing time, while ΨSV and Ψ̂SV have the lowest computing times. These
results are not surprising given that ΨSV and Ψ̂SV only need to compute the values once and they
are not running robust optimization. Moreover, Ψ̂SV,BC solves minπ∈P′(πb) J(π

∗|π
S∪{i}, π−S∪{i})

and maxπ∈P′(πb) J(π
∗|π
S , π−S) for each S separately, unlike Ψ̂SV,V , which only requires robust
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optimization for finding a solution to the optimization problem arg maxπ∈P′(πb) J(π). The running
times of methods that compute Ψ̂SV do not appear to have strong dependency on εmax. This is
expected for Ψ̂SV since it is based on point estimates, and does not use robust optimization.

Note that the computation results obtained when calculating the aforementioned Shapley value
blame assignments can be reused in computing the blame assignments of the other blame attribution
methods, which we do in our experiments.

F Extended Discussion

This section of the appendix discusses different perspectives on blame attribution, and the potential
negative side-effects of under-blaming agents.

F.1 Different Perspectives on Blame Attribution

Consequentialism: In this paper we follow a consequentialist [55] approach to the blame attribution
problem, in the sense that we consider the amount of an agent’s blame to depend solely on the outcome
of its policy. More specifically, we consider blame attribution methods and desirable properties
that measure how good or bad an agent’s policy is based only on the inefficiency it causes to the
multi-agent system.9 A common objection to this type of approaches is that they do not blame an
agent for violating common ground rules, i.e. they concentrate only on the ends rather than the means
[56]. For example, consider an intersection accident scenario that involves two drivers: the first driver,
D1, proceeds north and the second driver D2 proceeds east, both of them drive below the speed limit.
Assume that D2 violates a stop sign but could not do anything different to avoid the accident, while
if D1 would drive above the speed limit then with high probability the accident would have been
avoided. According to consequentialism, in this example driver D1 deserves more blame than D2,
although D2 is the one that breaks the law.

Deontology: Consequentialism is often contrasted to another major approach in normative ethics,
deontology [55, 57]. From a deontological perspective, the quality of an agent’s policy is based
on how well it follows a clear set of rules or duties10, rather than its consequences. Therefore, a
deontological approach to blame attribution would assign more blame to the second driver, from
the example above, because they violate a well-known traffic regulation. Of course, deontological
approaches face criticism too, for instance people argue that deontological ethics are rigid—they
focus on rules, ignoring the (potentially) severe consequences of one’s behavior [58]. For instance,
avoiding a car crash may be more important than not violating the speed limit in the example above.

The problem of assigning blame is inherently multi-dimensional and can be viewed through both
deontological and consequentialist lenses (among others). In this paper we take a consequentialist
viewpoint because it provides clear and practical guidance, at least when estimating (counterfactual)
outcomes is plausible. However, we do not see the two normative ethical theories as mutually
exclusive [59], and thus our intention is not to replace deontological approaches, but to complement
them.

F.2 Under-Blaming Agents

Apart from serving justice, blame attribution is also important for incentivizing decision makers to
adopt policies that will minimize the system’s inefficiency. To that end, we introduce in Section 2.3
the performance monotonicity property, the purpose of which is to motivate agents to individually
improve their policies. The second property we introduce, Blackstone consistency, aims to ensure that
no agent will be over-blamed when the behavior policies are not fully known to the blame attribution
procedure. As expected, experimental results from Section 5 show that Blackstone consistent methods
end up under-blaming agents instead. Just like over-blaming, under-blaming has its own adverse
effects. Such an effect is incentivizing bad behaviors, since the agents receive reduced penalties.
Therefore, there seems to be a trade-off between ensuring that no one is unjustly blamed under
uncertainty and providing incentives for good behavior.

9This is well-aligned with the main idea of utilitarianism [55], which measures how good or bad an action is
based only on the overall utility of its consequences.

10Deontology takes root from the Greek word deon, which means duty.
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G Proofs of the Propositions from Section 3

This section of the appendix contains the proofs of the propositions from Section 3, in particular:
Proposition 1, Proposition 2, and Proposition 3.

G.1 Proof of Proposition 1

Proposition 1. Every solution to the optimization problem (P1), i.e., ΨMER, satisfiesRV (validity),
RR (rationality) andRI (invariance).

Proof. We prove the properties as follows:

• RV (validity): Consider M , πb. Every solution to the optimization problem (P1), i.e., β =

ΨMER(M,πb), satisfies the constraint
∑
i∈{1,...,n} βi ≤ ∆{1,...,n}. The last inequality can be

rewritten as
∑n
i=1 βi ≤ ∆, and hence propertyRV (validity) is satisfied.

• RR (rationality): Consider M , πb and S ⊆ {1, ..., n}. Every solution to the optimization problem
(P1), i.e., β = ΨMER(M,πb), satisfies the constraint

∑
i∈S βi ≤ ∆S , and hence property RR

(rationality) is satisfied.
• RI (invariance): Consider M , πb, and an agent i such that ∆S∪{i} = ∆S for all S. This implies

that ∆i = ∆∅ = 0. Now, due to the constraints of the optimization problem (P1), every solution
to the optimization problem (P1), i.e., β = ΨMER(M,πb), satisfies the constraint βi ≤ ∆i = 0.
Note also that

∑
j∈S βj ≤ ∆S∪{i} − βi = ∆S − βi, but also

∑
j∈S βj ≤ ∆S (where i /∈ S).

Therefore, the constraints in which agent i participates can be replaced by the the constraint βi ≤ 0.
Together with the fact that the objective function is the total blame, this implies that the optimal βi
is independent of βj (j 6= i), and furthermore that its value is equal to βi = 0. Hence, property
RI (invariance) is satisfied.

G.2 Proof of Proposition 2

Proposition 2. ΨMC(M,πb) = (∆1, ...,∆n) satisfies RS (symmetry), RI (invariance), RCM
(contribution monotonicity) andRPerM (performance monotonicity).

Proof. We prove the properties as follows:

• RS (symmetry): Consider M , πb, and agents i and j such that ∆S∪{i} = ∆S∪{j} for all S ⊆
{1, ..., n}\{i, j}. Notice that ∆i = ∆j . By using the definition of β = ΨMC(M,πb), we have
that βi = ∆i = ∆j = βj . Hence, propertyRS (symmetry) is satisfied.

• RI (invariance): Consider M , πb, and agent i such that ∆S∪{i} = ∆S for all S. Given the
definition of β = ΨMC(M,πb), this implies that βi = ∆i = ∆∅ = 0. Hence, property RI
(invariance) is satisfied.

