APPENDIX

Overview

» Appendix A contains further elaboration on the notion of identi ability as used in the present work,
as well as connections to linear ICA.

» Appendix B contains additional discussion of existing ICM criteria and their relation to IMA.
» Appendix C presents the full proofs for all theoretical results from the main paper.

» Appendix D contains a worked out computation of the valu€gf, for the mapping from radial
to Cartesian coordinates.

» Appendix E contains experimental details and additional results.
» Appendix F contains additional background on conformal maps and Md&bius transformations

A Additional background on identi ability and linear ICA

In this Appendix, we provide additional background on the notion of identi ability and illustrate it
using the example of linear ICA.

A.1 Identi ability in terms of equivalence relations

Traditionally, identi ability for a class of modelp for observed data parametrised by 2 is
expressed as the condition that there needs to be a one-to-one mapping between the space of models
and the space of parameters, i.e., the model gagssaid to be identi able if

8: %2 : p(X)= po(x)8x =) = 0 (10)

However, the equality on the RHS ¢f0) is a very strong condition which makes this type of
(strong or unique) identi ability impractical for many settings. For example, in the case of (linear
or nonlinear) ICA, the ordering of the sources cannot be determined, so strong identi ability in the
sense of (10) is infeasible.

The equality in parameter space on the RHS of the implicati¢hGhis therefore sometimes replaced
by an equivalence relation [49)], as is also the case for our Defn. 2.1. An equivalence relation
on a setA is a binary relation between pairs of elementf\oivhich satis es the following three
properties:

1. Reexivity:a a,8a2 A.
2. Symmetrya b =) b a8ab2A.
3. Transitivity:(a b)*(b ¢ =) a c

An equivalence relation on a sAtimposes a partition into disjoint subsets. Each such subset
corresponds to an equivalence class, i.e., the collection of all elements whickral&ted to each
other; for examplela] = fb2 A :a bg denotes the equivalence class containing the element

A trivial example of an equivalence relation is equality)( More useful examples in the context of
ICA are equivalence up to permutation, rescaling, or scalar transformation.

De ning an appropriate equivalence class for the problem at hand therefore allows us to specify exactly
the type of indeterminancies which cannot be resolved and up to which the true generative process can
be recovered. As argued in § 2, for nonlinear ICA, the desired notion of identi ability—in the sense of
the strongest feasible type of identi able that is possible without further (parametric) assumptions—is
captured by gss from Defn. 2.2. We give another example for linear ICA in Appendix A.2.

Since the generative process of nonlinear IQAis determined by the choice of mixing function
and source distribution, the spacefrom (10), in this case, corresponds to the product space of the
space of mixing functions and source distribution8. Moreover, the pushforward densityps

in Defn. 2.1 corresponds to the density of the observed mixpyresrp (x) in (10).

We deliberately choose to de ne identi ability and to express the observed distribution in terms of
the source distribution and the mixing function—as opposed to in terms of the observed distribution
and the unmixing function as in some prior wo[ 38, 41]—because this is aligned with the causal
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direction of data generation, and thus more consistent with the causal perspective at nonlinear BSS
taken in the present work. We also believe that, in this framework, separate constraints on the space
of mixing functionsF and source distributior® are expressed more naturally.

Next, we illustrate the above ideas for the well-studied case of linear ICA.

A.2 Identi ability of linear ICA

Linear ICA corresponds to the setting in which a linear mixing is applied to independent sources, i.e.,
X = As; (11)

whereA 2 R" " is an invertible mixing matrix. The source variabkesan be assumed to have

zero mean without affecting estimation of the mixing matrix, and the ordering and variances of the
independent components cannot be determined, so it is customary to d&gspwel [40].

Additionally, we can assume w.l.0.g. that the mixing matrix is orthogofAl { = 1), because
we can alwaysvhitenx rst through an invertible linear transformation and obtain an orthogonal
mixing [40], as explained in more detail in Appendix A.3.

Now suppose that the reconstructed sources

y = Bx = BAs (12)
have independent components for some orthogonal unmixing nBat2bxR" ". ThenC = BA is
also orthogonal and the following type of identi ability holds [17, 21, 93].

Theorem A.1 (Identi ability of linear ICA; based on Thm. 11 ofl[7]). Lets be a vector oh
independent components, of which at most one is Gaussian and whose densities are not reduced to
a point mass. Le€ 2 R" " be an orthogonal matrix. Then = Cs has (mutually) independent
components ifiC = DP , with D a diagonal matrix and® a permutation matrix.

Thm. A.1 shows that the two ambiguities deemed unresolvable (scale and ordering of the sources)
are, in fact, the only ambiguities, as long as at most one dfjtieGaussian. That is, linear ICA is

identi able up to rescaling and permutation of the sources, i.e., linearly transforming the observations
x into independent components is equivalent to separating the sources.

More formally, in terms of an equivalence relation, if we t&k@from (2) as the space of invertible
n n matrices andP®as the space of source distributions with at most one Gaussian marginal, then
linear ICAis _y-identi able onF® P °where the equivalence relation , onF %is de ned as

B .wB°09 D;PstB=DPB?
Beyond non-Gaussianity. Two other deviations from a Gaussian i.i.d. setting lead to identi ability:

nonstationarity T9] and time correlation§0]. A general information-geometric framework links
these three different routes to identi ability [15].

A.3  Whitening in the context of linear ICA

For completeness, we give a brief account of the rolglufening in linear ICAwhich was mentioned
in A.2 and which again plays a role in B.1. The following exposition is partly based on [40], §7.4.2.

A zero-mean random vector, sgyis said to bevhiteif its components are uncorrelated and their
variances equal unity. In other words, the covariance matrxisfequal to the identity matrix:

Eyy> =1:
It is always possible to whiten a zero-mean random vectihirough a linear operation,
z= VX : (13)

As an example, a popular method for whitening uses the eigenvalue decomposition (EVD) of the
covariance matrix,
E xx> = EDE~

whereE is the orthogonal matrix of eigenvectors®fxx > andD is the diagonal matrix of its

eigenvalued) =diag( 1;:::; n). Note thatthe covariance matrix is a symmetric matrix, therefore
it is diagonalisable. Whitening can then be performed by substituting in (13) the matrix
V = ED 'E>: (14)
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so that
E[zz”]= ED Y?E”EDE >ED WE” = |

Whitening is only half ICA. Assume a linear ICA model,

X =As: (15)
and suppose that the observed data is whitened, for example, by the Yhafisign in(14). Whitening
transforms the mixing matrix into a new on®&,= VA . We have from (15) and (14)

z=VAs = As
Note that whitening does not solve linear ICA, sinceorrelatedness is weaker than independence
To see this, consider any orthogonal transformatioof z:
y = Uz:
Due to the orthogonality df) ; we have
Eyy” =EUzz”U”> =UE zz U'=UIU~ =1;

S0,y is white as well. Thus, we cannot tell if the independent components are giveorby using
the whiteness property alone. Sinceould be any orthogonal transformationzfwhitening gives
the independent components only up to an orthogonal transformation.

On the other hand, whitening is useful as a pre-processing step in ICA: its utility resides in the fact
that the new mixing matri® = VA is orthogonal. This can be seen from

E zz2 = AE s A” = AA” = 1.
We can thus restrict the search for the (un)mixing matrix to the space of orthogonal matrices. Instead
of having to estimate? parameters (the elements of the original mafix we only need to
estimate an orthogonal mixing mat#x which containsi(n  1)=2 degrees of freedom; e.g., in two

dimensions, an orthogonal transformation is determined by a single angle parameter. Far,larger
orthogonal matrix contains only about half of the number of parameters of an arbitrary matrix.

Whitening thus “solves half of the problem of ICA’. Because whitening is a very simple and standard
procedure—much simpler than any ICA algorithm—it is a good idea to reduce the complexity of the
problem this way. The remaining half of the parameters has to be estimated by some other method.
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B Existing ICM criteria and their relationship to ICA and IMA

We now provide additional discussion of the ICM principle and its connection to ICA and IMA. First,
we introduce a linear ICM criterion and discuss its relation with linear ICA in Appendix B.1.

B.1 Trace method

As mentioned in § 2.2, besides IGCI, another existing ICM criterion that is closely related to ICA due
to also assuming a deterministic relation between caws®l effecte is thetrace method45, 110.
The trace method assumes a linear relationship,

e= Ac; (16)

and formulates ICM as an “independence” between the covariance matfx and the mecha-
nismA (which, as for IGCI, we can again think of as a degenerate conditmnglvia the condition

(AA 7)= () (AA7) 17

where () denotes the renormalized trace. Intuitively, this condifibr) rules out a ne-tuning ofA
to the eigenvectors of which would violate the assumption of no shared information between the
cause distribution (speci cally, its covariance structure) and the mechanism.

