
APPENDIX

Overview
• Appendix A contains further elaboration on the notion of identifiability as used in the present work,

as well as connections to linear ICA.
• Appendix B contains additional discussion of existing ICM criteria and their relation to IMA.
• Appendix C presents the full proofs for all theoretical results from the main paper.
• Appendix D contains a worked out computation of the value of CIMA for the mapping from radial

to Cartesian coordinates.
• Appendix E contains experimental details and additional results.
• Appendix F contains additional background on conformal maps and Möbius transformations

A Additional background on identifiability and linear ICA
In this Appendix, we provide additional background on the notion of identifiability and illustrate it
using the example of linear ICA.

A.1 Identifiability in terms of equivalence relations

Traditionally, identifiability for a class of models pθ for observed data x parametrised by θ ∈ Θ is
expressed as the condition that there needs to be a one-to-one mapping between the space of models
and the space of parameters, i.e., the model class pθ is said to be identifiable if

∀θ, θ′ ∈ Θ : pθ(x) = pθ′(x)∀x =⇒ θ = θ′. (10)

However, the equality on the RHS of (10) is a very strong condition which makes this type of
(strong or unique) identifiability impractical for many settings. For example, in the case of (linear
or nonlinear) ICA, the ordering of the sources cannot be determined, so strong identifiability in the
sense of (10) is infeasible.

The equality in parameter space on the RHS of the implication in (10) is therefore sometimes replaced
by an equivalence relation ∼ [49], as is also the case for our Defn. 2.1. An equivalence relation ∼
on a set A is a binary relation between pairs of elements of A which satisfies the following three
properties:

1. Reflexivity: a ∼ a, ∀a ∈ A.
2. Symmetry: a ∼ b =⇒ b ∼ a, ∀a, b ∈ A.
3. Transitivity: (a ∼ b) ∧ (b ∼ c) =⇒ a ∼ c.

An equivalence relation on a set A imposes a partition into disjoint subsets. Each such subset
corresponds to an equivalence class, i.e., the collection of all elements which are ∼-related to each
other; for example, [a] = {b ∈ A : a ∼ b} denotes the equivalence class containing the element a.

A trivial example of an equivalence relation is equality (=). More useful examples in the context of
ICA are equivalence up to permutation, rescaling, or scalar transformation.

Defining an appropriate equivalence class for the problem at hand therefore allows us to specify exactly
the type of indeterminancies which cannot be resolved and up to which the true generative process can
be recovered. As argued in § 2, for nonlinear ICA, the desired notion of identifiability—in the sense of
the strongest feasible type of identifiable that is possible without further (parametric) assumptions—is
captured by ∼BSS from Defn. 2.2. We give another example for linear ICA in Appendix A.2.

Since the generative process of nonlinear ICA (1) is determined by the choice of mixing function
and source distribution, the space Θ from (10), in this case, corresponds to the product space of the
space of mixing functions F and source distributions P . Moreover, the pushforward density f∗ps
in Defn. 2.1 corresponds to the density of the observed mixtures px, or pθ(x) in (10).

We deliberately choose to define identifiability and to express the observed distribution in terms of
the source distribution and the mixing function—as opposed to in terms of the observed distribution
and the unmixing function as in some prior work [37, 38, 41]—because this is aligned with the causal
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direction of data generation, and thus more consistent with the causal perspective at nonlinear BSS
taken in the present work. We also believe that, in this framework, separate constraints on the space
of mixing functions F and source distributions P are expressed more naturally.

Next, we illustrate the above ideas for the well-studied case of linear ICA.

A.2 Identifiability of linear ICA

Linear ICA corresponds to the setting in which a linear mixing is applied to independent sources, i.e.,

x = As, (11)

where A ∈ Rn×n is an invertible mixing matrix. The source variables s can be assumed to have
zero mean without affecting estimation of the mixing matrix, and the ordering and variances of the
independent components cannot be determined, so it is customary to assume E[s2i ] = 1 [40].

Additionally, we can assume w.l.o.g. that the mixing matrix is orthogonal (AA⊤ = I), because
we can always whiten x first through an invertible linear transformation and obtain an orthogonal
mixing [40], as explained in more detail in Appendix A.3.

Now suppose that the reconstructed sources

y = Bx = BAs (12)

have independent components for some orthogonal unmixing matrix B ∈ Rn×n. Then C = BA is
also orthogonal and the following type of identifiability holds [17, 21, 93].
Theorem A.1 (Identifiability of linear ICA; based on Thm. 11 of [17]). Let s be a vector of n
independent components, of which at most one is Gaussian and whose densities are not reduced to
a point mass. Let C ∈ Rn×n be an orthogonal matrix. Then y = Cs has (mutually) independent
components iff. C = DP, with D a diagonal matrix and P a permutation matrix.

Thm. A.1 shows that the two ambiguities deemed unresolvable (scale and ordering of the sources)
are, in fact, the only ambiguities, as long as at most one of the si is Gaussian. That is, linear ICA is
identifiable up to rescaling and permutation of the sources, i.e., linearly transforming the observations
x into independent components is equivalent to separating the sources.

More formally, in terms of an equivalence relation, if we take F ′ from (2) as the space of invertible
n× n matrices and P ′ as the space of source distributions with at most one Gaussian marginal, then
linear ICA is ∼LIN-identifiable on F ′ × P ′ where the equivalence relation ∼LIN on F ′ is defined as

B ∼LIN B′ ⇐⇒ ∃D,P s.t. B = DPB′.

Beyond non-Gaussianity. Two other deviations from a Gaussian i.i.d. setting lead to identifiability:
nonstationarity [79] and time correlation [80]. A general information-geometric framework links
these three different routes to identifiability [15].

A.3 Whitening in the context of linear ICA

For completeness, we give a brief account of the role of whitening in linear ICA, which was mentioned
in A.2 and which again plays a role in B.1. The following exposition is partly based on [40], §7.4.2.

A zero-mean random vector, say y, is said to be white if its components are uncorrelated and their
variances equal unity. In other words, the covariance matrix of y is equal to the identity matrix:

E
[
yy⊤] = I .

It is always possible to whiten a zero-mean random vector x through a linear operation,

z = Vx . (13)

As an example, a popular method for whitening uses the eigenvalue decomposition (EVD) of the
covariance matrix,

E
[
xx⊤] = EDE⊤

where E is the orthogonal matrix of eigenvectors of E
[
xx⊤] and D is the diagonal matrix of its

eigenvalues, D = diag (λ1, . . . , λn). Note that the covariance matrix is a symmetric matrix, therefore
it is diagonalisable. Whitening can then be performed by substituting in (13) the matrix

V = ED−1/2E⊤ . (14)

18



so that
E[zz⊤] = ED−1/2E⊤EDE⊤ED−1/2E⊤ = I

Whitening is only half ICA. Assume a linear ICA model,

x = As . (15)

and suppose that the observed data is whitened, for example, by the matrix V given in (14). Whitening
transforms the mixing matrix into a new one, Ã = VA. We have from (15) and (14)

z = VAs = Ãs

Note that whitening does not solve linear ICA, since uncorrelatedness is weaker than independence.
To see this, consider any orthogonal transformation U of z:

y = Uz.

Due to the orthogonality of U, we have

E
[
yy⊤] = E

[
Uzz⊤U⊤] = UE

[
zz⊤

]
UT = UIU⊤ = I ,

so, y is white as well. Thus, we cannot tell if the independent components are given by z or y using
the whiteness property alone. Since y could be any orthogonal transformation of z, whitening gives
the independent components only up to an orthogonal transformation.

On the other hand, whitening is useful as a pre-processing step in ICA: its utility resides in the fact
that the new mixing matrix Ã = VA is orthogonal. This can be seen from

E
[
zz⊤

]
= ÃE

[
ss⊤

]
Ã⊤ = ÃÃ⊤ = I.

We can thus restrict the search for the (un)mixing matrix to the space of orthogonal matrices. Instead
of having to estimate n2 parameters (the elements of the original matrix A), we only need to
estimate an orthogonal mixing matrix Ã which contains n(n− 1)/2 degrees of freedom; e.g., in two
dimensions, an orthogonal transformation is determined by a single angle parameter. For larger n, an
orthogonal matrix contains only about half of the number of parameters of an arbitrary matrix.

Whitening thus “solves half of the problem of ICA”. Because whitening is a very simple and standard
procedure—much simpler than any ICA algorithm—it is a good idea to reduce the complexity of the
problem this way. The remaining half of the parameters has to be estimated by some other method.
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B Existing ICM criteria and their relationship to ICA and IMA
We now provide additional discussion of the ICM principle and its connection to ICA and IMA. First,
we introduce a linear ICM criterion and discuss its relation with linear ICA in Appendix B.1.

B.1 Trace method

As mentioned in § 2.2, besides IGCI, another existing ICM criterion that is closely related to ICA due
to also assuming a deterministic relation between cause c and effect e is the trace method [45, 110].
The trace method assumes a linear relationship,

e = Ac, (16)

and formulates ICM as an “independence” between the covariance matrix Σ of c and the mecha-
nism A (which, as for IGCI, we can again think of as a degenerate conditional pe|c) via the condition

τ(AΣA⊤) = τ(Σ)τ(AA⊤) (17)

where τ(·) denotes the renormalized trace. Intuitively, this condition (17) rules out a fine-tuning of A
to the eigenvectors of Σ which would violate the assumption of no shared information between the
cause distribution (specifically, its covariance structure) and the mechanism.

As with IGCI and nonlinear ICA, it can be seen by comparing (16) and (11) that the trace method
assumes the same generative model as linear ICA (where the cause c corresponds to the independent
sources s and the effect to the observed mixtures x). While the focus of the present work is on
nonlinear ICA, we briefly discuss the usefulness of the trace method as a constraint for achieving
identifiability in a linear ICA setting.