• RCM (contribution monotonicity): Consider M1, πb1, M2, πb2, and agent i such that ∆1
S∪{i} −

∆1
S ≥ ∆2

S∪{i} − ∆2
S for all S. By using the definitions of β1 = ΨMC(M1, πb

1
) and β2 =

ΨMC(M2, πb
2
), we have that βi1 = ∆1

i = ∆1
∅∪{i} −∆1

∅ ≥ ∆2
∅∪{i} −∆2

∅ = ∆2
i = βi

2. Hence,
propertyRCM (contribution monotonicity) is satisfied.

• RPerM (performance monotonicity): Consider M , πb−i, πi and π′i such that J(πi, π
b
−i) ≤

J(π′i, π
b
−i). This implies that:

J(πi, π
b
−i) ≤ J(π′i, π

b
−i)⇒

⇒J(π
∗|πb
i , πb−i)− J(πi, π

b
−i) ≥ J(π

∗|πb
i , πb−i)− J(π′i, π

b
−i)⇒

⇒∆i ≥ ∆′i.

By using the definitions of β = ΨMC(M, (πi, π
b
−i)) and β′ = ΨMC(M, (π′i, π

b
−i)), we obtain

that βi = ∆i ≥ ∆′i = βi
′. Hence, propertyRPerM (performance monotonicity) is satisfied.
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G.3 Proof of Proposition 3

Proposition 3. No blame attribution method Ψ satisfiesRE (efficiency),RS (symmetry),RI (invari-
ance) andRPerM (performance monotonicity).

Proof. We prove the stated impossibility result by contradiction. Suppose that there is a blame
attribution method Ψ that satisfies RE (efficiency), RS (symmetry), RI (invariance) and RPerM
(performance monotonicity).

Consider an MMDP M with two agents {1, 2}, two states—the initial state and the terminal state—
and the action spaceA = {0, 1, 2}×{0, 1, 2}. In the initial state, the agents obtain zero reward when
they both take action 0, reward equal to 2 when one of them takes action 0 and the other one action 2
or they both take action 2, and reward equal to 0.9 when they take any other pair of actions. After the
agents perform their actions in the initial state, the MMDP transitions to the terminal state. Consider
also the deterministic policies: πb2 that takes action 0, π1 that takes action 0 and π′1 that takes action
1, in the initial state.

We have the following three observations:

• Note that J(π1, π
b
2) ≤ J(π′1, π

b
2) and hence from propertyRPerM (performance monotonicity)

we have that β1 ≥ β′1, where β = Ψ(M, (π1, π
b
2)) and β′ = Ψ(M, (π′1, π

b
2)).

• Note that ∆{1} = ∆{2} = 2 and thus from propertyRS (symmetry) it follows that β1 = β2. Also,
from propertyRE (efficiency) we have that β1 + β2 = ∆ = 2, and hence β1 = 1 and β2 = 1.

• Note that ∆′{2} = 0 and ∆′{1,2} = ∆′{1} = 1.1 and thus from propertyRI (invariance) it follows
that β′2 = 0. From propertyRE (efficiency) we have that β′1+β′2 = ∆′ = 1.1 and hence β′1 = 1.1,
which contradicts the first two observations.

H Proof of Theorem 1

In this section, we provide a proof of Theorem 1. Since this proof utilizes the results of [60], we first
provide some background details on these results.

H.1 Background

To prove the uniqueness result for the Shapley Value method, Theorem 1, we use a result from
[60]. Before we embark on the proof, we set the necessary background. Let N be a set, such that
N 6= ∅, |N | < ∞, and u : 2N → R be a function such that u(∅) = 0. Then we call N set of
agents and u game, and denote with GN the class of games with player set N . We say that a game
u ∈ GN is monotone, if for each S, T ⊆ N , S ⊆ T ; u(S) ≤ u(T ). Moreover, we say that function
ψ : G→ RN is a solution on the class G ∈ GN . Next, we state three axioms from [60]:

• Pareto Optimality (PO): We say that a solution ψ on class of games G ⊆ GN satisfies PO (Pareto
optimality), if for each game u ∈ G:

∑
i∈N ψi(u) = u(N).

• Equal Treatment Property (ETP): We say that a solution ψ on class of games G ⊆ GN satisfies
ETP (equal treatment property), if for each game u ∈ G and i, j ∈ N ; ψi(u) = ψj(u), whenever
u(S ∪ {i})− u(S) = u(S ∪ {j})− u(S) for every S ⊆ N\{i, j}.

• Marginality (M): We say that a solution ψ on class of games G ⊆ GN satisfies M (marginality), if
for all games u, v ∈ G and i ∈ N : ψi(u) = ψi(v), whenever u(S ∪ {i})− u(S) = v(S ∪ {i})−
v(S) for every S ⊆ N .

We also define the Shapley value method for this setting. For any game u ∈ GN , the Shapley value
solution φ is given by

φi(u) =
∑

S⊆N\{i}

wS · [u(S ∪ {i})− u(S)] , (5)

where coefficients wS are set to wS = |S|!(|N |−|S|−1)!
|N |! .

Next we restate Theorem 3.9 from [60]:
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Theorem 4. Solution ψ defined on the class of monotone games satisfies axiom PO (Pareto optimal-
ity), ETP (equal treatment Property) and M (marginality), iff it is the Shapley value solution.

We introduce a slightly different axiom than M (marginality):

• Unequal Marginality (UM): We say that a solution ψ on class of games G ⊆ GN satisfies
UM (unequal marginality), if for all games u, v ∈ G and i ∈ N : ψi(u) ≥ ψi(v), whenever
u(S ∪ {i})− u(S) ≥ v(S ∪ {i})− v(S) for every S ⊆ N .

We also state a Corollary of Theorem 4:
Corollary 1. Solution ψ defined on the class of monotone games satisfies axiom PO (Pareto opti-
mality), ETP (equal treatment Property) and UM (unequal marginality), iff it is the Shapley value
solution.

Proof. We prove that Shapley value solution φ satisfies axiom UM (unequal marginality). Consider
monotone games u, v, and agent i ∈ N such that u(S ∪ {i})− u(S) ≥ v(S ∪ {i})− v(S) for every
S ⊆ N , then;

φi(u) =
∑

S⊆N\{i}

wS · [u(S ∪ {i})− u(S)] ≥

≥
∑

S⊆N\{i}

wS · [v(S ∪ {i})− v(S)] =

=φi(v).

Since UM (unequal marginality) is a stronger axiom than M (marginality), and Shapley value solution
satisfies it, the uniqueness result stated in the Corollary holds because of Theorem 4.

Consider M , πb and notice that ∆∅ = J(πb)− J(πb) = 0. We say that set of agents N and game u
are defined by M , πb, if N = {1, ..., n} and u(S) = ∆S for every S. We denote withH the class of
games that can be defined in that way. Let ψSV be the solution on classH such that for every M , πb,
ψSV (u) = ΨSV (M,πb), where game u is defined by M , πb. Given Eq. (5), this implies that ψSV is
the Shapley Value solution onH.

We state three simple lemmas that show a one to one correspondence between the axioms PO (Pareto
optimality), ETP (equal treatment property) and UM (unequal marginality) and blame attribution
properties:
Lemma 1. Let Ψ be a blame attribution method and ψ a solution on H, such that for every M ,
πb, Ψ(M,πb) = ψ(u), where game u is defined by M , πb. Then, Ψ satisfies RE (efficiency) iff ψ
satisfies PO (Pareto optimality) onH.

Proof. Consider M , πb and game u defined by M , πb. Then the statement is true because u(N) =
∆{1,...,n} = ∆.