As with IGCI and nonlinear ICA, it can be seen by compar(ih@) and(11)thatthe trace method
assumes the same generative model as linear(id#ere the cause corresponds to the independent
sourcess and the effect to the observed mixtuses While the focus of the present work is on
nonlinear ICA, we brie y discuss the usefulness of the trace method as a constraint for achieving
identi ability in a linear ICA setting.

As is clear from(17), the trace condition is trivially satis ed if the covariance matrix of the sources
(causes) is the identity, = |. However, as explained in Appendix A.3, in the context of linear ICA

this can easily be achieved by whitening the data. As with IGCI, the trace method was developed
for cause-effect inference where both variables are observed, and thus relies on the observed cause
distribution being informative. This renders is unsuitable (on its own) to constrain the unsupervised
representation learning problem of linear ICA problem where the sources are unobserved.

Note, however, that this is qualitatively different from the IGCI argument presented in 8§ 3, as
whitening on its own does not necessarily lead to independent variables, but only uncorrelated ones,
and thus does not solve linear ICA—unlike the Darmois construction in the case of nonlinear ICA
which also yields independent components.

B.2 Information geometric interpretation of the ICM principle

There is a well-established connection between IGCI and the trace metBlodAf the heart of
this derivation lies an information-geometric interpretation of the ICM principle for probability
distributions, which we sketch in this section. First, we need to review some basic concepts.

Background on information geometry. Information geometry3, 4] is a discipline in which ideas
from differential geometry are applied to probability theory. Probability distributions correspond
to points on a Riemannian manifold, knownsatistical manifold Equipped with the Kullback-
Leibler (KL) divergence, also called the relative entropy distance, as a preriatrie, can study

the geometrical properties of the statistical manifold. For two probability distribuBoasdQ,

we denote their KL divergence lyx, (PkQ), which is de ned forP absolutely continuous with
respect tdQ as: z

dpP
DL (PkQ)= dP Iogﬁ:

An interesting property of the KL divergence is its invariance to reparametrisation. Consider an
invertible transformatiom, mapping random variableé andY to h(X) andh(Y), respectively (the
domains and codomains being arbitrary spaces, e.g., discrete or Euclidean of arbitrary dimension).
Then the KL divergence betwe®y andPy is preserved by the pushforward operation implemented
by h, such that

Dki (Ph(x)kPn(v)) = DkL (Px kPy): (18)

1A premetric on a seX is a functiond : X X ! R" [f Ogsuch that (i)d(x;y) Oforall x andy in X
and (ii)d(x;x) =0 forallx 2 X .
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Figure 6:Interpretation of the ICM principle as an orthogonality principle in information space. The
irregularity of the effect distribution, as measureddy, (Py kUv ), can be decomposed into the irregularities
of the cause, as measured by, (Px kUx ), and the irregularity of the mechanisim as measured by
DkL (Py kUy ). Here,Ux andUy denote the orthogonal projections®f andPy onto the manifolcE of
regular distributions, anBy denotes the pushforward of the regular distributitnvia f . Note that the KL
divergence is invariant to reparametrisation by invertible functions.

Interpretation of ICM as orthogonality condition in information space. Consider a deterministic
causal relationship of the formi := f (X), and denote b¥?x andPy the marginal distributions of
the causeX and the effect , respectively. The “irregularity” of each distribution can be quanti ed
by evaluating their divergence to a referenceisef “regular” distributions}®

DKL (Px kE) = inf DKL (Px kU), DKL (PY kE) = inf DKL (PY kU)
U2E UZ2E

Let us assume that these in ma are reached at a unique point, their projectioris onto

Ux =arg ryérg Dk (Px kU); Uy =arg r&g DkL (PykU):

As elaborated in46, §4], the choice oE is context-dependent. For example, in the context of the
trace method45], X andY are assumed to bedimensional multivariate Gaussian random vectors,
andE is taken as the set of multivariaisotropic Gaussian distributions. In contrast, when IGCI is
applied in contexts where the considered mechanism is a deterministic non-linear diffeomorphism,
the reference distributions are typically uniform distributions [18, 47].

Overall, it can be shown that the independence postulate underlying these approaches leads to the
following decomposition of the irregularity ¢ty (see [46, Thm. 2]):

DkL (PykUy) = Dk (PykPy)+ Dy (PykUy)

wherePy denotes the distribution df(Uy ), i.e., the hypothetical distribution of the effect that would
be obtained if the caus¢ were replaced by the random varialde (which corresponds to the
closest regularly distributed random variablextd.

Since applying the bijectioh ® preserves the KL divergences, $&8), we can obtain the equivalent
relation
Dk (PykUy) = Dy (Px kUx )+ Dk (PykUy): (19)

This relation can be interpreted asa@mthogonality principlein information space by considering the
| KL divergqnces as a generalization of the squared Euclidean norm for the difference #edthrs

Py Py andPy Uy . It can thus be viewed as a Pythagorean theorem in the space of distributions,
see Fig. 6 for an illustration.

The orthogonality principl€19) thus captures a decomposition of the irregulaty; (Py kUy ) of
Py on the LHS into the sum of two irregularities on the RHS: the irreguld®igy (Px kUx ) of Px,

8Here “regular” is only meant in an intuitive sense, not implying any further mathematical notiris the
set of Gaussians, for instance, the distance fEomeasures non-Gaussianity.
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and the ternD . (Py kUy ) which measures the irregularity of the mechanfsmdirectly, via the
“irregularity” of the distribution resulting from applying to a regular distributiotJy .

Overall, the decompositiofi9) links the postulate of independence between the cause distribution,
on the one hand, and the mechanism, on the other hand atreogonality of their irregularities in
information spacénamely the statistical manifold of information geometry). As proposedéh [

this can be intuitively interpreted as a geometric form of independence if we assume that Nature
chooses such irregularities independently of each other, and “isotropically” in a high-dimensional
subspace of irregularities.

While, to date, we are not aware of similar results in the context of information geometry (i.e., on
the statistical manifold), this intuition is supported by concentration of measure results in Euclidean
spaces. Indeed, in high-dimensions, it is likely that two vectors are close to orthogonal if they are
chosen independently according to a uniform prior [25].

We will take inspiration of the decomposition (19) to justify IMA in the following section.
B.3 Decoupling of the in uences in IMA and comparison with IGCI

In contrast to Appendix B.2, in this section we will, for notational consistency with the main paper,
assume that all distributions have a density with respect to the Lebesgue measure, and thus consider,
with a slight abuse of notation, that the KL divergence is a distance between two densities on the
relevant support, such that

de:

Z
DkL (pkg) = p(x)log a)

Overview. In line with the information-geometric interpretation of IGCI presented in Appendix B.2,
we also consider an interpretation of IMA in information space. We consider the KL-divergence

between the observed densjgy of x = f(s) and aninterventionaldistributionp, of b = P(s),
resulting from a soft intervention that replaces the mixing functiavith another mixind". We
takeDkL (pxKkpe) @s a measure of the causal effect of the soft intervention (or perturbation) that
turnsf into P—similarly to howDg (Py kUy) is used as a measure of the irregularity of the effect
distribution in the context of IGCI (Appendix B.2).

As we will show, under suitable assumptions, the functional form imposédgrihe IMA Princi-

ple 4.1 can lead to a decomposition of tausal effecobf an intervention on the mechanism into a

sum of terms, corresponding to the causal effects of separate soft interventions on the mechanisms
associated to each source. In contrast, IGCI decompwegslarities of the effect distribution into

two terms, one irregularity of the cause and one irregularity of the mechanism

Soft-interventions on the individual mechanisms. Assumef satis es the IMA principle. We
consider interventions performed through the element-wise transformasoich that

1(s1) 3
187! i (.sj )

n (.Sn )

This can be seen as a compositiomafoft interventions  ; g on each individual source compongnt
implemented through univariate smooth diffeomorphismssuch that

2 3
S1
j+S 7! j (Sj ) ;
Sn
and = 1 (in arbitrary order, since the individual commute). This soft intervention

can be seen as turning the random variabtgo b, yielding the intervened observatiocks f ().
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Alternatively, the intervention or can be implemented by replacimjpyb =f —ie,h= P(s).

