
A Appendix

A.1 Proof of Theorem 1

Theorem 1 (Algorithmic Stability Generalization in Expectation) Fix a task t 2 Pt. The following
inequality holds for hypothesis hA(✓,S) learned using �US uniformly stable algorithm A with respect
to loss L:
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Proof. Let S = {z1, z2 . . . , zm} ⇠ Pm
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z|t be two independent
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We bound � with the supremum over datasets S and S0 differing by a single sample
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by Definition 1.

A.2 Definition of Marginal Distribution PS

In this section we formally define the marginal distribution PS which we make use of in the proof
of Theorem 3. This is the distribution over datasets one obtains by first sampling a task t from Pt,
and then sampling a dataset S from Pm

z|t. Consider the following equations (for simplicity, we use
summations instead of integrals to compute expectations; p(t) represents the probability of sampling
t and p(S|t) is the probability of sampling S given t):
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Here p(S) corresponds to the marginal distribution over datasets S. Note that the last line above
holds because E✓⇠P✓f(✓, S) does not depend on t.

Definition 2 (Marginal Distribution Over Datasets S) Let PS := p(S) from above.
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Thus we have
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A.3 Specializing the Bound

A.3.1 Meta-Learning Bound for Gaussian Distributions

In practice, the distribution P✓ over initializations will be a multivariate Gaussian distribution. Thus,
in this section, we present a specialization of the bound for Gaussian distributions. Let P✓ have mean
µ and covariance ⌃; thus P✓ = N (µ,⌃) and analogously P✓,0 = N (µ0,⌃0). We can then apply the
analytical form for the KL-divergence between two multivariate Gaussian distributions to the bound
presented in Theorem 3. The result is the following bound holding under the same assumptions as
Theorem 3:
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where ndim is the number of dimensions of the Gaussian distribution. We implement the above bound
in code instead of the non-specialized form of the KL divergence to speed up computations and
simplify gradient computations.

A.3.2 Few-Shot Learning Bound with Validation Data

In this section, we will assume that, in addition to the training data S ⇠ Pm
z|t, we have access to

validation data Sva ⇠ Pn
z|t at meta-training time. We will show that a meta-learning generalization

bound can still be obtained in this case. Notably, this will not require validation data at meta-testing
time.

We begin by bounding the expected loss on evaluation data Sev = {S, Sva} after training on S. Note
that for other meta-learning techniques, the training data S is often excluded from the data used
to update the meta-learner. Including it here helps relate the loss on Pz|t to the loss on Sev after
adaptation with S (see derivation below), and is necessary to achieve a guarantee on performance for
the few-shot learning case. From Inequality (4), we set the arbitrary distribution Ps to the marginal
distribution PSev over datasets of size m + n and f(✓, s) := bL(hA(✓,S), Sev). Note that with this
marginal distribution, we have an equivalence of sampling given by
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The following inequality holds with high probability over a sampling of Sev =
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In the next steps, we aim to isolate for a bL(hA(✓,S), S) term so that we may still combine with
Inequality (8) as we did in Section 4.2. We decompose the LHS of Inequality (25),
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Since the validation data Sva is sampled independently from S, the expected training loss on the
validation data is the true expected loss over sample space Pz|t,
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We plug Equality (27) into Equation (26), and then the decomposition in Equation (26) into Inequality
(25). We can then isolate for the bL(hA(✓,S), S) term,
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and plug into the LHS of Equation (8). By simplifying, we find that
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This resulting bound is very similar to the one in Inequality (6). We compute the loss term in the
upper bound with evaluation data and as a result, the size of the uniform stability regularization term
is reduced.

A.4 Bounds on the Uniform Stability Constant

In this section, we present bounds from [29] on the uniform stability constant �US which are applicable
to our settings. We first formalize the definitions of Lipschitz continuous (“Lipschitz” with constant
cL) and Lipschitz smoothness (“smooth” with constant cS).

Definition 3 (cL-Lipschitz) Function f is cL-Lipschitz if 8 ✓, ✓0 2 Rn✓ , 8 z 2 Z the following holds:

|f(✓, z)� f(✓0, z)|  cLk✓ � ✓k. (30)

Definition 4 (cS-smooth) Function f is cS-smooth if 8 ✓, ✓0 2 Rn✓ , 8 z 2 Z the following holds:

krf(✓, z)�rf(✓0, z)k  cSk✓ � ✓0k. (31)

Using a convex loss and stochastic gradient descent (SGD) allows us to directly bound the uniform
stability constant �US [29]:

Theorem 4 (Convex Loss SGD is Uniformly Stable [29]) Assume that convex loss function L is
cS-smooth and cL-Lipschitz 8 z 2 Z . Suppose we run SGD on S with step size ↵  2

cS
for T steps.