Lemma 2. Let Ψ be a blame attribution method and ψ a solution on H, such that for every M ,
πb, Ψ(M,πb) = ψ(u), where game u is defined by M , πb. Then, Ψ satisfies RS (symmetry) iff ψ
satisfies ETP (equal treatment property) onH.

Proof. Consider M , πb and game u defined by M , πb. Given that u(S) = ∆S for every S, we have
that for every i and j, ∆S∪{i} −∆S = ∆S∪{j} −∆S iff u(S ∪ {i})− u(S) = u(S ∪ {j})− u(S).
Hence, the statement is true.

Lemma 3. Let Ψ be a blame attribution method and ψ a solution on H, such that for every M ,
πb, Ψ(M,πb) = ψ(u), where game u is defined by M , πb. Then, Ψ satisfies RCM (contribution
monotonicity) iff ψ satisfies UM (unequal marginality) onH.

Proof. Consider M1, πb1 and M2, πb2, and games u1 and u2 defined by M1, πb1 and M2, πb2,
respectively. Given that u1(S) = ∆1

S and u2(S) = ∆2
S for every S, we have that for every i,

∆1
S∪{i} − ∆1

S ≥ ∆2
S∪{i} − ∆2

S iff u1(S ∪ {i}) − u1(S) ≥ u2(S ∪ {i}) − u2(S). Hence, the
statement is true.

23



H.2 Proof

Theorem 1. ΨSV (M,πb) = (β1, ..., βn), where βi is defined by Eq. (1) and wS = |S|!(n−|S|−1)!
n! , is

a unique blame attribution method satisfyingRE (efficiency),RS (symmetry) andRCM (contribution
monotonicity). Additionally, ΨSV satisfiesRV (validity) andRI (invariance).

Proof. Consider M , πb and game u defined by M , πb. Consider also S and T such that S ⊆ T . We
have that:

J(π
∗|πb
T , πb−T ) ≥ J(π

∗|πb
S , πb−S)⇒

⇒J(π
∗|πb
T , πb−T )− J(πb) ≥ J(π

∗|πb
S , πb−S)− J(πb)⇒

⇒∆T ≥ ∆S ⇒ u(T ) ≥ u(S).

This implies that classH consists only of monotone games, and hence by Corollary 1 we have that
ψSV is a unique solution on H satisfying PO (Pareto optimality), ETP (equal treatment property)
and UM (unequal marginality). Given Lemmas 1, 2, and 3, this implies that ΨSV is a unique blame
attribution method satisfyingRE (efficiency),RS (symmetry) andRCM (contribution monotonicity).

We also prove the propertiesRV (validity) andRI (invariance) as follows:

• RV (validity): Consider M , πb. Given that ΨSV satisfies propertyRE (efficiency), it holds that∑
i∈{1,...,n} βi = ∆. Hence, propertyRV (validity) is satisfied.

• RI (invariance): Consider M , πb, and agent i such that ∆S∪{i} = ∆S for all S. This implies that

J(π
∗|πb
S∪{i}, π

b
−S∪{i}) = J(π

∗|πb
S , πb−S) for all S. Given the definition of ΨSV (M,πb), we have

that βi = 0. Hence, propertyRI (invariance) is satisfied.

I Proof of Theorem 2

Before we proceed with the proof of Theorem 2, notice that the contribution function c from Section
3.4 can be rewritten in the equivalent form:

c(M,πb, i) =

{
0 if ∆S∪{i} = ∆S , ∀S ⊆ {1, ..., n}
1 otherwise

.

We also state the following lemmas:
Lemma 4. Consider a function f : 2{1,...,n} → R≥0. There exist some MMDP M and agents’
behavior joint policy πb such that the marginal inefficiency of every subset of agents S is equal
to f(S), iff f(∅) = 0 and f(S1) ≤ f(S2) whenever S1 ⊆ S2, where S1 and S2 are subsets of
{1, ..., n}.

Proof. First, we show that the conditions on function f are necessary:

• Suppose that there exist M , πb such that ∆∅ > 0. Given the definition of marginal inefficiency
this would imply that J(πb) > J(πb). Hence, we reach a contradiction.

• Suppose that there exist M , πb such that ∆S1 > ∆S2 , where S1 ⊆ S2. Given the definition of

marginal inefficiency this would imply that J(π
∗|πb
S1

, πb−S1
) > J(π

∗|πb
S2

, πb−S2
). Hence, we reach

a contradiction.

Next we show that the conditions on function f are sufficient. Consider an MMDP M with two
states—the initial state and the terminal state—and the action space A = ×ni=1{0, 1}. In the initial
state, the agents obtain zero reward when they all take action 0 and reward f(S) when agents in S
take action 1 and the rest of the agents take action 0. Consider also the deterministic joint policy πb,
where every agent takes action 0. Notice that J(πb) = 0.

For every subset of agents S it holds that J(π
∗|πb
S , πb−S) = f(S), because taking action 1 is

the best that every agent in S can do. Hence, for the marginal inefficiency of S we have that
∆S = J(π

∗|πb
S , πb−S)− J(πb) = f(S).
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Lemma 5. Let Ψ satisfyRcParM (c-participation monotonicity). Then, for every M1, πb
1

and M2,
πb

2
such that c(M1, πb

1
, i) = c(M2, πb

2
, i) for every i, βi

1 = βi
2 whenever ∆1

S∪{i} = ∆2
S∪{i} for

all S, where β1 = Ψ(M1, πb
1
) and β2 = Ψ(M2, πb

2
).

Proof. Consider agent i such that ∆1
S∪{i} = ∆2

S∪{i} for all S. Given that Ψ satisfies RcParM
(c-participation monotonicity), this implies βi1 ≥ βi2 and βi1 ≤ βi2, and hence βi1 = βi

2.

Lemma 6. Let Ψ satisfy RRcParM (relative c-participation monotonicity). Then, for every M1,
πb

1
and M2, πb

2
such that c(M1, πb

1
, i) = c(M2, πb

2
, i) for every i, βj

1 − βj2 = βk
1 − βk2

whenever c(M1, πb
1
, j) = c(M1, πb

1
, k) and ∆1

S∪{j} − ∆2
S∪{j} = ∆1

S∪{k} − ∆2
S∪{k} for every

S ⊆ {1, ..., n}\{j, k}, where β1 = Ψ(M1, πb
1
) and β2 = Ψ(M2, πb

2
).

Proof. Consider agents j and k such that c(M1, πb
1
, j) = c(M1, πb

1
, k) and ∆1

S∪{j} −∆2
S∪{j} =

∆1
S∪{k} − ∆2

S∪{k} for all S ⊆ {1, ..., n}\{j, k}. Given that Ψ satisfies RRcParM (relative c-
participation monotonicity), this implies βj1 − βj2 ≥ βk1 − βk2 and βj1 − βj2 ≤ βk1 − βk2, and
hence βj1 − βj2 = βk

1 − βk2.