Notably, sincd satis es the IMA principle, so do&(due to Prop. 4.4ji), since is an element-wise
nonlinearity). Moreover, the partial derivatives of the intervened function are given by

@
9= o () T ):

The classical change of variable formula for bijectfopields the expression of the pushforward

density ofx as _ _
P () = j3r(F TOO)) tps(f (X)) 5
and fork we get

pe(R) = j3p(P (R)] 'ps(P 1(K));

Information geometric interpretation of IMA.  Let us now compute the KL divergence between
the intervened and observed distribution,

Px(X) 4
()

Expressing the density of the observed variables as a pushforward of the density of the sources, and
without additional assuzmptions drand® besides smoothness and invertibility, we get,

Je(f H(x) ps(f 1(><))

5P 100)  pulP 1<x)>

We now consider a factorization sfover a directed acyclic graph (DAG), such that
Y

ps(s) = pi(sjipas)));
j
wherep&(s; ) denotes the components associated to the parents of rindee DAG. Because is
an element-wise transformation the factorization will be the sampgfor

Diw (pekpn) = px(x)log 2 (20)

Die (pekpe) = Ir(F 1(x) “ps(f 1(x))log

If we now additionally assume thétandP satisfy the IMA postulate, we get

Lo e &0 Rl el 1000)
Di (Pekpn) = Jr(f 1)) po(f (X)) log dx
o e ) p® dpal 1x))

By reparameterizing the integral in terms of the source coordinates, we getfuding 1 f 1)

Z 1 .
X & (s) pi(sijpas))
Dk (Pxkpg) = ps(s) log @ T _ ds: (21)
i=1 asC 1) p( Hsipa  (s)i)
such that thé&KL divergence can be written as a surmakerms, each associated to the intervention
on a mechanisng-. Positivity of these terms would suggest that we can interpret each of them as

quantifying the individual contribution of a soft intervention applied to the original sources.

In the following, we propose a justi cation for the positivity of these terims restricted setting
where only then leaf nodes of the graph are intervened on (wiith m  n).'° In the special case
of independent sources, all nodes are leavesandn.

Under this assumption, we consider (without loss of generality) an ordering of the nodes such that
them rst nodes are the leaf nodes in the DAG. Then we argue that the terms of the right-hand
side of(21) associated to leaf nodes ( m) are positive, as they correspond to the expectations of
KL-divergences. Indeed, taking one of the mtte\;ms, denoted we have the factorization

ps(s) = pi(sijpasi))  p(sjipas)) ;

j6i

19 leaf node in a DAG is one that does not have any descendants.
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P

Figure 7: lllustration of the mapping between lines in source space to a curve in observation space.
Ls , is the line obtained by varying while keeping the value of all other sources xeddo;.

L 1(s ;) isthen de ned by applying the transformationgin 11 i toLs ,. Both lines are mapped

to the same image linfL s | ].

WhereQj i B (Sjpa(sj)) does not depend @i because nodieis a leaf node. Moreover, as non-leaf
nodes are not intervened on, the transformatiatoes not modify the value of any parent variables

in these factorizations. As a consequence, the integral can be computed as an iterated integral with
respect tes; ands  , wheres ; denotes the vector including all source variablesshusuch that

z (9 nsipds))
Ps(s) log T ds
g ECNLIGR TS ,
z a . L
os(siis i) pi(siipasi))
=By, ., b acsy 4 P(sipas)log = dsé :

% DS M) lpi( i H(sDipa(si)

As illustrated in Fig. 7, for a xeds i, consider the straight lines ;, = f(si;s i) :si 2 Rgin
source space (parallel to tlse coordinate axis). This line is mapped in observation space to the
smooth curvé[Ls , ], by f in a smooth invertible way. Similarlﬁ: f mapsL  1(s ;) tothe

same image curve, sinBiL 15 1= L s 1= flLs ]

By using the change of variable formula to represent the integrilon , ] indexed by the curvilinear
coordinate , we get the expression of the pushfoward distribufign( : jpa(si)) on the curvé[Ls ]

h

i 1
foCipas) ()= 2

1/ . ) 1y y
@Sf ();s i pi fC)ipasi)

where, to simplify notatiorf, (") denotes in this context the coordinateonL s ., in bijection with
the curvilinear coordinateonf[Ls ,].

Similarly, we get the expression of the pushfoward distribuhcpn( i Ypas))) fromL (s 1)

to the curve [L s ] (using again the fact that parent variables are not intervened on, and thus left
unchanged by )

h i @ 1
Pp:i *(pas) ()= @5 PiCy, o)1 p P O)jpas)
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These terms appear when rewriting thih term (for a leaf variable) i§21) as a curvilinear integral:

Z g (s 1IOi (sijpa(si))

ps(s)log T ds
& 1 : 1(9)ij ()i
st ) p( (ZS)ujpa( (s)i))

=B 9, psipacs Q(f Y()is i) 1p'(f 1) ipasi)
S i i Pj(sjipa(s;)) @s 12 i i

3

S 10)s ) mf )] pas) z

@ - T — ds:
G®10)y; W) ) p PO)jpas)

The inner integral term can thus be interpreted as the KL divergence between two pushforward
measures de ned oh [Ls ,] byf andP, that we can denote by

Dk fpi(:ipas)) kPp :j  (pas))

log

To conclude, this implies that the causal effect of the soft interverition® can be decomposed

as the following sum offn positive terms associated to interventions on each leaf variable, plus an
additional term for the remaining non-leaf variables, which further simpli es (in comparis¢iip

due to the assumption that those variables are unintervened.

xo h i
D (pckpe) = Es @, p(sipacsy Dxi fpCipas) kPp :j  *(pas)
i=1
Z 1
X 509
+ ps(s) log
( )

i>m %
This expression suggests that the KL-divergences appearing in tha testms each re ect the causal
effect of an intervention on the mechanism at the level of one single source cooiidituateng
% into %. When the sources are jointly independent, we mave n and the right hand side of
(22) contains only positive terms. An interesting direction for future work would be to analyse the
remaining term in the case of non unconditionally independent sources.

ds: (22)

In contrast to the decompositi¢h9) in the context of IGCI, the IMA decompositiq2) involvesm
(expectations of) KL-divergence terms instead of two, each related to the intervention on the part of
the mechanisni% that re ects the in uence of a single source.

B.4 Independence of cause and mechanism and IMA

We now discuss an example in which a formalisation of the principle of independence of cause and
mechanism [45] is violated, and one in which the IMA principle is violated.

B.4.1 Violations of independence of cause and mechanism

In the context of the Trace methodq], used in causal discovery, a technical example of ne-
tuning can be constructed by taking a vector of i.i.d. random variables with arbitrary (not diagonal)
covariance matrix as the cause, and by constructing the mechanism as a whitening matrix, turning
the cause variables into uncorrelated (effect) variables. By doing so, the singular values and singular
vectors of the matrix (the mechanism) are ne-tuned to the input covariance matrix (a property of the
cause distribution), and such ne-tuning can be quanti ed via the Trace method4Sle&éction 1).

B.4.2 Violations of the IMA principle

Technical example. As mentioned in § 3, an example of a mixing functibrwhich is non-
generic according to the IMA principle is an autoregressive function, for example an autoregressive
normalising ow [69], where thek-th component of the observations only depends orkttie
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sources: intuitively, this would correspond to the unlikely cocktail-party setting wherk-the
microphone only picks up the voices of the rst speakers. More precisely, as we show in Lemma C.1,
this leads to positiv€,,, value for such mixing.

Pictorial example: Violations of the IMA principle in a cocktail party. A cocktail party (Fig. 1,

left) may violate our IMA principle when the locations of several speakers and the room acoustics
have been ne tuned to one another. This is for example the case in concert halls where the acoustics
of the room have been ne-tuned to the position and con guration of multiple locations on the stage,
where the sources (i.e., the voices of the actors or singers) are emitted—in order to make the listening
experience as homogeneous as possible across the spectators (that is, the in uence of each of the
sources on the different listeners should not differ too much). This would lead to an increase in
collinearity between the columns of the mixing's Jacobian, thus violating the IMA principle.

Additionally, we recall that the ICM principle is often informally introduced by referencing the
ne-tuning and non-generic viewpoints giving rise to certain visual illusions, such as the Beuchet
chair (seeTg], Section 2); in a similar vein, we can imagine that violations of the IMA principle

in the cocktail party setting may be related to illusions in binaural hearing such as for example the
Franssen effect, where the listener is tricked into incorrectly localizing a sound [89].
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C Proofs

We now provide the proofs of all our theoretical results from the main paper.

