
APPENDIX

Overview

• Appendix A contains further elaboration on the notion of identi�ability as used in the present work,
as well as connections to linear ICA.

• Appendix B contains additional discussion of existing ICM criteria and their relation to IMA.
• Appendix C presents the full proofs for all theoretical results from the main paper.
• Appendix D contains a worked out computation of the value ofCIMA for the mapping from radial

to Cartesian coordinates.
• Appendix E contains experimental details and additional results.
• Appendix F contains additional background on conformal maps and Möbius transformations

A Additional background on identi�ability and linear ICA

In this Appendix, we provide additional background on the notion of identi�ability and illustrate it
using the example of linear ICA.

A.1 Identi�ability in terms of equivalence relations

Traditionally, identi�ability for a class of modelsp� for observed datax parametrised by� 2 � is
expressed as the condition that there needs to be a one-to-one mapping between the space of models
and the space of parameters, i.e., the model classp� is said to be identi�able if

8�; � 0 2 � : p� (x) = p� 0(x)8x =) � = � 0: (10)

However, the equality on the RHS of(10) is a very strong condition which makes this type of
(strong or unique) identi�ability impractical for many settings. For example, in the case of (linear
or nonlinear) ICA, the ordering of the sources cannot be determined, so strong identi�ability in the
sense of (10) is infeasible.

The equality in parameter space on the RHS of the implication in(10) is therefore sometimes replaced
by an equivalence relation� [49], as is also the case for our Defn. 2.1. An equivalence relation�
on a setA is a binary relation between pairs of elements ofA which satis�es the following three
properties:

1. Re�exivity: a � a, 8a 2 A.
2. Symmetry:a � b =) b � a, 8a; b2 A.
3. Transitivity: (a � b) ^ (b � c) =) a � c.

An equivalence relation on a setA imposes a partition into disjoint subsets. Each such subset
corresponds to an equivalence class, i.e., the collection of all elements which are� -related to each
other; for example,[a] = f b 2 A : a � bg denotes the equivalence class containing the elementa.

A trivial example of an equivalence relation is equality (= ). More useful examples in the context of
ICA are equivalence up to permutation, rescaling, or scalar transformation.

De�ning an appropriate equivalence class for the problem at hand therefore allows us to specify exactly
the type of indeterminancies which cannot be resolved and up to which the true generative process can
be recovered. As argued in § 2, for nonlinear ICA, the desired notion of identi�ability—in the sense of
the strongest feasible type of identi�able that is possible without further (parametric) assumptions—is
captured by� BSS from Defn. 2.2. We give another example for linear ICA in Appendix A.2.

Since the generative process of nonlinear ICA(1) is determined by the choice of mixing function
and source distribution, the space� from (10), in this case, corresponds to the product space of the
space of mixing functionsF and source distributionsP. Moreover, the pushforward densityf � ps
in Defn. 2.1 corresponds to the density of the observed mixturespx , or p� (x) in (10).

We deliberately choose to de�ne identi�ability and to express the observed distribution in terms of
the source distribution and the mixing function—as opposed to in terms of the observed distribution
and the unmixing function as in some prior work [37, 38, 41]—because this is aligned with the causal
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direction of data generation, and thus more consistent with the causal perspective at nonlinear BSS
taken in the present work. We also believe that, in this framework, separate constraints on the space
of mixing functionsF and source distributionsP are expressed more naturally.

Next, we illustrate the above ideas for the well-studied case of linear ICA.

A.2 Identi�ability of linear ICA

Linear ICA corresponds to the setting in which a linear mixing is applied to independent sources, i.e.,

x = As ; (11)

whereA 2 Rn � n is an invertible mixing matrix. The source variabless can be assumed to have
zero mean without affecting estimation of the mixing matrix, and the ordering and variances of the
independent components cannot be determined, so it is customary to assumeE[s2

i ] = 1 [40].

Additionally, we can assume w.l.o.g. that the mixing matrix is orthogonal (AA > = I ), because
we can alwayswhitenx �rst through an invertible linear transformation and obtain an orthogonal
mixing [40], as explained in more detail in Appendix A.3.

Now suppose that the reconstructed sources

y = Bx = BAs (12)

have independent components for some orthogonal unmixing matrixB 2 Rn � n . ThenC = BA is
also orthogonal and the following type of identi�ability holds [17, 21, 93].
Theorem A.1 (Identi�ability of linear ICA; based on Thm. 11 of [17]). Let s be a vector ofn
independent components, of which at most one is Gaussian and whose densities are not reduced to
a point mass. LetC 2 Rn � n be an orthogonal matrix. Theny = Cs has (mutually) independent
components iff.C = DP , with D a diagonal matrix andP a permutation matrix.

Thm. A.1 shows that the two ambiguities deemed unresolvable (scale and ordering of the sources)
are, in fact, the only ambiguities, as long as at most one of thesi is Gaussian. That is, linear ICA is
identi�able up to rescaling and permutation of the sources, i.e., linearly transforming the observations
x into independent components is equivalent to separating the sources.

More formally, in terms of an equivalence relation, if we takeF 0 from (2) as the space of invertible
n � n matrices andP0 as the space of source distributions with at most one Gaussian marginal, then
linear ICA is� LIN -identi�able onF 0 � P 0 where the equivalence relation� LIN onF 0 is de�ned as

B � LIN B 0 () 9 D ; P s.t. B = DPB 0:

Beyond non-Gaussianity. Two other deviations from a Gaussian i.i.d. setting lead to identi�ability:
nonstationarity [79] and time correlation [80]. A general information-geometric framework links
these three different routes to identi�ability [15].

A.3 Whitening in the context of linear ICA

For completeness, we give a brief account of the role ofwhitening in linear ICA, which was mentioned
in A.2 and which again plays a role in B.1. The following exposition is partly based on [40], §7.4.2.

A zero-mean random vector, sayy , is said to bewhiteif its components are uncorrelated and their
variances equal unity. In other words, the covariance matrix ofy is equal to the identity matrix:

E
�
yy > �

= I :

It is always possible to whiten a zero-mean random vectorx through a linear operation,

z = Vx : (13)

As an example, a popular method for whitening uses the eigenvalue decomposition (EVD) of the
covariance matrix,

E
�
xx > �

= EDE >

whereE is the orthogonal matrix of eigenvectors ofE
�
xx >

�
andD is the diagonal matrix of its

eigenvalues,D = diag ( � 1; : : : ; � n ). Note that the covariance matrix is a symmetric matrix, therefore
it is diagonalisable. Whitening can then be performed by substituting in (13) the matrix

V = ED � 1=2E> : (14)
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so that
E[zz> ] = ED � 1=2E> EDE > ED � 1=2E> = I

Whitening is only half ICA. Assume a linear ICA model,

x = As : (15)

and suppose that the observed data is whitened, for example, by the matrixV given in(14). Whitening
transforms the mixing matrix into a new one,~A = VA . We have from (15) and (14)

z = VAs = ~As

Note that whitening does not solve linear ICA, sinceuncorrelatedness is weaker than independence.
To see this, consider any orthogonal transformationU of z:

y = Uz :

Due to the orthogonality ofU ; we have

E
�
yy > �

= E
�
Uzz > U > �

= U E
�
zz> �

U T = UIU > = I ;

so,y is white as well. Thus, we cannot tell if the independent components are given byz or y using
the whiteness property alone. Sincey could be any orthogonal transformation ofz; whitening gives
the independent components only up to an orthogonal transformation.

On the other hand, whitening is useful as a pre-processing step in ICA: its utility resides in the fact
that the new mixing matrix~A = VA is orthogonal. This can be seen from

E
�
zz> �

= ~A E
�
ss> � ~A > = ~A ~A > = I :

We can thus restrict the search for the (un)mixing matrix to the space of orthogonal matrices. Instead
of having to estimaten2 parameters (the elements of the original matrixA ), we only need to
estimate an orthogonal mixing matrix~A which containsn(n � 1)=2 degrees of freedom; e.g., in two
dimensions, an orthogonal transformation is determined by a single angle parameter. For largern, an
orthogonal matrix contains only about half of the number of parameters of an arbitrary matrix.

Whitening thus “solves half of the problem of ICA”. Because whitening is a very simple and standard
procedure—much simpler than any ICA algorithm—it is a good idea to reduce the complexity of the
problem this way. The remaining half of the parameters has to be estimated by some other method.
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B Existing ICM criteria and their relationship to ICA and IMA

We now provide additional discussion of the ICM principle and its connection to ICA and IMA. First,
we introduce a linear ICM criterion and discuss its relation with linear ICA in Appendix B.1.

B.1 Trace method

As mentioned in § 2.2, besides IGCI, another existing ICM criterion that is closely related to ICA due
to also assuming a deterministic relation between causec and effecte is thetrace method[45, 110].
The trace method assumes a linear relationship,

e = Ac ; (16)

and formulates ICM as an “independence” between the covariance matrix� of c and the mecha-
nismA (which, as for IGCI, we can again think of as a degenerate conditionalpejc ) via the condition

� (A�A > ) = � (� )� (AA > ) (17)

where� (�) denotes the renormalized trace. Intuitively, this condition(17) rules out a �ne-tuning ofA
to the eigenvectors of� which would violate the assumption of no shared information between the
cause distribution (speci�cally, its covariance structure) and the mechanism.