As is clear from (17), the trace condition is trivially satisfied if the covariance matrix of the sources
(causes) is the identity, Σ = I. However, as explained in Appendix A.3, in the context of linear ICA
this can easily be achieved by whitening the data. As with IGCI, the trace method was developed
for cause-effect inference where both variables are observed, and thus relies on the observed cause
distribution being informative. This renders is unsuitable (on its own) to constrain the unsupervised
representation learning problem of linear ICA problem where the sources are unobserved.

Note, however, that this is qualitatively different from the IGCI argument presented in § 3, as
whitening on its own does not necessarily lead to independent variables, but only uncorrelated ones,
and thus does not solve linear ICA—unlike the Darmois construction in the case of nonlinear ICA
which also yields independent components.

B.2 Information geometric interpretation of the ICM principle

There is a well-established connection between IGCI and the trace method [46]. At the heart of
this derivation lies an information-geometric interpretation of the ICM principle for probability
distributions, which we sketch in this section. First, we need to review some basic concepts.

Background on information geometry. Information geometry [3, 4] is a discipline in which ideas
from differential geometry are applied to probability theory. Probability distributions correspond
to points on a Riemannian manifold, known as statistical manifold. Equipped with the Kullback-
Leibler (KL) divergence, also called the relative entropy distance, as a premetric,17 one can study
the geometrical properties of the statistical manifold. For two probability distributions P and Q,
we denote their KL divergence by DKL(P∥Q), which is defined for P absolutely continuous with
respect to Q as:

DKL(P∥Q) =

∫
dP log

dP

dQ
.

An interesting property of the KL divergence is its invariance to reparametrisation. Consider an
invertible transformation h, mapping random variables X and Y to h(X) and h(Y ), respectively (the
domains and codomains being arbitrary spaces, e.g., discrete or Euclidean of arbitrary dimension).
Then the KL divergence between PX and PY is preserved by the pushforward operation implemented
by h, such that

DKL(Ph(X)∥Ph(Y )) = DKL(PX∥PY ) . (18)

17A premetric on a set X is a function d : X ×X → R+ ∪ {0} such that (i) d(x, y) ≥ 0 for all x and y in X
and (ii) d(x, x) = 0 for all x ∈ X .
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Figure 6: Interpretation of the ICM principle as an orthogonality principle in information space. The
irregularity of the effect distribution, as measured by DKL(PY ∥UY ), can be decomposed into the irregularities
of the cause, as measured by DKL(PX∥UX), and the irregularity of the mechanism f , as measured by
DKL(P⃗Y ∥UY ). Here, UX and UY denote the orthogonal projections of PX and PY onto the manifold E of
regular distributions, and P⃗Y denotes the pushforward of the regular distribution UX via f . Note that the KL
divergence is invariant to reparametrisation by invertible functions.

Interpretation of ICM as orthogonality condition in information space. Consider a deterministic
causal relationship of the form Y := f(X), and denote by PX and PY the marginal distributions of
the cause X and the effect Y , respectively. The “irregularity” of each distribution can be quantified
by evaluating their divergence to a reference set E of “regular” distributions,18

DKL(PX∥E) = inf
U∈E

DKL(PX∥U), DKL(PY ∥E) = inf
U∈E

DKL(PY ∥U).

Let us assume that these infima are reached at a unique point, their projections onto E :

UX = argmin
U∈E

DKL(PX∥U), UY = argmin
U∈E

DKL(PY ∥U).

As elaborated in [46, §4], the choice of E is context-dependent. For example, in the context of the
trace method [45], X and Y are assumed to be n-dimensional multivariate Gaussian random vectors,
and E is taken as the set of multivariate isotropic Gaussian distributions. In contrast, when IGCI is
applied in contexts where the considered mechanism is a deterministic non-linear diffeomorphism,
the reference distributions are typically uniform distributions [18, 47].

Overall, it can be shown that the independence postulate underlying these approaches leads to the
following decomposition of the irregularity of PY (see [46, Thm. 2]):

DKL(PY ∥UY ) = DKL(PY ∥P⃗Y ) +DKL(P⃗Y ∥UY )

where P⃗Y denotes the distribution of f(UX), i.e., the hypothetical distribution of the effect that would
be obtained if the cause X were replaced by the random variable UX (which corresponds to the
closest regularly distributed random variable to X).

Since applying the bijection f−1 preserves the KL divergences, see (18), we can obtain the equivalent
relation

DKL(PY ∥UY ) = DKL(PX∥UX) +DKL(P⃗Y ∥UY ) . (19)

This relation can be interpreted as an orthogonality principle in information space by considering the
KL divergences as a generalization of the squared Euclidean norm for the difference vectors

−−−−→
PY UY ,

−−−−→
PY P⃗Y and

−−−−→
P⃗Y UY . It can thus be viewed as a Pythagorean theorem in the space of distributions,

see Fig. 6 for an illustration.

The orthogonality principle (19) thus captures a decomposition of the irregularity DKL(PY ∥UY ) of
PY on the LHS into the sum of two irregularities on the RHS: the irregularity DKL(PX∥UX) of PX ,

18Here “regular” is only meant in an intuitive sense, not implying any further mathematical notion. If E is the
set of Gaussians, for instance, the distance from E measures non-Gaussianity.
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and the term DKL(P⃗Y ∥UY ) which measures the irregularity of the mechanism f indirectly, via the
“irregularity” of the distribution resulting from applying f to a regular distribution UY .

Overall, the decomposition (19) links the postulate of independence between the cause distribution,
on the one hand, and the mechanism, on the other hand, to an orthogonality of their irregularities in
information space (namely the statistical manifold of information geometry). As proposed in [46],
this can be intuitively interpreted as a geometric form of independence if we assume that Nature
chooses such irregularities independently of each other, and “isotropically” in a high-dimensional
subspace of irregularities.

While, to date, we are not aware of similar results in the context of information geometry (i.e., on
the statistical manifold), this intuition is supported by concentration of measure results in Euclidean
spaces. Indeed, in high-dimensions, it is likely that two vectors are close to orthogonal if they are
chosen independently according to a uniform prior [25].

We will take inspiration of the decomposition (19) to justify IMA in the following section.

B.3 Decoupling of the influences in IMA and comparison with IGCI

In contrast to Appendix B.2, in this section we will, for notational consistency with the main paper,
assume that all distributions have a density with respect to the Lebesgue measure, and thus consider,
with a slight abuse of notation, that the KL divergence is a distance between two densities on the
relevant support, such that

DKL(p∥q) =
∫

p(x) log
p(x)

q(x)
dx .

Overview. In line with the information-geometric interpretation of IGCI presented in Appendix B.2,
we also consider an interpretation of IMA in information space. We consider the KL-divergence
between the observed density px of x = f(s) and an interventional distribution px̂ of x̂ = f̂(s),
resulting from a soft intervention that replaces the mixing function f with another mixing f̂ . We
take DKL(px∥px̂) as a measure of the causal effect of the soft intervention (or perturbation) that
turns f into f̂—similarly to how DKL(PY ∥UY ) is used as a measure of the irregularity of the effect
distribution in the context of IGCI (Appendix B.2).

As we will show, under suitable assumptions, the functional form imposed on f by the IMA Princi-
ple 4.1 can lead to a decomposition of the causal effect of an intervention on the mechanism into a
sum of terms, corresponding to the causal effects of separate soft interventions on the mechanisms
associated to each source. In contrast, IGCI decomposes irregularities of the effect distribution into
two terms, one irregularity of the cause and one irregularity of the mechanism.

Soft-interventions on the individual mechanisms. Assume f satisfies the IMA principle. We
consider interventions performed through the element-wise transformation σ such that

σ : s 7→


σ1(s1)

...
σj(sj)

...
σn(sn)

 .

This can be seen as a composition of n soft interventions {σj} on each individual source component j,
implemented through univariate smooth diffeomorphisms σj , such that

σj : s 7→


s1
...

σj(sj)
...
sn

 ,

and σ = σn ◦ · · · ◦ σ1 (in arbitrary order, since the individual σj commute). This soft intervention
can be seen as turning the random variable s into ŝ, yielding the intervened observations x̂ = f(ŝ).
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Alternatively, the intervention on x can be implemented by replacing f by f̂ = f ◦ σ—i.e., x̂ = f̂(s).
Notably, since f satisfies the IMA principle, so does f̂ (due to Prop. 4.6, (ii), since σ is an element-wise
nonlinearity). Moreover, the partial derivatives of the intervened function are given by

∂ f̂

∂si
(s) =

∂f

∂si
(σ(s))

∣∣∣∣dσi

dsi

∣∣∣∣ (si) .
The classical change of variable formula for bijection f yields the expression of the pushforward
density of x as

px(x) = |Jf (f−1(x))|−1ps(f
−1(x)) ,

and for x̂ we get
px̂(x̂) = |Jf̂ (f̂

−1(x̂))|−1ps(f̂
−1(x̂)) ,

Information geometric interpretation of IMA. Let us now compute the KL divergence between
the intervened and observed distribution,

DKL(px∥px̂) =
∫

px(x) log
px(x)

px̂(x)
dx . (20)

Expressing the density of the observed variables as a pushforward of the density of the sources, and
without additional assumptions on f and f̂ besides smoothness and invertibility, we get,

DKL(px∥px̂) =
∫ ∣∣Jf (f

−1(x))
∣∣−1

ps(f
−1(x)) log

∣∣Jf (f
−1(x))

∣∣−1
ps(f

−1(x))∣∣∣Jf̂ (f̂
−1(x))

∣∣∣−1

ps(f̂−1(x))
dx .

We now consider a factorization of s over a directed acyclic graph (DAG), such that

ps(s) =
∏
j

pj(sj |pa(sj)) ,

where pa(sj) denotes the components associated to the parents of node j in the DAG. Because σ is
an element-wise transformation the factorization will be the same for pŝ.