C.1 Proof of Prop. 4.4

Before giving the proof, it is useful to rewrite the local IMA constrast (8) as follows:

9=" tog 2 logid ()i
Cimall;S) = 0g —(s 0gJJs (9))
i=1 @s
=7 log diag 37 (931(5)  log 7 (9319

= DKL 37 (931(9) (23)

where the quantity ii§23) is called the left KL measure of diagonality of the matdix(s)J: (s) [2]
(see Remark 4.3):

DEt (A)=  logj(diag(A)) %A (diag(A)) Zj
=log jdiag(A)j logjAj:

From (23), it can be seen thaia (f; s) is a function ofJ¢ (s) only throughJ; (s)Js (s).
Proposition 4.4(Properties oty (f; S)). The local IMA contrast,ya (f;s) de ned in(8) satis es:
(i) cma(f;s) 0, with equality if and only if all column€=as(s) of J¢ (s) are orthogonal.

(i) cwa(f;s) is invariant to left multiplication ofl; (s) by an orthogonal matrix and to right
multiplication by permutation and diagonal matrices.

Proof. For ease of exposition, we denote the value of the Jacobitewdluated at the poirstby
J¢(s) = W. The two properties can then be proved as follows:

(i) Thisis a consequence of Hadamard's inequality, pplplied to the expression on the E)S of
which states that, for a matri with columnsw;, _, logkw;k logjW j; equality in
Hadamard's inequality is achieved iff. the vectarsare orthogonal.

(i) We split the proof in three parts.

a. Invariance to left multiplication by an orthogonal matrix:
LetW = OW , with O an orthogonal matrix, i.eQO> = |. Then the property follows
from writing cya (f; S) as in (23):
1 feit > _ Lt > ~> R > R >
EDKL (W W)_ EDKL (W O OW)_ EDKL (W IW)_ EDKL (W W)
b. Invariance to right multiplication by a permutation matrix:

LetW = WP , with P a permutation matrix. Thew is justW with permuted columns.
Clearly, the sum of the log-column-norms does not change by changing the order of the

summands. FurthelogjW j = log jW j +log jPj = log jW j, because the absolute value
of the determinant of a permutation matrix is one.

c. Invariance to right multiplication by a diagonal matrix
LetW = WD , with D a diagonal matrix. Consider the two terms on the RH&dfFor

the rstterm, we know that the columns @ are scaled versions of the columnd/éf, that
isw; = diw;, whered; denotes thé" diagonal element db . Thenkw;k = jd;jkw;k.
For the second term, we use the decomposition of the determinant:

X0
logjWj=logjWj+logjDj=logjWj+ logjdij:
i=1
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C.2

Taken together, we obtain |

X

xXo
log (jdij kw; k) logjWj+  logjdij

1 i=1

logkwik logjWw j
i=1 [

X0 X0
logkwik+  logjdij logjW ] logjdij

i=1 i=1 i=1

logkwik logjWj

Proof of Prop. 4.6

Proposition 4.6 (Properties ofZ 4 (f; ps)). The global IMA contras€,ya (f; ps) from (9) satis es:

@

(ii)

Civa(f;ps) 0, with equality iff. J;(s) = O(s)D(s) almost surely w.r.tps, where
0O(s);D(s) 2 R" " are orthogonal and diagonal matrices, respectively;

Cia(f;ps) = Cwa(f;ps) foranyt=f h ' P lands= Ph(s),whereP 2 R" "isa
permutation andh(s) = ( hi(s1);:::; hn(sn)) an invertible element-wise function.

Proof. The properties can be proved as follows:

@

(ii)

From propertyi) of Prop. 4.4, we know thaty (f;s) 0. HenceCiua(f;p(s)) Ofollows
as a direct consequence of integrating the non-negative quaptity; s).

Equality is attained iffcya (f; s) = 0 almost surely w.r.tps, which according to propertf)
of Prop. 4.4 occurs iff. the columns df (s) are orthogonal almost surely w.ig;.

It remains to show that this is the case ¥(s) can be written a®©(s)D (s), with O(s) and
D (s) orthogonal and diagonal matrices, respectively. (To avoid confusion, noterthagonal
columnsneed not have unit norm, whereasathogonal matrixO satis esOO > = 1.)

Theif is clear since right multiplication by a diagonal matrix merely re-scales the columns,
and hence does not affect their orthogonality.

For theonly if, let J; (s) be any matrix with orthogonal columigs), ji(s)” jj(s) =0;8i 6 |,
and denote the column norms dy(s) = jjji(s)jj. Further denote the normalised columns of
J:(s) by oi(s) = ji(s)=d (s) and letO(s) andD (s) be the orthogonal and diagonal matrices
with columnso; (s) and diagonal elementh(s), respectively. Theds(s) = O(s)D(s).

Letf=f h ' P !ands = Ph(s), whereP 2 R" " is a permutation matrix and
h(s) = (hy(s1);:: hn(sn)) is azn invertible element-v%ise function. Then

Ciua(T5ps) = Cua (T, 8)ps(s)ds = Cua (T 8)ps(s)ds (24)

where, for the second equality, we have used the fact that

Ps(s)ds = ps(s)ds:
sinceP  h is an invertible tranformation (see, e.g., [83]). It thus suf ces to show that

Cua (58) = cwa(f;9): (25)
at any points = Ph (s). To show this, we write

3e(9)= Jin 1 p 1(Ph(9)
=Jin+ P 'Ph(s) Jp 1 (Ph(s))

Jt n 1(h(s)) Jp (Ph(s))
Ji(h * h(s) Iy 1(h(s) Ip +(Ph(s))
Ji () D(P * (26)
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where we have repeatedly used the chain rule for Jacobians, as well Bs #rat= |; that
permutation is a linear operation, $p(s) = P for anys; and thath (and thush 1) is an
element-wise transformation, so the Jacoldign: is a diagonal matrix0 (s).

The equality in(25) then follows from(26) by applying propertyii) of Prop. 4.4, according to
whichcy, is invariant to right multiplication of the Jacobidn(s) by diagonal and permutation
matrices.

Substituting (25) into the RHS of (24), we nally obtain
Ciwa(fips) = Ciua(f; ps):
O

C.3 Remark on a similar condition to IMA, expressed in terms of the rows of the Jacobian

We remark that the condition imposed by the IMA Principle 4.1 needs to be expressed in terms of
the columns of the Jacobian, and would not lead to a criterion with desirable properties for BSS if it
were instead expressed in terms of its rows (which correspond to gradientsf ofd}je One way to

justify this is that, for the same condition expressed on the rows of the Jacobian, that is

logkr fi(s)k logjJ¢(s)j=0;
i=1

property (i) of Prop. 4.4 would not hold (because invariance would hold w.r.t. right, not left,
multiplication with a diagonal matrix). As a consequence, the resulting global contrast would not
be blind to reparametrisation of the source variables by permutation and element-wise invertible
transformations, thereby not being a good contrast in the context of blind source separation.

C.4 Proofof Thm. 4.7

Before proving the main theorem, we rst introduce some additional details on the Jacobian of the
Darmois construction [39] which will be important for the proof.

Jacobian of the Darmois construction forn = 2. Consider the Darmois construction for= 2,
y1 = 00(X1) i= Fx,(X1) = Px, (X1 Xi1)
Y2 = G5 (Y1X2) = Fx,jvizy, (X2) = Px,jvizy, (X2 X2jY1 = y1)

Its Jacobian takes the form

_  Pp(x1) 0 .
Jgo(X) = Ca(X) p(Xzjx1) 27)
where Z,,
Co1(x) = @x p(x3ix1)dx3 :

Jacobian of the Darmois construction: general case. In the general case, the Jacobian of the
Darmois construction will be
% p(xa) 0
Jp(x)= @ : A (28)
C(x) P(XnjX1; i1 Xn 1)
where the components (x1;) of C(x) foralli<j are de ned by
@ 9 o 0
i (X1j)= = Xij X1 1)dx;:
le( l.J) @X N p( ]] 1 l) j
It is additionally useful to introduce the following lemmas.

Lemma C.1. A functionf with triangular Jacobian ha€,y (f; ps) = O iff. its Jacobian is diagonal
almost everywhere. Otherwiga (f; ps) > 0.

29



Proof. Letf have lower triangular Jacobi%natand defotdf(s) = W. Then we have
v

Cua (f;8) = log wi A logjwi ] ;
1 j=i

i= i i=1
wherew;; =[W J;i . Since the logarithm is a strictly monotonically increasing function and since
fi %

WE Wi
j=1
with equality iff. w;j =0;8j 6 i (i.e., iff. W is a diagonal matrix), we must haeg, (f;s) = 0 iff.
W is diagonal.
Civa (f; ps) is therefore equal to zero iff. has diagonal Jacobian almost everywhere, and it is strictly
larger than zero otherwise. O

Lemma C.2. A smooth functiof : R* I R" whose Jacobian is diagonal everywhere is an
element-wise functioffi(s) = (f1(s1);::; fn(Sn)).
Proof. Letf be a smooth function with diagonal Jacobian everywhere.