As with IGCI and nonlinear ICA, it can be seen by comparing(16) and(11) thatthe trace method
assumes the same generative model as linear ICA(where the causec corresponds to the independent
sourcess and the effect to the observed mixturesx). While the focus of the present work is on
nonlinear ICA, we brie�y discuss the usefulness of the trace method as a constraint for achieving
identi�ability in a linear ICA setting.

As is clear from(17), the trace condition is trivially satis�ed if the covariance matrix of the sources
(causes) is the identity,� = I . However, as explained in Appendix A.3, in the context of linear ICA
this can easily be achieved by whitening the data. As with IGCI, the trace method was developed
for cause-effect inference where both variables are observed, and thus relies on the observed cause
distribution being informative. This renders is unsuitable (on its own) to constrain the unsupervised
representation learning problem of linear ICA problem where the sources are unobserved.

Note, however, that this is qualitatively different from the IGCI argument presented in § 3, as
whitening on its own does not necessarily lead to independent variables, but only uncorrelated ones,
and thus does not solve linear ICA—unlike the Darmois construction in the case of nonlinear ICA
which also yields independent components.

B.2 Information geometric interpretation of the ICM principle

There is a well-established connection between IGCI and the trace method [46]. At the heart of
this derivation lies an information-geometric interpretation of the ICM principle for probability
distributions, which we sketch in this section. First, we need to review some basic concepts.

Background on information geometry. Information geometry [3, 4] is a discipline in which ideas
from differential geometry are applied to probability theory. Probability distributions correspond
to points on a Riemannian manifold, known asstatistical manifold. Equipped with the Kullback-
Leibler (KL) divergence, also called the relative entropy distance, as a premetric,17 one can study
the geometrical properties of the statistical manifold. For two probability distributionsP andQ,
we denote their KL divergence byDKL (PkQ), which is de�ned forP absolutely continuous with
respect toQ as:

DKL (PkQ) =
Z

dP log
dP
dQ

:

An interesting property of the KL divergence is its invariance to reparametrisation. Consider an
invertible transformationh, mapping random variablesX andY to h(X ) andh(Y ), respectively (the
domains and codomains being arbitrary spaces, e.g., discrete or Euclidean of arbitrary dimension).
Then the KL divergence betweenPX andPY is preserved by the pushforward operation implemented
by h, such that

DKL (Ph(X ) kPh(Y ) ) = DKL (PX kPY ) : (18)

17A premetric on a setX is a functiond : X � X ! R+ [ f 0g such that (i)d(x; y ) � 0 for all x andy in X
and (ii) d(x; x ) = 0 for all x 2 X .
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Figure 6:Interpretation of the ICM principle as an orthogonality principle in information space. The
irregularity of the effect distribution, as measured byD KL (PY kUY ), can be decomposed into the irregularities
of the cause, as measured byD KL (PX kUX ), and the irregularity of the mechanismf , as measured by
D KL ( ~PY kUY ). Here,UX andUY denote the orthogonal projections ofPX andPY onto the manifoldE of
regular distributions, and~PY denotes the pushforward of the regular distributionUX via f . Note that the KL
divergence is invariant to reparametrisation by invertible functions.

Interpretation of ICM as orthogonality condition in information space. Consider a deterministic
causal relationship of the formY := f (X ), and denote byPX andPY the marginal distributions of
the causeX and the effectY , respectively. The “irregularity” of each distribution can be quanti�ed
by evaluating their divergence to a reference setE of “regular” distributions,18

DKL (PX kE) = inf
U 2E

DKL (PX kU); DKL (PY kE) = inf
U 2E

DKL (PY kU):

Let us assume that these in�ma are reached at a unique point, their projections ontoE:

UX = arg min
U 2E

DKL (PX kU); UY = arg min
U 2E

DKL (PY kU):

As elaborated in [46, §4], the choice ofE is context-dependent. For example, in the context of the
trace method [45], X andY are assumed to ben-dimensional multivariate Gaussian random vectors,
andE is taken as the set of multivariateisotropicGaussian distributions. In contrast, when IGCI is
applied in contexts where the considered mechanism is a deterministic non-linear diffeomorphism,
the reference distributions are typically uniform distributions [18, 47].

Overall, it can be shown that the independence postulate underlying these approaches leads to the
following decomposition of the irregularity ofPY (see [46, Thm. 2]):

DKL (PY kUY ) = DKL (PY k ~PY ) + DKL ( ~PY kUY )

where~PY denotes the distribution off (UX ), i.e., the hypothetical distribution of the effect that would
be obtained if the causeX were replaced by the random variableUX (which corresponds to the
closest regularly distributed random variable toX ).

Since applying the bijectionf � 1 preserves the KL divergences, see(18), we can obtain the equivalent
relation

DKL (PY kUY ) = DKL (PX kUX ) + DKL ( ~PY kUY ) : (19)

This relation can be interpreted as anorthogonality principlein information space by considering the
KL divergences as a generalization of the squared Euclidean norm for the difference vectors

����!
PY UY ,

����!
PY ~PY and

����!
~PY UY . It can thus be viewed as a Pythagorean theorem in the space of distributions,

see Fig. 6 for an illustration.

The orthogonality principle(19) thus captures a decomposition of the irregularityDKL (PY kUY ) of
PY on the LHS into the sum of two irregularities on the RHS: the irregularityDKL (PX kUX ) of PX ,

18Here “regular” is only meant in an intuitive sense, not implying any further mathematical notion. IfE is the
set of Gaussians, for instance, the distance fromE measures non-Gaussianity.
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and the termDKL ( ~PY kUY ) which measures the irregularity of the mechanismf indirectly, via the
“irregularity” of the distribution resulting from applyingf to a regular distributionUY .

Overall, the decomposition(19) links the postulate of independence between the cause distribution,
on the one hand, and the mechanism, on the other hand, to anorthogonality of their irregularities in
information space(namely the statistical manifold of information geometry). As proposed in [46],
this can be intuitively interpreted as a geometric form of independence if we assume that Nature
chooses such irregularities independently of each other, and “isotropically” in a high-dimensional
subspace of irregularities.

While, to date, we are not aware of similar results in the context of information geometry (i.e., on
the statistical manifold), this intuition is supported by concentration of measure results in Euclidean
spaces. Indeed, in high-dimensions, it is likely that two vectors are close to orthogonal if they are
chosen independently according to a uniform prior [25].

We will take inspiration of the decomposition (19) to justify IMA in the following section.

B.3 Decoupling of the in�uences in IMA and comparison with IGCI

In contrast to Appendix B.2, in this section we will, for notational consistency with the main paper,
assume that all distributions have a density with respect to the Lebesgue measure, and thus consider,
with a slight abuse of notation, that the KL divergence is a distance between two densities on the
relevant support, such that

DKL (pkq) =
Z

p(x) log
p(x)
q(x)

dx :

Overview. In line with the information-geometric interpretation of IGCI presented in Appendix B.2,
we also consider an interpretation of IMA in information space. We consider the KL-divergence
between the observed densitypx of x = f (s) and aninterventionaldistributionpbx of bx = bf (s),
resulting from a soft intervention that replaces the mixing functionf with another mixingbf . We
takeDKL (px kpbx ) as a measure of the causal effect of the soft intervention (or perturbation) that
turnsf into bf —similarly to howDKL (PY kUY ) is used as a measure of the irregularity of the effect
distribution in the context of IGCI (Appendix B.2).

As we will show, under suitable assumptions, the functional form imposed onf by the IMA Princi-
ple 4.1 can lead to a decomposition of thecausal effectof an intervention on the mechanism into a
sum of terms, corresponding to the causal effects of separate soft interventions on the mechanisms
associated to each source. In contrast, IGCI decomposesirregularitiesof the effect distribution into
two terms, one irregularity of the cause and one irregularity of the mechanism.

Soft-interventions on the individual mechanisms. Assumef satis�es the IMA principle. We
consider interventions performed through the element-wise transformation� such that

� : s 7!

2

6
6
6
6
6
4

� 1(s1)
...

� j (sj )
...

� n (sn )

3

7
7
7
7
7
5

:

This can be seen as a composition ofn soft interventionsf � j g on each individual source componentj ,
implemented through univariate smooth diffeomorphisms� j , such that

� j : s 7!

2

6
6
6
6
6
4

s1
...