If we now additionally assume that f and f̂ satisfy the IMA postulate, we get

DKL(px∥px̂) =
∫ ∣∣Jf (f

−1(x))
∣∣−1

ps(f
−1(x))

n∑
i=1

log

∥∥∥ ∂f
∂si

(f−1(x))
∥∥∥−1

pi(f
−1(x)i|pa(f−1(x)i))∥∥∥ ∂ f̂

∂si
(f̂−1(x))

∥∥∥−1

pi(f̂−1(x)i|pa(f̂−1(x)i))
dx .

By reparameterizing the integral in terms of the source coordinates, we get (using f̂−1 = σ−1 ◦ f−1)

DKL(px∥px̂) =
n∑

i=1

∫
ps(s) log

∥∥∥ ∂f
∂si

(s)
∥∥∥−1

pi(si|pa(si))∥∥∥ ∂ f̂
∂si

(σ−1(s))
∥∥∥−1

pi (σ−1(s)i|pa(σ−1(s)i))
ds . (21)

such that the KL divergence can be written as a sum of n terms, each associated to the intervention
on a mechanism ∂f

∂si
. Positivity of these terms would suggest that we can interpret each of them as

quantifying the individual contribution of a soft intervention σj applied to the original sources.

In the following, we propose a justification for the positivity of these terms in a restricted setting
where only the m leaf nodes of the graph are intervened on (with 1 ≤ m ≤ n).19 In the special case
of independent sources, all nodes are leaves and m = n.

Under this assumption, we consider (without loss of generality) an ordering of the nodes such that
the m first nodes are the leaf nodes in the DAG. Then we argue that the terms of the right-hand
side of (21) associated to leaf nodes (i ≤ m) are positive, as they correspond to the expectations of
KL-divergences. Indeed, taking one of the first m terms, denoted i, we have the factorization

ps(s) = pi(si|pa(si))
∏
j ̸=i

pj(sj |pa(sj)) ,

19A leaf node in a DAG is one that does not have any descendants.
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Figure 7: Illustration of the mapping between lines in source space to a curve in observation space.
Ls−i is the line obtained by varying si while keeping the value of all other sources fixed to s−i.
Lσ−1(s−i) is then defined by applying the transformations in [σ−1]−i to Ls−i . Both lines are mapped
to the same image line f [Ls−i

].

where
∏

j ̸=i pj(sj |pa(sj)) does not depend on si because node i is a leaf node. Moreover, as non-leaf
nodes are not intervened on, the transformation σ does not modify the value of any parent variables
in these factorizations. As a consequence, the integral can be computed as an iterated integral with
respect to si and s−i , where s−i denotes the vector including all source variables but si, such that

∫
ps(s) log

∥∥∥ ∂f
∂si

(s)
∥∥∥−1

pi(si|pa(si))∥∥∥ ∂ f̂
∂si

(σ−1(s))
∥∥∥−1

pi(σ−1(s)i|pa(σ−1(s)i))
ds

= Es−i∼
∏

j ̸=i pj(sj |pa(sj))

∫ p(si|pa(si)) log

∥∥∥ ∂f
∂si

(si, s−i)
∥∥∥−1

pi(si|pa(si))∥∥∥ ∂ f̂
∂si

(
σ−1
i (si),σ−1(s)−i

)∥∥∥−1

pi(σ
−1
i (si)|pa(si))

dsi

 .

As illustrated in Fig. 7, for a fixed s−i, consider the straight line Ls−i
= {(si, s−i) : si ∈ R} in

source space (parallel to the si coordinate axis). This line is mapped in observation space to the
smooth curve f [Ls−i ], by f in a smooth invertible way. Similarly, f̂ = f ◦ σ maps Lσ−1(s−i) to the
same image curve, since f̂ [Lσ−1(s−i)] = f ◦ σ[Lσ−1(s−i)] = f [Ls−i ].

By using the change of variable formula to represent the integral on f [Ls−i ] indexed by the curvilinear
coordinate ℓ, we get the expression of the pushfoward distribution f∗pi( . |pa(si)) on the curve f [Ls−i ]

[
f∗pi ( . |pa(si))

]
(ℓ) =

∥∥∥∥ ∂f

∂si

(
f−1(ℓ), s−i

)∥∥∥∥−1

pi
(
f−1(ℓ)|pa(si)

)
.

where, to simplify notation, f−1(ℓ) denotes in this context the coordinate si on Ls−i in bijection with
the curvilinear coordinate ℓ on f [Ls−i ].

Similarly, we get the expression of the pushfoward distribution f̂∗pi( . |σ−1(pa(si))) from Lσ−1(s−i)

to the curve f [Ls−i
] (using again the fact that parent variables are not intervened on, and thus left

unchanged by σ)

[
f̂∗pi( . |σ−1(pa(si)))

]
(ℓ) =

∥∥∥∥∥ ∂ f̂

∂si

(
f̂−1(ℓ),σ−1(s)−i

)∥∥∥∥∥
−1

pi

(
f̂−1(ℓ)|pa(si)

)
.
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These terms appear when rewriting the i-th term (for a leaf variable) in (21) as a curvilinear integral:∫
ps(s) log

∥∥∥ ∂f
∂si

(s)
∥∥∥−1

pi(si|pa(si))∥∥∥ ∂ f̂
∂si

(σ−1(s))
∥∥∥−1

pi (σ−1(s)i|pa(σ−1(s)i))
ds

= Es−i∼
∏

j ̸=i pj(sj |pa(sj))

[∫ ∥∥∥∥ ∂f

∂si
(f−1(ℓ), s−i)

∥∥∥∥−1

pi(f
−1(ℓ) | pa(si))

log

∥∥∥ ∂f
∂si

(f−1(ℓ), s−i)
∥∥∥−1

pi
(
f−1(ℓ) | pa(si)

)
∥∥∥ ∂ f̂
∂si

(f̂−1(ℓ),σ−1(s)−i)
∥∥∥−1

pi

(
f̂−1(ℓ) | pa(si)

)dℓ
 .

The inner integral term can thus be interpreted as the KL divergence between two pushforward
measures defined on f∗[Ls−i

] by f and f̂ , that we can denote by

DKL

(
f∗pi ( . |pa(si)) ∥ f̂∗p

(
. |σ−1(pa(si))

))
.

To conclude, this implies that the causal effect of the soft intervention f → f̂ can be decomposed
as the following sum of m positive terms associated to interventions on each leaf variable, plus an
additional term for the remaining non-leaf variables, which further simplifies (in comparison to (21))
due to the assumption that those variables are unintervened.

DKL(px ∥ px̂) =
m∑
i=1

Es−i∼
∏

j ̸=i pj(sj |pa(sj))

[
DKL

(
f∗p ( . |pa(si) ∥ f̂∗p

(
. |σ−1(pa(si))

))]

+
∑
i>m

∫
ps(s) log

∥∥∥ ∂f
∂si

(s)
∥∥∥−1

∥∥∥ ∂ f̂
∂si

(σ−1(s))
∥∥∥−1 ds . (22)

This expression suggests that the KL-divergences appearing in the first m terms each reflect the causal
effect of an intervention on the mechanism at the level of one single source coordinate i, turning
∂f
∂si

into ∂ f̂
∂si

. When the sources are jointly independent, we have m = n and the right hand side of
(22) contains only positive terms. An interesting direction for future work would be to analyse the
remaining term in the case of non unconditionally independent sources.

In contrast to the decomposition (19) in the context of IGCI, the IMA decomposition (22) involves m
(expectations of) KL-divergence terms instead of two, each related to the intervention on the part of
the mechanism ∂f

∂si
that reflects the influence of a single source.

B.4 Independence of cause and mechanism and IMA

We now discuss an example in which a formalisation of the principle of independence of cause and
mechanism [45] is violated, and one in which the IMA principle is violated.

B.4.1 Violations of independence of cause and mechanism

In the context of the Trace method [45], used in causal discovery, a technical example of fine-
tuning can be constructed by taking a vector of i.i.d. random variables with arbitrary (not diagonal)
covariance matrix Σ as the cause, and by constructing the mechanism as a whitening matrix, turning
the cause variables into uncorrelated (effect) variables. By doing so, the singular values and singular
vectors of the matrix (the mechanism) are fine-tuned to the input covariance matrix (a property of the
cause distribution), and such fine-tuning can be quantified via the Trace method (see [45], Section 1).

B.4.2 Violations of the IMA principle

Technical example. As mentioned in § 3, an example of a mixing function f which is non-
generic according to the IMA principle is an autoregressive function, for example an autoregressive
normalising flow [69], where the k-th component of the observations only depends on the k-th
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sources: intuitively, this would correspond to the unlikely cocktail-party setting where the k-th
microphone only picks up the voices of the first speakers. More precisely, as we show in Lemma C.1,
this leads to positive CIMA value for such mixing.

Pictorial example: Violations of the IMA principle in a cocktail party. A cocktail party (Fig. 1,
left) may violate our IMA principle when the locations of several speakers and the room acoustics
have been fine tuned to one another. This is for example the case in concert halls where the acoustics
of the room have been fine-tuned to the position and configuration of multiple locations on the stage,
where the sources (i.e., the voices of the actors or singers) are emitted—in order to make the listening
experience as homogeneous as possible across the spectators (that is, the influence of each of the
sources on the different listeners should not differ too much). This would lead to an increase in
collinearity between the columns of the mixing’s Jacobian, thus violating the IMA principle.