Then SGD satisfies �US uniform stability with

�US 
2c2L
m

T↵. (32)

Note that the bounds on �US presented in [29] guarantee �US uniform stability in expectation for a
randomized algorithm A. However, for deterministic algorithms, this reduces to �US uniform stability.
Using the uniform stability in expectation definition introduces another expectation (over a draw of
algorithm A) into the upper bound of the meta-learning generalization guarantee in Inequality (6). So
as to not increase the computation required to estimate the upper bound, we let A be deterministic.
This is achieved either by fixing the order of the samples on which we perform gradient updates for
SGD, or by using gradient descent (GD). Additionally, in the convex case, T steps of GD satisfies the
same bound on �US as T steps of SGD; see Appendix A.8.1 for the proof. For non-convex losses, a
bound on �US is still achieved when algorithm A is SGD [29]:

Theorem 5 (Non-Convex Loss SGD is Uniformly Stable [29]) Let non-convex loss L be cS-smooth
and cL-Lipschitz 8 z 2 Pz|t and satisfy Assumption 1. Suppose we run T steps of SGD with
monotonically non-increasing step size ↵t  c

t . Then SGD satisfies �US uniform stability with
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Note that this bound does not hold when GD is used.
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Algorithm 2 PAC-BUS using Mini-Batches of Tasks
Input: Fixed prior distribution N 0 over initializations
Input: �US uniformly stable Algorithm A
Input: Meta-training dataset S = {S1, S2, . . . , Sl}, learning rate �
Initialize:    0

Output: Optimized  ⇤

B( , ✓01, ✓
0
2 . . . , ✓

0
k) :=

1
l

Pk
i=1

bL(h✓0i , Si) +RPAC-B(N ,N 0 , �, l) + �US

while not converged do
Sample ✓ ⇠ N 

for i = 1 to k do
j ⇠ Uniform{1, 2, . . . , l}
✓0i  A(✓, Sj)

end for
   � �r B( , ✓01, ✓

0
2 . . . , ✓

0
k)

end while

A.5 Algorithms

Before running the algorithms presented in this paper, we must deal with a few technical challenges
that arise from our method’s assumptions and terms which need to be computed. In this paragraph,
we discuss the approach we take to deal with these challenges. For arbitrary networks, the softmax-
activated cross entropy loss (CELs) is not bounded and would not satisfy Assumption 1. We
thus constrain the network parameters to lie within a ball and scale the loss function such that all
samples z 2 Z achieve a loss within [0, 1]; see Appendix A.7 for details. However, the PAC-BUS
framework works with distributions P✓ over initializations. One option is to let P✓ be a projected
multivariate Gaussian distribution. This prevents the network’s output from becoming arbitrarily
large. However, the upper bound in Inequality (9) requires the KL-divergence between the prior
and posterior distribution over initializations. This is difficult to calculate for projected multivariate
Gaussian distributions and would require much more computation during gradient steps. Since the
KL-divergence between projected Gaussians is less than that between Gaussians (due to the data
processing inequality [21]), we can loosen the upper bound in (6) and (9) by computing the upper
bound using the non-projected distributions (but using the projected Gaussians for the algorithm).
After sampling a base learner’s initialization, we re-scale the network such that its parameters lie
within a ball of radius r. We also re-scale the base learner’s parameters after each gradient step to
guarantee that the loss stays within [0, 1]. Projection after gradient steps is not standard SGD, but
we show that it maintains the same bound on �US; see Section A.8.2 for details of the proof. Thus,
we let algorithm A be SGD with projections after each update and use Theorem 5 to bound �US

for non-convex losses [29]. Additionally, we can upper bound the Lipschitz cL and smoothness
cS constants for the network using the methods presented in [68]. After working through these
technicalities, we can compute all terms in the upper bound.

A.5.1 PAC-BUS using Mini-Batches of Tasks

We present the PAC-BUS algorithm modified for mini-batches of tasks to improve training times. For
batches of size k, the algorithm is presented in 2.

A.5.2 PAC-BUS(H)

In addition to providing algorithms which minimize the upper bound in Inequalities (6) and (9),
we are also interested in a regularization scheme which re-weights the regularizer terms in these
bounds. For larger scale and complex settings, it is challenging to provide a non-vacuous guarantee
on performance, but weighting regularizer terms has been shown to be an effective training technique
[77]. We calculate �US with a one-gradient-step version of Theorem 5. This Theorem requires the
algorithm A to be SGD, but we let A be a single step of GD to improve training times. We also
relax Assumption 1 Since the �US depends on both cL and cS , we update estimates of them after
each iteration by sampling multiple ✓ ⇠ P✓, bound the cL and cS for those sets of parameters using
Section 4 of [68], and then choose the maximum to compute �US. This is in contrast to limiting the
network parameters directly by bounding the output of the loss. Instead, the �US term in the upper
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Algorithm 3 PAC-BUS(H): Meta-learning heuristic based on PAC-BUS upper bound
Input: Fixed prior distribution N 0 over initializations
Input: Meta-training dataset S, learning rates ↵ and �
Input: Scale factors �1,�2 for regularization terms
Initialize:    0

