
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXPERIMENTS ON VGG STRUCTURES

We evaluated our method on the CIFAR100 dataset using VGG architectures, besides ResNets.
We treated each layer as a stage in the VGG series. During experimentation, we observed that
VGG16 with three fully connected (fc) layers could not be trained effectively using the standard
direct training approach (its accuracy remained limited at 1%). To tackle this issue, we merged
the last three fc layers of VGG16 into one and named the resulting architecture VGG14. We set
Tmax = 5, s = 3, and computed the mean and standard deviation of three runs. We used the SGD
optimizer to train the model, with a learning rate of 0.1, a weight decay of 0.0005, and a batch size of
256. The results, presented in Table 9, indicate the effectiveness of our approach on VGG structures.

Table 9: Accuracy of VGG on CIFAR100

Methods Model T=2 T=3 T=4 T=5
MTT VGG14 73.53±0.09 74.52±0.07 75.27±0.14 75.72±0.10
InfLoR-SNN VGG16 - - - 71.56±0.10

A.2 TRAINING DETAILS

CIFAR The CIFAR10/CIFAR100 dataset comprises 50K training images and 10K test images with
a 32×32 pixel resolution. For CIFAR100, we train a ResNet-19 TFSNN using the MTT pipeline for
300 epochs with a batch size of 256 and a Tmax of 6. Following the practice in GLIF (Yao et al.,
2022), the last 2 fully connected layers of ResNet-19 are replaced with a single fully connected
layer. We employ the SGD optimizer with a weight decay of 0.0005 and a learning rate of 0.1 cosine
decayed to 0. To make a fair comparison with the state-of-the-art (SOTA) work (Li et al., 2021b;
Guo et al., 2022; Yao et al., 2022), AutoAugment (Cubuk et al., 2018) and Cutout (DeVries &
Taylor, 2017) are applied to both CIFAR10 and CIFAR100 datasets. However, these augmentation
techniques are only used for comparative experiments and temporal flexibility experiments, and not
for other experiments.

ImageNet ImageNet (Deng et al., 2009) contains more than 1280k training images and 50k test im-
ages. We use the standard data processing flow to crop each image to a size of 224×224. We deploy
the ResNet-34 structure, however, with the removal of the first max-pooling layer and changing the
stride of the first basic block from 1 to 2 (Zheng et al., 2021; Yao et al., 2022). We train the model
for 160 epochs with a batch size of 512 and a Tmax of 6. We utilize the AdamW optimizer with a
weight decay of 0.02 and a learning rate of 0.004 cosine decayed to 0.

DVS-Dataset CIFAR10-DVS and N-Caltech101 are neuromorphic datasets widely used in SNN
experimentation. We divide the dataset into a 9:1 ratio and merge all events to form ten frames,
which, similar to previous work (Li et al., 2021b; Deng et al., 2022), we resize to 48×48. For both
these datasets, we adopt a random horizontal flip and rotate the frames up to 5 pixels as augmentation
techniques. We employ the additional temporal inversion policy (Shen et al., 2023) uniquely for N-
Caltech101. For these datasets, we use a Tmax of 10, a batch size of 50, and train the TFSNN
ResNet-18 model for 300 epochs. The optimizer we choose is SGD, with a weight decay of 0.0005,
and a learning rate of 0.1, which we cosine decay to 0. While training the DVS dataset, we take only
the first t frames of the ten frames where t denotes the time step of the input stage, to feed into the
network.

A.3 DETAILS OF COMBINATORIAL OPTIMIZATION

As previously mentioned, the accuracy formula of TFSNN is given by the expression∑I
i=1 Ki

√
log2 ti + c, where Ki represents the contribution of each block, I is the number of

blocks, and c is a bias. We randomly select 18 distinct temporal configurations (t) and evaluate
their accuracies on the test set, resulting in 18 pairs of temporal configurations and their corre-
sponding accuracies. Using the least squares method, we compute the values of Ki and c from the
collected data. Next, we estimate the average firing rate (Ri) of each block in a unified SNN of
T=6. Then, the energy consumption of a specified temporal configuration t can be approximated
as

∑I
i=1 ti ·Ri. For example, the estimated energy consumption of a unified SNN with T=4 is

calculated as EC4 =
∑I

i=1 4Ri. Based on this, we can obtain a group of TFSNNs with lower

14

Under review as a conference paper at ICLR 2024

energy consumption (EC) for a given T=Tg , and we aim to identify the TFSNN with the maximum
estimated accuracy from this set. This is formulated as the following optimization problem:

maximize ACCestimated =

I∑
i=1

Ki

√
log2 ti + c

s.t.