Additionally, we recall that the ICM principle is often informally introduced by referencing the
fine-tuning and non-generic viewpoints giving rise to certain visual illusions, such as the Beuchet
chair (see [78], Section 2); in a similar vein, we can imagine that violations of the IMA principle
in the cocktail party setting may be related to illusions in binaural hearing such as for example the
Franssen effect, where the listener is tricked into incorrectly localizing a sound [89].
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C Proofs
We now provide the proofs of all our theoretical results from the main paper.

C.1 Proof of Prop. 4.4

Before giving the proof, it is useful to rewrite the local IMA constrast (8) as follows:

cIMA(f , s) =

n∑
i=1

log

∥∥∥∥ ∂f

∂si
(s)

∥∥∥∥− log |Jf (s)|

=
1

2

(
log
∣∣diag (J⊤

f (s)Jf (s)
)∣∣− log

∣∣J⊤
f (s)Jf (s)

∣∣)
=
1

2
Dleft

KL

(
J⊤
f (s)Jf (s)

)
, (23)

where the quantity in (23) is called the left KL measure of diagonality of the matrix J⊤
f (s)Jf (s) [2]

(see Remark 4.3):

Dleft
KL(A) = − log |(diag(A))−

1
2A(diag(A))−

1
2 |

= log |diag(A)| − log |A| .

From (23), it can be seen that cIMA(f , s) is a function of Jf (s) only through J⊤
f (s)Jf (s).

Proposition 4.4 (Properties of cIMA(f , s)). The local IMA contrast cIMA(f , s) defined in (8) satisfies:

(i) cIMA(f , s) ≥ 0, with equality if and only if all columns ∂f/∂si(s) of Jf (s) are orthogonal.

(ii) cIMA(f , s) is invariant to left multiplication of Jf (s) by an orthogonal matrix and to right
multiplication by permutation and diagonal matrices.

Proof. For ease of exposition, we denote the value of the Jacobian of f evaluated at the point s by
Jf (s) = W. The two properties can then be proved as follows:

(i) This is a consequence of Hadamard’s inequality, applied to the expression on the RHS of (8),
which states that, for a matrix W with columns wi,

∑n
i=1 log ∥wi∥ ≥ log |W|; equality in

Hadamard’s inequality is achieved iff. the vectors wi are orthogonal.

(ii) We split the proof in three parts.

a. Invariance to left multiplication by an orthogonal matrix:
Let W̃ = OW, with O an orthogonal matrix, i.e., OO⊤ = I. Then the property follows
from writing cIMA(f , s) as in (23):

1

2
Dleft

KL(W̃
⊤
W̃) =

1

2
Dleft

KL(W
⊤O⊤OW) =

1

2
Dleft

KL(W
⊤IW) =

1

2
Dleft

KL(W
⊤W)

b. Invariance to right multiplication by a permutation matrix:
Let W̃ = WP, with P a permutation matrix. Then W̃ is just W with permuted columns.
Clearly, the sum of the log-column-norms does not change by changing the order of the
summands. Further, log |W̃| = log |W|+ log |P| = log |W|, because the absolute value
of the determinant of a permutation matrix is one.

c. Invariance to right multiplication by a diagonal matrix:
Let W̃ = WD, with D a diagonal matrix. Consider the two terms on the RHS of (8). For
the first term, we know that the columns of W̃ are scaled versions of the columns of W, that
is w̃i = diwi, where di denotes the ith diagonal element of D. Then ∥w̃i∥ = |di| ∥wi∥.
For the second term, we use the decomposition of the determinant:

log |W̃| = log |W|+ log |D| = log |W|+
n∑

i=1

log |di|.
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Taken together, we obtain
n∑

i=1

log ∥w̃i∥ − log |W̃| =
n∑

i=1

log (|di| ∥wi∥)−

(
log |W|+

n∑
i=1

log |di|

)

=

n∑
i=1

log ∥wi∥+
n∑

i=1

log |di| − log |W| −
n∑

i=1

log |di|

=

n∑
i=1

log ∥wi∥ − log |W|

C.2 Proof of Prop. 4.6

Proposition 4.6 (Properties of CIMA(f , ps)). The global IMA contrast CIMA(f , ps) from (9) satisfies:

(i) CIMA(f , ps) ≥ 0, with equality iff. Jf (s) = O(s)D(s) almost surely w.r.t. ps, where
O(s),D(s) ∈ Rn×n are orthogonal and diagonal matrices, respectively;

(ii) CIMA(f , ps) = CIMA(f̃ , ps̃) for any f̃ = f ◦ h−1 ◦P−1 and s̃ = Ph(s), where P ∈ Rn×n is a
permutation and h(s) = (h1(s1), ..., hn(sn)) an invertible element-wise function.

Proof. The properties can be proved as follows:

(i) From property (i) of Prop. 4.4, we know that cIMA(f , s) ≥ 0. Hence, CIMA(f , p(s)) ≥ 0 follows
as a direct consequence of integrating the non-negative quantity cIMA(f , s).

Equality is attained iff. cIMA(f , s) = 0 almost surely w.r.t. ps, which according to property (i)
of Prop. 4.4 occurs iff. the columns of Jf (s) are orthogonal almost surely w.r.t. ps.

It remains to show that this is the case iff. Jf (s) can be written as O(s)D(s), with O(s) and
D(s) orthogonal and diagonal matrices, respectively. (To avoid confusion, note that orthogonal
columns need not have unit norm, whereas an orthogonal matrix O satisfies OO⊤ = I.)

The if is clear since right multiplication by a diagonal matrix merely re-scales the columns,
and hence does not affect their orthogonality.

For the only if, let Jf (s) be any matrix with orthogonal columns ji(s), ji(s)⊤jj(s) = 0,∀i ̸= j,
and denote the column norms by di(s) = ||ji(s)||. Further denote the normalised columns of
Jf (s) by oi(s) = ji(s)/di(s) and let O(s) and D(s) be the orthogonal and diagonal matrices
with columns oi(s) and diagonal elements di(s), respectively. Then Jf (s) = O(s)D(s).

(ii) Let f̃ = f ◦ h−1 ◦ P−1 and s̃ = Ph(s), where P ∈ Rn×n is a permutation matrix and
h(s) = (h1(s1), ..., hn(sn)) is an invertible element-wise function. Then

CIMA(f̃ , ps̃) =

∫
cIMA(f̃ , s̃)ps̃(s̃)ds̃ =

∫
cIMA(f̃ , s̃)ps(s)ds (24)

where, for the second equality, we have used the fact that

ps̃(s̃)ds̃ = ps(s)ds .

since P ◦ h is an invertible tranformation (see, e.g., [83]). It thus suffices to show that

cIMA(f̃ , s̃) = cIMA(f , s). (25)

at any point s̃ = Ph(s). To show this, we write

Jf̃ (s̃) = Jf◦h−1◦P−1(Ph(s))

= Jf◦h−1

(
P−1Ph(s)

)
JP−1 (Ph(s))

= Jf◦h−1(h(s))JP−1(Ph(s))

= Jf (h
−1 ◦ h(s))Jh−1(h(s))JP−1(Ph(s))

= Jf (s)D(s)P−1 (26)
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where we have repeatedly used the chain rule for Jacobians, as well as that P−1P = I; that
permutation is a linear operation, so JP(s) = P for any s; and that h (and thus h−1) is an
element-wise transformation, so the Jacobian Jh−1 is a diagonal matrix D(s).

The equality in (25) then follows from (26) by applying property (ii) of Prop. 4.4, according to
which cIMA is invariant to right multiplication of the Jacobian Jf (s) by diagonal and permutation
matrices.

Substituting (25) into the RHS of (24), we finally obtain

CIMA(f̃ , ps̃) = CIMA(f , ps).

C.3 Remark on a similar condition to IMA, expressed in terms of the rows of the Jacobian

We remark that the condition imposed by the IMA Principle 4.1 needs to be expressed in terms of
the columns of the Jacobian, and would not lead to a criterion with desirable properties for BSS if it
were instead expressed in terms of its rows (which correspond to gradients of the fi(s)). One way to
justify this is that, for the same condition expressed on the rows of the Jacobian, that is

n∑
i=1

log ∥∇fi(s)∥ − log |Jf (s)| = 0 ,

property (ii) of Prop. 4.4 would not hold (because invariance would hold w.r.t. right, not left,
multiplication with a diagonal matrix). As a consequence, the resulting global contrast would not
be blind to reparametrisation of the source variables by permutation and element-wise invertible
transformations, thereby not being a good contrast in the context of blind source separation.

C.4 Proof of Thm. 4.7

Before proving the main theorem, we first introduce some additional details on the Jacobian of the
Darmois construction [39] which will be important for the proof.

Jacobian of the Darmois construction for n = 2. Consider the Darmois construction for n = 2,

y1 = gD
1 (x1) := FX1

(x1) = PX1
(X1 ≤ x1)

y2 = gD
2 (y1, x2) := FX2|Y1=y1

(x2) = PX2|Y1=y1
(X2 ≤ x2|Y1 = y1)

Its Jacobian takes the form

JgD(x) =

(
p(x1) 0
c21(x) p(x2|x1)

)
, (27)

where

c21(x) =
∂

∂x1

∫ x2

−∞
p(x′

2|x1)dx
′
2 .

Jacobian of the Darmois construction: general case. In the general case, the Jacobian of the
Darmois construction will be

JgD(x) =

p(x1) · · · 0
. . .

...
C(x) p(xn|x1, . . . , xn−1)

 (28)

where the components cji(x1:j) of C(x) for all i < j are defined by

cji(x1:j) =
∂

∂xi

∫ xj

−∞
p(x′

j |x1:j−1)dx
′
j .