Proof of Theorem 2
Theorem 2. ΨAP (M,πb) = (β1, ..., βn), where βi is defined by Eq. (2) and w = 1

2n−1 , is a
unique blame attribution method that satisfiesRAE (average-efficiency),RS (symmetry),RI (invari-
ance),RcParM (c-participation monotonicity) andRRcParM (relative c-participation monotonicity).
Furthermore, ΨAP satisfiesRcPerM (c-performance monotonicity) andRV (validity).

Proof. The proof is separated into two parts. In the first part we prove that ΨAP satisfies the
mentioned properties, while in the second part we show that if a blame attribution method satisfies all
mentioned properties, it must be the ΨAP method.

First Part

We prove the properties as follows:

• RAE (average-efficiency): Consider M , πb. By using the definition of β = ΨAP (M,πb):

n∑
i=1

βi =

n∑
i=1

∑
S⊆{1,...,n}\{i}

w · c(M,πb, i)∑
j∈S c(M,πb, j) + 1

·∆S∪{i} =

=
1

2n − 1
·

∑
i∈{1,...,n}|c(M,πb,i)=1

∑
S⊆{1,...,n}\{i}

1∑
j∈S c(M,πb, j) + 1

·∆S∪{i} =

=
1

2n − 1
·

∑
i∈{1,...,n}|c(M,πb,i)=1

∑
S⊆{1,...,n}|i∈S

1∑
j∈S c(M,πb, j)

·∆S =

=
1

2n − 1
·

∑
S⊆{1,...,n}

∑
i∈S|c(M,πb,i)=1

1∑
j∈S c(M,πb, j)

·∆S =

=
1

2n − 1
·

∑
S⊆{1,...,n}

∆S ,

and hence propertyRAE (average-efficiency) is satisfied.
• RS (symmetry): Consider M , πb, and agents i and j such that ∆S∪{i} = ∆S∪{j} for all S ⊆
{1, ..., n}\{i, j}. Notice that if ∆S∪{i} = ∆S for all S then ∆S∪{j} = ∆S and ∆S∪{i,j} =
∆S∪{j} = ∆S∪{i} for every S ⊆ {1, ..., n}\{i, j}, and hence ∆S∪{j} = ∆S for all S. Given the
definition of contribution function c, this implies that if c(M,πb, i) = 0, then c(M,πb, j) = 0.
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For similar reasons, it also holds that if c(M,πb, j) = 0, then c(M,πb, i) = 0, and hence
c(M,πb, i) = c(M,πb, j). By using the definition of β = ΨAP (M,πb), we have that:

βi =
∑

S⊆{1,...,n}\{i}

w · c(M,πb, i)∑
k∈S c(M,πb, k) + 1

·∆S∪{i} =

=
∑

S⊆{1,...,n}\{i,j}

w · c(M,πb, i)∑
k∈S c(M,πb, k) + 1

·∆S∪{i}+

+
∑

S⊆{1,...,n}\{i,j}

w · c(M,πb, i)∑
k∈S∪{j} c(M,πb, k) + 1

·∆S∪{i,j} =

=
∑

S⊆{1,...,n}\{i,j}

w · c(M,πb, j)∑
k∈S c(M,πb, k) + 1

·∆S∪{j}+

+
∑

S⊆{1,...,n}\{i,j}

w · c(M,πb, j)∑
k∈S∪{i} c(M,πb, k) + 1

·∆S∪{i,j} =

=
∑

S⊆{1,...,n}\{j}

w · c(M,πb, j)∑
k∈S c(M,πb, k) + 1

·∆S∪{j} = βj ,

and hence propertyRS (symmetry) is satisfied.
• RI (invariance): Consider M , πb, and agent i such that ∆S∪{i} = ∆S for all S. Given the

definitions of contribution function c and β = ΨAP (M,πb), this implies that βi = 0. Hence,
propertyRI (invariance) is satisfied.

• RcParM (c-participation monotonicity): Consider M1, πb
1 and M2, πb

2 such that

c(M1, πb
1
, i) = c(M2, πb

2
, i) for every i. Consider also agent i such that ∆1

S∪{i} ≥ ∆2
S∪{i} for

all S. By using the definitions of β1 = ΨAP (M1, πb
1
) and β2 = ΨAP (M2, πb

2
), this implies:

β1
i =

∑
S⊆{1,...,n}\{i}

w · c(M1, πb
1
, i)∑

j∈S c(M
1, πb

1
, j) + 1

·∆1
S∪{i} =

=
∑

S⊆{1,...,n}\{i}

w · c(M2, πb
2
, i)∑

j∈S c(M
2, πb

2
, j) + 1

·∆1
S∪{i} ≥

≥
∑

S⊆{1,...,n}\{i}

w · c(M2, πb
2
, i)∑

j∈S c(M
2, πb

2
, j) + 1

·∆2
S∪{i} = β2

i ,

and hence propertyRcParM (c-participation monotonicity) is satisfied.
• RRcParM (relative c-participation monotonicity): Consider M1, πb1 and M2, πb2 such that

c(M1, πb
1
, i) = c(M2, πb

2
, i) for every i. Consider also agents j and k such that c(M1, πb

1
, j) =

c(M1, πb
1
, k) and ∆1

S∪{j} − ∆2
S∪{j} ≥ ∆1

S∪{k} − ∆2
S∪{k} for all S ⊆ {1, ..., n}\{j, k}. By

using the definitions of β1 = ΨAP (M1, πb
1
) and β2 = ΨAP (M2, πb

2
), this implies:

βj
1 − βj2 =

∑
S⊆{1,...,n}\{j}

w · c(M1, πb
1
, j)∑

i∈S c(M
1, πb

1
, i) + 1

·
[
∆1
S∪{j} −∆2

S∪{j}

]
=

=
∑

S⊆{1,...,n}\{j,k}

w · c(M1, πb
1
, j)∑

i∈S c(M
1, πb

1
, i) + 1

·
[
∆1
S∪{j} −∆2

S∪{j}

]
+

+
∑

S⊆{1,...,n}\{j,k}

w · c(M1, πb
1
, j)∑

i∈S∪{k} c(M
1, πb

1
, i) + 1

·
[
∆1
S∪{j,k} −∆2

S∪{j,k}

]
≥

≥
∑

S⊆{1,...,n}\{j,k}

w · c(M1, πb
1
, k)∑

i∈S c(M
1, πb

1
, i) + 1

·
[
∆1
S∪{k} −∆2

S∪{k}

]
+
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+
∑

S⊆{1,...,n}\{j,k}

w · c(M1, πb
1
, k)∑

i∈S∪{j} c(M
1, πb

1
, i) + 1

·
[
∆1
S∪{j,k} −∆2

S∪{j,k}

]
=

=
∑

S⊆{1,...,n}\{k}

w · c(M1, πb
1
, k)∑

i∈S c(M
1, πb

1
, i) + 1

·
[
∆1
S∪{k} −∆2

S∪{k}

]
= βk

1 − βk2,

and hence propertyRRcParM (relative c-participation monotonicity) is satisfied.
• RcPerM (c-performance monotonicity): Consider M , πb−i, πi and π′i such that J(πi, π

b
−i) ≤

J(π′i, π
b
−i) and c(M, (πi, π

b
−i), j) = c(M, (π′i, π

b
−i), j) for every j. This implies that:

J(πi, π
b
−i) ≤ J(π′i, π

b
−i)⇒

⇒J(π
∗|πb
S∪{i}, π

b
−S∪{i})− J(πi, π

b
−i) ≥ J(π

∗|πb
S∪{i}, π

b
−S∪{i})− J(π′i, π

b
−i)⇒

⇒∆S∪{i} ≥ ∆′S∪{i}

for every S ⊆ {1, ..., n}\{i}. Given the definitions of β = ΨAP (M, (πi, π
b
−i)) and β′ =

ΨAP (M, (π′i, π
b
−i)), this implies that βi ≥ βi

′. Hence, property RcPerM (c-performance
monotonicity) is satisfied.