Output: Optimized  ⇤

B( , cL, cS , ✓01, ✓
0
2, . . . , ✓

0
l) :=

1
l

Pl
i=1

bL(h✓0i , Si) + �1RPAC-B(N ,N 0 , �, l) + �2�US(cL, cS)
Estimate cL and cS using N 0

while not converged do
Sample ✓ ⇠ N 

for i = 1 to l do
✓0i  ✓ � ↵r✓bL(h✓, Si)

end for
   � �r B( , cL, cS , ✓01, ✓

0
2, . . . , ✓

0
l)

Estimate cL and cS using N 

end while

bound and the scale factor will determine how much to restrict the network parameters. The resulting
method is presented in Algorithm 3. In order to provide strong performance in practice, we tune �1
and �2.

A.6 Sample Convergence Bound

After training is complete, we aim to compute the upper bound. However, this requires evaluating an
expectation ✓ ⇠ P✓, which may be intractable. Providing a valid PAC guarantee without needing to
evaluate the expectation taken over ✓ ⇠ P✓ requires the use of the sample convergence bound [37]. We
have the following guarantee with probability 1� �0 over a random draw of {✓1, ✓2 . . . , ✓N} ⇠ PN

✓
for any dataset S [37],
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We can invert this KL-style bound (i.e. a bound of the form DKL(pkq⇤)  c) by solving the
optimization problem, q⇤  D�1

KL(qkc) := sup{q 2 [0, 1] : DKL(pkq)  c}, as described in [24].
After the inversion is performed on Inequality (34), we use a union bound to combine the result with
Inequality (6) and retain a guarantee with probability 1� � � �0 as in [24],
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An analogous bound is achieved when combined with Inequality (9). Thus, after training, we evaluate
Inequality (35) to provide the guarantee. Note that use of the sample convergence bound is a loosening
step. However, in our experiments, the upper bound in Inequality (35) is less than 5% looser than
unbiased estimates of Inequality (6). This can be reduced further at the expense of computation time
(if we utilize a larger number of samples in the concentration inequality).

A.7 Constraining Parameters and Scaling Losses

In order to maintain a guarantee, the PAC-Bayes upper bound in Theorem 2 requires a loss function
bounded between 0 and 1. However, the losses we use are not bounded in general. Let N✓ be an
arbitrary network parameterized by ✓ and N✓(z) be the output of the network given sample z 2 Z .
Consider arbitrary loss f , which maps the network’s output to a real number. If kN✓(z)k  r, 8 ✓ 2
Rn✓ , 8 z 2 Z , then we can perform a linear scaling of f to map it onto the interval [0, 1]. We define
the minimum and maximum value achievable by loss function f as follows

Mf := max
z2Z, ✓2Rn✓ , kN✓(z)kr

f(✓, z) (36)

mf := min
z2Z, ✓2Rn✓ , kN✓(z)kr

f(✓, z). (37)
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Now we can define a scaled function

fS(✓, z) :=
f(✓, z)�mf

Mf �mf
(38)

such that fS(✓, z) 2 [0, 1]. Note that the Lipschitz and smoothness constants of fS are also scaled by
1

Mf�mf
. When we choose loss CELs, the k-class cross entropy loss with softmax activation, we have

MCELs := log
⇣e�r + (k � 1)

e�r

⌘
, mCELs := log

⇣er + (k � 1)

er

⌘
. (39)

However, we must restrict the parameters in such a way that satisfies kN✓(z)k  r. For arbitrary
networks structures, this is not straightforward, so we only analyze the case we use in this paper.
Consider an L-layer network with ELU activation. Let parameters ✓ contain weights W1, . . . ,WL,
and biases b1, . . . , bL, and assume bounded input kzk  rz, 8 Z .

kN✓(z)k = kELU
�
WLELU(WL�1(· · · ) + bL�1) + bL

�
k (40)

 kWLkF (kWL�1kF (· · · ) + kbL�1k) + kbLk  r (41)

We can satisfy kNW(z)k  r by restricting

k✓k2 =
LX

i=1

kWik2F +
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kbik2 
✓

r

max(1, rz)

◆2

. (42)

Equation (42) implies Equation (41) by applying the inequality of arithmetic and geometric means.
Thus, we ensure k✓k  r/max(1, rz) by projecting the network parameters onto the ball of radius
min(r, r

rz
) after each gradient update.