� j (sj )
...

sn

3

7
7
7
7
7
5

;

and� = � n � � � � � � 1 (in arbitrary order, since the individual� j commute). This soft intervention
can be seen as turning the random variables into bs, yielding the intervened observationsbx = f (bs).
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Alternatively, the intervention onx can be implemented by replacingf by bf = f � � —i.e., bx = bf (s).
Notably, sincef satis�es the IMA principle, so doesbf (due to Prop. 4.6,(ii) , since� is an element-wise
nonlinearity). Moreover, the partial derivatives of the intervened function are given by

@bf
@si

(s) =
@f
@si

(� (s))

�
�
�
�
d� i

dsi

�
�
�
� (si ) :

The classical change of variable formula for bijectionf yields the expression of the pushforward
density ofx as

px (x) = jJf (f � 1(x)) j � 1ps(f � 1(x)) ;
and forbx we get

pbx (bx) = jJbf (bf � 1(bx)) j � 1ps(bf � 1(bx)) ;

Information geometric interpretation of IMA. Let us now compute the KL divergence between
the intervened and observed distribution,

DKL (px kpbx ) =
Z

px (x) log
px (x)
pbx (x)

dx : (20)

Expressing the density of the observed variables as a pushforward of the density of the sources, and
without additional assumptions onf andbf besides smoothness and invertibility, we get,

DKL (px kpbx ) =

Z
�
�J f (f � 1(x))

�
� � 1

ps(f � 1(x)) log

�
�J f (f � 1(x))

�
� � 1

ps(f � 1(x))
�
�
�Jbf (bf � 1(x))

�
�
�
� 1

ps(bf � 1(x))
dx :

We now consider a factorization ofs over a directed acyclic graph (DAG), such that

ps(s) =
Y

j

pj (sj jpa(sj )) ;

wherepa(sj ) denotes the components associated to the parents of nodej in the DAG. Because� is
an element-wise transformation the factorization will be the same forpbs.

If we now additionally assume thatf andbf satisfy the IMA postulate, we get

DKL (px kpbx ) =

Z
�
�J f (f � 1(x))

�
� � 1

ps(f � 1(x))
nX

i =1

log



 @f

@si
(f � 1(x))





� 1
pi (f � 1(x) i jpa(f � 1(x) i ))



 @bf

@si
(bf � 1(x))





� 1
pi (bf � 1(x) i jpa(bf � 1(x) i ))

dx :

By reparameterizing the integral in terms of the source coordinates, we get (usingbf � 1 = � � 1 � f � 1)

DKL (px kpbx ) =
nX

i =1

Z
ps(s) log



 @f

@si
(s)





� 1
pi (si jpa(si ))



 @bf

@si
(� � 1(s))





� 1
pi (� � 1(s) i jpa(� � 1(s) i ))

ds : (21)

such that theKL divergence can be written as a sum ofn terms, each associated to the intervention
on a mechanism@f

@si
. Positivity of these terms would suggest that we can interpret each of them as

quantifying the individual contribution of a soft intervention� j applied to the original sources.

In the following, we propose a justi�cation for the positivity of these termsin a restricted setting
where only them leaf nodes of the graph are intervened on (with1 � m � n).19 In the special case
of independent sources, all nodes are leaves andm = n.

Under this assumption, we consider (without loss of generality) an ordering of the nodes such that
them �rst nodes are the leaf nodes in the DAG. Then we argue that the terms of the right-hand
side of(21)associated to leaf nodes (i � m) are positive, as they correspond to the expectations of
KL-divergences. Indeed, taking one of the �rstm terms, denotedi , we have the factorization

ps(s) = pi (si jpa(si ))
Y

j 6= i

pj (sj jpa(sj )) ;

19A leaf node in a DAG is one that does not have any descendants.
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Figure 7: Illustration of the mapping between lines in source space to a curve in observation space.
L s� i is the line obtained by varyingsi while keeping the value of all other sources �xed tos� i .
L � � 1 (s� i ) is then de�ned by applying the transformations in[� � 1]� i to L s� i . Both lines are mapped
to the same image linef [L s� i ].

where
Q

j 6= i pj (sj jpa(sj )) does not depend onsi because nodei is a leaf node. Moreover, as non-leaf
nodes are not intervened on, the transformation� does not modify the value of any parent variables
in these factorizations. As a consequence, the integral can be computed as an iterated integral with
respect tosi ands� i , wheres� i denotes the vector including all source variables butsi , such that

Z
ps(s) log



 @f

@si
(s)





� 1
pi (si jpa(si ))



 @bf

@si
(� � 1(s))





� 1
pi (� � 1(s) i jpa(� � 1(s) i ))

ds

= Es� i �
Q

j 6= i pj (sj j pa( sj ))

2

6
4

Z
p(si jpa(si )) log



 @f

@si
(si ; s� i )





� 1
pi (si jpa(si ))



 @bf

@si

�
� � 1

i (si ); � � 1(s) � i
� 



� 1
pi (� � 1

i (si )jpa(si ))
dsi

3

7
5 :

As illustrated in Fig. 7, for a �xeds� i , consider the straight lineL s� i = f (si ; s� i ) : si 2 Rg in
source space (parallel to thesi coordinate axis). This line is mapped in observation space to the
smooth curvef [L s� i ], by f in a smooth invertible way. Similarly,bf = f � � mapsL � � 1 (s� i ) to the

same image curve, sincebf [L � � 1 (s� i ) ] = f � � [L � � 1 (s� i ) ] = f [L s� i ].

By using the change of variable formula to represent the integral onf [L s� i ] indexed by the curvilinear
coordinatè , we get the expression of the pushfoward distributionf � pi ( : jpa(si )) on the curvef [L s� i ]

h
f � pi ( : jpa(si ))

i
(`) =






@f
@si

�
f � 1(`); s� i

�





� 1

pi
�
f � 1(`)jpa(si )

�
:

where, to simplify notation,f � 1(`) denotes in this context the coordinatesi onL s� i in bijection with
the curvilinear coordinatèon f [L s� i ].

Similarly, we get the expression of the pushfoward distributionbf � pi ( : j� � 1(pa(si ))) from L � � 1 (s� i )

to the curvef [L s� i ] (using again the fact that parent variables are not intervened on, and thus left
unchanged by� )

h
bf � pi ( : j� � 1(pa(si )))

i
(`) =







@bf
@si

�
bf � 1(`); � � 1(s) � i

�






� 1

pi

�
bf � 1(`)jpa(si )

�
:
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These terms appear when rewriting thei -th term (for a leaf variable) in(21)as a curvilinear integral:

Z
ps(s) log



 @f

@si
(s)





� 1
pi (si jpa(si ))



 @bf

@si
(� � 1(s))





� 1
pi (� � 1(s) i jpa(� � 1(s) i ))

ds

= Es� i �
Q

j 6= i pj (sj j pa( sj ))

" Z 




@f
@si

(f � 1(`); s� i )






� 1

pi (f � 1(`) j pa(si ))

log



 @f

@si
(f � 1(`); s� i )





� 1
pi

�
f � 1(`) j pa(si )

�



 @bf

@si
(bf � 1(`); � � 1(s) � i )





� 1
pi

�
bf � 1(`) j pa(si )

� d`

3

7
5 :

The inner integral term can thus be interpreted as the KL divergence between two pushforward
measures de�ned onf � [L s� i ] by f andbf , that we can denote by

DKL

�
f � pi ( : jpa(si )) kbf � p

�
: j� � 1(pa(si ))

� �
:

To conclude, this implies that the causal effect of the soft interventionf ! bf can be decomposed
as the following sum ofm positive terms associated to interventions on each leaf variable, plus an
additional term for the remaining non-leaf variables, which further simpli�es (in comparison to(21))
due to the assumption that those variables are unintervened.

DKL (px k pbx ) =
mX

i =1

Es� i �
Q

j 6= i pj (sj j pa( sj ))

h
DKL

�
f � p( : jpa(si ) kbf � p

�
: j� � 1(pa(si ))

� �i

+
X

i>m

Z
ps(s) log



 @f

@si
(s)





� 1



 @bf

@si
(� � 1(s))





� 1 ds: (22)

This expression suggests that the KL-divergences appearing in the �rstm terms each re�ect the causal
effect of an intervention on the mechanism at the level of one single source coordinatei , turning
@f
@si

into @bf
@si

. When the sources are jointly independent, we havem = n and the right hand side of
(22)contains only positive terms. An interesting direction for future work would be to analyse the
remaining term in the case of non unconditionally independent sources.

In contrast to the decomposition(19) in the context of IGCI, the IMA decomposition(22) involvesm
(expectations of) KL-divergence terms instead of two, each related to the intervention on the part of
the mechanism@f

@si
that re�ects the in�uence of a single source.

B.4 Independence of cause and mechanism and IMA

We now discuss an example in which a formalisation of the principle of independence of cause and
mechanism [45] is violated, and one in which the IMA principle is violated.

B.4.1 Violations of independence of cause and mechanism

In the context of the Trace method [45], used in causal discovery, a technical example of �ne-
tuning can be constructed by taking a vector of i.i.d. random variables with arbitrary (not diagonal)
covariance matrix� as the cause, and by constructing the mechanism as a whitening matrix, turning
the cause variables into uncorrelated (effect) variables. By doing so, the singular values and singular
vectors of the matrix (the mechanism) are �ne-tuned to the input covariance matrix (a property of the
cause distribution), and such �ne-tuning can be quanti�ed via the Trace method (see [45], Section 1).

B.4.2 Violations of the IMA principle

Technical example. As mentioned in § 3, an example of a mixing functionf which is non-
generic according to the IMA principle is an autoregressive function, for example an autoregressive
normalising �ow [69], where thek-th component of the observations only depends on thek-th
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sources: intuitively, this would correspond to the unlikely cocktail-party setting where thek-th
microphone only picks up the voices of the �rst speakers. More precisely, as we show in Lemma C.1,
this leads to positiveCIMA value for such mixing.