• RV (validity): Consider M , πb. Notice that
∑
S⊆{1,...,n}

1
2n−1 · ∆S ≤ ∆. Given that ΨAP

satisfies property RAE (average efficiency), we have that
∑n
i=1 βi =

∑
S⊆{1,...,n}

1
2n−1 · ∆S ,

and thus
∑n
i=1 βi ≤ ∆, where β = ΨAP (M,πb). Hence propertyRV (validity) is satisfied.

Second Part

We begin by introducing some additional notation. Consider M , πb. We define the sets of agents
C0 =

{
i ∈ {1, . . . , n} : c(M,πb, i) = 0

}
and C1 =

{
i ∈ {1, . . . , n} : c(M,πb, i) = 1

}
. Consider

M ε, πbε such that:

∆ε
S =

{
∆S + ε if S ∩ C1 6= ∅
∆S otherwise,

(6)

where ε > 0. Note that for every subset S such that S ∩ C1 = ∅ it holds that ∆ε
S = 0, but we use

∆ε
S = ∆S for notational simplicity. Moreover, notice that Eq. (6) satisfies the conditions of Lemma

4, and hence M ε, πbε exist.

We prove that ΨAP uniquely satisfies the properties mentioned in Theorem 2 through two intermediate
lemmas. Lemma 7 states that if Ψ(M ε, πb

ε
) = ΨAP (M ε, πb

ε
) then Ψ(M,πb) = ΨAP (M,πb), and

Lemma 8 states that Ψ(M ε, πb
ε
) = ΨAP (M ε, πb

ε
).

Lemma 7. Consider M , πb and M ε, πb
ε
, where ∆ε

S is defined by Eq. (6). If Ψ satisfies properties
RAE , RS , RI , RcParM and RRcParM and Ψ(M ε, πb

ε
) = ΨAP (M ε, πb

ε
), then Ψ(M,πb) =

ΨAP (M,πb).

Proof. We state three claims that we prove after the end of the proof of Theorem 2:

Claim 1. c(M,πb, i) = c(M ε, πb
ε
, i) for every i.

Claim 2. βi = 0 and βi
ε = 0 for every i ∈ C0, where β = Ψ(M,πb) and βε = Ψ(M ε, πb

ε
).

Claim 3. βiε − βi = r for every i ∈ C1, where β = Ψ(M,πb) and βε = Ψ(M ε, πb
ε
), and

r = 1
|C1| ·

∑
S⊆{1,...,n} w · [∆ε

S −∆S ].

Given Claim 3, the assumption Ψ(M ε, πb
ε
) = ΨAP (M ε, πb

ε
) implies that for every i ∈ C1:

βi =
∑

S⊆{1,...,n}\{i}

w · 1∑
j∈S c(M

ε, πb
ε
, j) + 1

·∆ε
S∪{i} −

1

|C1|
·

∑
S⊆{1,...,n}

w · [∆ε
S −∆S ] .

(7)
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Combining Claim 2 and Eq. (7) implies that:

βi = c(M,πb, i) ·

 ∑
S⊆{1,...,n}\{i}

w · 1∑
j∈S c(M

ε, πb
ε
, j) + 1

·∆ε
S∪{i} −

1

|C1|
·

∑
S⊆{1,...,n}

w · [∆ε
S −∆S ]

 .
(8)

Notice that β = Ψ(M,πb) is uniquely defined by the properties of Ψ, Eq. (8), and since ΨAP

satisfies all properties assumed for Ψ (see Part 1), it must hold that Ψ(M,πb) = ΨAP (M,πb). This
concludes the proof of Lemma 7.

Lemma 8. Consider M , πb and M ε, πb
ε
, where ∆ε

S is defined by Eq. (6). If Ψ satisfies properties
RAE ,RS ,RI ,RcParM andRRcParM , then Ψ(M ε, πb

ε
) = ΨAP (M ε, πb

ε
).

Proof. Let I = {1, ..., 2|C1| − 1} be an index set, and for each ι ∈ I , let Sι be a subset of C1 other
than ∅. We assume that the indexing of subsets S ⊆ C1 satisfies the following condition: for every
ι, ζ ∈ I , ι < ζ whenever |Sι| > |Sζ |.

Consider M , πb and M ε, πbε, where ∆ε
S is defined by Eq. (6). For each index number ι ∈ I consider

M ι, πbι such that:

∆ι
S =


ε if S ∩ C1 = Sζ , where ζ > ι

∆S if S ∩ C1 = ∅
∆S + ε otherwise,

(9)

where ε > 0. Note that for every subset S such that S ∩ C1 = ∅ it holds that ∆ι
S = 0, but we

use ∆ι
S = ∆S for notational simplicity. Moreover, notice that for every ι ∈ I Eq. (9) satisfies the

conditions of Lemma 4, and hence M ι, πbι exist. Notice also that ∆2|C1|−1
S = ∆ε

S for every S.

We state four claims that we prove after the end of the proof of Theorem 2:

Claim 4. For each ι ∈ I , c(M,πb, i) = c(M ι, πb
ι
, i) for every i.

Claim 5. For each ι ∈ I , βi
ι = 0 for every i ∈ C0, where βι = Ψ(M ι, πb

ι
).

Claim 6. For each ι ∈ I\{2|C1| − 1}, βiι+1 − βi
ι = 0 for every i ∈ C1\Sι+1, where βι =

Ψ(M ι, πb
ι
) and βι+1 = Ψ(M ι+1, πb

ι+1
).

Claim 7. For each ι ∈ I\{2|C1| − 1}, βiι+1 − βiι = r for every i ∈ Sι+1, where βι = Ψ(M ι, πb
ι
)

and βι+1 = Ψ(M ι+1, πb
ι+1

), and r = 1
|Sι+1| ·

∑
S⊆{1,...,n} w ·

[
∆ι+1
S −∆ι

S

]
.

We prove that Ψ(M2|C1|−1, πb
2|C1|−1

) = ΨAP (M2|C1|−1, πb
2|C1|−1

), by using induction in the

index number ι. Note that because ∆2|C1|−1
S = ∆ε

S for every S, showing Ψ(M2|C1|−1, πb
2|C1|−1

) =

ΨAP (M2|C1|−1, πb
2|C1|−1

) is equivalent to showing that Ψ(M ε, πb
ε
) = ΨAP (M ε, πb

ε
).

