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1. Introduction
The internal workings of trained deep neural net-

works (DNNs) are considered opaque. But these net-
works are only black-boxes if we do not try to com-
prehend them. We describe techniques, borrowed
from neuroscience, that can be applied to probe the
behaviours of deep neural architectures. Unlike tra-
ditional approaches to interpretability, we focus on
probing the process of encoding states of the input
observations, and empirical estimates or proxies of
p(x,a|ϕw;H), wherea represents a collectionof joint
levels of output from a collection of neurons within
thenetwork,ϕw represents the state of theworld that
gives rise to network observations, x andH denotes
a top-level hypothesis concerning the environment
in which a deep neural network operates.
The joint probability, p(x,a|ϕw;H) – togetherwith

the priors on the world state, should provide a rea-
sonably complete description of the way in which
the network represents the state of the environment
in which it is placed. This joint estimation is ad-
mittedly hard to perform across all neurons and all
possible observations states, and so we focus on rel-
atively small numbers of neurons and find ways to
summarise the distributions of their activations. Of
key interest from the perspective of representation
and control is how continuous variables are encoded
by the activity of one or more neurons.

2. Interpreting Simple Networks
The work of this presentation falls into the cate-

gory of interpretability; in particular, we move away
from probing networks for categorisation, or class
separability and focus instead on encoding for infer-
ence about continuous states of the real world.
We illustrate the core of this idea with an exam-

ple taken from computer vision, in which a pair of
early-layer convolutional units responds to an input
visual field consisting of a circular shape (see Fig-
ure 1). Given outputs from the twounits, inference of
the tangent line to theboundary, given some location
on the circle rim, can be obtained by simple non-
linearities applied across the channels correspond-
ing to conv Layer 1 outputs. Here, the state of the
world corresponds to a local orientation within a
spatial field.
There are several tools that aim to support the in-

terpretability of trained deep neural networks un-
derlying modern AI systems; see [1] for a recent sur-
vey, focusing on explainability, and with emphasis
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on elucidating rules that may be implicitly learned
and applied. Instead, we focus on encoding of world
states as our key objective, particularly with regard
to properties that can be expressed through real
numbers, such as position and velocity.

Fig. 1: A simple explanation of encoding a property
of the “world” from the outputs of artificial neu-
rons. (Top) An input visual field with specific lo-
cations indicated; (Bottom, Left) the responses
from a pair of convolutional units at indicated lo-
cations from the top figure; (Bottom, Right) De-
coded world state (ϕw). See text for details.

3. Methods I
We train networks to perform distinct tasks in

which aspects of the world state have a physical
meaning (orientation, position, velocity, see Fig. 2);
we then use combinations of Response Weighted
Noise Averaging (RWNA), correlation and covari-
ance based estimates, and phase-weighted analysis
to probe how neurons individually and jointly en-
code continuous information. In all cases, the input
field consists of random noise fields, and we collect
the ensemble of responses and noise patterns to ef-
fect our analysis.
The environments and tasks in which the net-

works were trained included classification, regres-
sion, and control tasks. Regression and control
taskswere createdwithin customenvironments con-
structed within OpenAI Gym [2].
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Fig. 2: Neurons in layers associated with visual en-
coding were probed by driving the network with
white Gaussian noise. A series of techniques were
applied to uncover associations between input
stimuli and the responses of individual neurons,
both before and after non-linearities.

4. Methods II
Response Weighted Noise Averaging is defined as

follows: Let a noise field, generated on the input
to a deep neural network be denoted as νk(·), and
assume there are finite K noise realisations, k =
0, 1, 2, ...K − 1. Then we can define the response-
weighted noise average of neuron j in layer ℓ of a
deep neural network by:

Rℓ,j(·) =
1

K

K−1∑
k=0

Rℓ,j;kνk(·) (1)

This calculation is analogous to Spike-Triggered Av-
eraging, a powerful idea derived from neuroscience
[3], [4]. The equivalence is based on establishing a
rough correspondence between the rate of firing of
a biological (or spiking) neuron, and the strength of
activation of a non-spiking artificial neuron.
In addition to this idea, we also considered a num-

ber of variants – Response Weighted Correlation,
Pearson Correlation, Phase-Weighted Response Av-
eraging andMutual Information – to capture aspects
of the relationship between pixels of the input noise
field and the response of individual neurons.
The latter two of these techniques allow or make

use of the joint distribution of pixel intensities and
value a, output by one neuron. We take the following
approach: any generalisation, or evolution of known
techniques for characterising the behaviour of neu-
rons should be consistent with existing understand-
ing of howneurons’ responses relate to inputs. Thus,
we validate and develop our techniques by consider-
ing the behaviour of early-stage visual neurons. For
a given neural layer, activities can be calculated di-
rectly or inferred from the layers and weights pre-
ceding and including the current layer.

