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Highlights / Take-home messages Proposed ImageNet-CoG Benchmark
-> We propose the ImageNet-CoG benchmark A benchmark tailored for concept generalization, built on the full ImageNet-21K [peng, cvrr 2009 Evaluation protocol: Model backbone
@ Enables measuring concept generalization in a principled way =>» Transfer learning scenarios from ImageNet-1K to ImageNet-CoG levels (sampled from the full InageNet) 1) Extract image features for all the concepts pretrained on

@ Seen concepts = ImageNet-1K concepts 2) Train linear classifiers on each level separately

E
€ Unseen concepts = Sampled from the full ImageNet-21K dataset xtract features

® 5 Levels = Increasingly challenging transfer datasets

=> To be used out-of-the-box for ImageNet-1K pretrained models Train Train Train Train Train Train
I Net-1K - _ _ _ _
=> 31 models evaluated on ImageNet-CoG maf:gl% Og Level - 1 Level - 2 Level - 3 Level - 4 Level - 5
€ Interesting insights on popular state-of-the-art methods categories Increasing semantic distance to > 1est fest fest fest fest fest
st oo concep . / A S DU B B
Learning general-purpose visual representations Training set (seen concepts) Downstream test sets (unseen concepts)
Py cony R o e e =>» Seen and unseen concepts are in the same concept ontology (WordNet ontology miller, Acm 1995]) classifier classifier classifier classifier classifier classifier
Train a model =>» Semantic similarity between concepts is defined by linguists I T i i
on ImageNet-1K Model ImageNet-1K L, L, L, L, L
[Russakovsky, 1JCV 2015]

Main results of evaluating 31 representation learning methods on the ImageNet-CoG Benchmark

[Kornblith, CVPR 2019] Transfer the learned representations Baseline Backbone architecture Self-supervision Web data Regularization
[Goyal, ICCV 2019] to many downstream datasets — . . . .
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=> No systematic approach for evaluating concept generalization ' Main observations (Please see the paper for additional analyses)
=> Unknown semantic similarity between ImageNet-1K and other datasets _ =» Performance of all 31 models monotonically decreases from ImageNet-1K to Level-5
> =>» Self-supervised models excel at concept generalization
We tackle the following questions: =>» Visual transformers overfit more to seen concepts
D : 5 50 1 RN =>» Using noisy web data highly improves concept generalization
e How can we evaluate concept generalization reliably: - . 5 o . o
. S : Ny Model distillation generally improves concept generalization performance
® Which methods are the best for concept generalization? - R | => Neural architecture search models seem promising for concept generalization
45 1

- I P I I P =>» Label-associated augmentation techniques deteriorate concept generalization performance