A.8 Uniform Stability Considerations

A.8.1 Uniform Stability for Gradient Descent

In this section, we will prove that T steps of GD has the same uniform stability constant as T steps of
SGD in the convex case. This will allow us to use GD when attempting to minimize a convex loss,
Section 5.2. Let the gradient update rule G be given by G(✓, z) = ✓ � ↵r✓f(✓, z) for convex loss
function f , initialization ✓ 2 Rn✓ , sample z 2 Z , and positive learning rate ↵. We define two key
properties for gradient updates: expansiveness and boundedness [29].

Definition 5 (cE-expansive, Definition 2.3 in [29]) Update rule G is cE-expansive if 8 ✓, ✓0 2
Rn✓ , 8 z 2 Z the following holds:

kG(✓, z)�G(✓0, z)k  cEk✓ � ✓0k. (43)

Definition 6 (cB-bounded, Definition 2.4 in [29]) Update rule G is cB-bounded if 8 ✓ 2 Rn✓ , 8 z 2
Z the following holds:

k✓ �G(✓, z)k  cB . (44)

Now, consider dataset S 2 Zm and define f̄(✓, S) := 1
m

Pm
i=1 f(✓, zi). We also define Ḡ(✓, S) :=

✓ � ↵r✓f̄(✓, S) =
Pm

i=1 G(✓, zi). Assume that G(✓, z), is cE-expansive and cB-bounded 8 z 2 Z .
We then bound the expansiveness of Ḡ(✓, S),
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cEk✓� ✓0k = cEk✓� ✓0k. (45)

To compute the boundedness, consider

k✓ � Ḡ(✓, S)k  1

m

mX

i=1

k✓ �G(✓, zi)k 
1

m

mX

i=1

cB = cB . (46)

For a single gradient step on sample z, we see the same bounds on cE and cB when performing a
single GD step on dataset S. Thus, if Lemmas 2.5, 3.3, and 3.7 in [29] are true for gradient updates
G, they are also true for gradient updates Ḡ. We can then run through the proof of Theorem 3.8 in
[29] to show that it holds for T steps of GD if it holds for T steps of SGD.
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Let S ⇠ PS be a dataset of size m and S0 be an identical dataset with one element changed. We run
T steps of GD updates, Ḡ, on each of S and S0. This results in parameters ✓1, . . . , ✓T and ✓01, . . . , ✓0T
respectively. Fix learning rate ↵  2

cS
and consider

E
S,S0
k✓t+1 � ✓0t+1k = E

S,S0
kḠ(✓t, S)� Ḡ(✓0t, S

0)k (47)
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 m� 1
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1

m
E

S,S0
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2↵cL
m

= E
S,S0
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2↵cL
m
(49)

The steps above follow from Lemmas 2.5, 3.3, and 3.7 in [29] and the linearity of expectation. The
rest of the proof follows naturally and results in a uniformly stable constant �US  2c2L

m T↵ for T
steps of GD. Thus, we have the following result.

Corollary 1 Assume that loss convex function f is cS-smooth and cL Lipschitz 8 z 2 Z . Suppose T
steps of SGD on S satisfies �US uniform stability. This implies that T steps of GD on S satisfies �US

uniform stability.

A.8.2 Uniform Stability Under Projections

Projecting parameters onto a ball after gradient updates does not constitute standard SGD nor GD,
so we analyze the stability constant after T steps of GP (✓, z) = Proj[✓ � ↵r✓f(✓, z)]. Assume
kzk  rz, 8 z 2 Z . The function Proj scales parameters to satisfy k✓k  max(r, r

rz
) if it is not

already satisfied. See Appendix A.7 for an explanation of this restriction.

As in Appendix A.8.1, we compute bounds on the expansiveness and boundedness of GP . Suppose ✓
is a vector containing all weights of an L-layer network. Network hyper-parameters such as learning
rate and activation parameters do not need to be projected, so they will not be included. Assume that
✓, ✓0 already satisfy kN✓(z)k  r, 8 z 2 Z . Consider
kGP (✓, z)�GP (✓

0, z)k = kProj(G(✓, z))�Proj(G(✓0, z))k  kG(✓, z)�G(✓0, z)k  cEk✓�✓0k.
(50)

Note that any required scaling is equivalent to orthogonal projection of the parameters onto a euclidean
norm ball of radius r in Rd, where d is the number of parameters in the network. Thus, the first
inequality follows from the fact that orthogonal projections onto closed convex sets satisfy the
contractive property [63]. Next, consider

k✓ �GP (✓, z)k = kProj(✓)� Proj(GP (✓, z))k  k✓ �G(✓, z)k  cB . (51)
The equality follows from the assumption that ✓ already satisfies the norm constraint. As above, the
first inequality follows from the fact that the Proj function satisfies the contractive property [63].

