A Appendix

A.1 Experimental Implementation Details

In Section 3.1, we empirically analyze the differences between SINs of patched and benign images.
The benign image set consists of 10000 images randomly selected from ImageNet validation set.
The patched images are generated by applying the adversarial patch to the random location of the
images in benign image set. The adversarial patch, P,is generated by maximizing the expectation of
possibility for ResNet50 to output targeted malicious label y,, (label 859, toaster in the evaluation)
with all adversarial inputs x,, derived from these 10000 images X'.

P= arg Inpax]EX [logPr(M(zp) = yplzp)] 3)

SIN distribution analysis. We analyze the distribution of SINs in terms of both the standard deviation
distance and cluster number. We first cluster the Top-200 neurons in the first layer with the MeanShift
clustering algorithm and obtain the cluster number and the coordinates of cluster central nodes in the
benign and patched images. Then we calculate the standard deviation distance with the following
method: As formulated in Eq. (4), for each cluster ¢, we obtain the coordinate of central point (Z.,7,.)
by averaging the coordinates of SINs in cluster c. Then, we calculate the standard deviation distance
s¢ as Eq. (5). Figure 1(b) illustrates the s, distribution of benign image set and patched image set.
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Prediction stability analysis. In the prediction stability analysis (Figure 1(d)), we only consider
the benign images (out of the 10000 selected images) that can be predicted correctly to avoid the
interference of other factors.

Adaptive attack methodology. In Figure 1(e), we evaluate the adversarial patch detection rate of
SIN-based detection methodology under adaptive attack. In this evaluation, the adversarial detection
methodology is based on sliding windows to find the patch candidate region where the SIN ratio in it
exceeds the threshold of 90%. Under adaptive attack, the adversary gets known the full knowledge of
the defensive strategies. To steer clear of the localized SIN-based detection, the adversary trains the
adversarial patch with the following optimization function by taking the superficial activation value
into consideration. Compared to Equation (3), a penalty loss of activation value is considered. In this
way, the adversary aims to build the adversarial patch with both good poisoning effects, but also tries
to escape from the adversary candidate detection by reducing the superficial activation value of the
patch region. « is the parameter to control the scale of the penalty loss in superficial activation value,
wy is the weight of the first layer. p is updated during the optimization of the loss function.

loss = —logPr(M(zp) = yp,) + a * Z(wo * ) (6)

A.2 Key Insight of ScaleCert

The insights of ScaleCert are shown in Figure 5. Figure 5(a) illustrates the superficial neuron
importance of the first layer in one patched and benign image. For both patched and benign images,
the nodes falling out of the Top-k rate are not essential for the prediction results and are pruned for
computing efficiency and less prediction noise. SIN-based pruning is compatible with well-studied
activation-based neural network compression techniques that are proved to introduce negligible
accuracy loss to the DNN models. The distribution of retained SINSs is distinct for patched images
and benign images (as shown in Figure 5(b) and Figure 5(c) ). The basic idea of ScaleCert is based
on the prediction stability after removing localized SINs in benign images.

Two factors are affecting the certified accuracy of ScaleCert: 1) Top-Ranking rate: it is the trade-off
between the computing efficiency and model accuracy. 2) Occluding window size. The lower bound
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of the window size is patch size. The upper bound of window size is determined by the trade-off
between computing efficiency and certified accuracy. Therefore, we evaluate the clean and certified
accuracy under different parameters in Section 4.3.
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Figure 5: Key idea of ScaleCert. The sorted superfical importance of patched image is much larger
than benign image on the retained top-k part while similar on the rest pruned part(a). Benign image
has dispersed SINs and stable prediction when moving out those SINs(b).On the contrast, patched
image has localized SINs and is sensitive to the occluding(c).

A.3 DIN vs. SIN in Adversarial Patch Defenses

DIN vs. SIN. Deep neuron importance has been widely used for abnormal adversarial example
detection in previous studies [6, 16, 29, 30]. Specifically, the class activation map (CAM) is
a commonly-used technique to indicate the discriminative image regions to identify a particular
class [34]. It leverages the weight of deep features (activation in the last convolutional layer) to indicate
the importance of deep features for specific classes. We envision that deep feature importance is not a
good candidate for adversarial patch detection because it cannot leverage the unique purturbation
localization restriction of adversarial patches: 1) Both the benign images and the adversarial images
exhibit the localized discriminative regions. Therefore, the discrimination of deep features in the
benign images and adversarial images is not intuitive as that in superficial features (as shown in
Figure 5(a, b, ¢)). It is challenging to eliminate the adversarial effect in deep features since the
adversarial feature and benign feature are accumulated together. 2) Calculating such deep feature
importance is time-consuming, which demands the gradient information and the complete backward
propagation process.