Consider the functiofy; (s) for anyi 2 f 1;:::;; ng. Supposdor a contradictionthatf; depends ors;
for somej 6 i. Then there must be at least one pansuch tha@i=gs(s ) 6 0. However, this
contradicts the assumption thht is diagonal everywhere (sin€@ =g@s is an off-diagonal element
fori 6 j). Hencef; can only depend os for all i, i.e.,f is an element wise function. O

We can now restate and prove Thm. 4.7.

Theorem 4.7. Assume the data generating procesglifand assume that; 6? x; for somei 6 j.
Then any Darmois solutioff °; p, ) based org® as de ned in(4) satis esCyya (f°; py) > 0. Thus a
solution satisfyindgC,ua (f; ps) = 0 can be distinguished froifi°; p,) based on the contra§y, .
Proof. First, the Jacobiadyo(x) of the Darmois constructiog® is lower triangulaBx, see (28).

Because CDFs are monotonic functions (strictly monotonically increasing given our assumptions on
f andps), gP is invertible.

We can thus apply the inverse function theorem (With= (gP) 1) to write

Jroly)= Jgo(x)

Since the inverse of a lower triangular matrix is lower triangular, we concluddthét) is lower
triangular for ally = gP(x).

Now, according to Lemma C.1, we ha@a,. (f°; py) > 0, unlessl;o is diagonal almost everywhere.
Supposdor a contradictionthatJ;o is diagonal almost everywhere.

Sincef andps are smooth by assumption, so is the push-forwmre f ps, and thus alsg® (CDF
of a smooth density) and its inverse. Hence, the partial derivativé =ay, i.e., the elements of
J¢o are continuous.

Consider an off-diagonal eleme@t"=@y for i 6 j. Since these are zero almost everywhere, and
because continuous functions which are zero almost everywhere must be zero everywhere, we
conclude tha@f=ey = 0 everywhere foi 6 |, i.e., the Jacobiado is diagonal everywhete

Hence, we conclude from Lemma C.2 tH& must be an element-wise functioh®(y) =
(f2(y2); =5 f P(vn))-

Sincey has independent components by construction, it followsxhat f P(y;) andx; = ij(yj)
are independent for anyé j .

However, this constitutes a contradiction to the assumptiorhé®x; for somex; .

We conclude thalso cannot be diagonal almost everywhere, and hence, by Lemma C.1, we must
haveCya (f°; py) > 0. O
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C.5 Proof of Corollary 4.9

Corollary 4.9. Under assumptions of Thm. 4.7, if additiondilis a conformal map, the(f ; ps) 2
M ua for anyps 2 P due to Prop. 4.6 (i), see Defn. 4.8. Based on Thm. @&.;fs) is thus
distinguishable from Darmois solutiofi&®; p, ).

Proof. The proof follows from propertyi) of Prop. 4.6: by de nition, the Jacobian of conformal
maps at any poins can be written a®(s) (s), with : R" ! R, which is a special case of
O(s)D(s),withD(s) = (s)l. O

C.6 Proof of Corollary 4.11

Corollary 4.11. Consider a linear ICA modek = As, withE[s” s] = |, andA 2 O(n) an orthog-
onal, non-trivial mixing matrix, i.e., not the product of a diagonal and a permutation mateix If
at most one of the; is Gaussian, the@ . (A ; ps) =0 andCy. (fP;py) > O.

Proof. Since, by assumption, the mixing matrix is non-trivial (i.e., not the product of a diagonal and
permutation matrix), and at most one of #h@s Gaussian, according to Thm. A.1 there must be at
least one paik;; x;, with i 6 j, such thak; 6?x;.

We can then use the same argument as in the proof of Thm. 4.7 to show that the Darmois construction
has nonzer&,,, whereas the linear orthogonal transformatfornas orthogonal Jacobian, and thus

Cima = 0 by property(i) of Prop. 4.6. O

C.7 Proof of Thm. 4.12

Theorem 4.12.Let(f; ps) 2 M ua and assume thdtis a conformal map. GiveR 2 O(n), assume
additionally that9 at least one non-Gaussia whose associated canonical basis ve&pis not
transformed byR * = R> into another canonical basis vectef. ThenCyua (f @R (ps); ps) > 0.

Proof. Recall the de nition
a%(ps)= Fs* R ' Fg
For notational convenience, we denote= 1 Fg and write
aR (ps) = 'R
Note that, since botks and are element-wise transformations, so is

First, by using propertyii) of Prop. 4.6 (invariance df,,, to element-wise transformation), we
obtain

Cma(f aR (Ps);Ps) = Cua(f 'R Ps) = Ciua(f bOR; P2);
with z = (s) such thap, is an isotropic Gaussian distribution.
Supposdor a contradictionthatCy, (f 1 R;p,)=0.
According to propertyi) of Prop. 4.6, this entails that the matrix
b 1r(@7)% 1r@=R7I (273 @I @I (R (29)

is diagonal almost surely w.rp,. Moreover, smoothness pf andf implies the matrix expression
of (29) is a continuous function of. Thus(29) actually needs to be diagonal for al R", i.e.,
everywherdc.f., the argument used in the proof of Thm. 4.7, 1.1008-1013).

Since(f; ps) 2 M ua by assumption, by property) of Prop. 4.6, the inner term on the RHS(@B),
J( @) (@)

is diagonal. Moreover, since is an element-wise transformatiah, :1(z)”> andJ :(z) are also
diagonal. Taken together, this implies that

J 1@ @7 @I (2 (30)
is diagonal (i.e., (29) is of the foriR” D (z)R for some diagonal matri® (z)).
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Without loss of generality, we assume the rst comporgndf s is non-Gaussian and satis es the
assumptions stated relativeRo(axis not invariant nor sent to another canonical axis).

Now, since both the Gaussian CDFand the CDH-4 are smooth (the latter by the assumption that
of ps is a smooth density), is a smooth function, and thus has continuous partial derivatives.

1
By continuity of the partial derivative, the rst diagonal eIeme%;T of J 1 must be strictly
monotonic in a neighborhood of sorag (otherwise ; would be an af ne transformation, which
would contradict non-Gaussianity sf).

On the other hand, our assumptions relativRktentail that there are at least two non-vanishing
coef cients in the rstrow ofR (i.e., rstcolumn ofR>).%° Letus calli 6 j such pair of coordinates,
i.e.,ry 60 andry; 60.

Now consider the off-diagonal ter(ij ) of (29), which we assumed (for a contradiction) must be
zero almost surely w.r.p,. Since the term in (30) is diagonal, this off-diagonal term is given by:

2
(z) ( Y2)%rirg =0:

2 2

@
(z«) ds. Y2) ra Mg =
k=1 K Sk k=1

d, !
de

where for the rst equality we have used the fact that a conformal map with conformal facto(s)
(by assumption), and where the second equality must hold almost surelypw.r.t.

Sincef is invertible, it has non vanishing Jacobian determinant. Hence, the conformal faotast
be a strictly positive function, so
( (2)?>0; 8z
Thus, for almost alg, we must have:
2

d 1
K_(zx) Tlg =0 (31)

de

k=1

1 2
Now consider the rst term ddzll (z1) rary inthe sum.

1

Recall thatr3;r1; 6 0, and thatddz1 (z1) is strictly monotonic on a neighborhood .

1
d . 1t 2 . . . . .

Asa consequence,ﬁ(zl) ryif i is also strictly monotonic with respect#g on a neighborhood

of z§ (where the other variablég,; :::; z,) are left constant), while the other terms in the surtSih)

are left constant becauseis an element-wise transformation.

This leads to a contradiction &31) (which should be satis ed for alt) cannot stay constantly zero
asz; varies within the neighbourhood &f.

Hence our assumption th&fy. (f  aR (ps); ps) =0 cannot hold.
We conclude tha€u. (f  aR (ps); ps) > O. O

21 short, if this were not the case, this column would have a single non-vanishing coef cient, which would
need to be one due to the unit norm of the rows of this orthogonal matrix. Such structure of theRmatixd
entail that the associated canonical basis veetds transformed bR * = R” into a canonical basis vector
ej which contradicts the assumptions.
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D Worked out example

ExampleD.1 (Polar to Cartesian coordinateg}onsider the following example of a nonlinear ICA
model which represents a change of basis from polar to Cartesian coordinates:

- X1 _ _ fi(s) _ rcos()
x= L T (9 T rein()
with sources
s= X =" U[OR] u[o; 2 ;

First, we consider the Jacobian of the true mixinghich is given by:

cos() rsin( )
sin() rcos()

Ji(s)= Je(r; )=
and its determinant and column norms are given by
jdetdi(s)j=r cog( )+sin?() =r

@ _ @ . _ 2 a2 —
@5(5) = @'(r, ) =cos’( )+sin?()=1

@ @ 2

—(s =(r; ) =r cog()+sin =

@ 5( ) @ (r; ) () ()

In other words, the columns df (s) are orthogonal for ak, so thatC,,, = 0 for the true solution.
Next, we apply the Darmois construction.