With these bounds, gradient update GP satisfies Lemmas 2.5, 3.3, and 3.7 from [29] if G does. Note
that an analogous procedure can be used to show that scaling after a GD update, ḠP , also satisfies
these Lemmas. When function f or f̄ is convex, the proof of Theorem 3.8 in [29] applies, and shows
that using gradient updates GP or ḠP achieve the same bound on the uniform stability constant �US.
Thus, when f is convex, we may use GP or ḠP to compute updates and maintain the guarantee
presented in Theorem 1. Suppose now that f is not convex. Using Lemmas 2.5, 3.3, 3.7, and 3.11
from [29], the proof of Theorem 3.12 in [29] follows naturally to achieve a bound on SGD using
projected gradient updates GP when f is not convex.

A.9 Lipschitz and Smoothness Constant Calculation

Recall Definitions 3 and 4 for a function which is cL-Lipschitz and cS-smooth from Appendix A.4.
We define the softmax activation function.

Definition 7 (Softmax Function) s : Rk ! Pk

s(u)i =
eui

Pk
j=1 e

uj

, 8 i. (52)
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Where every element in Pk is a probability distribution in k dimensions (i.e. if v 2 Pk, thenPk
i=1 vi = 1 and vi � 0 8 i). Since the stability constant �US depends directly on the Lipschitz

constant of the loss function, and �US appears in the regularizer of the final bound, we will be as
tight as possible when bounding the Lipschitz constant to keep the generalization as tight as possible.
Section 6.2 of [75] describes an approach for bounding the Lipschitz constant for the 2-class, sigmoid
activated, cross entropy loss. We are interested in the k-class case with softmax activation, and also
aim to bound the smoothness constant. We begin with a similar analysis to the one described in [75].

Given unit-length column vector z 2 Rd and row vector y 2 Pk, with weight matrix W 2 Rd⇥k

(representing a single-layer network), the loss function is given by:

CELs(W) = �
kX

i=1

yi log(s(z
T W)i). (53)

Note that while y is any probability distribution, in practice, y will be an indicator vector, describing
the correct label with a 1 in the index of the correct class and 0 elsewhere. However, the analysis that
follows does not depend on this assumption.

We will take the Hessian of this loss to determine convexity and the Lipschitz constant. However,
since the weights are given by a matrix, the Hessian would be a 4-tensor. To simplify the analysis, we
will define

w =

2

664

W:,1

W:,2
...

W:,k

3

775 . (54)

Where W:,i is the ith column of W such that w 2 Rdk. We also let

z(i)T =
⇥
0̄ . . . 0̄ zT 0̄ . . . 0̄

⇤
(55)

such that z is placed in the ith group of d elements and 0̄ is a row vector of d zeros. Vector z(i) 2 Rdk

since there are k groups. With these definitions, we write the softmax activated network defined by
W with input z:

s(zT W)i =
ez(i)T w

Pk
j=1 e

z(j)T w
. (56)

We can simplify this by plugging in for the definition of s:

CELs(w) := CELs(W) = �
kX

i=1

yi

"
z(i)T w� log

✓ kX

j=1

ez(j)T w
◆#

(57)

= �
kX

i=1

yiz(i)T w + log

✓ kX

i=1

ez(i)T w
◆
. (58)

These are equivalent because
Pk

i=1 yi = 1. For readability, we let pi := s(zT W)i. With these
preliminaries the Hessian will be a 2-tensor and the r3

w term will be a 3-tensor. We compute the
gradient and Hessian and r3

w term:

rwCELs(w) = �
kX

i=1

yiz(i) +
kX

i=1

z(i)pi (59)

r2
wCELs(w) =

kX

i=1

z(i)z(i)T pi �
✓ kX

i=1

z(i)pi
◆✓ kX

j=1

z(j)T pj
◆
. (60)

We write r3
wCELs(w) termwise to simplify notation:

r3
wCELs(w) =

8
>>>>><

>>>>>:

(pi � 3p2i + 2p3i )z ⌦ zT ⌦ z? i = j = l
(�pipl + 2p2i pl)z ⌦ zT ⌦ z? i = j 6= l
(�pjpi + 2p2jpi)z ⌦ zT ⌦ z? j = l 6= i
(�plpj + 2p2l pj)z ⌦ zT ⌦ z? l = i 6= j
(2pipjpl)z ⌦ zT ⌦ z? i 6= j 6= l

(61)
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Where ⌦ is the tensor product and z ⌦ zT ⌦ z? 2 Rd⇥d⇥d is a 3-tensor with the abuse of notation:
z 2 Rd⇥1⇥1, zT 2 R1⇥d⇥1, and z? 2 R1⇥1⇥d. Thus r3

wCELs(w) 2 Rdk⇥dk⇥dk.