It is additionally useful to introduce the following lemmas.
Lemma C.1. A function f with triangular Jacobian has CIMA(f , ps) = 0 iff. its Jacobian is diagonal
almost everywhere. Otherwise, CIMA(f , ps) > 0.
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Proof. Let f have lower triangular Jacobian at s, and denote Jf (s) = W. Then we have

cIMA(f , s) =

n∑
i=1

log

√√√√ n∑
j=i

w2
ji

−
n∑

i=1

log |wii| ,

where wji = [W]ji. Since the logarithm is a strictly monotonically increasing function and since√√√√ n∑
j=1

w2
ji ≥ |wii| ,

with equality iff. wji = 0,∀j ̸= i (i.e., iff. W is a diagonal matrix), we must have cIMA(f , s) = 0 iff.
W is diagonal.

CIMA(f , ps) is therefore equal to zero iff. f has diagonal Jacobian almost everywhere, and it is strictly
larger than zero otherwise.

Lemma C.2. A smooth function f : Rn → Rn whose Jacobian is diagonal everywhere is an
element-wise function, f(s) = (f1(s1), ..., fn(sn)).

Proof. Let f be a smooth function with diagonal Jacobian everywhere.

Consider the function fi(s) for any i ∈ {1, ..., n}. Suppose for a contradiction that fi depends on sj
for some j ̸= i. Then there must be at least one point s∗ such that ∂fi/∂sj(s∗) ̸= 0. However, this
contradicts the assumption that Jf is diagonal everywhere (since ∂fi/∂sj is an off-diagonal element
for i ̸= j). Hence, fi can only depend on si for all i, i.e., f is an element wise function.

We can now restate and prove Thm. 4.7.
Theorem 4.7. Assume the data generating process in (1) and assume that xi ⊥̸⊥ xj for some i ̸= j.
Then any Darmois solution (fD, pu) based on gD as defined in (4) satisfies CIMA(f

D, pu) > 0. Thus a
solution satisfying CIMA(f , ps) = 0 can be distinguished from (fD, pu) based on the contrast CIMA.

Proof. First, the Jacobian JgD(x) of the Darmois construction gD is lower triangular ∀x, see (28).

Because CDFs are monotonic functions (strictly monotonically increasing given our assumptions on
f and ps), gD is invertible.

We can thus apply the inverse function theorem (with fD = (gD)−1) to write

JfD(y) =
(
JgD(x)

)−1

Since the inverse of a lower triangular matrix is lower triangular, we conclude that JfD(y) is lower
triangular for all y = gD(x).

Now, according to Lemma C.1, we have CIMA(f
D, pu) > 0, unless JfD is diagonal almost everywhere.

Suppose for a contradiction that JfD is diagonal almost everywhere.

Since f and ps are smooth by assumption, so is the push-forward px = f∗ps, and thus also gD (CDF
of a smooth density) and its inverse fD. Hence, the partial derivatives ∂fD

i/∂yj , i.e., the elements of
JfD are continuous.

Consider an off-diagonal element ∂fD
i/∂yj for i ̸= j. Since these are zero almost everywhere, and

because continuous functions which are zero almost everywhere must be zero everywhere, we
conclude that ∂fD

i/∂yj = 0 everywhere for i ̸= j, i.e., the Jacobian JfD is diagonal everywhere.

Hence, we conclude from Lemma C.2 that fD must be an element-wise function, fD(y) =
(fD

1 (y1), ..., f
D
1 (yn)).

Since y has independent components by construction, it follows that xi = fD
i (yi) and xj = fD

j (yj)
are independent for any i ̸= j.

However, this constitutes a contradiction to the assumption that xi ̸⊥⊥ xj for some xj .

We conclude that JfD cannot be diagonal almost everywhere, and hence, by Lemma C.1, we must
have CIMA(f

D, pu) > 0.
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C.5 Proof of Corollary 4.9

Corollary 4.9. Under assumptions of Thm. 4.7, if additionally f is a conformal map, then (f , ps) ∈
MIMA for any ps ∈ P due to Prop. 4.6 (i), see Defn. 4.8. Based on Thm. 4.7, (f , ps) is thus
distinguishable from Darmois solutions (fD, pu).

Proof. The proof follows from property (i) of Prop. 4.6: by definition, the Jacobian of conformal
maps at any point s can be written as O(s)λ(s), with λ : Rn → R, which is a special case of
O(s)D(s), with D(s) = λ(s)I.

C.6 Proof of Corollary 4.11

Corollary 4.11. Consider a linear ICA model, x = As, with E[s⊤s] = I, and A ∈ O(n) an orthog-
onal, non-trivial mixing matrix, i.e., not the product of a diagonal and a permutation matrix DP. If
at most one of the si is Gaussian, then CIMA(A, ps) = 0 and CIMA(f

D, pu) > 0.

Proof. Since, by assumption, the mixing matrix is non-trivial (i.e., not the product of a diagonal and
permutation matrix), and at most one of the si is Gaussian, according to Thm. A.1 there must be at
least one pair xi, xj , with i ̸= j, such that xi ⊥̸⊥ xj .

We can then use the same argument as in the proof of Thm. 4.7 to show that the Darmois construction
has nonzero CIMA, whereas the linear orthogonal transformation A has orthogonal Jacobian, and thus
CIMA = 0 by property (i) of Prop. 4.6.

C.7 Proof of Thm. 4.12

Theorem 4.12. Let (f , ps) ∈ MIMA and assume that f is a conformal map. Given R ∈ O(n), assume
additionally that ∃ at least one non-Gaussian si whose associated canonical basis vector ei is not
transformed by R−1 = R⊤ into another canonical basis vector ej . Then CIMA(f ◦ aR(ps), ps) > 0.

Proof. Recall the definition

aR(ps) = F−1
s ◦Φ ◦R ◦Φ−1 ◦ Fs.

For notational convenience, we denote σ = Φ−1 ◦ Fs and write

aR(ps) = σ−1 ◦R ◦ σ.

Note that, since both Fs and Φ are element-wise transformations, so is σ.

First, by using property (ii) of Prop. 4.6 (invariance of CIMA to element-wise transformation), we
obtain

CIMA(f ◦ aR(ps), ps) = CIMA(f ◦ σ−1 ◦R ◦ σ, ps) = CIMA(f ◦ σ−1 ◦R, pz) ,

with z = σ(s) such that pz is an isotropic Gaussian distribution.

Suppose for a contradiction that CIMA(f ◦ σ−1 ◦R, pz) = 0.

According to property (i) of Prop. 4.6, this entails that the matrix

Jf◦σ−1◦R(z)⊤Jf◦σ−1◦R(z) = R⊤ Jσ−1(z)⊤ Jf (σ
−1(z))⊤ Jf (σ

−1(z))Jσ−1(z)R (29)

is diagonal almost surely w.r.t. pz. Moreover, smoothness of ps and f implies the matrix expression
of (29) is a continuous function of z. Thus (29) actually needs to be diagonal for all z ∈ Rn, i.e.,
everywhere (c.f., the argument used in the proof of Thm. 4.7, l.1008–1013).

Since (f , ps) ∈ MIMA by assumption, by property (i) of Prop. 4.6, the inner term on the RHS of (29),

Jf (σ
−1(z))⊤ Jf (σ

−1(z)),

is diagonal. Moreover, since σ is an element-wise transformation, Jσ−1(z)⊤ and Jσ−1(z) are also
diagonal. Taken together, this implies that

Jσ−1(z)Jf (σ
−1(z))⊤ Jf (σ

−1(z))Jσ−1(z) (30)

is diagonal (i.e., (29) is of the form R⊤D(z)R for some diagonal matrix D(z)).
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Without loss of generality, we assume the first component s1 of s is non-Gaussian and satisfies the
assumptions stated relative to R (axis not invariant nor sent to another canonical axis).

Now, since both the Gaussian CDF Φ and the CDF Fs are smooth (the latter by the assumption that
of ps is a smooth density), σ is a smooth function, and thus has continuous partial derivatives.

By continuity of the partial derivative, the first diagonal element ∂σ−1
1

∂z1
of Jσ−1 must be strictly

monotonic in a neighborhood of some z01 (otherwise σ1 would be an affine transformation, which
would contradict non-Gaussianity of s1).

On the other hand, our assumptions relative to R entail that there are at least two non-vanishing
coefficients in the first row of R (i.e., first column of R⊤).20 Let us call i ̸= j such pair of coordinates,
i.e., r1j ̸= 0 and r1i ̸= 0.

Now consider the off-diagonal term (i, j) of (29), which we assumed (for a contradiction) must be
zero almost surely w.r.t. pz. Since the term in (30) is diagonal, this off-diagonal term is given by:

n∑
k=1

(
dσ−1

k

dzk
(zk)

)2 ∥∥∥∥ ∂f

dsk
◦ σ−1(z)

∥∥∥∥2 rkirkj = n∑
k=1

(
dσ−1

k

dzk
(zk)

)2

λ(σ−1(z))2rkirkj = 0 .

where for the first equality we have used the fact that f is a conformal map with conformal factor λ(s)
(by assumption), and where the second equality must hold almost surely w.r.t. pz.

Since f is invertible, it has non vanishing Jacobian determinant. Hence, the conformal factor λ must
be a strictly positive function, so

λ(σ−1(z))2 > 0, ∀z.
Thus, for almost all z, we must have:

n∑
k=1

(
dσ−1

k

dzk
(zk)

)2

rkirkj = 0 . (31)

Now consider the first term
(

dσ−1
1

dz1
(z1)

)2
r1ir1j in the sum.

Recall that r1ir1j ̸= 0, and that dσ−1
1

dz1
(z1) is strictly monotonic on a neighborhood of z01 .

As a consequence,
(

dσ−1
1

dz1
(z1)

)2
r1ir1j is also strictly monotonic with respect to z1 on a neighborhood

of z01 (where the other variables (z2, ..., zn) are left constant), while the other terms in the sum in (31)
are left constant because σ is an element-wise transformation.

This leads to a contradiction as (31) (which should be satisfied for all z) cannot stay constantly zero
as z1 varies within the neighbourhood of z01 .