Pictorial example: Violations of the IMA principle in a cocktail party. A cocktail party (Fig. 1,
left) may violate our IMA principle when the locations of several speakers and the room acoustics
have been �ne tuned to one another. This is for example the case in concert halls where the acoustics
of the room have been �ne-tuned to the position and con�guration of multiple locations on the stage,
where the sources (i.e., the voices of the actors or singers) are emitted—in order to make the listening
experience as homogeneous as possible across the spectators (that is, the in�uence of each of the
sources on the different listeners should not differ too much). This would lead to an increase in
collinearity between the columns of the mixing's Jacobian, thus violating the IMA principle.

Additionally, we recall that the ICM principle is often informally introduced by referencing the
�ne-tuning and non-generic viewpoints giving rise to certain visual illusions, such as the Beuchet
chair (see [78], Section 2); in a similar vein, we can imagine that violations of the IMA principle
in the cocktail party setting may be related to illusions in binaural hearing such as for example the
Franssen effect, where the listener is tricked into incorrectly localizing a sound [89].
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C Proofs

We now provide the proofs of all our theoretical results from the main paper.

C.1 Proof of Prop. 4.4

Before giving the proof, it is useful to rewrite the local IMA constrast (8) as follows:

cIMA (f ; s) =
nX

i =1

log






@f
@si

(s)




 � log jJ f (s)j

=
1
2

�
log

�
�diag

�
J>

f (s)J f (s)
� �
� � log

�
�J>

f (s)J f (s)
�
� �

=
1
2

D left
KL

�
J>

f (s)J f (s)
�

; (23)

where the quantity in(23) is called the left KL measure of diagonality of the matrixJ>
f (s)J f (s) [2]

(see Remark 4.3):

D left
KL (A ) = � log j(diag(A )) � 1

2 A (diag(A )) � 1
2 j

= log jdiag(A )j � log jA j :

From (23), it can be seen thatcIMA (f ; s) is a function ofJ f (s) only throughJ>
f (s)J f (s).

Proposition 4.4(Properties ofcIMA (f ; s)). The local IMA contrastcIMA (f ; s) de�ned in(8) satis�es:

(i) cIMA (f ; s) � 0, with equality if and only if all columns@f=@si (s) of J f (s) are orthogonal.

(ii) cIMA (f ; s) is invariant to left multiplication ofJ f (s) by an orthogonal matrix and to right
multiplication by permutation and diagonal matrices.

Proof. For ease of exposition, we denote the value of the Jacobian off evaluated at the points by
J f (s) = W . The two properties can then be proved as follows:

(i) This is a consequence of Hadamard's inequality, applied to the expression on the RHS of(8),
which states that, for a matrixW with columnsw i ,

P n
i =1 logkw i k � log jW j; equality in

Hadamard's inequality is achieved iff. the vectorsw i are orthogonal.

(ii) We split the proof in three parts.

a. Invariance to left multiplication by an orthogonal matrix:
Let ~W = OW , with O an orthogonal matrix, i.e.,OO > = I . Then the property follows
from writing cIMA (f ; s) as in (23):

1
2

D left
KL ( ~W

> ~W ) =
1
2

D left
KL (W > O> OW ) =

1
2

D left
KL (W > IW ) =

1
2

D left
KL (W > W )

b. Invariance to right multiplication by a permutation matrix:
Let ~W = WP , with P a permutation matrix. Then~W is justW with permuted columns.
Clearly, the sum of the log-column-norms does not change by changing the order of the
summands. Further,log j ~W j = log jW j + log jP j = log jW j, because the absolute value
of the determinant of a permutation matrix is one.

c. Invariance to right multiplication by a diagonal matrix:
Let ~W = WD , with D a diagonal matrix. Consider the two terms on the RHS of(8). For
the �rst term, we know that the columns of~W are scaled versions of the columns ofW , that
is ~w i = di w i , wheredi denotes thei th diagonal element ofD . Thenk ~w i k = jdi j kw i k.
For the second term, we use the decomposition of the determinant:

log j ~W j = log jW j + log jD j = log jW j +
nX

i =1

log jdi j:
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Taken together, we obtain
nX

i =1

logk ~w i k � log j ~W j =
nX

i =1

log (jdi j kw i k) �

 

log jW j +
nX

i =1

log jdi j

!

=
nX

i =1

logkw i k +
nX

i =1

log jdi j � log jW j �
nX

i =1

log jdi j

=
nX

i =1

logkw i k � log jW j

C.2 Proof of Prop. 4.6

Proposition 4.6(Properties ofCIMA (f ; ps)). The global IMA contrastCIMA (f ; ps) from (9) satis�es:

(i) CIMA (f ; ps) � 0, with equality iff. J f (s) = O(s)D (s) almost surely w.r.t.ps, where
O(s); D (s) 2 Rn � n are orthogonal and diagonal matrices, respectively;

(ii) CIMA (f ; ps) = CIMA (~f ; p~s) for any~f = f � h � 1 � P � 1 and~s = Ph (s), whereP 2 Rn � n is a
permutation andh(s) = ( h1(s1); :::; hn (sn )) an invertible element-wise function.

Proof. The properties can be proved as follows:

(i) From property(i) of Prop. 4.4, we know thatcIMA (f ; s) � 0. Hence,CIMA (f ; p(s)) � 0 follows
as a direct consequence of integrating the non-negative quantitycIMA (f ; s).

Equality is attained iff.cIMA (f ; s) = 0 almost surely w.r.t.ps, which according to property(i)
of Prop. 4.4 occurs iff. the columns ofJ f (s) are orthogonal almost surely w.r.t.ps.

It remains to show that this is the case iff.J f (s) can be written asO(s)D (s), with O(s) and
D (s) orthogonal and diagonal matrices, respectively. (To avoid confusion, note thatorthogonal
columnsneed not have unit norm, whereas anorthogonal matrixO satis�esOO > = I .)

Theif is clear since right multiplication by a diagonal matrix merely re-scales the columns,
and hence does not affect their orthogonality.

For theonly if, let J f (s) be any matrix with orthogonal columnsj i (s), j i (s)> j j (s) = 0 ; 8i 6= j ,
and denote the column norms bydi (s) = jj j i (s)jj . Further denote the normalised columns of
J f (s) by oi (s) = j i (s)=di (s) and letO(s) andD (s) be the orthogonal and diagonal matrices
with columnsoi (s) and diagonal elementsdi (s), respectively. ThenJ f (s) = O(s)D (s).

(ii) Let ~f = f � h � 1 � P � 1 and~s = Ph (s), whereP 2 Rn � n is a permutation matrix and
h(s) = ( h1(s1); :::; hn (sn )) is an invertible element-wise function. Then

CIMA (~f ; p~s) =
Z

cIMA (~f ; ~s)p~s(~s)d~s =
Z

cIMA (~f ; ~s)ps(s)ds (24)

where, for the second equality, we have used the fact that

p~s(~s)d~s = ps(s)ds :

sinceP � h is an invertible tranformation (see, e.g., [83]). It thus suf�ces to show that

cIMA (~f ; ~s) = cIMA (f ; s): (25)

at any point~s = Ph (s). To show this, we write

J~f (~s) = J f � h � 1 � P � 1 (Ph (s))

= J f � h � 1

�
P � 1Ph (s)

�
JP � 1 (Ph (s))

= J f � h � 1 (h(s)) JP � 1 (Ph (s))

= J f (h � 1 � h(s)) Jh � 1 (h(s)) JP � 1 (Ph (s))

= J f (s) D (s)P � 1 (26)
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where we have repeatedly used the chain rule for Jacobians, as well as thatP � 1P = I ; that
permutation is a linear operation, soJP (s) = P for anys; and thath (and thush � 1) is an
element-wise transformation, so the JacobianJh � 1 is a diagonal matrixD (s).

The equality in(25) then follows from(26) by applying property(ii) of Prop. 4.4, according to
whichcIMA is invariant to right multiplication of the JacobianJ f (s) by diagonal and permutation
matrices.

Substituting (25) into the RHS of (24), we �nally obtain

CIMA (~f ; p~s) = CIMA (f ; ps):

C.3 Remark on a similar condition to IMA, expressed in terms of the rows of the Jacobian

We remark that the condition imposed by the IMA Principle 4.1 needs to be expressed in terms of
the columns of the Jacobian, and would not lead to a criterion with desirable properties for BSS if it
were instead expressed in terms of its rows (which correspond to gradients of thef i (s)). One way to
justify this is that, for the same condition expressed on the rows of the Jacobian, that is

nX

i =1

logkr f i (s)k � log jJ f (s)j = 0 ;

property(ii) of Prop. 4.4 would not hold (because invariance would hold w.r.t. right, not left,
multiplication with a diagonal matrix). As a consequence, the resulting global contrast would not
be blind to reparametrisation of the source variables by permutation and element-wise invertible
transformations, thereby not being a good contrast in the context of blind source separation.