I∑
i=1

ti ·Ri ≤ ECTg

Tmin ≤ t1, t2, . . . , tl ≤ Tmax,

where tiis the i-th component of temporal configurations t and ECTg
is the given uper bound of the

TFSNN energy.

In order to solve the above problem, we adopt the depth-first search (DFS) algorithm to search in the
solution space. To obtain a more accurate accuracy for each temporal configuration t, we perform
three times of BN calibrations and take the average of the accuracies.

A.4 DESIGN TTM GROUPING POLICY

We previously stated our policy’s objective is to partition l frames into k groups (l ≥ k) as evenly
as possible. In this section, we mathematically interpret the design. We will start by describing the
grouping process in a different manner. The l frames are viewed as l adjacent intervals of length 1
over the rational number domain with the i-th frame starting at i − 1 and ending at i. We define ci
as the boundary between group i and group i − 1. Here, i ranges from 1 to k, and c1 is 0. Ideally,
ci = (i−1) · l/k is set to group frames most evenly. Nevertheless, this strategy produces non-integer
ci, which results in atomic frames’ division when l is not a multiple of k. To solve this problem, we
retreat and set ci to the nearest integer and get

ci = ⌊ (i− 1) · l
k

− ε⌉, (11)

where ε is a small constant used to determine ci when the distances to the closest two integers are
equal. As bi must be the frame directly following the boundary ci (bi = ci + 1), we obtain Eq. 8.

A.5 DERIVATION OF THE BACKPROPAGATION FORMULA FOR LIF

In this section, we derive Eq. 7 from the forwarding formula. We derive ∂u(t)/∂v(t) from Eq. 4
first:

∂u(t)

∂v(t)
= 1− s(t)− v(t) · ∂s(t)

∂v(t)
. (12)

Then, we consider the derivation of ∂u(t)/∂v(t− 1). According to Fig. 2, ∂u(t)/∂v(t− 1) can be
calculated as follows

∂u(t)

∂v(t− 1)
=

∂u(t)

∂v(t)

∂v(t)

∂u(t− 1)

∂u(t− 1)

∂v(t− 1)
= τ

∂u(t)

∂v(t)

∂u(t− 1)

∂v(t− 1)
. (13)

By combining multiple Eq. 13, we get

∂u(t)

∂v(t− n)
= τn

t∏
i=t−n

∂u(i)

∂v(i)
. (14)

Finally, we get the complete expression for ∂s(t)/∂I(t− n) as follows

∂s(t)

∂I(t− n)
=

∂s(t)

∂v(t)

∂v(t)

∂u(t− 1)

∂u(t− 1)

∂v(t− n)

∂v(t− n)

∂I(t− n)

=
∂s(t)

∂v(t)
· τn

t−1∏
i=t−n

[(1− s(i))− v(i) · ∂s(i)
∂v(i)

]

(15)

15

Under review as a conference paper at ICLR 2024

A.6 DETAILS OF HANDMADE MODEL STRUCTURES

To demonstrate MTT’s capacity for training deep networks, we created two deep networks, B-
ResNet-50 and B-ResNet-72. We will present their specific structures in this section. Table 10
displays the architectures of these two networks. For convenience, we still use basic blocks for each
block, and simply reconfigure the number of basic blocks in each part. Since the model is large, we
use Tmax = 4.

Table 10: Structures of our handmade deep networks on CIFAR.