We propose the superficial input feature importance as the metric for discrimination analysis based on
the intuition that in order to efficiently manage the output prediction results with a very small region
of the input data, the adversarial patch must incur large activation from the first place instead of the
accumulation of the deep feature extraction.

PatchGuard vs. ScaleCert. To defend against adversarial patch attacks, PatchGuard leverages
the deep feature importance analysis and clips the potential malicious deep features (with large
weight values) based on robust aggregation. To isolate the adversarial features from benign features,
PatchGuard tries to restrict the adversarial effect based on small reception field techniques. However,
a smaller reception field may introduce large accuracy degradation (BagNet introduces about 20% of
accuracy degradation compared to ResNet [25]). Additionally, for deep neural networks with more
layers, small kernel sizes still result in a large reception field and raise the difficulty to isolate and
distinguish malicious features from benign features. ScaleCert, on the other hand, optimizes the
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defense techniques based on SIN-based neural network sparsity, which utilizes the localization bound
restriction of patch attacks and introduces negligible loss to model accuracy [11].

A.4 Sensitivity Study of ScaleCert

Large patch defenses. We also test the certified accuracy for the cases with super large adversarial
patches, as shown in Table 5 and Table 6. With the increasing of patch size, the certified accuracies of
all the defenses decrease. However, for ImageNet dataset, ScaleCert still retains the certified accuracy
above 40% even under extreme cases that the patch contains 8% pixels of the input images.

Table 5: Certified accuracy comparison with large patch sizes

Dataset | ImageNet | Cifar
Patch size |  S5%pixels | 8%pixels | 5%pixels | 8% pixels
Accuracy | clean | robust | clean | robust | clean | robust | clean | robust
IBP computationally infeasible 24.8 17.8 19.0 13.8
) CBN 53.5 1.4 53.5 0.5 83.2 0.8 83.2 0.1
Certified DS 444 | 117 | 444 | 88 | 839 | 463 | 839 | 348

Recovery | PG-Mask-DS | 43.1 132 | 422 9.5 84.7 | 476 | 843 | 355
PG-Mask-BN | 52.8 9.2 52.0 5.4 834 | 268 | 826 16.9

) MR computationally infeasible 82.1 754 | 799 | 72.0
Certified | patchGuard++ | 61.4 | 253 | 61.5 | 22.2 | 73.5 | 67.6 | 70.8 | 642
Detection ScaleCert 540 | 4877 | 506 | 427 | 763 | 712 | 735 | 67.6

Table 6: Certified accuracy with different Top-Ranking rate

Top-Ranking Rate | 10% | 15% | 20%
Patch size | Model | Clean | Cert. | Model | Clean | Cert. | Model | Clean | Cert.
5% 72.9 53.0 44.4 74.2 51.3 47.6 74.6 54.0 48.7
8% 72.7 48.4 40.2 73.3 46.0 41.6 73.8 50.6 427

Superficial layer selection. Additionally, we test the impact of using different superficial layers for
the SIN mask computing and the results are shown in Table 7. When the superficial layer is closer to
the input, the targeted searching region is more precise and smaller. Otherwise, the searching region
is larger due to the reception field effects. The performance drop of Layer 2 is introduced by the
MaxPooling layer between Layer1 and Layer 2 (ResNet50) which leads to information losses and
pruning in Layer 2 would hurt the performance. We suggest that do not select the superficial layer
right after the MaxPooling layers and recommend using the first superficial layer because of both
good accuracy and less computing overhead.

Table 7: Effect of Superficial Layer Selection on Certified Accuracy

Superficial Layer | 1 | 2 | 3

Model Accuracy | 73.8 | 69.8 | 73.4
Clean Accuracy 58.7 | 47.0 | 54.0
Certified Accuracy | 51.8 | 42.4 | 494
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