C.4 Proof of Thm. 4.7

Before proving the main theorem, we �rst introduce some additional details on the Jacobian of the
Darmois construction [39] which will be important for the proof.

Jacobian of the Darmois construction forn = 2 . Consider the Darmois construction forn = 2 ,

y1 = gD
1 (x1) := FX 1 (x1) = PX 1 (X 1 � x1)

y2 = gD
2 (y1; x2) := FX 2 jY1 = y1 (x2) = PX 2 jY1 = y1 (X 2 � x2jY1 = y1)

Its Jacobian takes the form

JgD (x) =
�

p(x1) 0
c21(x) p(x2jx1)

�
; (27)

where

c21(x) =
@

@x1

Z x 2

�1
p(x0

2jx1)dx0
2 :

Jacobian of the Darmois construction: general case. In the general case, the Jacobian of the
Darmois construction will be

JgD (x) =

0

@
p(x1) � � � 0

...
...

C(x) p(xn jx1; : : : ; xn � 1)

1

A (28)

where the componentscji (x1:j ) of C(x) for all i < j are de�ned by

cji (x1:j ) =
@

@xi

Z x j

�1
p(x0

j jx1:j � 1)dx0
j :

It is additionally useful to introduce the following lemmas.

Lemma C.1. A functionf with triangular Jacobian hasCIMA (f ; ps) = 0 iff. its Jacobian is diagonal
almost everywhere. Otherwise,CIMA (f ; ps) > 0.

29



Proof. Let f have lower triangular Jacobian ats, and denoteJ f (s) = W . Then we have

cIMA (f ; s) =
nX

i =1

log

0

@

vu
u
t

nX

j = i

w2
ji

1

A �
nX

i =1

log jwii j ;

wherewji = [ W ]ji . Since the logarithm is a strictly monotonically increasing function and since
vu
u
t

nX

j =1

w2
ji � j wii j ;

with equality iff. wji = 0 ; 8j 6= i (i.e., iff. W is a diagonal matrix), we must havecIMA (f ; s) = 0 iff.
W is diagonal.

CIMA (f ; ps) is therefore equal to zero iff.f has diagonal Jacobian almost everywhere, and it is strictly
larger than zero otherwise.

Lemma C.2. A smooth functionf : Rn ! Rn whose Jacobian is diagonal everywhere is an
element-wise function,f (s) = ( f 1(s1); :::; f n (sn )) .

Proof. Let f be a smooth function with diagonal Jacobian everywhere.

Consider the functionf i (s) for anyi 2 f 1; :::; ng. Supposefor a contradictionthatf i depends onsj
for somej 6= i . Then there must be at least one points� such that@fi=@sj (s� ) 6= 0 . However, this
contradicts the assumption thatJ f is diagonal everywhere (since@fi=@sj is an off-diagonal element
for i 6= j ). Hence,f i can only depend onsi for all i , i.e.,f is an element wise function.

We can now restate and prove Thm. 4.7.
Theorem 4.7. Assume the data generating process in(1) and assume thatx i 6?? x j for somei 6= j .
Then any Darmois solution(f D; pu ) based ongD as de�ned in(4) satis�esCIMA (f D; pu ) > 0. Thus a
solution satisfyingCIMA (f ; ps) = 0 can be distinguished from(f D; pu ) based on the contrastCIMA .

Proof. First, the JacobianJgD (x) of the Darmois constructiongD is lower triangular8x, see (28).

Because CDFs are monotonic functions (strictly monotonically increasing given our assumptions on
f andps), gD is invertible.

We can thus apply the inverse function theorem (withf D = ( gD) � 1) to write

J f D (y ) =
�
JgD (x)

� � 1

Since the inverse of a lower triangular matrix is lower triangular, we conclude thatJ f D (y ) is lower
triangular for ally = gD(x).

Now, according to Lemma C.1, we haveCIMA (f D; pu ) > 0, unlessJ f D is diagonal almost everywhere.

Supposefor a contradictionthatJ f D is diagonal almost everywhere.

Sincef andps are smooth by assumption, so is the push-forwardpx = f � ps, and thus alsogD (CDF
of a smooth density) and its inversef D. Hence, the partial derivatives@fDi =@yj , i.e., the elements of
J f D are continuous.

Consider an off-diagonal element@fDi =@yj for i 6= j . Since these are zero almost everywhere, and
because continuous functions which are zero almost everywhere must be zero everywhere, we
conclude that@fDi =@yj = 0 everywhere fori 6= j , i.e., the JacobianJ f D is diagonal everywhere.

Hence, we conclude from Lemma C.2 thatf D must be an element-wise function,f D(y ) =
(f D

1 (y1); :::; f D
1 (yn )) .

Sincey has independent components by construction, it follows thatx i = f D
i (yi ) andx j = f D

j (yj )
are independent for anyi 6= j .

However, this constitutes a contradiction to the assumption thatx i 6?? x j for somex j .

We conclude thatJ f D cannot be diagonal almost everywhere, and hence, by Lemma C.1, we must
haveCIMA (f D; pu ) > 0.
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C.5 Proof of Corollary 4.9

Corollary 4.9. Under assumptions of Thm. 4.7, if additionallyf is a conformal map, then(f ; ps) 2
M IMA for any ps 2 P due to Prop. 4.6 (i), see Defn. 4.8. Based on Thm. 4.7,(f ; ps) is thus
distinguishable from Darmois solutions(f D; pu ).

Proof. The proof follows from property(i) of Prop. 4.6: by de�nition, the Jacobian of conformal
maps at any points can be written asO(s)� (s), with � : Rn ! R, which is a special case of
O(s)D (s), with D (s) = � (s)I .

C.6 Proof of Corollary 4.11

Corollary 4.11. Consider a linear ICA model,x = As , with E[s> s] = I , andA 2 O(n) an orthog-
onal, non-trivial mixing matrix, i.e., not the product of a diagonal and a permutation matrixDP . If
at most one of thesi is Gaussian, thenCIMA (A ; ps) = 0 andCIMA (f D; pu ) > 0.

Proof. Since, by assumption, the mixing matrix is non-trivial (i.e., not the product of a diagonal and
permutation matrix), and at most one of thesi is Gaussian, according to Thm. A.1 there must be at
least one pairx i ; x j , with i 6= j , such thatx i 6?? x j .

We can then use the same argument as in the proof of Thm. 4.7 to show that the Darmois construction
has nonzeroCIMA , whereas the linear orthogonal transformationA has orthogonal Jacobian, and thus
CIMA = 0 by property(i) of Prop. 4.6.

C.7 Proof of Thm. 4.12

Theorem 4.12.Let(f ; ps) 2 M IMA and assume thatf is a conformal map. GivenR 2 O(n), assume
additionally that9 at least one non-Gaussiansi whose associated canonical basis vectorei is not
transformed byR � 1 = R > into another canonical basis vectorej . ThenCIMA (f � aR (ps); ps) > 0.

Proof. Recall the de�nition

aR (ps) = F � 1
s � � � R � � � 1 � F s:

For notational convenience, we denote� = � � 1 � F s and write

aR (ps) = � � 1 � R � � :

Note that, since bothF s and� are element-wise transformations, so is� .

First, by using property(ii) of Prop. 4.6 (invariance ofCIMA to element-wise transformation), we
obtain

CIMA (f � aR (ps); ps) = CIMA (f � � � 1 � R � � ; ps) = CIMA (f � � � 1 � R ; pz ) ;

with z = � (s) such thatpz is an isotropic Gaussian distribution.

Supposefor a contradictionthatCIMA (f � � � 1 � R ; pz ) = 0 .

According to property(i) of Prop. 4.6, this entails that the matrix

J f � � � 1 � R (z)> J f � � � 1 � R (z) = R > J � � 1 (z)> J f (� � 1(z))> J f (� � 1(z)) J � � 1 (z) R (29)

is diagonal almost surely w.r.t.pz . Moreover, smoothness ofps andf implies the matrix expression
of (29) is a continuous function ofz. Thus(29) actually needs to be diagonal for allz 2 Rn , i.e.,
everywhere(c.f., the argument used in the proof of Thm. 4.7, l.1008–1013).

Since(f ; ps) 2 M IMA by assumption, by property(i) of Prop. 4.6, the inner term on the RHS of(29),

J f (� � 1(z))> J f (� � 1(z)) ;

is diagonal. Moreover, since� is an element-wise transformation,J � � 1 (z)> andJ � � 1 (z) are also
diagonal. Taken together, this implies that

J � � 1 (z) J f (� � 1(z))> J f (� � 1(z)) J � � 1 (z) (30)

is diagonal (i.e., (29) is of the formR > D (z)R for some diagonal matrixD (z)).
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Without loss of generality, we assume the �rst components1 of s is non-Gaussian and satis�es the
assumptions stated relative toR (axis not invariant nor sent to another canonical axis).

Now, since both the Gaussian CDF� and the CDFF s are smooth (the latter by the assumption that
of ps is a smooth density),� is a smooth function, and thus has continuous partial derivatives.