Stage Output Size B-ResNet-50 B-ResNet-72
conv1 32×32 3x3, 64

conv2 x 32×32
[

3x3, 64
3x3, 64

]
∗ 3

[
3x3, 64
3x3, 64

]
∗ 3

conv3 x 16×16
[

3x3, 128
3x3, 128

]
∗ 6

[
3x3, 128
3x3, 128

]
∗ 8

conv4 x 8×8
[

3x3, 256
3x3, 256

]
∗ 9

[
3x3, 256
3x3, 256

]
∗ 16

conv5 x 4×4
[

3x3, 512
3x3, 512

]
∗ 6

[
3x3, 512
3x3, 512

]
∗ 8

FC 1×1 average pool, fc, softmax

A.7 T = TMAX BN STATISTICS VS. RECALCULATED BN STATISTICS

As previously mentioned, we discovered that the BN statistics of the T=Tmax network can be applied
to other TFSNN with uniform T across blocks. In this section, we provide experimental verification
for this observation. Our experiment involves testing the accuracy of one of our trained ResNet-19
models with two distinct BN layer information approaches. The first approach utilizes the statistics
of the T=Tmax network, while the second approach recalculates the BN statistics individually for
each time step T. For the latter approach, we calibrate the BN layer three times and report the average
accuracy. Our experimental results demonstrated in Table 12 show that the mean and variance
calculated at T=Tmax is applicable directly to other T values. Therefore, we can utilize the BN
statistics of T=Tmax for other T directly, which saves the time required to calibrate the BN layers for
other T values.

Table 11: Accuracy given sampling number s and
training epochs e.

Sampling Num e× s
300 600 900 1200

s = 1 75.61 76.13 76.23 75.78
s = 2 75.53 76.37 76.31 76.36
s = 3 75.25 76.45 76.47 76.44
s = 4 74.81 75.74 76.41 76.42

Table 12: Test accuracy of a single model with two
kinds of BN statistics.

Method TimeStep
2 3 4 5

T=Tmax stat 80.21 81.06 81.51 81.82
Recalculated stat 80.21 81.23 81.44 81.85

A.8 IMPACT OF DIFFERENT SAMPLING NUMBER AND TRAINING EPOCHS

In most previous experiments, we employed sampling number s = 3. In this section, we experiment
with varying values of s, assess their effects at different epochs, and explain why we chose s = 3.
We train ResNet-18s with Tmax = 6 on CIFAR100 with varied s and list their test accuracy at T=6.
The results are displayed in Table 11. When e × s is constrained, the model requires more epochs
to converge, necessitating a lower s. However, if trained across a sufficient number of epochs,
sampling of s structurally diverse networks can smooth the optimization of network parameters and
improve performance. Specifically, we find s = 3 performs well and adopt s = 3 for most of the
experiments.

16

Under review as a conference paper at ICLR 2024

0.93 0.935 0.94 0.945 0.95
Estimate Accuracy

0.925

0.93

0.935

0.94

0.945

0.95

Te
st

 A
cc

ur
ac

y

r = 0.844
p = 1.844e-272

Figure 8: Correlation curve for estimate accu-
racy and test accuracy on CIFAR10

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
W

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

SDT 1D landscape
MTT 1D landscape

Figure 9: The 1D landscapes of ResNet18
trained by SDT and MTT on CIFAR100.

A.9 TFSNN ACCURACY ESTIMATION ON CIFAR10

In addition to CIFAR100, we also conducted experiments with ResNet-18 on CIFAR10. We ran-
domly sample 18 temporal configurations as usual and solve the equation in appendix A.3. The
weight parameters are {0.0049, 0.0028, 0.0017, 0.0037, 0.0037, 0.0004, 0.0005, 0.0017}, and the
constant value c is 92.13. Notes that block 1,4,5 have a higher contribution, and the 1,5 blocks
are also highly weighted on CIFAR100, which may imply that the weights are partly related to the
network structure. We then resample 1000 TFSNN and plot their estimate accuracy and test accu-
racy on CIFAR10 in Fig. 8. We also use the aforementioned combinatorial optimization strategy
to search the optimal TFSNN under the energy consumption of T=3 and find {4, 2, 2, 3, 5, 2, 2, 4},
which achieves an accuracy of 94.70%, 0.21% higher than its T=3 counterpart.