First, we write the joint density fx1; x,) using the change of variable formula:

L1 1 1

2R~ " X2+ x22R

p(x1;X2) = jdetds(r; )j *p(r )=
Next, we compute the marginal denstfx;). Note that the observatiomslive on the disk of radius
R,kxk R, sop(xi;Xz2) =0 whenevex? + x3 >R 2,

ZP e
p(x1) = p P(X1;X2)dxp =
R2 x2

ZP sz ZP gz

1 n dX2 _ 1 dXz
~ —_ Pi_ —_—
2R pRz x2 X%+X% 2R pRz X2 X1 1+(%2

R
Applying the change of variable= i—i with dt = dxx—lz and using the integral(1 + t?) zdt =
arcsinh(t) + C, as well as the fact tharcsinhis an odd function, we obtain

VA F R 2 Os 271
1 oo b dt 1 R
= — = i h@ — lA
)= 55 - lpm = arcsin .
Next, we compute the conditional densjitfx,jx1):
L 0 Os 11
; 2R) 1 x2+x3 q R 2
P(X2iX1) = p(s(l)(’)()Z) = @GR) X% X | - @ x¢+x3arcsinh@ = IAA
(R) larcsinh = 1
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Finally, we compute the off-diagonal term in the general form of the inverse Jacobian for Damois-style
solutions in (27):

Y4 4

@ . @ dx
Cz]_(X): —_ p(ngXl)dXZZ o [o 2 ¥ 7'
@x Q@x RZ x2 P — _ R 2
2 X%+ x3arcsinh R 1
1
0 0s_ 1, 1
1@ %)a R * Z dx;
= - _— @arcsinh@ — 1A P
2@x X1 P " x2+ x3
0 0s 1 4,0 0 s 111
1@ _ R ? _ _ R ?
= - _— @arcsinh@ — 1A @arcsinh(x,) arcsinh@ — 1AAK
2 @x %a X1 (x2) x
0 0s 1 4,0 0s 111
2 2
-te %arcsinh@ R 1A @arcsinh(x,) + arcsinh @ R 1AAK
Z@X X1 X1
0 1
_ 1@ 1+ arcrsinh(xz) |
2@x% 2
arcsinh R 1
1
0 os 1 1l
1 @ @ R 2 LA
=5 arcsmh(xz)@—x ?@arcsmh X 1 E
0 S 71 2 0 S 71
2 2
= }arcsinh(xg)arcsinh@ 1A Qarcsinh@ R 1A
2 X1 @x X1

Using the derivativ%’tarcsinh(t) = (t2+1) 2 and repeatedly applying the chain rule, we obtain:

0 S 71 2 0 S 71
1. _ R 2 X1 @ R ?
C1(X)= = arcsinh(xp)arcsinh@ — — A I =@ = 1A
21(X) 5 (x2) X1 R @x X1
OS 71 2
2
1 . . R X1 1 1
= Earcsmh(xz)arcsmh@ - 1A ﬁlfr?( 2)R?x, 3
1 f 1
1
OS 71 2
2
R . . R
= —p———_arcsinh(x)arcsinh@  — 1A
2x; R%2  x?% X1

Again, recall that this only holds inside the disk of radRisotherwisec;, = 0 (as the CDF will be
zero or one, irrespective af).
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TheC,ya for the Darmois solution thus takes the form:
Z

. 1 _
Cha™=  Slog p(x1) *+ cu(x)’p(x1;ixz) * +log p(xajx1) * log p(xi;xz) * ds
2 "0 1 0s 11,
= EIog @? arcsinh@ - 1AA
0 1
R Os R 2 1 Zgz 1 1 I o #

+ @—pP——— arcsinh(x,)arcsinh@  — 1A S —

%)2x1 RZ2 x? x2) X1 X2+ x52R

0 Os 11
q R 2
+log @ x2+ x3arcsinh@ o 1AA
1
1 2, 2
log(2R) EIog X1+ X5 ds
" OS 71 2
Z R ?
= Zlog °2R?arcsinh@ 1A
2 X1
0 S 71 4 #

+ R72arcsinh(xz)zarcsinh@ R i 1A (X2 + x2)4 2R?

4x3(R2  x3) X1 1o 2

0 Os 11

+1log(2) + %|09(Xf + x2) +log @arcsinh@ R 1AA

log(2) log(R) }Iog X2+ x3 ds

Z ! s — 1o
1 R ?
= Zlog °2RZ?arcsinh@ 1A
2 X1
Os ———1 ax
2R4 2 4 y2 R
Xi(R()Z(lX)%()Z)arcsinh(xz)2 arcsinh@ o 1A
0 Os 11
R 2
+log @arcsinh@ - 1AA  log(R)ds
1
0 1
z 1 R2(x2 + x3) arcsinh(x,)?
= 5Iog 1+ LR A G ds> 0

2
x2(R2  x2)arcsinh B 1

where the strict inequality in the last step follows from the fact that the fraction inside the logarithm,
and hence the entire integrand, is strictly positive within the disk of integration.

We have thus shown that for the example of an orthogonal coordinate transformation from polar to
Cartesian coordinates, which is not a conformal mapQhe os the true solution is zero and that of

the Darmois construction is strictly greater than zero, hence the two can be distinguished based on
the value of theC,,,, contrast.
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E Experiments

The code for our experiments (enclosed in the supplemental material) is in Python; we use Jax [12],
Distrax [L3] and Haiku B2] to implement our models; the Jacobian &g, computation and
optimisation are performed with the automatic differentiation tools provided in Jax.

E.1 Sampling random Mdobius transformations.

In order to generate mixing functions wi@,,, = 0, we use Mébius transformations (see Appendix F
and in particular Thm. F.2, for additional details on this kind of functions) with randomly sampled
parameters, as speci ed below. A Mdbius transformafiyn R" ! R" is given by

rA(s b))
ks bk '’

with parameterd;t 2 R",r 2 R, A is an orthogonal matrix and2 f 0; 2g. The ow models we

train have an diagonal af ne layer at the top with xed shift and scale set to the mean and standard
deviation of the training data, thereby normalizing the inputs. Hence, without loss of generality, we
can set thé parameter to zero andto one. Since = 0 corresponds to a linear transformation,

we generally set = 2 in our experiments unless otherwise speci ed. We sample the orthogonal
matrix through theortho_group function inscipy.stats [101]. To avoid singularities given

by a vanishing denominator in the second term on the RHS2)f which would yield observed
distributions with strong outliers and therefore hard to t for our models, we retriotlie outside

the unit squarae is sampled from. We achieve this by samplimdrom a normal distribution and
reject the sample until it is located outside of the unit square.

fM(s)=t + (32)

E.2 How to implement the Darmois construction

In the following, we describe how the Darmois construction can be implemented based on nor-
malising ow models p9]. The key idea is that the componerg3 of the Darmois construc-

tion (4)@1re conditional (cumulative) density functions corresponding to a given factorisation
p(x) = in:1 p(xijx1:i 1) of the likelihood. A ow model with triangular Jacobian can be used to
maximise the likelihood of the observations under a change of variable respecting said factorisation,
and learning to map the observed variables onto a given (factorised) base distribution. After training,
and provided that the model is expressive enough, the CDF of each component of the reconstructed
sources should match that of the base distribution. By further transforming each reconstructed vari-
able through said CDF, we achieve a global mapping of the observations onto a Uniform distribution
on then-dimensional hypercube, with a triangular Jacobian, matching the transformation operated by
the Darmois construction (see also ség[section 2.2). Note that, for the purpose of computing the
Ciwa Of the Darmois construction, this nal step can be omitted due to Prop(i#).Gstating that the
contrast is blind to element-wise reparametrisations of the sources.

We remark that, while the possibility of using normalising ows to “learn” the Darmois construction

is mentioned in35, 69, where a similar construction is mentioned in a theoretical argument to prove
“universal approximation capacity for densities” for normalising ow models with triangular Jacobian,

it has to the best of our knowledge not been tested empirically, since autoregressive modules with
triangular Jacobian are typically used in combination with permutation, shufing or linear layers
which overall lead to architectures with a non-triangular Jacobian.