By continuity of the partial derivative, the �rst diagonal element@�� 1
1

@z1
of J � � 1 must be strictly

monotonic in a neighborhood of somez0
1 (otherwise� 1 would be an af�ne transformation, which

would contradict non-Gaussianity ofs1).

On the other hand, our assumptions relative toR entail that there are at least two non-vanishing
coef�cients in the �rst row ofR (i.e., �rst column ofR > ).20 Let us calli 6= j such pair of coordinates,
i.e., r 1j 6= 0 andr 1i 6= 0 .

Now consider the off-diagonal term(i; j ) of (29), which we assumed (for a contradiction) must be
zero almost surely w.r.t.pz . Since the term in (30) is diagonal, this off-diagonal term is given by:

nX

k=1

�
d� � 1

k

dzk
(zk )

� 2 




@f
dsk

� � � 1(z)






2

r ki r kj =
nX

k=1

�
d� � 1

k

dzk
(zk )

� 2

� (� � 1(z))2r ki r kj = 0 :

where for the �rst equality we have used the fact thatf is a conformal map with conformal factor� (s)
(by assumption), and where the second equality must hold almost surely w.r.t.pz .

Sincef is invertible, it has non vanishing Jacobian determinant. Hence, the conformal factor� must
be a strictly positive function, so

� (� � 1(z))2 > 0; 8z:

Thus, for almost allz, we must have:

nX

k=1

�
d� � 1

k

dzk
(zk )

� 2

r ki r kj = 0 : (31)

Now consider the �rst term
�

d� � 1
1

dz1
(z1)

� 2
r 1i r 1j in the sum.

Recall thatr 1i r 1j 6= 0 , and thatd� � 1
1

dz1
(z1) is strictly monotonic on a neighborhood ofz0

1 .

As a consequence,
�

d� � 1
1

dz1
(z1)

� 2
r 1i r 1j is also strictly monotonic with respect toz1 on a neighborhood

of z0
1 (where the other variables(z2; :::; zn ) are left constant), while the other terms in the sum in(31)

are left constant because� is an element-wise transformation.

This leads to a contradiction as(31) (which should be satis�ed for allz) cannot stay constantly zero
asz1 varies within the neighbourhood ofz0

1 .

Hence our assumption thatCIMA (f � aR (ps); ps) = 0 cannot hold.

We conclude thatCIMA (f � aR (ps); ps) > 0.

20In short, if this were not the case, this column would have a single non-vanishing coef�cient, which would
need to be one due to the unit norm of the rows of this orthogonal matrix. Such structure of the matrixR would
entail that the associated canonical basis vectore1 is transformed byR � 1 = R > into a canonical basis vector
ej which contradicts the assumptions.

32



D Worked out example

ExampleD.1 (Polar to Cartesian coordinates). Consider the following example of a nonlinear ICA
model which represents a change of basis from polar to Cartesian coordinates:

x =
�

x1
x2

�
= f (s) =

�
f 1(s)
f 2(s)

�
=

�
r cos(� )
r sin(� )

�

with sources

s =
�

s1
s2

�
=

�
r
�

�
; r � U[0; R]; � � U[0; 2� ];

First, we consider the Jacobian of the true mixingf which is given by:

J f (s) = J f (r; � ) =
�

cos(� ) � r sin(� )
sin(� ) r cos(� )

�
;

and its determinant and column norms are given by

jdet J f (s)j = r
�
cos2(� ) + sin 2(� )

�
= r






@f
@s1

(s)




 =






@f
@r

(r; � )




 = cos2(� ) + sin 2(� ) = 1






@f
@s2

(s)




 =






@f
@�

(r; � )




 = r

�
cos2(� ) + sin 2(� )

�
= r

In other words, the columns ofJ f (s) are orthogonal for alls, so thatCIMA = 0 for the true solution.

Next, we apply the Darmois construction.

First, we write the joint density of(x1; x2) using the change of variable formula:

p(x1; x2) = j det J f (r; � )j � 1p(r; � ) = r � 1 1
2�R

=
1

p
x2

1 + x2
2

1
2�R

:

Next, we compute the marginal densityp(x1). Note that the observationsx live on the disk of radius
R, kxk � R, sop(x1; x2) = 0 wheneverx2

1 + x2
2 > R 2.

p(x1) =
Z p

R 2 � x 2
1

�
p

R 2 � x 2
1

p(x1; x2)dx2 =
1

2�R

Z p
R 2 � x 2

1

�
p

R 2 � x 2
1

dx2p
x2

1 + x2
2

=
1

2�R

Z p
R 2 � x 2

1

�
p

R 2 � x 2
1

dx2

x1

q
1 + ( x 2

x 1
)2

Applying the change of variablet = x 2
x 1

with dt = dx 2
x 1

, and using the integral
R

(1 + t2) � 1
2 dt =

arcsinh(t) + C, as well as the fact thatarcsinh is an odd function, we obtain

p(x1) =
1

2�R

Z
r �

R
x 1

� 2
� 1

�

r �
R
x 1

� 2
� 1

dt
p

1 + t2
=

1
�R

arcsinh

0

@

s �
R
x1

� 2

� 1

1

A

Next, we compute the conditional densityp(x2jx1):

p(x2jx1) =
p(x1; x2)

p(x1)
=

(2�R ) � 1
�
x2

1 + x2
2

� � 1

(�R ) � 1 arcsinh

 r �
R
x 1

� 2
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Finally, we compute the off-diagonal term in the general form of the inverse Jacobian for Damois-style
solutions in (27):
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Using the derivative@
@tarcsinh(t) = ( t2 + 1) � 1

2 and repeatedly applying the chain rule, we obtain:
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Again, recall that this only holds inside the disk of radiusR, otherwisec12 = 0 (as the CDF will be
zero or one, irrespective ofx1).
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TheCIMA for the Darmois solution thus takes the form:
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where the strict inequality in the last step follows from the fact that the fraction inside the logarithm,
and hence the entire integrand, is strictly positive within the disk of integration.

We have thus shown that for the example of an orthogonal coordinate transformation from polar to
Cartesian coordinates, which is not a conformal map, theCIMA os the true solution is zero and that of
the Darmois construction is strictly greater than zero, hence the two can be distinguished based on
the value of theCIMA contrast.
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E Experiments

The code for our experiments (enclosed in the supplemental material) is in Python; we use Jax [12],
Distrax [13] and Haiku [32] to implement our models; the Jacobian andCIMA computation and
optimisation are performed with the automatic differentiation tools provided in Jax.

E.1 Sampling random Möbius transformations.

In order to generate mixing functions withCIMA = 0 , we use Möbius transformations (see Appendix F
and in particular Thm. F.2, for additional details on this kind of functions) with randomly sampled
parameters, as speci�ed below. A Möbius transformationf M : Rn ! Rn is given by

f M(s) = t +
r A (s � b)
ks � bk� ; (32)

with parametersb; t 2 Rn , r 2 R, A is an orthogonal matrix and� 2 f 0; 2g. The �ow models we
train have an diagonal af�ne layer at the top with �xed shift and scale set to the mean and standard
deviation of the training data, thereby normalizing the inputs. Hence, without loss of generality, we
can set thet parameter to zero andr to one. Since� = 0 corresponds to a linear transformation,
we generally set� = 2 in our experiments unless otherwise speci�ed. We sample the orthogonal
matrix through theortho_group function in scipy.stats [101]. To avoid singularities given
by a vanishing denominator in the second term on the RHS of(32), which would yield observed
distributions with strong outliers and therefore hard to �t for our models, we restrictb to lie outside
the unit squares is sampled from. We achieve this by samplingb from a normal distribution and
reject the sample until it is located outside of the unit square.

E.2 How to implement the Darmois construction

In the following, we describe how the Darmois construction can be implemented based on nor-
malising �ow models [69]. The key idea is that the componentsgD

i of the Darmois construc-
tion (4) are conditional (cumulative) density functions corresponding to a given factorisation
p(x) =

Q n
i =1 p(x i jx1:i � 1) of the likelihood. A �ow model with triangular Jacobian can be used to

maximise the likelihood of the observations under a change of variable respecting said factorisation,
and learning to map the observed variables onto a given (factorised) base distribution. After training,
and provided that the model is expressive enough, the CDF of each component of the reconstructed
sources should match that of the base distribution. By further transforming each reconstructed vari-
able through said CDF, we achieve a global mapping of the observations onto a Uniform distribution
on then-dimensional hypercube, with a triangular Jacobian, matching the transformation operated by
the Darmois construction (see also see [69], section 2.2). Note that, for the purpose of computing the
CIMA of the Darmois construction, this �nal step can be omitted due to Prop. 4.6,(ii) , stating that the
contrast is blind to element-wise reparametrisations of the sources.

We remark that, while the possibility of using normalising �ows to “learn” the Darmois construction
is mentioned in [35, 69], where a similar construction is mentioned in a theoretical argument to prove
“universal approximation capacity for densities” for normalising �ow models with triangular Jacobian,
it has to the best of our knowledge not been tested empirically, since autoregressive modules with
triangular Jacobian are typically used in combination with permutation, shuf�ing or linear layers
which overall lead to architectures with a non-triangular Jacobian.