ι = 1: We show that Ψ(M1, πb
1
) = ΨAP (M1, πb

1
). Because of the condition that the indexing of

the subsets of C1 has to satisfy, it follows that S1 = C1. Notice that for every two agents i, j ∈ C1 it
holds that S ∪ {i} ∩ C1 6= C1 = S1 and S ∪ {j} ∩ C1 6= C1 = S1, for every S ⊆ {1, ..., n}\{i, j}.
By using Eq. (9), this implies that ∆1

S∪{i} = ε = ∆1
S∪{j}, for every S ⊆ {1, ..., n}\{i, j}. Given

that Ψ is assumed to satisfyRS (symmetry), this implies that βi1 = βj
1, where β1 = Ψ(M1, πb

1
).

It follows that for every i ∈ C1:

βi
1 =

1

|C1|
·
∑
j∈C1

βj
1.

By using Claim 5, we have that βi1 = 1
|C1| ·

∑
j∈{1,...,n} βj

1. Given that Ψ satisfiesRAE (average
efficiency), this implies that for every i ∈ C1:

βi
1 =

1

|C1|
·

∑
j∈{1,...,n}

βj
1 =

1

|C1|
·

∑
S⊆{1,...,n}

w ·∆1
S . (10)
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Combining Claim 5 and Eq. (10) implies that:

βi
1 = c(M,πb, i) · 1

|C1|
·

∑
S⊆{1,...,n}

w ·∆1
S . (11)

Notice that β1 = Ψ(M1, πb
1
) is uniquely defined by the properties of Ψ, Eq. (11), and since ΨAP

satisfies all properties assumed for Ψ (see Part 1), it must hold that ΨAP (M1, πb
1
) = β1, and hence

Ψ(M1, πb
1
) = ΨAP (M1, πb

1
).

ι ∈ I\{2|C1| − 1}: Given that Ψ(M ι, πb
ι
) = ΨAP (M ι, πb

ι
), we show that Ψ(M ι+1, πb

ι+1
) =

ΨAP (M ι+1, πb
ι+1

).

By using the definition of ΨAP (M ι, πb
ι
) and Claim 6, the assumption Ψ(M ι, πb

ι
) = ΨAP (M ι, πb

ι
)

implies that for every i ∈ C1\Sι+1:

βi
ι+1 = βi

ι =
∑

S⊆{1,...,n}\{i}

w · 1∑
j∈S c(M

ι, πb
ι
, j) + 1

·∆ι
S∪{i}. (12)

By using the definition of ΨAP (M ι, πb
ι
) and Claim 7, the assumption Ψ(M ι, πb

ι
) = ΨAP (M ι, πb

ι
)

implies that for every i ∈ Sι+1:

βi
ι+1 =βi

ι +
1

|Sι+1|
·

∑
S⊆{1,...,n}

w ·
[
∆ι+1
S −∆ι

S

]
=

=
∑

S⊆{1,...,n}\{i}

w · 1∑
j∈S c(M

ι, πb
ι
, j) + 1

·∆ι
S∪{i} +

1

|Sι+1|
·

∑
S⊆{1,...,n}

w ·
[
∆ι+1
S −∆ι

S

]
.

(13)

Notice that βι+1 = Ψ(M ι+1, πb
ι+1

) is uniquely defined by properties of Ψ, Claim 5, Eq. (12) and
Eq. (13), and since ΨAP satisfies all the properties assumed for Ψ (see Part 1), it must hold that
Ψ(M ι+1, πb

ι+1
) = βι+1, and hence Ψ(M ι+1, πb

ι+1
) = ΨAP (M ι+1, πb

ι+1
). This concludes the

induction step and the proof of Lemma 8.

The second part of the proof is hence concluded.

Proofs of the Claims 1, 2 and 3
Claim 1. c(M,πb, i) = c(M ε, πb

ε
, i) for every i.

Proof. Consider agent i such that i ∈ C1. Given Eq. (6), this implies that ∆ε
i = ∆i + ε > 0 = ∆ε

∅,
and thus c(M ε, πb

ε
, i) = 1. Hence, c(M,πb, i) = c(M ε, πb

ε
, i).

Consider agent i such that i ∈ C0. Given the definition of contribution function c, we have that
∆S∪{i} = ∆S for every S. By using Eq. (6), this implies that ∆ε

S∪{i} = ∆ε
S for every S such that

S ∩C1 = ∅ and ∆ε
S∪{i} = ∆S∪{i}+ ε = ∆S + ε = ∆ε

S for every S such that S ∩C1 6= ∅, and thus
c(M ε, πb

ε
, i) = 0. Hence, c(M,πb, i) = c(M ε, πb

ε
, i).

Claim 2. βi = 0 and βi
ε = 0 for every i ∈ C0, where β = Ψ(M,πb) and βε = Ψ(M ε, πb

ε
).

Proof. Given the definition of contribution function c, the lemma follows from Claim 1 and the
assumption that Ψ satisfies propertyRI (invariance).

Claim 3. βiε − βi = r for every i ∈ C1, where β = Ψ(M,πb) and βε = Ψ(M ε, πb
ε
), and

r = 1
|C1| ·

∑
S⊆{1,...,n} w · [∆ε

S −∆S ].

Proof. Notice that for every two agents j, k ∈ C1 it holds that c(M,πb, j) = c(M,πb, k) and
that ∆ε

S∪{j} − ∆S∪{j} = ∆ε
S∪{k} − ∆S∪{k} = ε for every S ⊆ {1, ..., n}\{j, k}. Furthermore,
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from Claim 1 we have that c(M,πb, i) = c(M ε, πb
ε
, i) for every i, and thus Lemma 6 applies,

βj
ε − βj = βk

ε − βk = r, where r is some constant. Notice that:

r =
1

|C1|
·
∑
i∈C1

βi
ε − βi.

By using Claim 2, we have that r = 1
|C1| ·

∑
i∈{1,...,n} βi

ε − βi. Given that Ψ is assumed to satisfy
RAE (average efficiency), this implies that:

r =
1

|C1|
·

∑
i∈{1,...,n}

βi
ε − βi =

1

|C1|
·

∑
S⊆{1,...,n}

w · [∆ε
S −∆S ] ,

and hence βiε − βi = 1
|C1| ·

∑
S⊆{1,...,n} w · [∆ε

S −∆S ] for every i ∈ C1.

Proofs of the Claims 4, 5, 6 and 7
Claim 4. For each ι ∈ I , c(M,πb, i) = c(M ι, πb

ι
, i) for every i.

Proof. Consider agent i such that i ∈ C1. Given Eq. (9), this implies that ∆ι
i ≥ ε > 0 = ∆ι

∅, and
thus c(M ι, πb

ι
, i) = 1. Hence, c(M,πb, i) = c(M ι, πb

ι
, i).