Expressive normalising ow with triangular Jacobian. To obtain an expressive normalizing
ow with triagular Jacobian, we modify the residual ow modeld].>* A residual ow is a residual
network which is made invertible through spectral normalization. Each layer is given by

2°= z+ g(2); (33)

wherez%z 2 R” andg : R" ! R" is a small neural network. Due to the chain rule, for the Jacobian
of the overall ow model to be triangular, a suf cient condition is that all the layers have triangular
Jacobian. Since the Jacobiarf¢f) = z is the identity matrix, we can restrict our attention to the
neural networlg. In our experiments, this is going to be a fully connected network. If i hagers
andh n hidden units, it is given by

g(z) = b1+ Wy (bo+ Wy (bg+ W3 (by+Wy2) )); (34)

2We describe how to implement a function with upper triangular Jacobian, but the reasoning can be extended
to implement functions whose Jacobian is lower triangular.
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where :R"! R" s an element-wise nonlinearity; 2 R", b,;::;;b; 2 R are the biases, and
W;2R "Wy W, 1 2R MW, 2 R " are the weight matrices. In order for the Jacobian
of g to be triangularg, (z) should only depend om,, g, 1(z) should only depend or, andz, 1,
and so on. To achieve this, we make the weight matrices block triangular as indicétéy (86),

and (37).
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Here,h; is the number of hidden units dedicated to transfornzingith the constrainf i“:l h; = h.
We perform an even split such that theandh; differ by at most 1 foii;j 2 f 1;:::; ng. The weight
matrices are restricted to be block triangular during optimization by setting the respective matrix
elements to zero after each iteration of the optimizer. The model can simply be made and kept
invertible using the same spectral normalization as is used for dense residuall &ws\e train our

model to map onto a standard Normal base distribution.
E.3 Generating random MLP mixing functions

In order to generate random MLP mixing functions, we adopt the same initalisation 29:in [
we initialise the square weight matrices to be orthogéhalnd use théeaky tanh invertible
nonlinearity.

Z2Note that orthogonality of the weight matrices in a MLP does not guarantee satisfying Principle 4.1, due
to the element-wise nonlinearities between the layers, which overall lead to a Jacobian whose columns are in
general not orthogonal.
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E.4 Maximum likelihood with low Cya
The modi ed maximum likelihood objective described in § 5.2 can be written as foltdws:
L(g:x)=log p(x)  cwma(9 *ipy)

X , X
= logpy, (9'(x)) +log jIg(x)j log [Jg :(g(x)]i  log Jg 1(9(x))
i=1 i=1 !
= logpy (g'(x)) +log jdg(x)j log [3g*(X)]i +log jdg(x)]
i=1 i=1
_ X
= logpy, (g'(x)+(1  )logjdg(x)j log [350)] (38)

i=1 i
where[J 1(x)];i represents thieth column of the inverse of the Jacobiangofomputed ak.

We use the same model as the one described in Appendix E.2, but without the constraint that the
Jacobian should be triangular, and train with a Logistic base distribution.

Note that the computational ef ciency of optimising object{\38) is cubic in the input size, due

to a number of operations (matrix inversion, Jacobian and determinant computation via automatic
differentiation, etc.) which ar®(n®). However, similarly to what already observed 0], we found

that for data of moderate dimensionality computing and optimising obje@R)avith automatic
differentiation is feasible. For example, training a residual ow with 64 layerd Briterations takes
roughly 5.3 hours fon = 2, 5.7 hours fonm =5, and 6.3 hours fon = 7 on the same hardware (see
section E.5). An interesting direction for future work would be to nd computationally ef cient ways

of optimising (38).

When computing th€,, of the Darmois solutions of randomly generated functions, we restricted
ourselves to MApbius transformations, i.e. conformal maps. However, there are also nonconformal
maps satisfyingC,ua = 0, e.g. the transformation of Cartesian to Polar coordinates, see Appendix D.
To test whether th€,,,» of the Darmois solutions is actually bigger th@anwe gener

E.5 Evaluation

Mean correlation coef cient. To evaluate the performance of our method, we compute the mean
correlation coef cient (MCC) between the original sources and the corresponding latents, see for
example §9]. We rst compute the matrix of correlation coef cients between all pairs of ground
truth and reconstructed sources. Then, we solve a linear sum assignment problem (e.g. using
the Hungarian algorithm) to match each reconstructed source to the ground truth one which has
the highest correlation with it. The MCC matrix contains the Spearman rank-order correlations
between the ground truth and reconstructed sources, a measure which is blind to nonlinear invertible
reparametrisations of the sources.

Nonlinear Amari metric. While the MCC metric evaluates BSS by comparing ground truth and

reconstructed sources, we propose an additional evaluation directly based on comparing the (Jacobians

of the) true mixing and the learned unmixing. We take inspiration from an evaluation metric used in

the context of linear ICA, the Amari distancg[ Given a learned unmixingV and the true mixing

A, and de ning the matrixR B AW , the Amari distance is de ned as L

dAmari(R) — X [R]ﬁ 1A + X @X] I:R]JZ'
max [R]? max [R]7

=1 j=1

1A (39)
=1 j=1
and is greater than or equal to zero, canceling if and orfy/ i§ a scale and permutation matrix, that
is when the learned unmixing is matching the unresolvable ambiguities of linear ICA.

We extend this idea to the nonlinear setting: Given a true mikiagd a learned unmixing, we
de ne our nonlinear Amari distance as

dVAT(gif) = Ex p, dMM Jg(x)Ir(f (X)) (40)

Zwhile the objective in § 5.2 involves an expectation guerwe consider the loss for a single poinhere,
L(g;x).
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@ (b) (c) (d)

(e) (f) (9) (h)

Figure 8: BSS viaC . -regularised MLE fon = 2 dimensions with 2 f 0:0; 0:5; 1:0g. The true
mixing function is a randomly generated Mdbius transformation, nonlinear (witB) in (a)—~(d)
and linear (with = 0) transformation foe)}-(h). For each type of transformation angdseeded
runs are done(a), (e) KL-divergence between ground truth likelihood and learnt mo@sg/;(f) Cua
of the learnt modelg(c), (g) nonlinear Amari distance given true mixing and learnt unmixiiy;
(h) MCC between true and reconstructed sources.

@) (b) (© (d)

(e) (f) (9 (h)

Figure 9: BSS vi&C ya -regularised MLE fon =5 dimensions with 2 f 0:0; 0:5; 1.0g. The true
mixing function is a randomly generated Mobius transformation, nonlinear (witB) in (a)~(d)
and linear (with = 0) transformation foKe)—(h). For each type of transformation andseeded
runs are donea), (e) KL-divergence between ground truth likelihood and learnt moigl;(f) Cua
of the learnt modelg(c), (g) nonlinear Amari distance given true mixing and learnt unmixaky,
(h) MCC between true and reconstructed sources.
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() (b) (c) (d)

Figure 10: BSS vi& 4 -regularised MLE fon = 7 dimensions with 2 f 0:0; 0:5; 1:0g. The true
mixing function is a randomly generated Moébius transformation (with2). For each , seeded
runs are done(a) KL-divergence between ground truth likelihood and learnt mo@gIC,. of
the learnt modeld(c) nonlinear Amari distance given true mixing and learnt unmixifay;MCC
between true and reconstructed sources.

Figure 11:visual comparison of different nonlinear ICA solutions for 2 : (left to right) true sources; ob-
served mixtures; Darmois solution; true unmixing, composed with the measure preserving automorphism (MPA)
from (5) (with rotation by =); Darmois solution composed with the same MPA; maximum likelihood Q);
andC,ua-regularised approach (= 1).

Then, according to the de nition of Amari distan¢&9), if the smooth functioy f is a permuta-

tion composed with a scalar function, thus precisely matching the BSS equivalence class de ned
in Defn. 2.2, this would result in its Jacobian (that is, the product of the Jacobig®3J¢ (f (x)))
equalling the product of a diagonal matrix and a permutation matrix at every>painé quantity
d™Amari(g: f) would therefore be equal to zero.

This metric can be of independent interest and potentially useful in contexts where the reconstructed
sources might be a noisy version of the true ones, but the true unmixing is nevertheless identi able.
Our implementation is based on the one for the (linear) Amari distance provided in the code for [1].

Ciwa of Darmois solutions for nonconformal maps satisfying the IMA principle. When com-

puting theC,,. of the Darmois solutions of randomly generated functions, we restricted ourselves
to Md6bius transformations which are conformal maps. However, there are also nonconformal maps
satisfyingC\ya = 0, e.g., the transformation from polar to Cartesian coordinates mith 2,

see Appendix D. To test whether thig,, of the Darmois solutions is actually bigger th@nwe
generate random radial transformations by imposing a random scale and shift before applying the
radial transformation, compute the Darmois solution as we have done in § 5.1, and calc@atg its

on the test set. We did 50 runs and the results are shown in Fig. 12.

