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A  SUPPLEMENTARY MATERIAL

This section contains supplemental material, offering further results and analysis to complement the
main paper. We provide additional details on the following topics:

* Architectural Details
* Ablations

* Qualitative Results

« Discussion (Section A.4)

A.1 ARCHITECTURAL DETAILS

We develop three variants of our GroupMamba backbones, each tailored to different performance
and efficiency requirements: GroupMamba-T (Tiny), GroupMamba-S (Small), and GroupMamba-B
(Base). These variants differ in their channel dimensions and the number of layers per stage, as

detailed in[Table 4

Table 4: GroupMamba Architectures. Description of the configurations of the model variants for
the embedding size, the number of layers, and the model’s GFLOPs and Parameters. Between two
consecutive stages, we incorporate a downsampling layer to increase the number of channels and
reduce the resolution by two.

Stage | Output Resolution | Type | Config | GroupMamba
| | | T [ s | B
\ g o % \ Patch Embedding | Patch Size | k=3x3, s=2
Stem | \ | Embed. Dim. | 32 | 32 | 48
‘ % o % ‘ Patch Embedding | Patch Size | k=3x3, s=2
| | | Embed. Dim. | 64 | 64 | 96
1 ‘ 4 | Modulated Group Mamba |~ Layers | 3 | 3 | 3
\ % y % \ Down-Sampling | Patch Size | k=3x3, s=2
| | | Embed. Dim. | 128 | 128 | 192
2 ‘ % X % ‘ Modulated Group Mamba ‘ Layers ‘ 4 ‘ 4 ‘ 6
\ 1% o % \ Down-Sampling | Patch Size | k=3x3, s=2
| | | Embed. Dim. | 320 | 320 | 384
3 ‘ % X I—V[é ‘ Modulated Group Mamba ‘ Layers ‘ 6 ‘ 12 ‘ 18
‘ 3% y % ‘ Down-Sampling | Patch Size | k=3x3, s=2
| | | Embed. Dim. | 448 | 512 | 512
4 ‘ Lx¥ | Modulated Group Mamba |~ Layers | 3 | 3 | 3
Parameters 23M | 34M | 5TM
FLOPs 4.5G | 7.0G | 14.0G

A.2 ABLATIONS

In we provide additional ablation results regarding the distillation training objective. For
the GroupMamba-T and GroupMamba-S variants, the distilled loss improves performance by an
absolute gain of 0.8% and 0.9%, respectively. For the largest variant, GroupMamba-B, the distilled
loss improves performance by 1.3%. This demonstrates that larger Mamba-based models with MLP
tend to saturate and struggle to converge effectively without distillation. Incorporating distillation for
the large model boosts its performance from 83.2% to 84.5%.
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Table 5: Ablation study on GroupMamba variants with and without the Distilled Loss.

Method | #Param. FLOPs  Top-1 acc.
GroupMamba-T w/o Distilled Loss 23M 4.6G 82.5
GroupMamba-T with Distilled Loss 23M 4.6G 83.3 (+0.8)
GroupMamba-S w/o Distilled Loss 34M 7.0G 83.0
GroupMamba-S with Distilled Loss 34M 7.0G 83.9 (+0.9)
GroupMamba-B w/o Distilled Loss 57TM 14G 83.2
GroupMamba-B with Distilled Loss 57TM 14G 84.5 (+1.3)

A.3 QUALITATIVE RESULTS

In we present the qualitative results of GroupMamba-T on samples from the COCO
validation set|Lin et al|(2014), demonstrating its performance in instance segmentation and object
detection. Our model accurately localizes objects and correctly segments them across diverse scenes
and varying scales. In[Figure 6| we show additional qualitative results of GroupMamba-T on samples
from the ADE20K |Zhou et al.|(2017) validation set for semantic segmentation. The first row shows
the ground truth masks, while the second row displays the predicted masks. It is notable that our
model delineates the masks accurately, highlighting the effectiveness for semantic segmentation. The
quantitative and qualitative results of GroupMamba demonstrate the robust generalization capability
of our GroupMamba backbones across diverse downstream tasks, including semantic segmentation,
object detection, and instance segmentation.

A.4 DISCUSSION

Our main contributions include introducing the Modulated Group Mamba layer, which enhances
computational efficiency and interaction in state-space models through a multi-direction scanning
method. We also introduce the Channel Affinity Modulation (CAM) operator to improve feature
aggregation across channels, addressing limitations in grouping operations. Additionally, we employ
a distillation-based training objective to stabilize the training of models with a large number of
parameters. These contributions enable us to achieve competitive performance with recent state-space
models in image classification, object detection, instance segmentation, and semantic segmentation
with fewer number of parameters.

This can further facilitate the development of vision foundation models based on Mamba that can be
scaled to a large number of parameters efficiently and stably. The Modulated Group Mamba layer and
CAM operator enhance computational efficiency and feature interaction, allowing models to manage
more extensive and complex datasets without excessive resource demands. The distillation-based
training objective ensures stability during training, which is crucial for maintaining performance as
model sizes increase. Together, these advancements enable the creation of scalable, reliable vision
models that can be deployed effectively in various real-world applications.
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Figure 5: Qualitative results of GroupMamba-T for object detection and instance segmentation on
the COCO validation set.

Figure 6: Qualitative results of GroupMamba-T for semantic segmentation on ADE20K validation
set. The first row shows the ground truth for the masks, while the second and second show the
corresponding predictions of our model.
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