Consider agent i such that i ∈ C0. Given the definition of contribution function c, we have that
∆S∪{i} = ∆S for every S. By using Eq. (9), this implies that ∆ι

S∪{i} = ε = ∆ι
S for every S

such that S ∩ C1 = Sζ , where ζ > ι, ∆ι
S∪{i} = ∆ι

S for every S such that S ∩ C1 = ∅ and
∆ι
S∪{i} = ∆S∪{i} + ε = ∆S + ε = ∆ι

S for every other S, and thus c(M ι, πb
ι
, i) = 0. Hence,

c(M,πb, i) = c(M ι, πb
ι
, i).

Claim 5. For each ι ∈ I , βi
ι = 0 for every i ∈ C0, where βι = Ψ(M ι, πb

ι
).

Proof. Given the definition of contribution function c, the lemma follows from Claim 4 and the
assumption that Ψ satisfies propertyRI (invariance).

Based on the next observation we prove the rest of the claims:

Observation 1. Observe that for each ι ∈ I\{2|C1| − 1}, ∆ι+1
S = ∆ι

S for every S such that
S ∩ C1 6= Sι+1.11

Claim 6. For each ι ∈ I\{2|C1| − 1}, βiι+1 − βi
ι = 0 for every i ∈ C1\Sι+1, where βι =

Ψ(M ι, πb
ι
) and βι+1 = Ψ(M ι+1, πb

ι+1
).

Proof. Notice that for every agent i ∈ C1\Sι+1 it holds that S∪{i}∩C1 6= Sι+1 for every S. Given
Observation 1 this implies that ∆ι+1

S∪{i} = ∆ι
S∪{i} for every S. Furthermore, from Claim 4 we have

that c(M,πb, i) = c(M ι, πb
ι
, i) = c(M ι+1, πb

ι+1
, i) for every i, and thus Lemma 5 applies, and for

every i ∈ C1\Sι+1 we have that βiι+1 = βi
ι.

Claim 7. For each ι ∈ I\{2|C1| − 1}, βiι+1 − βiι = r for every i ∈ Sι+1, where βι = Ψ(M ι, πb
ι
)

and βι+1 = Ψ(M ι+1, πb
ι+1

), and r = 1
|Sι+1| ·

∑
S⊆{1,...,n} w ·

[
∆ι+1
S −∆ι

S

]
.

Proof. Notice that for every two agents j, k ∈ Sι+1 it holds that c(M,πb, j) = c(M,πb, k). Given
Claim 4, this implies that c(M ι, πb

ι
, j) = c(M ι, πb

ι
, k). Notice also that S ∪ {j} ∩ C1 6= Sι+1

and S ∪ {k} ∩ C1 6= Sι+1 for every S ⊆ {1, ..., n}\{j, k}. Given Observation 1, this implies that
∆ι+1
S∪{j} −∆ι

S∪{j} = ∆ι+1
S∪{k} −∆ι

S∪{k} = 0 for every S ⊆ {1, ..., n}\{j, k}. Furthermore, from

Claim 4 we have that c(M,πb, i) = c(M ι, πb
ι
, i) = c(M ι+1, πb

ι+1
, i) for every i, and thus Lemma

11Although it is not needed for the proofs of Claims 6 and 7, we mention that ∆ι+1
S = ∆ι

S + ∆Sι+1 for every
S such that S ∩ C1 = Sι+1.
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6 applies, and for every j, k ∈ Sι+1 we have that βjι+1 − βjι = βk
ι+1 − βkι = r, where r is some

constant. Notice that:

r =
1

|Sι+1|
·
∑
i∈Sι+1

βi
ι+1 − βiι.

By using Claim 5 and Claim 6, we have that r = 1
|Sι+1| ·

∑
i∈{1,...,n} βi

ι+1 − βiι. Given that Ψ is
assumed to satisfyRAE (average efficiency), this implies that:

r =
1

|Sι+1|
·

∑
i∈{1,...,n}

βi
ι+1 − βiι =

1

|Sι+1|
·

∑
S⊆{1,...,n}

w ·
[
∆ι+1
S −∆ι

S

]
,

and hence βiι+1 − βiι = r = 1
|Sι+1| ·

∑
S⊆{1,...,n} w ·

[
∆ι+1
S −∆ι

S

]
for every i ∈ Sι+1.

J Proofs of the Results from Section 4

This section of the appendix contains the proofs of the results from Section 3, in particular: Proposition
4, Proposition 5, and Theorem 3.

J.1 Proof of Proposition 4

Proposition 4. Let π̂b be a solution to the optimization problem maxπ∈P(πb) J(π). Then
Ψ̂SV,V (M,P(πb)) = ΨSV (M, π̂b) satisfiesRV (validity).

Proof. In the setting of interest, P (πb) is consistent with πb, that is πb ∈ P (πb), and hence J(π̂b) ≥
J(πb). By Theorem 1, the blame attribution method ΨSV satisfies propertyRE (efficiency), which
implies that

∑n
i=1 β̂i = J(π∗)− J(π̂b), where β̂ = ΨSV (M, π̂b). This implies:

J(π̂b) ≥ J(πb)⇒
⇒J(π∗)− J(π̂b) ≤ J(π∗)− J(πb)⇒
⇒J(π∗)− J(π̂b) ≤ ∆⇒

⇒
n∑
i=1

β̂i ≤ ∆.

Therefore, Ψ̂SV,V satisfies propertyRV (validity).

J.2 Proof of Proposition 5

Proposition 5. Let βii be the minimum value of the objective in (P2). Then Ψ̂SV,BC(M,P(πb)) =
(β1

1 , ..., β
n
n) satisfiesRV (validity) andRBC(ΨSV ) (Blackstone consistency w.r.t. ΨSV (M,πb)).

Proof. Let β = ΨSV (M,πb). Given Eq. (1), βii being the minimum value of the objective in
(P2) implies that βii = minπ∈P(πb) βi

π s.t. βπ = ΨSV (M,π). In the setting of interest, P (πb) is
consistent with πb, that is πb ∈ P (πb), which implies that βii = minπ∈P(πb) βi

π ≤ βi. Therefore,
Ψ̂SV,BC(M,P(πb)) satisfies RBC(ΨSV ) (Blackstone consistency w.r.t. ΨSV (M,πb)). Further-
more, by applying the same reasoning to all agents, we obtain

∑
i∈{1,...,n} βi

i ≤
∑
i∈{1,...,n} βi.

Given Theorem 1, this implies
∑
i∈{1,...,n} βi

i ≤ ∆, and hence Ψ̂SV,BC(M,P(πb)) also satisfies
RV (validity).

J.3 Proof of Theorem 3

Theorem 3. Consider Ψ̂ and Ψ s.t.
∥∥∥Ψ̂(M,P(πb))−Ψ(M,πb)

∥∥∥
1
≤ ε for any M , πb, and P(πb).