Expressive normalising �ow with triangular Jacobian. To obtain an expressive normalizing
�ow with triagular Jacobian, we modify the residual �ow model [16].21 A residual �ow is a residual
network which is made invertible through spectral normalization. Each layer is given by

z0 = z + g(z); (33)

wherez0; z 2 Rn andg : Rn ! Rn is a small neural network. Due to the chain rule, for the Jacobian
of the overall �ow model to be triangular, a suf�cient condition is that all the layers have triangular
Jacobian. Since the Jacobian off (z) = z is the identity matrix, we can restrict our attention to the
neural networkg. In our experiments, this is going to be a fully connected network. If it hasl layers
andh � n hidden units, it is given by

g(z) = b1 + W 1� (b2 + W 2� (b3 + W 3 � � � � (b l + W l z) � � � )) ; (34)

21We describe how to implement a function with upper triangular Jacobian, but the reasoning can be extended
to implement functions whose Jacobian is lower triangular.
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where� : Rn ! Rn is an element-wise nonlinearity,b1 2 Rn , b2; :::; b l 2 Rh are the biases, and
W 1 2 Rn � h , W 2; :::; W l � 1 2 Rh� h , W l 2 Rh� n are the weight matrices. In order for the Jacobian
of g to be triangular,gn (z) should only depend onzn , gn � 1(z) should only depend onzn andzn � 1,
and so on. To achieve this, we make the weight matrices block triangular as indicated in(35), (36),
and (37).
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for i 2 f 2; :::; l � 1g (37)

Here,hi is the number of hidden units dedicated to transformingzi with the constraint
P n

i =1 hi = h.
We perform an even split such that thehi andhj differ by at most 1 fori; j 2 f 1; :::; ng. The weight
matrices are restricted to be block triangular during optimization by setting the respective matrix
elements to zero after each iteration of the optimizer. The model can simply be made and kept
invertible using the same spectral normalization as is used for dense residual �ows [16]. We train our
model to map onto a standard Normal base distribution.

E.3 Generating random MLP mixing functions

In order to generate random MLP mixing functions, we adopt the same initalisation as in [29]:
we initialise the square weight matrices to be orthogonal,22 and use theleaky_tanh invertible
nonlinearity.

22Note that orthogonality of the weight matrices in a MLP does not guarantee satisfying Principle 4.1, due
to the element-wise nonlinearities between the layers, which overall lead to a Jacobian whose columns are in
general not orthogonal.
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E.4 Maximum likelihood with low CIMA

The modi�ed maximum likelihood objective described in § 5.2 can be written as follows:23

L (g; x) = log p(x) � � � cIMA (g� 1; py )

=
nX
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 ; (38)

where[J � 1
g (x)] i represents thei -th column of the inverse of the Jacobian ofg computed atx.

We use the same model as the one described in Appendix E.2, but without the constraint that the
Jacobian should be triangular, and train with a Logistic base distribution.

Note that the computational ef�ciency of optimising objective(38) is cubic in the input sizen, due
to a number of operations (matrix inversion, Jacobian and determinant computation via automatic
differentiation, etc.) which areO(n3). However, similarly to what already observed in [30], we found
that for data of moderate dimensionality computing and optimising objective(38) with automatic
differentiation is feasible. For example, training a residual �ow with 64 layers for105 iterations takes
roughly 5.3 hours forn = 2 , 5.7 hours forn = 5 , and 6.3 hours forn = 7 on the same hardware (see
section E.5). An interesting direction for future work would be to �nd computationally ef�cient ways
of optimising (38).

When computing theCIMA of the Darmois solutions of randomly generated functions, we restricted
ourselves to MÃ¶bius transformations, i.e. conformal maps. However, there are also nonconformal
maps satisfyingCIMA = 0 , e.g. the transformation of Cartesian to Polar coordinates, see Appendix D.
To test whether theCIMA of the Darmois solutions is actually bigger than0, we gener

E.5 Evaluation

Mean correlation coef�cient. To evaluate the performance of our method, we compute the mean
correlation coef�cient (MCC) between the original sources and the corresponding latents, see for
example [49]. We �rst compute the matrix of correlation coef�cients between all pairs of ground
truth and reconstructed sources. Then, we solve a linear sum assignment problem (e.g. using
the Hungarian algorithm) to match each reconstructed source to the ground truth one which has
the highest correlation with it. The MCC matrix contains the Spearman rank-order correlations
between the ground truth and reconstructed sources, a measure which is blind to nonlinear invertible
reparametrisations of the sources.

Nonlinear Amari metric. While the MCC metric evaluates BSS by comparing ground truth and
reconstructed sources, we propose an additional evaluation directly based on comparing the (Jacobians
of the) true mixing and the learned unmixing. We take inspiration from an evaluation metric used in
the context of linear ICA, the Amari distance [5]: Given a learned unmixingW and the true mixing
A , and de�ning the matrixR = AW , the Amari distance is de�ned as

dAmari(R ) =
nX

i =1

0

@
nX

j =1

[R ]2ij
maxl [R ]2il

� 1

1

A +
nX

i =1

0

@
nX

j =1

[R ]2ji
maxl [R ]2lj

� 1

1

A ; (39)

and is greater than or equal to zero, canceling if and only ifR is a scale and permutation matrix, that
is when the learned unmixing is matching the unresolvable ambiguities of linear ICA.

We extend this idea to the nonlinear setting: Given a true mixingf and a learned unmixingg, we
de�ne our nonlinear Amari distance as

dn-Amari(g; f ) = Ex � px

�
dAmari � Jg (x)J f (f � 1(x))

��
: (40)

23while the objective in § 5.2 involves an expectation overpx , we consider the loss for a single pointx here,
L (g; x ).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: BSS viaCIMA -regularised MLE forn = 2 dimensions with� 2 f 0:0; 0:5; 1:0g. The true
mixing function is a randomly generated Möbius transformation, nonlinear (with� = 2 ) in (a)–(d)
and linear (with� = 0 ) transformation for(e)–(h). For each type of transformation and� , seeded
runs are done.(a), (e) KL-divergence between ground truth likelihood and learnt model;(b), (f) CIMA

of the learnt models;(c), (g) nonlinear Amari distance given true mixing and learnt unmixing;(d),
(h) MCC between true and reconstructed sources.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: BSS viaCIMA -regularised MLE forn = 5 dimensions with� 2 f 0:0; 0:5; 1:0g. The true
mixing function is a randomly generated Möbius transformation, nonlinear (with� = 2 ) in (a)–(d)
and linear (with� = 0 ) transformation for(e)–(h). For each type of transformation and� , seeded
runs are done.(a), (e) KL-divergence between ground truth likelihood and learnt model;(b), (f) CIMA

of the learnt models;(c), (g) nonlinear Amari distance given true mixing and learnt unmixing;(d),
(h) MCC between true and reconstructed sources.
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(a) (b) (c) (d)

Figure 10: BSS viaCIMA -regularised MLE forn = 7 dimensions with� 2 f 0:0; 0:5; 1:0g. The true
mixing function is a randomly generated Möbius transformation (with� = 2 ). For each� , seeded
runs are done.(a) KL-divergence between ground truth likelihood and learnt model;(b) CIMA of
the learnt models;(c) nonlinear Amari distance given true mixing and learnt unmixing;(d) MCC
between true and reconstructed sources.

Figure 11:Visual comparison of different nonlinear ICA solutions forn = 2 : (left to right) true sources; ob-
served mixtures; Darmois solution; true unmixing, composed with the measure preserving automorphism (MPA)
from (5) (with rotation by� =4); Darmois solution composed with the same MPA; maximum likelihood (� = 0 );
andCIMA -regularised approach (� = 1 ).

Then, according to the de�nition of Amari distance(39), if the smooth functiong � f is a permuta-
tion composed with a scalar function, thus precisely matching the BSS equivalence class de�ned
in Defn. 2.2, this would result in its Jacobian (that is, the product of the JacobiansJg (x)J f (f � 1(x)) )
equalling the product of a diagonal matrix and a permutation matrix at every pointx: the quantity
dn-Amari(g; f ) would therefore be equal to zero.

This metric can be of independent interest and potentially useful in contexts where the reconstructed
sources might be a noisy version of the true ones, but the true unmixing is nevertheless identi�able.
Our implementation is based on the one for the (linear) Amari distance provided in the code for [1].

CIMA of Darmois solutions for nonconformal maps satisfying the IMA principle. When com-
puting theCIMA of the Darmois solutions of randomly generated functions, we restricted ourselves
to Möbius transformations which are conformal maps. However, there are also nonconformal maps
satisfyingCIMA = 0 , e.g., the transformation from polar to Cartesian coordinates withn = 2 ,
see Appendix D. To test whether theCIMA of the Darmois solutions is actually bigger than0, we
generate random radial transformations by imposing a random scale and shift before applying the
radial transformation, compute the Darmois solution as we have done in § 5.1, and calculate itsCIMA

on the test set. We did 50 runs and the results are shown in Fig. 12.

Figure 12: Histogram of theCIMA values of the Darmois solutions of 50 randomly generated radial
transformations.
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Similar to Fig. 4(a) we can clearly see that allCIMA values of the �nal models are larger than 0, with
the smallest value being0:01. This con�rms the result we have already shown theoretically.