For twice-differentiable functions, the Lipschitz constant is given by the greatest eigenvalue of the
Hessian. Correspondingly, the smoothness constant is given by the greatest eigenvalue of the r3

w
term for thrice-differentiable functions. Thus, we aim to bound the largest value that the Rayleigh
quotient can take for any unit-length vector x. For the Hessian:

xTr2
wCELs(w)x  |xTr2

wCELs(w)x| = kxTr2
wCELs(w)xkF (62)

 kxk2kr2
wCELs(w)kF = kr2

wCELs(w)kF (63)

=

vuut
kX

i=1

kzzT kF (pi � p2i )
2 +

kX

i=1

kX

j=1,j 6=i

kzzT kF (pipj)2 (64)

=

vuut
kX

i=1

(pi � p2i )
2 +

kX

i=1

kX

j=1,j 6=i

(pipj)2. (65)

The Frobenius norm is maximized when pi =
1
k for k > 1:

kr2
wCELs(w)kF 

r
k
⇣1
k
� 1

k2

⌘2
+ k(k � 1)

⇣ 1

k2

⌘2
(66)

=

p
k � 1

k
. (67)

Thus, for CELs(w), the Lipschitz constant, cL 
p
k�1
k when k > 1. We can also show that the

Rayleigh quotient is lower bounded by 0 by following analogous steps in [75] (these steps are omitted
from this appendix), and thus CELs(w) is convex. Next, we examine the Rayleigh quotient of the
r3

wCELs(w). Analogous to the procedure for the Hessian, we make use of a 3-tensor analog of

the Frobenius norm: kMk3,F :=
qPk

i=1

Pk
j=1

Pk
l=1 M(i, j, l)2. Thus we have the following

inequality

xT ⌦ [x? ⌦r3
wCELs(w)]⌦ x  kr3

wCELs(w)k3,F . (68)

Since kz ⌦ zT ⌦ z?k3,F = 1, we can write this as

kr3
wCELs(w)k3,F 

vuuuuuuuuuuuuuuut

kX

i=1

(pi � 3p2i + 2p3i )
2 +

kX

i=1

kX

j=1,j 6=i

(�pipl + 2p2i pl)
2

+
kX

j=1

kX

l=1,l 6=j

(�pjpi + 2p2jpi)
2 +

kX

l=1

kX

i=1,i 6=l

(�plpj + 2p2l pj)
2

+
kX

i=1

kX

j=1,j 6=i

kX

l=1,l 6=j

(2pipjpl)
2.

(69)

This is maximized when pi = 1
k for k > 2, which was verified with the symbolic integrator

Mathematica [76]. Simplifying results in:

kr3
wCELs(w)k3,F 

r
(k � 1)(k � 2)

k3
. (70)

Thus for CELs(w), the smoothness constant, cS 
q

(k�1)(k�2)
k3 when k > 2. When k = 2,

p1, p2 = 1
2 ±

p
3
6 and cS 

q
2
27 .

A.10 Study on Base-learning Learning Rate and Number of Update Steps

In this section we present additional results on the performance of the algorithms with different
iterations and learning rates using the same example setup as in Section 5.1. Note that we have
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not used the sample convergence bound (see Appendix A.6) and present results for a single sample
✓ ⇠ P✓. The true values of the upper bounds for MLAP-M [5], MR-MAML [77], and PAC-BUS (our
method) are unlikely to change by more than 5% as the sample complexity bound does not loosen the
guarantee very much. We present these results to provide a qualitative sense of the guarantees and
their trends for varying base-learning learning rates and number of update steps.

Below we present test losses for MAML [25] (as a baseline), MLAP-M [5], MR-MAML [77], and
PAC-BUS for base-learning rates (lrb) of 0.01 to 10 using {1, 3, 10} adaptation steps.

MAML Test Loss, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 0.184±0.007 0.184±0.008 0.168±0.006 0.152±0.004 0.120±0.001 0.114±0.001 0.133±0.007
Adaptation steps = 3 0.177±0.006 0.179±0.002 0.149±0.002 0.126±0.001 0.115±0.001 0.106±0.001 0.123±0.004
Adaptation steps = 10 0.179±0.004 0.155±0.002 0.128±0.001 0.124±0.001 0.113±0.001 0.104±0.002 0.129±0.008

MLAP-M Test Loss, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 0.181±0.010 0.175±0.014 0.150±0.006 0.129±0.009 0.083±0.001 0.065±0.003 0.220±0.044
Adaptation steps = 3 0.178±0.006 0.159±0.007 0.102±0.005 0.081±0.003 0.064±0.001 0.050±0.004 0.379±0.021
Adaptation steps = 10 0.161±0.005 0.115±0.002 0.078±0.004 0.063±0.002 0.050±0.001 0.045±0.002 0.919±0.036

MR-MAML Test Loss, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 0.171±0.003 0.169±0.003 0.163±0.003 0.146±0.002 0.127±0.001 0.128±0.000 0.178±0.008
Adaptation steps = 3 0.170±0.002 0.166±0.001 0.146±0.002 0.128±0.001 0.123±0.001 0.118±0.001 0.163±0.022
Adaptation steps = 10 0.165±0.002 0.152±0.002 0.129±0.001 0.126±0.001 0.118±0.001 0.115±0.001 0.139±0.009

PAC-BUS Test Loss, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 0.176±0.002 0.171±0.003 0.160±0.001 0.145±0.002 0.127±0.001 0.129±0.002 0.164±0.019
Adaptation steps = 3 0.170±0.002 0.165±0.002 0.145±0.001 0.129±0.002 0.123±0.001 0.120±0.001 0.144±0.014
Adaptation steps = 10 0.163±0.001 0.150±0.001 0.130±0.001 0.126±0.002 0.119±0.002 0.115±0.002 0.130±0.004

Next, we present the computed bounds for MLAP-M [5], MR-MAML [77], and PAC-BUS for the
same set of hyper-parameters.