A.10 LOSS LANDSCAPES OF MTT AND SDT

To visually confirm the flatter minimum achieved by the model trained with MTT, we trained
ResNet18 using SDT and MTT on CIFAR100 and plotted their loss landscapes in Fig. 9. We
observed that MTT led the model to a flatter minimum which indicates improved generalizability.

A.11 VERIFYING GENERALIZABILITY THROUGH GRADIENT METRICS

Apart from noise injection, another famous metric that indicates the generalizability is the length
of the gradient on weights || ∂L

∂W || and the inputs || ∂L∂xi
||. For || ∂L

∂W ||, we evaluate the length of
the gradient of loss over the entire training set for the convolution layers. For || ∂L∂xi

||, we calculate
the mean value of the length of each input gradient. The model trained by MTT exhibits a shorter
gradient of both weights and inputs (see Table 13), which implies the model’s strong robustness and
generalizability.

Table 13: The gradient statistics of the
model trained by SDT and MTT.

Methods || ∂L
∂W || || ∂L∂xi

||
MTT 11.59 1.81
SDT 38.08 7.78

Table 14: Results on seqMNIST.

Methods Acc
Our RNN 56.22
SNN SDT 55.75
SNN MTT 64.56

Table 15: Results on Spiking Heidelberg
Digits

Methods Acc
l=3 Repro by code of 75.26Hammouamri et al. (2023)
l=3 our SDT 74.43
l=3 our MTT 79.68

Table 16: Results on Spiking Speech Commands

Methods Acc
Our SDT l=3 57.75
Our MTT l=3 60.15

17

Under review as a conference paper at ICLR 2024

A.12 EXPERIMENTS ON AUDIO AND SEQUENTIAL DATASETS

Our research reveals that TFSNN can function effectively as a time encoder when the temporal
configuration vectors used for training are monotonically non-increasing.

To illustrate this adaptability, we present the performance of TFSNN on three distinct temporal tasks:
seqMNIST, Spiking Heidelberg Digits and Spiking Speech Commands.

For the sequential task seqMNIST, we utilized a simple fc LIF SNN with 2 hidden layers of width
64 and set the time constant τ to 0.99. We also trained an RNN with 2 hidden layers of width 64 for
comparison. The results are as shown in Table 14.

For the Spiking Heidelberg Digits, we adopt the plain 3-layer feed-forward SNN architecture pro-
posed by Cramer et al. (2020), a fully connected SNN with an input width of 70 and 128 LIF neurons
in each of the 3 hidden layers. The timestep of the first layer is fixed to the input timestep, while the
timesteps of subsequent layers are restricted to monotonically non-increasing. We set τ = 0.9753,
which is equivalent to the parameter λ in the work of Cramer et al. (2020), namely 1− 1/τ in most
other articles, and train the model for 150 epochs. To ensure the validity of our results, we also re-
produce the result using the code provided by Hammouamri et al. (2023). The results are as shown
in Table 15.

Spiking Speech Commands (SSC) (Cramer et al., 2020) is a spiking dataset converted from Google
Speech Commands v0.2 and is tailored for SNN. For SSC, we continue using the same architecture
and the same parameters as we used in SHD, except that here we only train the model for 60 epochs.
The results are as shown in Table 16.

18

	Introduction
	Related Work
	Preliminaries
	Spiking Neuron Model
	Surrogate Gradient

	Methodology
	Start From Naive Mixture Training
	Analysis on Naive Mixture Training
	Temporal Flexible Spiking Neural Network
	Temporal Transformation Module
	Mixed Time-step Training
	Accuracy Estimation

	Experiments
	Comparison to Existing Works
	Temporal Flexibility
	Analysis Validation Experiments
	Ablation Study

	Conclusion
	Appendix
	Experiments on VGG Structures
	Training Details
	Details of Combinatorial Optimization
	Design TTM Grouping Policy
	Derivation of the Backpropagation Formula for LIF
	Details of Handmade Model Structures
	T=Tmax BN Statistics vs. Recalculated BN Statistics
	Impact of Different Sampling Number and Training Epochs
	TFSNN Accuracy Estimation on CIFAR10
	Loss Landscapes of MTT and SDT
	Verifying Generalizability Through Gradient Metrics
	Experiments on Audio and Sequential Datasets