Then if Ψ satisfies a propertyR ∈ {RV ,RE ,RR,RS ,RI ,RAE}, Ψ̂ satisfies ε-R. Moreover, if Ψ

satisfies a propertyR ∈ {RCM ,RPerM ,RcPerM ,RcParM ,RRcParM}, Ψ̂ satisfies 2ε-R.
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Proof. We prove the implication for each propertyR:

• RV (validity): Let β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)). If Ψ satisfiesRV ,∥∥∥β̂ − β∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒
∣∣∣∣ n∑
i=1

β̂i − βi
∣∣∣∣ ≤ ε⇒

⇒
n∑
i=1

β̂i ≤
n∑
i=1

βi + ε⇒
n∑
i=1

β̂i ≤ ∆ + ε,

and hence Ψ̂ satisfies ε-RV .
• RE (efficiency): Let β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)). If Ψ satisfiesRE ,∥∥∥β̂ − β∥∥∥

1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒
∣∣∣∣ n∑
i=1

β̂i − βi
∣∣∣∣ ≤ ε⇒

⇒
∣∣∣∣ n∑
i=1

β̂i −∆

∣∣∣∣ ≤ ε,
and hence Ψ̂ satisfies ε-RE .

• RR (rationality): Let β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)). If Ψ satisfiesRR,∥∥∥β̂ − β∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒
∑
i∈S
|β̂i − βi| ≤ ε⇒

⇒
∣∣∣∣∑
i∈S

β̂i − βi
∣∣∣∣ ≤ ε⇒∑

i∈S
β̂i ≤

∑
i∈S

βi + ε⇒
∑
i∈S

β̂i ≤ ∆S + ε,

and hence Ψ̂ satisfies ε-RR.
• RS (symmetry): Let β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)). If Ψ satisfiesRS ,∥∥∥β̂ − β∥∥∥

1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒ |β̂i − βi|+ |β̂j − βj | ≤ ε⇒

⇒β̂i − βi − β̂j + βj ≤ ε⇒ β̂i − β̂j ≤ ε (r1)
and ∥∥∥β̂ − β∥∥∥

1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒ |β̂i − βi|+ |β̂j − βj | ≤ ε⇒

⇒− β̂i + βi + β̂j − βj ≤ ε⇒ −β̂i + β̂j ≤ ε. (r2)

From (r1) and (r2), we have |β̂i − β̂j | ≤ ε, and hence Ψ̂ satisfies ε-RS .
• RI (invariance): Let β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)). If Ψ satisfiesRI ,∥∥∥β̂ − β∥∥∥

1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒ |β̂i − βi| ≤ ε⇒

⇒|β̂i| ≤ ε⇒ β̂i ≤ ε,

and hence Ψ̂ satisfies ε-RI .
• RAE (average efficiency): Let β = Ψ(M,πb) and β̂ = Ψ̂(M,P(πb)). If Ψ satisfiesRAE ,

||β̂ − β||1 ≤ ε⇒
n∑
i=1

|β̂i − βi| ≤ ε⇒
∣∣∣∣ n∑
i=1

β̂i − βi
∣∣∣∣ ≤ ε⇒

⇒
∣∣∣∣ n∑
i=1

β̂i −
∑

S⊆{1,...,n}

1

2n − 1
·∆S

∣∣∣∣ ≤ ε,
and hence Ψ̂ satisfies ε-RAE .
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• RCM (contribution monotonicity) andRcParM (c-participation monotonicity): Let

β1 = Ψ(M1, πb
1
), β2 = Ψ(M2, πb

2
), β̂1 = Ψ̂(M1,P(πb

1
)) and β̂2 = Ψ̂(M2,P(πb

2
)).

To show that Ψ satisfying RCM (resp. RcParM ) implies that Ψ̂ satisfies 2ε-RCM (resp.

2ε-RcParM ), it suffices to show that βi1 − βi2 ≥ 0 implies β̂i
1
≥ β̂i

2
− 2ε. Let βi1 − βi2 ≥ 0.

We have ∥∥∥β̂1 − β1
∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i
1
− βi1| ≤ ε⇒ |β̂i

1
− βi1| ≤ ε⇒

⇒βi1 − β̂i
1
≤ ε (r3)

and ∥∥∥β̂2 − β2
∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i
2
− βi2| ≤ ε⇒ |β̂i

2
− βi2| ≤ ε⇒

⇒β̂i
2
− βi2 ≤ ε. (r4)

By adding (r3) and (r4), we obtain

βi
1 − β̂i

1
+ β̂i

2
− βi2 ≤ 2ε⇒ β̂i

1
≥ β̂i

2
− 2ε,

and hence Ψ̂ satisfies 2ε-RCM (resp. 2ε-RcParM ).
• RPerM (performance monotonicity) andRcPerM (c-performance monotonicity): Let β =

Ψ(M, (πi, π
b
−i)), β′ = Ψ(M, (π′i, π

b
−i)), β̂ = Ψ̂(M,P((πi, π

b
−i))) and β̂′ =

Ψ̂(M,P((π′i, π
b
−i))). To show that Ψ satisfyingRPerM (resp. RcPerM ) implies that Ψ̂ satisfies

2ε-RPerM (resp. 2ε-RcPerM ), it suffices to show that βi ≥ βi
′ implies β̂i ≥ β̂i

′
− 2ε. Let

βi ≥ βi′. We have ∥∥∥β̂ − β∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i − βi| ≤ ε⇒ |β̂i − βi| ≤ ε⇒

⇒βi − β̂i ≤ ε (r5)

and ∥∥∥β̂′ − β′∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i
′
− βi′| ≤ ε⇒ |β̂i

′
− βi′| ≤ ε⇒

⇒β̂i
′
− βi′ ≤ ε. (r6)

By adding (r5) and (r6), we obtain

βi − β̂i + β̂i
′
− βi′ ≤ 2ε⇒ β̂i ≥ β̂i

′
− 2ε,

and hence Ψ̂ satisfies 2ε-RPerM (resp. 2ε-RcPerM ).
• RRcParM (relative c-participation monotonicity): Let β1 = Ψ(M1, πb

1
), β2 = Ψ(M2, πb

2
),

β̂1 = Ψ̂(M1,P(πb
1
)) and β̂2 = Ψ̂(M2,P(πb

2
)). To show that Ψ satisfyingRRcParM implies

that Ψ̂ satisfies 2ε-RRcParM , it suffices to show that βj1−βj2 ≥ βk1−βk2 implies β̂j
1
− β̂j

2
≥

β̂k
1
− β̂k

2
− 2ε. Let βj1 − βj2 ≥ βk1 − βk2. We have∥∥∥β̂1 − β1

∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i
1
− βi1| ≤ ε⇒ |β̂j

1
− βj1|+ |β̂k

1
− βk1| ≤ ε⇒

⇒βj1 − β̂j
1
− βk1 + β̂k

1
≤ ε (r7)

and ∥∥∥β̂2 − β2
∥∥∥
1
≤ ε⇒

n∑
i=1

|β̂i
2
− βi2| ≤ ε⇒ |β̂j

2
− βj2|+ |β̂k

2
− βk2| ≤ ε⇒
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⇒− βj2 + β̂j
2

+ βk
2 − β̂k

2
≤ ε. (r8)

By adding (r7) and (r8), we obtain

βj
1 − β̂j

1
− βk1 + β̂k

1
− βj2 + β̂j

2
+ βk

2 − β̂k
2
≤ 2ε⇒

⇒β̂j
1
− β̂j

2
≥ β̂k

1
− β̂k

2
− 2ε,

and hence Ψ̂ satisfies 2ε-RRcParM .
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