Figure 12: Histogram of th€,,, values of the Darmois solutions of 50 randomly generated radial
transformations.
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Similar to Fig. 4(a) we can clearly see that dll,,» values of the nal models are larger than 0, with
the smallest value beim@01. This con rms the result we have already shown theoretically.

Additional plots for 8 5.2. We show additional plots for the quantitative experiments involving
training with the objective described in (38), see Fig. 8, Fig. 9 and Fig. 10.

For =0 (thatis, ground truth mixing linear), there appears to be an almost perfect recovery of the
ground truth sources (resp. unmixing function) fo2 f 0:5; 1:0g, as can be seen by the high (resp.
low) values of the MCC (resp. nonlinear Amari distance) evaluations ; this is in stark contrast with
the distribution of the MCC (resp. nonlinear Amari distance) values for models trained with,

which are typically much higher (resp. lower), indicating that the learned solutions do not achieve
blind source separation (see= 2, Fig. 8 (g), (h); n =5, Fig. 9 (g), (h)). All models achieve a
comparably good t, re ected in the KL-divergence values=£ 2, Fig. 8 (e),n =5, Fig. 9 (e)).

The trend is con rmed when the true mixing is nonlinear(2), with slightly lower (resp. higher)
values achieved witl,,» regularisation for the MCC (resp. nonlinear Amari) metrics; this possibly
due to the increased dif culty of tting observations generated by a nonlinear mixing, as can be seen
from the higher values of the KL-divergenae£ 2, Fig. 8(a);n =5, Fig.9(a);n =7, Fig. 10

(a));?* still, the bene cial effect of 2 f 0:5; 1:0g with respect to models trained with= 0 is clear,

and is apparently stronger for= 1:0 and with higher data dimensionality(n = 2, Fig. 8 (c), (d);

n =5, Fig. 9 (c), (d), n =7, Fig. 10 (c), (d)).

We additionally plot theC,,, values for the all trained models, for all values oflt can be seen
that solutions found by unregularised maximum likelihood estimation typically learn functions with
relatively high values o€y, , while as expected the regularised version achieves low vatue<,

Fig. 8(b), (f); n =5, Fig. 9(b), (f); n =7, Fig. 10(b)).

Finally, in gure 11, we report the same plot as in 4, top row, but with a perceptually uniform
colormap.

Comparison to FastiCA. We compared the performance of our proposed regularised maximum
likelihood procedure to a state of the art method for linear ICA, FastI&8) jn the implementation

from the Scikit-learn packag&3], over50repetitions. Our experiments show that our regularised
method ( = 0:5, and particularly =1:0; = 0:0 provides the unregularised nonlinear baseline)

is superior in learning the true unmixing and reconstructing the sources. This indicates that the
linearity assumption of FastICA does not allow enough exibility to solve blind source separation
in our setting, whereas our criterion does (see Fig. 13, Fig. 14 and Fig> Y&hile the spread in

the distributions of MCC and Amari distance can be largely attributed to the brittleness of neural
networks, the median values for the MCC (resp. nonlinear Amari distance) are consistently higher
(resp. lower) for our regularised method than for FastICA. In contrast, the performance of FastICA is
consistently better than the unregularised baseline.

(@) (b)

Figure 13: Comparison between FastICA and our normalising ow method wiH 0:0; 0:5; 1:0g,
n =2. (a) MCC; (b) Amari distance.

2The distribution of the KL values contains outliers, and seemingly more strongly for lower values of
Zthe experimental setting and the plots for the normalising ow models correspond to those already shown in
the paper, but here we modi ed tlyeaxis scale to facilitate the comparison of all methods
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(@ (b)

Figure 14: Comparison between FastICA and our normalising ow method wiH 0:0; 0:5; 1:0g,
n =5. (a) MCC; (b) Amari distance.

(a) (b)

Figure 15: Comparison between FastICA and our normalising ow method wiH 0:0; 0:5; 1:0g,
n=7. (a) MCC; (b) Amari distance.

Details on resources used. All models were trained on compute instances with 16 Intel Xeon
E5-2698 CPUs and a Nvidia Geforce GTX980 GPU. The cluster we used has 204 thereof. Training
the models took between 4 and 16 hours depending mainly on the dimensionafitynumber of
samples in the dataset, and on the number of iterations used for training. Overall, we trained around
2000 models, amounting to roughly 18000 GPU hours.
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F Additional background on conformal maps and Mébius transformations

Similarities. A similarity of a Euclidean space is a bijectibrfrom the space onto itself that
multiplies all distances by the same positive real nunmbep that for any two points andy we

have

d(f(x); f(y)) = rd(x;y);
whered(x;y) is the Euclidean distance fromto y [94]. The scalar is sometimes termed the ratio
of similarity, the stretching factor and the similarity coef cient. Wher 1 a similarity is called an
isometry (rigid transformation). Two sets are called similar if one is the image of the other under a
similarity.

Asamapf : R"! R", asimilarity of ratior takes the form

f(x) = rAx +t;
whereA is a orthogonal matrixn  n andt 2 R" is a translation vector.
Note that such a similaritf has Jacobiad; (x) = rA for anyx.

Conformal maps. Conformal maps are angle preserving transformation, and in this sense, are a
generalization of similarities. In short, IBtbe an open subset &',' : U! R" is a conformal

map if, for two arbitrary curves;(t) and ,(t) onR", where these curves intersect each other with
angle inpointp 2 U, then' 1(t) and’ 2(t) intersect each other with the same angie the

point' (p).

A characterisation of conformal maps directly related to orthogonal coordinate systems is the follow-
ing.

Proposition F.1(See e.g.95)). LetU be an open subset &' with aC*-function' : U ! R".

Then' is conformal iff there exists a scalar function: U ! R such that (x) *J. (x) is an
orthogonal matrix for allx in U. We call the scale factor of .

While it can be shown thdinear conformal maps are similarities, an interesting classarflinear
conformal maps are the unit radius sphere inversion (restriction to unit radius is only to avoid
unnecessary notational complexity):
Ip :R"nfOg! R"nfOg
X b
+
kx bk?

We can naotice that such transformation leaves the hypersphere of besmerradius 1 invariant,
while the points outside of the unit ball are mapped to the interior of the unit ball, and vice-versa.

X 7! b

Interestingly, conformal maps in Euclidean spaces of dimension superior or equal to 3 can be restricted
to two kinds according to the following result from Liouville.

Theorem F.2(see e.g.100). Letf : U! R" be a conformal map de ned on a connected open
subset of Euclidean spad® of dimensiom 3. Thenf = L;, can be written either as the
restriction of a similarityL to U, or as the compositioh = | L, of such a map with an inversion
with respect to a hypersphere of unit radius, centered at the origin.

The class of function described in Thm. F.2 corresponds exactly to the Mébius transformations
described in32). These transformation can as well be de ned in dimeng&ionith the speci city
that they are only a subset of the class conformal maps in this dimension.

Properties of sphere inversion. We characterize the properties of the unit sphere centered at zero,
that we denoté

| :R"nfOg! R"nfOg

X
X7 —
kx k2
Now let us derive the Jacobian bf A straightforward computation leads to

XX~

1
= e I e
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wherel, denote the identity matrix.

By noticing that% is rank one symmetric with eigenvalue 1 associated with unit norm eigenvector
ok We can diagonalize this matrix in any (space dependent) orthogonal basis that leasthe

rst basis vector.

Let us thus pick the unit vectors associated to the hyperspherical coordinates (which satisfy this
condition by de nition), and consider the orthogonal matiX2) gathering these basis vectors as

its columns (it is parameterized by the unit vecd, as this basis is radially invariant. Then we can
write

> >
XX X X
——=B — DB —
kx k2 kxk kxk
and thus |
1 X x 7 1 X x
TG B gk PPk T ik (I PIB g
with D a diagonal matrix with diagonal elemeftsO0; :::; 0]. This leads to
1 X x
0= ie® ek PP kk
withD, = I, 2D a diagonal matrix with diagonal elemerjtsl; 1;:::;1]. The Jacobian thus

takes the form predicted by the above proposition for conformal maps

Ji(x)= (x)O

kx k

>

with scale factor (x) = A> andO(X)= B 2 DB Z aspace dependent orthogonal

matrix, which has the additional property to be radially invariant for the speci ¢ case of sphere
inversions.
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