Hence our assumption that CIMA(f ◦ aR(ps), ps) = 0 cannot hold.

We conclude that CIMA(f ◦ aR(ps), ps) > 0.

20In short, if this were not the case, this column would have a single non-vanishing coefficient, which would
need to be one due to the unit norm of the rows of this orthogonal matrix. Such structure of the matrix R would
entail that the associated canonical basis vector e1 is transformed by R−1 = R⊤ into a canonical basis vector
ej which contradicts the assumptions.
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D Worked out example
Example D.1 (Polar to Cartesian coordinates). Consider the following example of a nonlinear ICA
model which represents a change of basis from polar to Cartesian coordinates:

x =

(
x1

x2

)
= f(s) =

(
f1(s)
f2(s)

)
=

(
r cos(θ)
r sin(θ)

)
with sources

s =

(
s1
s2

)
=

(
r
θ

)
, r ∼ U [0, R], θ ∼ U [0, 2π],

First, we consider the Jacobian of the true mixing f which is given by:

Jf (s) = Jf (r, θ) =

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
,

and its determinant and column norms are given by

|detJf (s)| = r
(
cos2(θ) + sin2(θ)

)
= r∥∥∥∥ ∂f

∂s1
(s)

∥∥∥∥ =

∥∥∥∥∂f∂r (r, θ)
∥∥∥∥ = cos2(θ) + sin2(θ) = 1∥∥∥∥ ∂f

∂s2
(s)

∥∥∥∥ =

∥∥∥∥∂f∂θ (r, θ)
∥∥∥∥ = r

(
cos2(θ) + sin2(θ)

)
= r

In other words, the columns of Jf (s) are orthogonal for all s, so that CIMA = 0 for the true solution.

Next, we apply the Darmois construction.

First, we write the joint density of (x1, x2) using the change of variable formula:

p(x1, x2) = |detJf (r, θ)|−1p(r, θ) = r−1 1

2πR
=

1√
x2
1 + x2

2

1

2πR
.

Next, we compute the marginal density p(x1). Note that the observations x live on the disk of radius
R, ∥x∥ ≤ R, so p(x1, x2) = 0 whenever x2

1 + x2
2 > R2.

p(x1) =

∫ √
R2−x2

1

−
√

R2−x2
1

p(x1, x2)dx2 =
1

2πR

∫ √
R2−x2

1

−
√

R2−x2
1

dx2√
x2
1 + x2

2

=
1

2πR

∫ √
R2−x2

1

−
√

R2−x2
1

dx2

x1

√
1 + (x2

x1
)2

Applying the change of variable t = x2

x1
with dt = dx2

x1
, and using the integral

∫
(1 + t2)−

1
2 dt =

arcsinh(t) + C, as well as the fact that arcsinh is an odd function, we obtain

p(x1) =
1

2πR

∫ √(
R
x1

)2
−1

−
√(

R
x1

)2
−1

dt√
1 + t2

=
1

πR
arcsinh

√( R

x1

)2

− 1


Next, we compute the conditional density p(x2|x1):

p(x2|x1) =
p(x1, x2)

p(x1)
=

(2πR)−1
(
x2
1 + x2

2

)−1

(πR)−1 arcsinh

(√(
R
x1

)2
− 1

) =

2
√

x2
1 + x2

2 arcsinh

√( R

x1

)2

− 1

−1
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Finally, we compute the off-diagonal term in the general form of the inverse Jacobian for Damois-style
solutions in (27):

c21(x) =
∂

∂x1

∫ x2

−∞
p(x2|x1)dx2 =

∂

∂x1

∫ x2

−
√

R2−x2
1

dx2

2
√

x2
1 + x2

2 arcsinh

(√(
R
x1

)2
− 1

)

=
1

2

∂

∂x1

arcsinh

√( R

x1

)2

− 1

−1 ∫ x2

−
√

R2−x2
1

dx2√
x2
1 + x2

2


=

1

2

∂

∂x1

arcsinh

√( R

x1

)2

− 1

−1arcsinh(x2)− arcsinh

−

√(
R

x1

)2

− 1




=
1

2

∂

∂x1

arcsinh

√( R

x1

)2

− 1

−1arcsinh(x2) + arcsinh

√( R

x1

)2

− 1
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

=
1

2

∂

∂x1

1 +
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(√(
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=
1

2
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∂

∂x1

arcsinh
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= −1

2
arcsinh(x2) arcsinh
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− 1
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Using the derivative ∂
∂t arcsinh(t) = (t2 + 1)−

1
2 and repeatedly applying the chain rule, we obtain:

c21(x) = −1

2
arcsinh(x2) arcsinh

√( R

x1

)2

− 1

−2

x1

R
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2
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(−2)R2x−3
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1
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√( R
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Again, recall that this only holds inside the disk of radius R, otherwise c12 = 0 (as the CDF will be
zero or one, irrespective of x1).
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The CIMA for the Darmois solution thus takes the form:

CDarmois
IMA =

∫
1

2
log
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p(x1)

−2 + c21(x)
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 ds > 0

where the strict inequality in the last step follows from the fact that the fraction inside the logarithm,
and hence the entire integrand, is strictly positive within the disk of integration.

We have thus shown that for the example of an orthogonal coordinate transformation from polar to
Cartesian coordinates, which is not a conformal map, the CIMA os the true solution is zero and that of
the Darmois construction is strictly greater than zero, hence the two can be distinguished based on
the value of the CIMA contrast.
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E Experiments
The code for our experiments (enclosed in the supplemental material) is in Python; we use Jax [12],
Distrax [13] and Haiku [32] to implement our models; the Jacobian and CIMA computation and
optimisation are performed with the automatic differentiation tools provided in Jax.

E.1 Sampling random Möbius transformations.

In order to generate mixing functions with CIMA = 0, we use Möbius transformations (see Appendix F
and in particular Thm. F.2, for additional details on this kind of functions) with randomly sampled
parameters, as specified below. A Möbius transformation fM : Rn → Rn is given by

fM(s) = t+
rA(s− b)

∥s− b∥ϵ
, (32)

with parameters b, t ∈ Rn, r ∈ R, A is an orthogonal matrix and ϵ ∈ {0, 2}. The flow models we
train have an diagonal affine layer at the top with fixed shift and scale set to the mean and standard
deviation of the training data, thereby normalizing the inputs. Hence, without loss of generality, we
can set the t parameter to zero and r to one. Since ϵ = 0 corresponds to a linear transformation,
we generally set ϵ = 2 in our experiments unless otherwise specified. We sample the orthogonal
matrix through the ortho_group function in scipy.stats [101]. To avoid singularities given
by a vanishing denominator in the second term on the RHS of (32), which would yield observed
distributions with strong outliers and therefore hard to fit for our models, we restrict b to lie outside
the unit square s is sampled from. We achieve this by sampling b from a normal distribution and
reject the sample until it is located outside of the unit square.

E.2 How to implement the Darmois construction

In the following, we describe how the Darmois construction can be implemented based on nor-
malising flow models [69]. The key idea is that the components gD

i of the Darmois construc-
tion (4) are conditional (cumulative) density functions corresponding to a given factorisation
p(x) =

∏n
i=1 p(xi|x1:i−1) of the likelihood. A flow model with triangular Jacobian can be used to

maximise the likelihood of the observations under a change of variable respecting said factorisation,
and learning to map the observed variables onto a given (factorised) base distribution. After training,
and provided that the model is expressive enough, the CDF of each component of the reconstructed
sources should match that of the base distribution. By further transforming each reconstructed vari-
able through said CDF, we achieve a global mapping of the observations onto a Uniform distribution
on the n-dimensional hypercube, with a triangular Jacobian, matching the transformation operated by
the Darmois construction (see also see [69], section 2.2). Note that, for the purpose of computing the
CIMA of the Darmois construction, this final step can be omitted due to Prop. 4.6, (ii), stating that the
contrast is blind to element-wise reparametrisations of the sources.

We remark that, while the possibility of using normalising flows to “learn” the Darmois construction
is mentioned in [35, 69], where a similar construction is mentioned in a theoretical argument to prove
“universal approximation capacity for densities” for normalising flow models with triangular Jacobian,
it has to the best of our knowledge not been tested empirically, since autoregressive modules with
triangular Jacobian are typically used in combination with permutation, shuffling or linear layers
which overall lead to architectures with a non-triangular Jacobian.

Expressive normalising flow with triangular Jacobian. To obtain an expressive normalizing
flow with triagular Jacobian, we modify the residual flow model [16].21 A residual flow is a residual
network which is made invertible through spectral normalization. Each layer is given by

z′ = z+ g(z), (33)

where z′, z ∈ Rn and g : Rn → Rn is a small neural network. Due to the chain rule, for the Jacobian
of the overall flow model to be triangular, a sufficient condition is that all the layers have triangular
Jacobian. Since the Jacobian of f(z) = z is the identity matrix, we can restrict our attention to the
neural network g. In our experiments, this is going to be a fully connected network. If it has l layers
and h ≥ n hidden units, it is given by

g(z) = b1 +W1ϕ(b2 +W2ϕ(b3 +W3 · · ·ϕ(bl +Wlz) · · · )), (34)

21We describe how to implement a function with upper triangular Jacobian, but the reasoning can be extended
to implement functions whose Jacobian is lower triangular.
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where ϕ : Rn → Rn is an element-wise nonlinearity, b1 ∈ Rn, b2, ...,bl ∈ Rh are the biases, and
W1 ∈ Rn×h, W2, ...,Wl−1 ∈ Rh×h, Wl ∈ Rh×n are the weight matrices. In order for the Jacobian
of g to be triangular, gn(z) should only depend on zn, gn−1(z) should only depend on zn and zn−1,
and so on. To achieve this, we make the weight matrices block triangular as indicated in (35), (36),
and (37).