5. Results
5.1 Receptive Field Mapping
A The quality of receptive field patterns (spatial
fields that induce strong responses in artificial neu-

Fig. 3: Receptive fields derived from DNNs trained
on different tasks. L1 and L2 conv layer responses
for classification, control and positional estima-
tion are all shown from left to right; fromRWC (see
Appendix). Best viewed in colour.

rons) appeared to be better elucidated by using the
Pearson Correlation between pixels of the input vi-
sual field and the activity of the neuron than by using
response-weighted noise averaging (RWNA). How-
ever, the patterns uncovered were qualitatively very
similar between RWNA and Pearson Correlation.
B Evidence was uncovered of inhibitory counter-
parts of excitatory neurons. These were found by
eigenanalysis of the correlation matrices computed
between pixels, and activations of neurons.

5.2 Findings: Joint Encoding
We found rich information in the eigenvalues of

the covariance structures, both between the input
spatial field values and the responses of artificial
neurons. We will also present recent findings on
joint encoding by pairs of neurons.

6. Conclusions
Interpretability tools for DNNs can be improved,

and our current and future work explores ap-
proaches that move away from simply determining
the input stimuli that induce response maxima and
instead focuses onhowartificial neural networks en-
code both states of their environment and actions.
Noise stimuli can be applied to all forms of neu-

ral input to discover encoding properties. We found
that the sample efficiency of applying noise stim-
uli decreased with further penetration into the net-
work, away from the output. This is likely because
of the equivalent of filtering performed by the ear-
lier layers. It suggests that some form of adaptivity is
needed in noise generation to preserve samples effi-
ciently as one penetrates further into deeper layers
of the network.
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Appendix A. Training environments

In an earlier work, we trained networks to explore
implicit encoding for control problems [5]. In that
work, multiple agents were trained to learn to com-
plete a reaching task by controlling a 7DoF arm (Jaco
robot) described within the MuJoCo framework. Al-
though themodel for the robot included propriocep-
tive inputs, we trained some versions of the agent
without the aid of proprioception, finding significant
differences in the encoding of the early layers of the
agentic network.
This has motivated research into finding out how

position of target, a state of the world, might be en-
coded in the network.
To gain further insight, we subsequently created a

new agent to directly encode position of targets, do-
ing so i) in the Fetch environment, so that the en-
vironment is more widely reproducible by other re-
searchers, and ii) doing so withmultiple targets, and
iii) moving on to moving targets.

Fig. A1: The rendered MuJoCo-based model of the
Jaco robot. The visual domain randomisation
(changing visual appearance of the same physi-
cal scene) was found in earlier work to improve
performance through modifying the early visual
stages of the AI agent [5]; we develop techniques
to further understand the way in which the envi-
ronmental state is encodedby the outputs of neu-
rons.

Fig. A2: The Fetch environment in OpenAI is mod-
ified so that a more complex visual task is pre-
sented to an agent seeking to fulfil a pick and
place task. Two trays respectively hold and re-
ceive the object to be picked and placed, and
both trays move in space. From the trajectories
traced out by the moving trays, we train two net-
works to respectively estimate position and ve-
locity of the objects.

1.1 Fetch Environment
We modified the Fetch environment, based on

the standard moving target environment of a “pick
and place” task, so that the tasks to be (respectively)
picked andplacedweremoving. We illustrate the en-
vironment, with examples of frames as fed into the
velocity and position estimating networks as shown
in Figure A2.

Appendix B. New findings

2.1 Phase-Weighted Response Averaging
Using Phase-Weighted Response Averaging, a

technique that groups responses into different am-
plitude windows, we are able to uncover more infor-
mation about a neuron’s behaviour, pre-threshold.
In this case, response weighted averaging (RWA) col-
lapses to an unstructured pattern unlesswe consider
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the activity of the neuron in different ranges, and
capture the pattern that induces values within those
ranges. The usefulness of this in interpreting neu-
ral coding of stimuli depends on the specific value of
the neuron’s bias term, and the type of non-linearity
used, but it enhances our understanding of the be-
haviour of artificial neurons in encoding continuous
states.

Fig. A3: Response Weighted Averaging, like Spike
Triggered Averaging [4], can miss non-linear be-
haviours in neurons, because positive and nega-
tive responses (with respect to a mean response
level) can cancel; this depends on the non-
linearity applied to the neuron. By probing joint
encoding instead (through PWNA), we can un-
cover these responses.

2.2 Response Weighted Covariance
We found that eigenanalysis of responseweighted

covariance also yielded insight into neural coding.
Response Weighted Covariance (RWC) is to spike-
triggered covariance [6] as response-weighted aver-
aging is to spike-triggered averaging [4]. By sorting
the eigenvalues, different spatial sub-fields emerged
from some of the analyses.
RWC is obtained by replacing the terms of RWNA

with products of deviations (from respective means)
between pairs of locations in the input noise field,
weighted by response amplitude, a, from a neuron.
Eigenanalysis then follows, to determine the main
components of response variation.
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