Additional plots for § 5.2. We show additional plots for the quantitative experiments involving
training with the objective described in (38), see Fig. 8, Fig. 9 and Fig. 10.

For � = 0 (that is, ground truth mixing linear), there appears to be an almost perfect recovery of the
ground truth sources (resp. unmixing function) for� 2 f 0:5; 1:0g, as can be seen by the high (resp.
low) values of the MCC (resp. nonlinear Amari distance) evaluations ; this is in stark contrast with
the distribution of the MCC (resp. nonlinear Amari distance) values for models trained with� = 0 ,
which are typically much higher (resp. lower), indicating that the learned solutions do not achieve
blind source separation (seen = 2 , Fig. 8 (g), (h); n = 5 , Fig. 9 (g), (h)). All models achieve a
comparably good �t, re�ected in the KL-divergence values (n = 2 , Fig. 8 (e); n = 5 , Fig. 9 (e)).

The trend is con�rmed when the true mixing is nonlinear (� = 2 ), with slightly lower (resp. higher)
values achieved withCIMA regularisation for the MCC (resp. nonlinear Amari) metrics; this possibly
due to the increased dif�culty of �tting observations generated by a nonlinear mixing, as can be seen
from the higher values of the KL-divergence (n = 2 , Fig. 8(a); n = 5 , Fig. 9(a); n = 7 , Fig. 10
(a));24 still, the bene�cial effect of� 2 f 0:5; 1:0g with respect to models trained with� = 0 is clear,
and is apparently stronger for� = 1 :0 and with higher data dimensionalityn (n = 2 , Fig. 8 (c), (d);
n = 5 , Fig. 9 (c), (d); n = 7 , Fig. 10 (c), (d)).

We additionally plot theCIMA values for the all trained models, for all values of� . It can be seen
that solutions found by unregularised maximum likelihood estimation typically learn functions with
relatively high values ofCIMA , while as expected the regularised version achieves low values (n = 2 ,
Fig. 8(b), (f); n = 5 , Fig. 9(b), (f); n = 7 , Fig. 10(b)).

Finally, in �gure 11, we report the same plot as in 4, top row, but with a perceptually uniform
colormap.

Comparison to FastICA. We compared the performance of our proposed regularised maximum
likelihood procedure to a state of the art method for linear ICA, FastICA [36], in the implementation
from the Scikit-learn package [73], over50 repetitions. Our experiments show that our regularised
method (� = 0 :5, and particularly� = 1 :0; � = 0 :0 provides the unregularised nonlinear baseline)
is superior in learning the true unmixing and reconstructing the sources. This indicates that the
linearity assumption of FastICA does not allow enough �exibility to solve blind source separation
in our setting, whereas our criterion does (see Fig. 13, Fig. 14 and Fig. 15).25 While the spread in
the distributions of MCC and Amari distance can be largely attributed to the brittleness of neural
networks, the median values for the MCC (resp. nonlinear Amari distance) are consistently higher
(resp. lower) for our regularised method than for FastICA. In contrast, the performance of FastICA is
consistently better than the unregularised baseline.

(a) (b)

Figure 13: Comparison between FastICA and our normalising �ow method with� 2 f 0:0; 0:5; 1:0g,
n = 2 . (a) MCC; (b) Amari distance.

24The distribution of the KL values contains outliers, and seemingly more strongly for lower values of� .
25the experimental setting and the plots for the normalising �ow models correspond to those already shown in

the paper, but here we modi�ed they-axis scale to facilitate the comparison of all methods
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(a) (b)

Figure 14: Comparison between FastICA and our normalising �ow method with� 2 f 0:0; 0:5; 1:0g,
n = 5 . (a) MCC; (b) Amari distance.

(a) (b)

Figure 15: Comparison between FastICA and our normalising �ow method with� 2 f 0:0; 0:5; 1:0g,
n = 7 . (a) MCC; (b) Amari distance.

Details on resources used. All models were trained on compute instances with 16 Intel Xeon
E5-2698 CPUs and a Nvidia Geforce GTX980 GPU. The cluster we used has 204 thereof. Training
the models took between 4 and 16 hours depending mainly on the dimensionalityn and number of
samples in the dataset, and on the number of iterations used for training. Overall, we trained around
2000 models, amounting to roughly 18000 GPU hours.
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F Additional background on conformal maps and Möbius transformations

Similarities. A similarity of a Euclidean space is a bijectionf from the space onto itself that
multiplies all distances by the same positive real numberr , so that for any two pointsx andy we
have

d(f (x); f (y )) = rd(x; y );
whered(x; y ) is the Euclidean distance fromx to y [94]. The scalarr is sometimes termed the ratio
of similarity, the stretching factor and the similarity coef�cient. Whenr = 1 a similarity is called an
isometry (rigid transformation). Two sets are called similar if one is the image of the other under a
similarity.

As a mapf : Rn ! Rn , a similarity of ratior takes the form

f (x) = r Ax + t ;

whereA is a orthogonal matrixnn � n andt 2 Rn is a translation vector.

Note that such a similarityf has JacobianJ f (x) = r A for anyx.

Conformal maps. Conformal maps are angle preserving transformation, and in this sense, are a
generalization of similarities. In short, letU be an open subset ofRn , ' : U ! Rn is a conformal
map if, for two arbitrary curves 1(t) and 2(t) onRn , where these curves intersect each other with
angle� in pointp 2 U, then' �  1(t) and' �  2(t) intersect each other with the same angle� in the
point ' (p).

A characterisation of conformal maps directly related to orthogonal coordinate systems is the follow-
ing.
Proposition F.1 (See e.g. [95]). Let U be an open subset ofRn with a C1-function' : U ! Rn .
Then' is conformal iff there exists a scalar function� : U ! R such that� (x) � 1J ' (x) is an
orthogonal matrix for allx in U. We call� the scale factor of' .

While it can be shown thatlinear conformal maps are similarities, an interesting class ofnonlinear
conformal maps are the unit radius sphere inversion (restriction to unit radius is only to avoid
unnecessary notational complexity):

I b : Rn n f 0g ! Rn n f 0g

x 7!
x � b

kx � bk2 + b

We can notice that such transformation leaves the hypersphere of centerb and radius 1 invariant,
while the points outside of the unit ball are mapped to the interior of the unit ball, and vice-versa.

Interestingly, conformal maps in Euclidean spaces of dimension superior or equal to 3 can be restricted
to two kinds according to the following result from Liouville.
Theorem F.2(see e.g. [100]). Let f : U ! Rn be a conformal map de�ned on a connected open
subset of Euclidean spaceRn of dimensionn � 3. Thenf = L jU can be written either as the
restriction of a similarityL to U, or as the compositionf = I � L jU of such a map with an inversion
with respect to a hypersphere of unit radius, centered at the origin.

The class of function described in Thm. F.2 corresponds exactly to the Möbius transformations
described in(32). These transformation can as well be de�ned in dimension2, with the speci�city
that they are only a subset of the class conformal maps in this dimension.

Properties of sphere inversion. We characterize the properties of the unit sphere centered at zero,
that we denoteI

I : Rn n f 0g ! Rn n f 0g

x 7!
x

kxk2

Now let us derive the Jacobian ofI . A straightforward computation leads to

J I (x) =
1

kxk2

�
I n � 2

xx >

kxk2

�
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whereI n denote the identity matrix.

By noticing that xx >

kx k2 is rank one symmetric with eigenvalue 1 associated with unit norm eigenvector
x

kx k , we can diagonalize this matrix in any (space dependent) orthogonal basis that hasx
kx k as the

�rst basis vector.

Let us thus pick the unit vectors associated to the hyperspherical coordinates (which satisfy this
condition by de�nition), and consider the orthogonal matrixB ( x

kx k ) gathering these basis vectors as
its columns (it is parameterized by the unit vectorx

kx k , as this basis is radially invariant. Then we can
write

xx >

kxk2 = B
�

x
kxk

�
DB

�
x

kxk

� >

and thus

J I (x) =
1

kxk2

 

I n � 2B
�

x
kxk

�
DB

�
x

kxk

� >
!

=
1

kxk2 B
�

x
kxk

�
(I n � 2D ) B

�
x

kxk

� >

with D a diagonal matrix with diagonal elements[1; 0; : : : ; 0]. This leads to

J I (x) =
1

kxk2 B
�

x
kxk

�
D I B

�
x

kxk

� >

with D I = I n � 2D a diagonal matrix with diagonal elements[� 1; 1; : : : ; 1]. The Jacobian thus
takes the form predicted by the above proposition for conformal maps

J I (x) = � (x)O
�

x
kxk

�

with scale factor� (x) = 1
kx k2 andO( x

kx k ) = B
�

x
kx k

�
D I B

�
x

kx k

� >
a space dependent orthogonal

matrix, which has the additional property to be radially invariant for the speci�c case of sphere
inversions.

44


	Additional background on identifiability and linear ICA
	Identifiability in terms of equivalence relations

	Existing ICM criteria and their relationship to ICA and IMA 