MLAP-M Bound, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 1.003±0.000 1.015±0.001 1.223±0.020 1.946±0.043 3.113±0.154 5.435±0.220 21.874±0.420
Adaptation steps = 3 1.008±0.000 1.087±0.027 1.864±0.062 3.072±0.157 4.147±0.095 6.760±0.233 28.356±1.826
Adaptation steps = 10 1.050±0.006 1.535±0.044 2.574±0.064 4.009±0.107 5.98±0.057 10.119±0.087 47.971±1.346

MR-MAML Bound, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 0.344±0.002 0.343±0.002 0.335±0.002 0.320±0.001 0.300±0.000 0.303±0.001 0.351±0.006
Adaptation steps = 3 0.344±0.002 0.340±0.002 0.320±0.002 0.302±0.002 0.296±0.001 0.292±0.001 0.335±0.018
Adaptation steps = 10 0.339±0.001 0.324±0.002 0.303±0.000 4.752±0.808 5.330±0.187 6.316±0.639 9.134±1.448

PAC-BUS Bound, lrb = 0.01 0.03 0.1 0.3 1 3 10

Adaptation steps = 1 0.216±0.002 0.216±0.002 0.204±0.002 0.188±0.002 0.169±0.000 0.171±0.001 0.207±0.021
Adaptation steps = 3 0.252±0.001 0.247±0.002 0.228±0.002 0.211±0.001 0.204±0.001 0.200±0.002 0.228±0.017
Adaptation steps = 10 0.383±0.002 0.372±0.001 0.350±0.001 1.160±0.093 1.288±0.056 1.650±0.055 2.221±0.256

These results show the dependence that the PAC-BUS upper bound (specifically the uniform stability
regularizer term �US) has on the learning rate and number of base-learning update steps whereas the
bound for MR-MAML does not suffer with increasing base-learning steps or learning rate. However,
once the learning rate and number of adaptation steps are too large, all bounds worsen significantly.
The tightest guarantee obtained using PAC-BUS is significantly stronger than those for any tuning of
MR-MAML and MLAP-M. We bold the tightest guarantee achieved in the tables above to highlight
this.

A.11 Additional Experimental Details

In this section, we report information about the data used, the procedure for prior, train, and test
splits, as well as other experimental details. Code capable of reproducing the results in this paper
is publicly available at https://github.com/irom-lab/PAC-BUS. All results provided in this
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paper were computed on an Amazon Web Services (AWS) p2 instances. Tuning and intermediate
results were computed on a desktop computer with a 12-core Intel i7-8700k CPU and an NVIDIA
Titan Xp GPU. In addition, we made use of several existing software assets: SciKit-learn [50] (BSD
license), PyTorch [49] (BSD license), CVXPY [23, 2] (Apache License, Version 2.0), MOSEK [44]
(software was used with a personal academic license, see https://www.mosek.com/products/
license-agreement for more details), learn2learn [7] (MIT License), and h5py [20] (Python
license, see https://docs.h5py.org/en/stable/licenses.html for more details).

A.11.1 Circle Class

We randomly sample points from the unit ball B2(0, 1) and classify them as (+) or (�) according to
whether or not the points are outside the ball B2(ct, rt). For the tasks which are used to train a prior,
we sample ct from [0.1, 0.5] and rt from [0.1, 1�kctk]. For the meta-training and meta-testing tasks,
we sample ct from [0.1, 0.4] and rt from [0.1, 1� kctk].
For all methods, we train the prior on 500 tasks, train the network on 10000 tasks, and test on
1000 tasks. We report the meta-test loss and a guarantee on the loss if applicable. A single task
is a 2-class 10-sample (i.e. there are 10 samples given in total for training, not 10 samples from
each class) learning problem. The evaluation dataset Sev consists of a dataset S of 10 base-learner
training samples and a dataset Sva of 250 validation samples. For PAC-BUS, we searched for the
meta-learning rate in [1e�4, 1], the base-learning rate in [0.01, 10], and the number of base-learning
update steps in [1, 10]. The resulting parameters for the 10-shot learning problems are: meta-learning
rate 1e�3, base-learning rate 0.05, and 1 base-learning update step. Note that in this example and
the Mini-wiki example, we select the number of base-learning steps such that the upper bound is
minimized. A lower loss may have been achievable with more base-learning update steps, but we aim
to produce the tightest bound possible. Training for each method took less than 1 hour on the AWS
p2 instance and computing the sample convergence upper bound took approximately 3 days when
applicable.

