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Objectives

• Implement pipeline for topological
data analysis (TDA) for time
series classification

•Evaluate the performance on a broad
range of datasets for time series
classification

•Compare method to topological
baselines and to state-of-the-art
approaches

Innovation

•Approach compared to both baselines
and other TDA-based approaches.

•Uses sliding windows and direct
extraction of Persistence
Diagrams (PDs).

•Combines models as an ensemble.

TOTOPO

1 Create PDs from time series.
2 Calculate TDA inputs from PDs:
Betti series, TDA Summaries and
L2-norms series.

3 Train base learners on inputs and the
original time series.

4 Generate an ensemble of base
learners.

Multivariate time series results

TOTOPO works with both univariate
and multivariate time series.
•TOTOPO is the second best
performer compared to two baselines
and a novel SOTA by Franceschi, [1].

•On the 4-channel dataset ERing
TOTOPO improves accuracy from
an average of 13.3% up to 94.4%.

Univariate time series results

•TOTOPO is the third best
classifier, as suggested by CD diagram,
on 78 univariate datasets from [2].

•TOTOPO outperforms all models
on 5 out of 6 datasets of type DEVICE.
Limitations: TOTOPO underperforms
on datasets with small differences be-
tween classes.

Schematic Model Description and CD Diagram
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Figure: Schematic model description.
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Figure: CD diagram with black horizontal lines showing statistically similar classifiers.

Noise robustness exploration

•Apply three noise levels to the signals.
•Compare average accuracies for each
noise level on Figure 3.

•TOTOPO’s accuracy deteriorates
less then others for small noise levels. 0.0 1.0 2.0 3.0
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Figure: Comparison of different algorithms’ performances for
different noise levels
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Figure: Overview of the structure of the base learner classifier.
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