Concept Generalization in Visual Representation Learning

Mert Bulent Sariyildiz

Baseline

Yannis Kalantidis

Diane Larlus

Karteek Alahari

ImageNet Workshop NeurIPS 2021

Model backbone

pretrained on ImageNet-1K

Regularization

https://europe.naverlabs.com/cog-benchmark

Highlights / Take-home messages

- → We propose the ImageNet-CoG benchmark
- Enables measuring concept generalization in a principled way
- ◆ Seen concepts ⇒ ImageNet-1K concepts
- ◆ Unseen concepts ⇒ Sampled from the full ImageNet-21K dataset
 - 5 Levels ⇒ Increasingly challenging transfer datasets
- → To be used out-of-the-box for ImageNet-1K pretrained models
- → 31 models evaluated on ImageNet-CoG
- Interesting insights on popular state-of-the-art methods

Learning general-purpose visual representations

Concept generalization

- → No systematic approach for evaluating concept generalization
- → Unknown semantic similarity between ImageNet-1K and other datasets

We tackle the following questions:

- How can we evaluate concept generalization reliably?
- Which methods are the best for concept generalization?

Proposed ImageNet-CoG Benchmark

A benchmark tailored for concept generalization, built on the full ImageNet-21K [Deng, CVPR 2009]

Transfer learning scenarios from ImageNet-1K to ImageNet-CoG levels (sampled from the full ImageNet)

→ Seen and unseen concepts are in the same concept ontology (WordNet ontology [Miller, ACM 1995])

Backbone architecture

→ Semantic similarity between concepts is defined by linguists

Evaluation protocol:

ImageNet-1K

- 1) Extract image features for all the concepts
- 2) Train linear classifiers on each level separately

Web data

Main results of evaluating 31 representation learning methods on the ImageNet-CoG Benchmark

Self-supervision

Main observations (Please see the paper for additional analyses)

- → Performance of all 31 models monotonically decreases from ImageNet-1K to Level-5
- → Self-supervised models excel at concept generalization
- → Visual transformers overfit more to seen concepts
- → Using noisy web data highly improves concept generalization
- → Model distillation generally improves concept generalization performance
- → Neural architecture search models seem promising for concept generalization
- → Label-associated augmentation techniques deteriorate concept generalization performance