W1 =



∗ ∗ ∗
...

...
...

∗ ∗ ∗
0 ∗ ∗
...

...
...

0 ∗ ∗
. . .

0 0 ∗
...

...
...

0 0 ∗



h1h2

hn

(35)

Wl =


∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗ ∗ · · · ∗

. . .

︸ ︷︷ ︸
h1

0 · · · 0 ︸ ︷︷ ︸
h2

0 · · · 0 ︸ ︷︷ ︸
hn

∗ · · · ∗

 (36)

Wi =



∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
...

. . .
...

∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 ∗ · · · ∗ ∗ · · · ∗
. . .

0 · · · 0 0 · · · 0 ∗ · · · ∗
...

. . .
...

...
. . .

...
...

. . .
...︸ ︷︷ ︸

h1

0 · · · 0 ︸ ︷︷ ︸
h2

0 · · · 0 ︸ ︷︷ ︸
hn

∗ · · · ∗



h1h2

hn

for i ∈ {2, ..., l − 1} (37)

Here, hi is the number of hidden units dedicated to transforming zi with the constraint
∑n

i=1 hi = h.
We perform an even split such that the hi and hj differ by at most 1 for i, j ∈ {1, ..., n}. The weight
matrices are restricted to be block triangular during optimization by setting the respective matrix
elements to zero after each iteration of the optimizer. The model can simply be made and kept
invertible using the same spectral normalization as is used for dense residual flows [16]. We train our
model to map onto a standard Normal base distribution.

E.3 Generating random MLP mixing functions

In order to generate random MLP mixing functions, we adopt the same initalisation as in [29]:
we initialise the square weight matrices to be orthogonal,22 and use the leaky_tanh invertible
nonlinearity.

22Note that orthogonality of the weight matrices in a MLP does not guarantee satisfying Principle 4.1, due
to the element-wise nonlinearities between the layers, which overall lead to a Jacobian whose columns are in
general not orthogonal.
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E.4 Maximum likelihood with low CIMA

The modified maximum likelihood objective described in § 5.2 can be written as follows:23

L(g;x) = log p(x)− λ · cIMA(g
−1, py)

=

n∑
i=1

log pyi
(gi(x)) + log |Jg(x)| − λ ·

(
n∑

i=1

log
∥∥[Jg−1(g(x))]i

∥∥− log
∣∣Jg−1(g(x))

∣∣)

=

n∑
i=1

log pyi
(gi(x)) + log |Jg(x)| − λ ·

(
n∑

i=1

log
∥∥[J−1

g (x)]i
∥∥+ log |Jg(x)|

)

=

n∑
i=1

log pyi
(gi(x)) + (1− λ) log |Jg(x)| − λ

∑
i

log
∥∥[J−1

g (x)]i
∥∥ , (38)

where [J−1
g (x)]i represents the i-th column of the inverse of the Jacobian of g computed at x.

We use the same model as the one described in Appendix E.2, but without the constraint that the
Jacobian should be triangular, and train with a Logistic base distribution.

Note that the computational efficiency of optimising objective (38) is cubic in the input size n, due
to a number of operations (matrix inversion, Jacobian and determinant computation via automatic
differentiation, etc.) which are O(n3). However, similarly to what already observed in [30], we found
that for data of moderate dimensionality computing and optimising objective (38) with automatic
differentiation is feasible. For example, training a residual flow with 64 layers for 105 iterations takes
roughly 5.3 hours for n = 2, 5.7 hours for n = 5, and 6.3 hours for n = 7 on the same hardware (see
section E.5). An interesting direction for future work would be to find computationally efficient ways
of optimising (38).

When computing the CIMA of the Darmois solutions of randomly generated functions, we restricted
ourselves to MÃ¶bius transformations, i.e. conformal maps. However, there are also nonconformal
maps satisfying CIMA = 0, e.g. the transformation of Cartesian to Polar coordinates, see Appendix D.
To test whether the CIMA of the Darmois solutions is actually bigger than 0, we gener

E.5 Evaluation

Mean correlation coefficient. To evaluate the performance of our method, we compute the mean
correlation coefficient (MCC) between the original sources and the corresponding latents, see for
example [49]. We first compute the matrix of correlation coefficients between all pairs of ground
truth and reconstructed sources. Then, we solve a linear sum assignment problem (e.g. using
the Hungarian algorithm) to match each reconstructed source to the ground truth one which has
the highest correlation with it. The MCC matrix contains the Spearman rank-order correlations
between the ground truth and reconstructed sources, a measure which is blind to nonlinear invertible
reparametrisations of the sources.

Nonlinear Amari metric. While the MCC metric evaluates BSS by comparing ground truth and
reconstructed sources, we propose an additional evaluation directly based on comparing the (Jacobians
of the) true mixing and the learned unmixing. We take inspiration from an evaluation metric used in
the context of linear ICA, the Amari distance [5]: Given a learned unmixing W and the true mixing
A, and defining the matrix R = AW, the Amari distance is defined as

dAmari(R) =

n∑
i=1

 n∑
j=1

[R]2ij
maxl[R]2il

− 1

+

n∑
i=1

 n∑
j=1

[R]2ji
maxl[R]2lj

− 1

 , (39)

and is greater than or equal to zero, canceling if and only if R is a scale and permutation matrix, that
is when the learned unmixing is matching the unresolvable ambiguities of linear ICA.

We extend this idea to the nonlinear setting: Given a true mixing f and a learned unmixing g, we
define our nonlinear Amari distance as

dn-Amari(g, f) = Ex∼px

[
dAmari (Jg(x)Jf (f

−1(x))
)]

. (40)

23while the objective in § 5.2 involves an expectation over px, we consider the loss for a single point x here,
L(g;x).
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Figure 8: BSS via CIMA-regularised MLE for n = 2 dimensions with λ ∈ {0.0, 0.5, 1.0}. The true
mixing function is a randomly generated Möbius transformation, nonlinear (with ϵ = 2) in (a)–(d)
and linear (with ϵ = 0) transformation for (e)–(h). For each type of transformation and λ, seeded
runs are done. (a), (e) KL-divergence between ground truth likelihood and learnt model; (b), (f) CIMA

of the learnt models; (c), (g) nonlinear Amari distance given true mixing and learnt unmixing; (d),
(h) MCC between true and reconstructed sources.
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Figure 9: BSS via CIMA-regularised MLE for n = 5 dimensions with λ ∈ {0.0, 0.5, 1.0}. The true
mixing function is a randomly generated Möbius transformation, nonlinear (with ϵ = 2) in (a)–(d)
and linear (with ϵ = 0) transformation for (e)–(h). For each type of transformation and λ, seeded
runs are done. (a), (e) KL-divergence between ground truth likelihood and learnt model; (b), (f) CIMA

of the learnt models; (c), (g) nonlinear Amari distance given true mixing and learnt unmixing; (d),
(h) MCC between true and reconstructed sources.

39



0.0 0.5 1.00

10

20

30

40

50

KL
D

(a)
0.0 0.5 1.00

1

2

3

4

c I
M

A

(b)
0.0 0.5 1.00.0

0.5

1.0

1.5

Am
ar

i d
ist

an
ce

(c)
0.0 0.5 1.00.5

0.6

0.7

0.8

0.9

1.0

M
CC

(d)

Figure 10: BSS via CIMA-regularised MLE for n = 7 dimensions with λ ∈ {0.0, 0.5, 1.0}. The true
mixing function is a randomly generated Möbius transformation (with ϵ = 2). For each λ, seeded
runs are done. (a) KL-divergence between ground truth likelihood and learnt model; (b) CIMA of
the learnt models; (c) nonlinear Amari distance given true mixing and learnt unmixing; (d) MCC
between true and reconstructed sources.

Ground truth Observations Darmois MPA /4 Darmois + MPA /4 MLE, = 0 CIMA, = 1

Figure 11: Visual comparison of different nonlinear ICA solutions for n = 2: (left to right) true sources; ob-
served mixtures; Darmois solution; true unmixing, composed with the measure preserving automorphism (MPA)
from (5) (with rotation by π/4); Darmois solution composed with the same MPA; maximum likelihood (λ = 0);
and CIMA-regularised approach (λ = 1).

Then, according to the definition of Amari distance (39), if the smooth function g ◦ f is a permuta-
tion composed with a scalar function, thus precisely matching the BSS equivalence class defined
in Defn. 2.2, this would result in its Jacobian (that is, the product of the Jacobians Jg(x)Jf (f

−1(x)))
equalling the product of a diagonal matrix and a permutation matrix at every point x: the quantity
dn-Amari(g, f) would therefore be equal to zero.

This metric can be of independent interest and potentially useful in contexts where the reconstructed
sources might be a noisy version of the true ones, but the true unmixing is nevertheless identifiable.
Our implementation is based on the one for the (linear) Amari distance provided in the code for [1].

CIMA of Darmois solutions for nonconformal maps satisfying the IMA principle. When com-
puting the CIMA of the Darmois solutions of randomly generated functions, we restricted ourselves
to Möbius transformations which are conformal maps. However, there are also nonconformal maps
satisfying CIMA = 0, e.g., the transformation from polar to Cartesian coordinates with n = 2,
see Appendix D. To test whether the CIMA of the Darmois solutions is actually bigger than 0, we
generate random radial transformations by imposing a random scale and shift before applying the
radial transformation, compute the Darmois solution as we have done in § 5.1, and calculate its CIMA

on the test set. We did 50 runs and the results are shown in Fig. 12.
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Figure 12: Histogram of the CIMA values of the Darmois solutions of 50 randomly generated radial
transformations.
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Similar to Fig. 4 (a) we can clearly see that all CIMA values of the final models are larger than 0, with
the smallest value being 0.01. This confirms the result we have already shown theoretically.