A.11.2 Mini-wiki
In Table 4, we present additional results – the percentage of correctly classified sentences on test tasks
(after the base learner’s adaptation step). Note that we present these results with the same posterior as
was used to generate the results in Table 2.

Table 4: Meta-test accuracy as a percentage for MAML, FLI-Batch, MR-MAML, and PAC-BUS. We
report the mean and standard deviation after 5 trials.

4-WAY Mini-Wiki 1-SHOT " 3-SHOT " 5-SHOT "
MAML [25] 60.2± 0.9 68.3± 0.7 71.9± 0.6
FLI-BATCH [34] 46.0± 5.9 48.7± 4.9 54.5± 2.4
MR-MAML [77] 59.9± 0.8 68.4± 0.7 71.8± 0.7
PAC-BUS (OURS) 59.9± 0.8 68.1± 0.7 71.2± 0.7

We use the Mini-wiki dataset from [34], which consists of 813 classes each with at least 1000 example
sentences from that class’s corresponding Wikipedia article. The dataset was derived from the
Wiki3029 dataset presented in [9], which was created from a public domain (CC0 license) Wikipedia
dump. Although the Wikipedia dump is open source, it is possible that content which is copyrighted
was used since the datasets are large and it is difficult to moderate all content on the website. In
addition, it is possible that the dataset has some offensive content such as derogatory terms or curse
words. However, since these are in the context Wikipedia articles, the authors trust that the original
article was not written maliciously, but for the purposes of education. We use the first 62 classes of
Mini-wiki for training the prior, the next 625 for the meta-training, and the last 126 for meta-testing.
Before creating learning tasks, we remove all sentences with fewer than 120 characters.

For all methods, we train the prior on 100 tasks, train the network on 1000 tasks, and test on 200 tasks.
We report the meta-test score, the meta-test loss, and a guarantee on the loss if applicable. A single
task is a 4-class {1, 3, 5}-shot learning problem. The evaluation dataset Sev consists of a dataset S
of {1, 3, 5} base-learner training samples and a dataset Sva of {250, 250, 250} validation samples
respectively. For PAC-BUS, we search for the meta-learning rate in [0.01, 1] the base-learning rate in
[1e�3, 100], and the number of base-learning update steps in [1, 50]. The resulting parameters for the
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{1, 3, 5}-shot learning problems are: meta-learning rate {0.1, 0.1, 0.1}, base-learning rate {2.5, 5, 5},
and {2, 4, 5} base-learning update steps respectively. Training for each method took less than 1 hour
on the AWS p2 instance and computing the sample convergence upper bound took approximately 2
days when applicable.

A.11.3 Omniglot
We use the Omniglot dataset from [35], which consists of 1623 characters each with 20 examples.
The dataset was collected using Amazon’s Mechanical Turk (AMT) and is available on GitHub
with an MIT license. This dataset was collected voluntarily by AMT workers. Since the dataset is
small enough, it can be checked visually for personally-identifiable information. We use the first
1200 characters for meta-training and the remaining 423 for meta-testing. The image resolution is
reduced to 28⇥ 28. In the non-mutually exclusive setting, the 1200 training characters are randomly
partitioned into 20 equal-sized groups which are assigned a fixed class label from 1 to 20. Note
that this is distinct from the method described in [77] where the data is partitioned into 60 disjoint
sets. Both experimental setups cause memorization, but the setup used in [77] causes more severe
memorization than ours. This is why our implementation of MAML performs better than the results
for MAML reported in [77]. However, our implementation of MR-MAML(W) method performs
similarly to what is reported in [77].

For all methods, we trained on 100000 batches of 16 tasks and report the meta-test score on 8000 test
tasks. We also used 5 base-learning update steps for all methods. A single task is a 20-way {1, 5}-shot
learning problem. The evaluation dataset Sev consists of a dataset S of {1, 5} base-learner training
samples and a dataset Sva of {4, 5} validation samples respectively. For PAC-BUS(H), we searched
for the regularization scales �1 and �2 in [1e�7, 1] and [1e�4, 1e4] respectively. Additionally, the
meta-learning rate was selected from [5e�4, 0.1], and the base-learning rate was selected from
[0.01, 10]. The resulting parameters for the {1, 5}-shot learning problems are: �1 = {1e�3, 1e�4},
�2 = {10, 10}, meta-learning rate {1e�3, 1e�3}, and base-learning rate {0.5, 0.5} respectively.
Training for each method took approximately 3 days on the AWS p2 instance.
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