Additional plots for § 5.2. We show additional plots for the quantitative experiments involving
training with the objective described in (38), see Fig. 8, Fig. 9 and Fig. 10.

For ϵ = 0 (that is, ground truth mixing linear), there appears to be an almost perfect recovery of the
ground truth sources (resp. unmixing function) for λ ∈ {0.5, 1.0}, as can be seen by the high (resp.
low) values of the MCC (resp. nonlinear Amari distance) evaluations ; this is in stark contrast with
the distribution of the MCC (resp. nonlinear Amari distance) values for models trained with λ = 0,
which are typically much higher (resp. lower), indicating that the learned solutions do not achieve
blind source separation (see n = 2, Fig. 8 (g), (h); n = 5, Fig. 9 (g), (h)). All models achieve a
comparably good fit, reflected in the KL-divergence values (n = 2, Fig. 8 (e); n = 5, Fig. 9 (e)).

The trend is confirmed when the true mixing is nonlinear (ϵ = 2), with slightly lower (resp. higher)
values achieved with CIMA regularisation for the MCC (resp. nonlinear Amari) metrics; this possibly
due to the increased difficulty of fitting observations generated by a nonlinear mixing, as can be seen
from the higher values of the KL-divergence (n = 2, Fig. 8 (a); n = 5, Fig. 9 (a); n = 7, Fig. 10
(a));24 still, the beneficial effect of λ ∈ {0.5, 1.0} with respect to models trained with λ = 0 is clear,
and is apparently stronger for λ = 1.0 and with higher data dimensionality n (n = 2, Fig. 8 (c), (d);
n = 5, Fig. 9 (c), (d); n = 7, Fig. 10 (c), (d)).

We additionally plot the CIMA values for the all trained models, for all values of λ. It can be seen
that solutions found by unregularised maximum likelihood estimation typically learn functions with
relatively high values of CIMA, while as expected the regularised version achieves low values (n = 2,
Fig. 8 (b), (f); n = 5, Fig. 9 (b), (f); n = 7, Fig. 10 (b)).

Finally, in figure 11, we report the same plot as in 4, top row, but with a perceptually uniform
colormap.

Comparison to FastICA. We compared the performance of our proposed regularised maximum
likelihood procedure to a state of the art method for linear ICA, FastICA [36], in the implementation
from the Scikit-learn package [73], over 50 repetitions. Our experiments show that our regularised
method (λ = 0.5, and particularly λ = 1.0; λ = 0.0 provides the unregularised nonlinear baseline)
is superior in learning the true unmixing and reconstructing the sources. This indicates that the
linearity assumption of FastICA does not allow enough flexibility to solve blind source separation
in our setting, whereas our criterion does (see Fig. 13, Fig. 14 and Fig. 15).25 While the spread in
the distributions of MCC and Amari distance can be largely attributed to the brittleness of neural
networks, the median values for the MCC (resp. nonlinear Amari distance) are consistently higher
(resp. lower) for our regularised method than for FastICA. In contrast, the performance of FastICA is
consistently better than the unregularised baseline.
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Figure 13: Comparison between FastICA and our normalising flow method with λ ∈ {0.0, 0.5, 1.0},
n = 2. (a) MCC; (b) Amari distance.

24The distribution of the KL values contains outliers, and seemingly more strongly for lower values of λ.
25the experimental setting and the plots for the normalising flow models correspond to those already shown in

the paper, but here we modified the y-axis scale to facilitate the comparison of all methods
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Figure 14: Comparison between FastICA and our normalising flow method with λ ∈ {0.0, 0.5, 1.0},
n = 5. (a) MCC; (b) Amari distance.
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Figure 15: Comparison between FastICA and our normalising flow method with λ ∈ {0.0, 0.5, 1.0},
n = 7. (a) MCC; (b) Amari distance.

Details on resources used. All models were trained on compute instances with 16 Intel Xeon
E5-2698 CPUs and a Nvidia Geforce GTX980 GPU. The cluster we used has 204 thereof. Training
the models took between 4 and 16 hours depending mainly on the dimensionality n and number of
samples in the dataset, and on the number of iterations used for training. Overall, we trained around
2000 models, amounting to roughly 18000 GPU hours.
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F Additional background on conformal maps and Möbius transformations
Similarities. A similarity of a Euclidean space is a bijection f from the space onto itself that
multiplies all distances by the same positive real number r, so that for any two points x and y we
have

d(f(x), f(y)) = rd(x,y),

where d(x,y) is the Euclidean distance from x to y [94]. The scalar r is sometimes termed the ratio
of similarity, the stretching factor and the similarity coefficient. When r = 1 a similarity is called an
isometry (rigid transformation). Two sets are called similar if one is the image of the other under a
similarity.

As a map f : Rn → Rn, a similarity of ratio r takes the form

f(x) = rAx+ t,

where A is a orthogonal matrixn n× n and t ∈ Rn is a translation vector.

Note that such a similarity f has Jacobian Jf (x) = rA for any x.

Conformal maps. Conformal maps are angle preserving transformation, and in this sense, are a
generalization of similarities. In short, let U be an open subset of Rn, φ : U → Rn is a conformal
map if, for two arbitrary curves γ1(t) and γ2(t) on Rn, where these curves intersect each other with
angle θ in point p ∈ U , then φ ◦ γ1(t) and φ ◦ γ2(t) intersect each other with the same angle θ in the
point φ(p).

A characterisation of conformal maps directly related to orthogonal coordinate systems is the follow-
ing.
Proposition F.1 (See e.g. [95]). Let U be an open subset of Rn with a C1-function φ : U → Rn.
Then φ is conformal iff there exists a scalar function λ : U → R such that λ(x)−1Jφ(x) is an
orthogonal matrix for all x in U . We call λ the scale factor of φ.

While it can be shown that linear conformal maps are similarities, an interesting class of nonlinear
conformal maps are the unit radius sphere inversion (restriction to unit radius is only to avoid
unnecessary notational complexity):

Ib : Rn \ {0} → Rn \ {0}

x 7→ x− b

∥x− b∥2
+ b

We can notice that such transformation leaves the hypersphere of center b and radius 1 invariant,
while the points outside of the unit ball are mapped to the interior of the unit ball, and vice-versa.

Interestingly, conformal maps in Euclidean spaces of dimension superior or equal to 3 can be restricted
to two kinds according to the following result from Liouville.
Theorem F.2 (see e.g. [100]). Let f : U → Rn be a conformal map defined on a connected open
subset of Euclidean space Rn of dimension n ≥ 3. Then f = L|U can be written either as the
restriction of a similarity L to U , or as the composition f = I ◦ L|U of such a map with an inversion
with respect to a hypersphere of unit radius, centered at the origin.

The class of function described in Thm. F.2 corresponds exactly to the Möbius transformations
described in (32). These transformation can as well be defined in dimension 2, with the specificity
that they are only a subset of the class conformal maps in this dimension.

Properties of sphere inversion. We characterize the properties of the unit sphere centered at zero,
that we denote I

I : Rn \ {0} → Rn \ {0}

x 7→ x

∥x∥2

Now let us derive the Jacobian of I . A straightforward computation leads to

JI(x) =
1

∥x∥2

(
In − 2

xx⊤

∥x∥2

)
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where In denote the identity matrix.

By noticing that xx⊤

∥x∥2 is rank one symmetric with eigenvalue 1 associated with unit norm eigenvector
x

∥x∥ , we can diagonalize this matrix in any (space dependent) orthogonal basis that has x
∥x∥ as the

first basis vector.

Let us thus pick the unit vectors associated to the hyperspherical coordinates (which satisfy this
condition by definition), and consider the orthogonal matrix B( x

∥x∥ ) gathering these basis vectors as
its columns (it is parameterized by the unit vector x

∥x∥ , as this basis is radially invariant. Then we can
write

xx⊤

∥x∥2
= B

(
x

∥x∥

)
DB

(
x

∥x∥

)⊤

and thus

JI(x) =
1

∥x∥2

(
In − 2B

(
x

∥x∥

)
DB

(
x

∥x∥

)⊤
)

=
1

∥x∥2
B

(
x

∥x∥

)
(In − 2D)B

(
x

∥x∥

)⊤

with D a diagonal matrix with diagonal elements [1, 0, . . . , 0]. This leads to

JI(x) =
1

∥x∥2
B

(
x

∥x∥

)
DIB

(
x

∥x∥

)⊤

with DI = In − 2D a diagonal matrix with diagonal elements [−1, 1, . . . , 1]. The Jacobian thus
takes the form predicted by the above proposition for conformal maps

JI(x) = λ(x)O

(
x

∥x∥

)
with scale factor λ(x) = 1

∥x∥2 and O( x
∥x∥ ) = B

(
x

∥x∥

)
DIB

(
x

∥x∥

)⊤
a space dependent orthogonal

matrix, which has the additional property to be radially invariant for the specific case of sphere
inversions.

44


	Additional background on identifiability and linear ICA
	Identifiability in terms of equivalence relations
	Identifiability of linear ICA
	Whitening in the context of linear ICA

	Existing ICM criteria and their relationship to ICA and IMA 
	Trace method
	Information geometric interpretation of the ICM principle
	Decoupling of the influences in IMA and comparison with IGCI
	Independence of cause and mechanism and IMA
	Violations of independence of cause and mechanism
	Violations of the IMA principle


	Proofs
	Proof of
	Proof of
	Remark on a similar condition to IMA, expressed in terms of the rows of the Jacobian
	Proof of
	Proof of
	Proof of
	Proof of

	Worked out example
	Experiments
	Sampling random Möbius transformations.
	How to implement the Darmois construction
	Generating random MLP mixing functions
	Maximum likelihood with low 
	Evaluation

	Additional background on conformal maps and Möbius transformations

